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Introduction

Let Ω ⊂ Rn+2, n ∈ N, be an open set and let F : Ω→ R be a continuous function.

An equation of the form

F (x, y, y′, ..., y(n)) = 0 (0.0.1)

is called ordinary differential equation of order n. Here, x is a real variable, y is a

real valued unknown function, and y′,...,y(n) are its derivatives.

A function ϕ ∈ Cn(I) is a solution of the differential equation if:

i) I ⊂ R is an open interval;

ii) (x, y(x), ..., y(n)(x)) ∈ Ω for all x ∈ I;

iii) F (x, y(x), ..., y(n)(x)) = 0 for all x ∈ I.

The main problems concerning ordinary differential equations are:

1) Existence of solutions;

2) Uniqueness of solutions (with suitable initial conditions or boundary value

data);

3) Regularity and stability of solutions (e.g. dependence on the initial condi-

tions, large time stability, higher regularity depending on F or on parame-

ters);

4) Computation of solutions.

The existence of solutions can be proved by fixed point theorems, by approxi-

mation and compactness, by variational methods (minimization and critical point

theorems), by the implicit function theorem in Banach spaces, by Functional Ana-

lysis techniques. The problem of uniqueness is typically more difficult. Only in very

special cases, it is possible to compute the solutions in some explicit form.
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CHAPTER 1

Some methods of resolution

1. First order linear equations

1.1. First order linear equations. Let I ⊂ R be an open interval and let

a, b ∈ C(I) be two continuous functions. A first order differential equation of the

form

y′ + a(x)y = b(x), x ∈ I, (1.1.2)

is called linear. In the case b = 0, the equation is said to be homogeneous

y′ + a(x)y = 0, x ∈ I. (1.1.3)

We solve the homogeneous equation, first. Assuming y 6= 0, e.g. y > 0, the differential

equation (1.1.3) has the form y′/y = −a(x). A primitive of y′/y is log y. Then,

denoting by A a primitive of a, i.e. A′(x) = a(x) for all x ∈ I, we have

−A = log y + d,

for some constant d ∈ R. It follows that y = exp(−d−A) and letting c = e−d we find

the solution

y(x) = ce−A(x), x ∈ I. (1.1.4)

This function is a solution to the homogeneous equation for any c ∈ R (i.e. the

restriction y > 0 can be dropped).

Now we look for a solution of the form (1.1.4) for the non homogeneous equation

(1.1.2), where now c ∈ C1(I) is a function that has to be determined (this method is

called “Variation of constants”). Plugging y′ = c′e−A − ace−A into (1.1.2) we get

c′e−A = b, that is c′ = beA.

Integrating this equation on some interval (x0, x) ⊂ I we get

c(x) = c(x0) +

∫ x

x0

b(t)eA(t)dt,

and we find

y(x) =
(
c(x0) +

∫ x

x0

b(t)eA(t)dt
)
e−A(x), x ∈ I, (1.1.5)

where c(x0) ∈ R is a real number and x0 ∈ I.

Proposition 1.1.1. Let x0 ∈ I and A be a primitive of a. Then the function

in (1.1.5) is a solution to (1.1.2). Moreover, any solution of (1.1.2) is of the form

(1.1.5) for some c(x0) ∈ R.
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8 1. SOME METHODS OF RESOLUTION

Proof. The first statement is a computation. Let z ∈ C1(I) be a solution to

(1.1.2) and let

w(x) = eA(x)z(x)−
∫ x

x0

b(t)eA(t)dt.

For we have

w′ = (az + z′)eA − beA = 0,

the function w is constant on I, and the second claim is proved.

�

2. Separation of variables

Let I, J ⊂ R be two open intervals and let f ∈ C(I) and g ∈ C(J) be two

continuous functions. We look for solutions to the first order differential equation

y′ = f(x)g(y). (1.2.6)

Let x0 ∈ I and y0 ∈ J . If g(y0) = 0 for some y0 ∈ J , then the constant function

y(x) = y0, x ∈ I, is a solution to the differential equation (1.2.6). Assume that

g(y0) 6= 0. Then it is g 6= 0 in a neighborhood of y0 and we can divide the equation

be g(y) (separation of variables). We find

y′(x)

g(y(x))
= f(x). (1.2.7)

Let G ∈ C1(J1) be the primitive of 1/g(y) (in the variable y), defined in some interval

J1 containing y0. The function G is strictly monotonic, because G′(y) 6= 0, and thus

invertible. Moreover, let F ∈ C1(I) be a primitive of f . Upon integrating (1.2.7), we

get

G(y(x)) = F (x) + C, x ∈ I1, (1.2.8)

for some interval I1 ⊂ I. Here C ∈ R is a real constant. The general solution of the

differential equation is then

y(x) = G−1(F (x) + C), x ∈ I1, (1.2.9)

where G−1 : G(J1) → J1 is the inverse function of G. The constant C is uniquely

determined by the initial condition y(x0) = y0, i.e. C = G(y0)− F (x0).

This argument identifies two kinds of solutions to the equation (1.2.6): constant

solutions and solutions such that g(y) 6= 0. There could be other solutions (see Section

5). If e.g. g ∈ C1(J), however, there are no other solutions (see Chapter 2).

Example 1.2.1. We look for the solution to the Cauchy Problem y′ =
1 + 2x

cos y
y(0) = π.

(1.2.10)

The differential equation is of the form y′ = f(x)g(y) with f(x) = 1 + 2x and

g(y) = 1/ cos y. ular, g is defined for cos y 6= 0, i.e. for y 6= π/2 + kπ with k ∈ Z.



4. BERNOULLI’S EQUATIONS 9

Separating the variables we get y′ cos y = 1 + 2x, and integrating we find the general

solution in implicit form

sin y = x+ x2 + C,

where C ∈ R is a constant, which is determined by the initial condition y(0) = π,

i.e. C = sin y(0) = 0. The function

z(x) = arcsin(x+ x2)

is not, however, the solution to (1.2.10) because z(0) = arcsin(0) = 0. In order to

determine the correct solution, notice the arcsin is the inverse function of sin when

restricted to [−π/2, π/2], whereas y takes values in a neighborhood of π. Letting

w(x) = y(x) − π, we have w(0) = y(0) − π = 0 and sinw = sin(y − π) = − sin y =

−(x+ x2). Now we can invert the sine function, obtaining w = − arcsin(x+ x2) and

thus

y(x) = π − arcsin(x+ x2).

The solution y is defined in a suitable neighborhood of the origin.

3. Equations of homogeneous type

A differential equation of the form

y′ = f
(y
x

)
is called of homogeneous type. Here f : I → R is a (continuous) function in some

interval I ⊂ R. With the change of variable y = xz, where z is the new unknown

function, we get y′ = z + xz′ and the differential equation transforms into

xz′ + z = f(z).

This equation can be solved on separating the variables.

For instance, the following differential equation is of homogeneous type (see Ex-

ercise ??)

y′ =
x2 + y2

xy
= f

(y
x

)
, with f(t) =

1

t
+ t.

4. Bernoulli’s equations

A differential equation of the form

y′ + a(x)y = b(x)yα, x ∈ I, (1.4.11)

where α is a real parameter such that α 6= 0, 1 is said to be of Bernoulli type. Letting

y = z
1

1−α , y′ =
1

1− α
z

α
1−α z′,

the equations transforms into

z′ + (1− α)a(x)z = (1− α)b(x).

This is a linear equation.
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5. Exact equations

Let Ω ⊂ R2 be an open set and f, g ∈ C(Ω) be continuous function. We look for

a solution y ∈ C1(I), I ⊂ R open interval, of the differential equation

f(x, y) + g(x, y)y′ = 0, (1.5.12)

satisfying the condition y(x0) = y0 for some (x0, y0) ∈ Ω with x0 ∈ I.

To this aim, consider the differential form ω in Ω

ω = f(x, y)dx+ g(x, y)dy, (1.5.13)

where dx, dy is the dual basis of the basis e1 = (1, 0) and e2 = (0, 1).

Definition 1.5.1 (Exact forms). The differential form ω is exact if there exists

a function F ∈ C1(Ω) such that

ω = dF =
∂F

∂x
dx+

∂F

∂y
dy in Ω.

The function F is called a potential of ω. In this case, the differential equation (1.5.12)

is called exact.

Theorem 1.5.2. Assume that ω is an exact form with potential F such that

∂F (x0, y0)

∂y
6= 0. (1.5.14)

Then the equation F (x, y) = F (x0, y0) implicitly defines a function y ∈ C1(I) for

some open interval I containing x0 solving the differential equation (1.5.12) along

with the condition y(x0) = y0. This solution is unique on the interval I.

Proof. Assume w.l.g. that F (x0, y0) = 0. By the implicit function theorem,

there exist δ, η > 0 and y ∈ C1(x0 − δ, x0 + δ) such that{
(x, y) ∈ Ω : |x− x0| < δ, |y − y0| < η, F (x, y) = 0

}
=
{

(x, y(x)) ∈ Ω : |x− x0| < δ
}
.

(1.5.15)

Differentiating the identity F (x, y(x)) = 0 we get

0 =
d

dx
F (x, y(x)) =

∂F (x, y(x))

∂x
+
∂F (x, y(x))

∂y
y′(x)

= f(x, y(x)) + g(x, y(x))y′(x),

(1.5.16)

i.e. y is a solution of the differential equation, and moreover y(x0) = y0.

On the other hand, if z ∈ C1(I) is a solution to the equation (1.5.12) such that

z(x0) = y0, then the same argument as in (1.5.16) shows that

d

dx
F (x, z(x)) = 0,

and therefore F (x, z(x)) = F (x0, z(x0)) = F (x0, y0) = 0. By (1.5.15) it must by

z = y. �
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Definition 1.5.3 (Closed forms). Assume that f, g ∈ C1(Ω). The differential

form ω = fdx+ gdy is closed in Ω if

∂f(x, y)

∂y
=
∂g(x, y)

∂x
for all (x, y) ∈ Ω.

An exact differential form in an open set Ω with a potential F ∈ C2(Ω) is closed

in Ω because mixed derivatives are equal by Schwarz theorem

∂2F

∂x∂y
(x, y) =

∂2F

∂y∂x
(x, y), (x, y) ∈ Ω.

The converse is also true if Ω is simply connected.

Theorem 1.5.4. If Ω ⊂ R2 is a simply connected open set, then any closed dif-

ferential form in Ω is exact.

Convex and starshaped open sets are simply connected. In particular, closed forms

always have a potential locally.

If ϕ ∈ C(Ω) is a function such that ϕ 6= 0 in Ω, then the differential equation

(1.5.12) and the differential equation

ϕ(x, y)
{
f(x, y) + g(x, y)y′

}
= 0, (1.5.17)

have the same solutions. For a suitable choice of ϕ, the differential equation (1.5.17)

may happen to be exact, even though (1.5.12) is not exact. The function ϕ is then

called integrating factor (or multiplier). If f, g ∈ C1(Ω), a necessary condition for a

function ϕ ∈ C1(Ω) to be a multiplier is

∂

∂y
ϕf =

∂

∂x
ϕg in Ω. (1.5.18)

Example 1.5.5. The differential equation

xy2 + y − xy′ = 0 (1.5.19)

is not exact. In fact, with f = xy2 + y and g = −x, we have

∂f(x, y)

∂y
= 2xy + 1 and

∂g(x, y)

∂x
= −1.

We look for a function ϕ such that (1.5.18) holds. We try with the ansatz ϕ = ϕ(y),

i.e. ϕ depends only on y. We get the necessary condition

ϕ′(y)(xy2 + y) + ϕ(y)(2xy + 1) = −ϕ(y),

that is implied by yϕ′ + 2ϕ = 0 (this equation does not depend on x). A solution for

this linear equation is ϕ(y) = 1/y2. Now the differential equation

x+
1

y
− xy′

y2
= 0

is exact, where y 6= 0. A potential F for this exact differential equation can be found

on solving
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1

An integration yields

F (x, y) =
x2

2
+
x

y
+ C, C ∈ R.

The equation F (x, y) = 0 implicitly defines solutions to the differential equation

(1.5.19) (for x 6= 0 and y 6= 0).

6. Second order linear equations with constant coefficients

Let f : I → R be a continuous function on the interval I ⊂ R and let a, b, c ∈ be

real numbers such that a 6= 0. The differential equation

ay′′ + by′ + cy = f(x), x ∈ I, (1.6.20)

is a second order linear differential equation with constant coefficients. When f =

0 the equation is called homogeneous. The general solution of the homogeneous

equation

ay′′ + by′ + cy = 0, x ∈ R, (1.6.21)

is of the form yGH = C1y1+C2y2 where C1, C2 ∈ R are real numbers and y1, y2 are two

solutions of (1.6.21) which are linearly independent, i.e. such that for real numbers

α, β ∈ R
αy1 + βy2 = 0 in R ⇒ α = β = 0.

The general solution of the inhomogeneous equation (1.6.20) is a function y ∈
C2(I) of the form y = yGH + yP , where yP ∈ C2(I) is a particular solution of the

inhomogeneous equations. We describe some practical methods to compute yGH and

yP . The general theory is dealt with in Chapter 3.

6.1. Homogeneous equation. The solutions to the homogeneous equation

ay′′ + by′ + cy = 0 (1.6.22)

are a real vector space, i.e. any linear combination of solutions is still a solution.

We shall prove in Chapter 3 that this vector space has dimension 2. It is therefore

sufficient to find two linearly independent solutions to the equation. We look for

solutions of the form y(x) = eλx for some complex number λ ∈ C. Inserting y, y′, y′′

into (1.6.22) we get eλx(aλ2 + bλ+ c) = 0. Since eλx 6= 0, the complex number λ must

solve the characteristic equation

aλ2 + bλ+ c = 0. (1.6.23)

According to the sign of ∆ = b2 − 4ac we distinguish three cases.

Case 1: ∆ > 0. In this case the characteristic equation has two real (simple)

solutions

λ1 =
−b+

√
∆

2a
, λ2 =

−b−
√

∆

2a
.

1MANCA TESTO
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The general solution of the homogeneous equation (1.6.22) is

yGH(x) = C1e
λ1x + C2e

λ2x,

where C1, C2 ∈ R are real constant.

Case 2: ∆ = 0. In this case the characteristic equation aλ2 + bλ + c = 0 has

one real double solution λ = −b/2a. The ansatz yields only the solution y1(x) = eλx.

A direct computation shows that the function y2(x) = xeλx is also a solution which

is linearly independent from the first one. The general solution of the homogeneous

equation (1.6.22) is then

yGH(x) = eλx(C1 + C2x),

where C1, C2 ∈ R are real constants.

Case 3: ∆ < 0. In this case the characteristic equation has two complex conjugate

solutions

λ1 = α + iβ and λ2 = α− iβ, where α = − b

2a
, β =

√
|∆|

2a
.

We get the complex valued solutions

z1(x) = e(α+iβ)x = eαx(cos(βx) + i sin(βx),

z2(x) = e(α−iβ)x = eαx(cos(βx)− i sin(βx),

and the real valued solutions

y1(x) =
1

2
(z1(x) + z2(x)) = eαx cos(βx),

y2(x) =
1

2i
(z1(x)− z2(x)) = eαx sin(βx).

The general solution of the homogeneous equation is

yGH(x) = eαx
(
C1 cos(βx) + C2 sin(βx)

)
,

where C1, C2 ∈ R are real constants.

6.2. Inhomogeneous equation. Similar solutions. Consider the inhomoge-

neous equation (1.6.20), where the right hand side is a function f : R → R of the

form

f(x) = eαx
(
P0(x) cos(βx) +Q0(x) sin(βx)

)
,

for some α, β ∈ R and real polynoms P0 and Q0.

We describe a practical method to find a particular solution yP to the differential

equation

ay′′ + by′ + cy = f(x). (1.6.24)

A more systematic method is given in the next section.

Consider the real or complex number λ = α+ iβ and denote by m ∈ {0, 1, 2} the

multiplicity of λ as a solution of the characteristic equation (1.6.23). The case m = 0

means that λ is not a solution, the case m = 1 means that λ is a simple solution, the

case m = 2 means that λ is a double solution.
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It is always possible to find a particular solution yP for the inhomogeneous equa-

tion (1.6.24) of the form

yP (x) = xmeαx
(
P (x) cos(βx) +Q(x) sin(βx)

)
,

where P and Q are unknown polynoms with degree equal to the maximum of the

degrees of P0 and Q0. These polynoms can be determined inserting yP , y
′
P , y

′′
P into

(1.6.24) and comparing the coefficients of the trigonometric functions in the left and

right hand side.

6.3. Inhomogeneous equation. Variation of constants. We look for a par-

ticular solution of the inhomogeneous equation (1.6.20) when f : I → R is any

continuous function on some interval I ⊂ R.

The general solution of the homogeneous equation (1.6.21) is of the form

y = C1y1 + C2y2, (1.6.25)

where C1, C2 are two real constants and y1 and y2 are two linearly independent solu-

tions of the homogeneous equation. These solutions are known.

The method of the variation of constants consists in letting C1, C2 be functions

of the variable x. We look for a particular solution y of (1.6.20) of the form (1.6.25),

where now C1 and C2 are functions. We have to determine C1 and C2. On differen-

tiating y, we get

y′ = C ′1y1 + C1y
′
1 + C ′2y2 + C2y

′
2. (1.6.26)

We impose on C ′1 and C ′2 the condition

C ′1y1 + C ′2y2 = 0. (1.6.27)

On differentiating y′ we find

y′′ = C ′1y
′
1 + C1y

′′
1 + C ′2y

′
2 + C2y

′′
2 . (1.6.28)

Plugging (1.6.25), (1.6.26), (1.6.28) into the inhomogeneous equation (1.6.20) we find

a(C ′1y
′
1 + C ′2y

′
2) = f(x). (1.6.29)

We also used (1.6.27) and the fact that y1, y2 are solution to the homogeneous equa-

tion.

As y1 and y2 are linearly independent, it is

det

∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣ 6= 0. (1.6.30)

This fact follows from Exercise ??. Then it is possible to solve the system of equations{
C ′1y1 + C ′2y2 = 0

C ′1y
′
1 + C ′2y

′
2 = f(x)/a.

(1.6.31)

Finally, the functions C1 and C2 can be computed on integrating C ′1 and C ′2.
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7. Euler’s second order equations

Let f : I → R be a continuous function on the interval I ⊂ R+ and let a, b, c ∈
be real numbers such that a 6= 0. The differential equation

ax2y′′ + bxy′ + cy = f(x), x ∈ I, (1.7.32)

is a second order differential equation of Euler’s type. We consider only the case

f = 0, i.e. the homogeneous equation

ax2y′′ + bxy′ + cy = 0, x ∈ R+. (1.7.33)

The differential equation is singular at x = 0 because the coefficient of y′′ vanishes.

We look for solutions on the half line R+ = (0,+∞). For the differential equation

is linear, solutions are a two dimensional vector space. We look for two linearly

independent solutions of the form

y(x) = xλ = eλ log(x) = e(α+iβ) log x = xα(cos(β log x) + i sin(β log x)),

where λ = α + iβ is a complex parameter. Plugging y, y′ = λxλ−1, and y′′ =

λ(λ− 1)xλ−2 into (1.7.33) we get xλ(aλ(λ− 1) + bλ+ c) = 0. Because xλ 6= 0, λ must

solve the characteristic equation

aλ2 + (b− a)λ+ c = 0. (1.7.34)

According to the sign of ∆ = (b− a)2 − 4ac we distinguish three cases.

Case 1: ∆ > 0. In this case the characteristic equation has two real (simple)

solutions λ1, λ2 ∈ R and the general solution of the homogeneous equation (1.7.33) is

y(x) = C1x
λ1 + C2x

λ2 ,

where C1, C2 ∈ R are real constant.

Case 2: ∆ = 0. In this case the characteristic equation has one real double

solution λ ∈ R and we get the solution y1(x) = xλ. A direct computation shows that

the function y2(x) = xλ log x is also a solution which is linearly independent from the

first one. The general solution of the homogeneous equation (1.7.33) is then

y(x) = xλ(C1 + C2 log x),

where C1, C2 ∈ R are real constants.

Case 3: ∆ < 0. In this case the characteristic equation has two complex conjugate

solutions

λ1 = α + iβ and λ2 = α− iβ.

We get the complex valued solutions

z1(x) = xα+iβ = xα
(

cos(β log x) + i sin(β log x)
)
,

z2(x) = xα−iβ = xα
(

cos(β log x)− i sin(β log x)
)
,
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and the real valued solutions

y1(x) =
1

2
(z1(x) + z2(x)) = xα cos(β log x),

y2(x) =
1

2i
(z1(x)− z2(x)) = xα sin(β log x).

The general solution of the homogeneous equation is

y(x) = xα
(
C1 cos(β log x) + C2 sin(β log x)

)
,

where C1, C2 ∈ R are real constants.



CHAPTER 2

Existence and uniqueness in the Lipschitz case

1. Banach fixed point theorem

Definition 2.1.1 (Contraction). Let (X, d) be a metric space. A mapping T :

X → X is a contraction if there exists 0 < λ < 1 such that d(T (x), T (y)) ≤ λd(x, y)

for all x, y ∈ X.

Theorem 2.1.2. Let (X, d) be a complete metric space and let T : X → X be a

contraction. Then there exists a unique x ∈ X such that x = T (x).

Proof. Let x0 ∈ X be a given point and define xn = T n(x0) = T ◦ ... ◦ T (x0),

n-times. The sequence (xn)n∈N is Cauchy. In fact, by the triangle inequality we have

for all n, k ∈ N

d(xn+k, xn) ≤
k∑

h=1

d(xn+h, xn+h−1) =
k∑

h=1

d(T n+h(x0), T
n+h−1(x0))

≤ d(T (x0), x0)
k∑

h=1

λn+h−1 ≤ λnd(T (x0), x0)
∞∑
h=1

λh−1.

The series converges and λn → 0 as n→∞, because λ < 1. For X is complete, there

exists x ∈ X such that x = lim
n→∞

T n(x0).

We show that x = T (x). The mapping T is continuous and so we have

x = lim
n→∞

T n(x0) = lim
n→∞

T (T n−1(x0)) = T ( lim
n→∞

T n−1(x0)) = T (x).

Finally, we prove that the fixed point is unique. Let x̄ ∈ X be such that x̄ = T (x̄).

Then we have

d(x, x̄) = d(T (x), T (x̄)) ≤ λd(x, x̄) ⇒ d(x, x̄) = 0,

because λ < 1, and thus x = x̄.

�

Theorem 2.1.3. Let (X, d) be a complete metric space and let T : X → X be a

mapping such that T n is a contraction, for some n ∈ N. Then there exists a unique

x ∈ X such that x = T (x).

Proof. There exists a unique x ∈ X such that T n(x) = x. Then we have for

some 0 ≤ λ < 1

d(x, T (x)) = d(T n(x), T (T n(x))) = d(T n(x), T n(T (x))) ≤ λd(x, T (x)),

17
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and thus d(x, T (x)) = 0, which is equivalent to T (x) = x.

Now assume that for some y ∈ X it is y = T (y). Then we also have y = T n(y)

and thus x = y, because the fixed point of T n is unique. �

2. Excursus. Other fixed point theorems

Some fixed point theorems are based on the notion of convexity.

Theorem 2.2.1 (Brouwer). Let K ⊂ Rn be a closed ball and let T : K → K be

continuous. Then there exists x ∈ K such that T (x) = x.

For an analytical proof, see Evans, Partial Differential Equations, p.441. Brouwer’s

theorem extends to the infinite dimensional case.

Theorem 2.2.2 (Schauder I). Let (X, ‖ · ‖) be a Banach space and let K ⊂ X be

a nonempty, convex, and compact set. Any continuous mapping T : K → K has at

least one fixed point in K, i.e., there exists x ∈ K tale che T (x) = x.

See Evans, Partial Differential Equations, p.502. The assumption on K to be compact

can be be transferred to the mapping T .

Theorem 2.2.3 (Schauder II). Let (X, ‖ · ‖) be a Banach space and let K ⊂ X

be a nonempty, convex, closed and bounded set. Let T : K → K be a mapping such

that:

(i) T is continuous;

(ii) T is compact, i.e., T (K) ⊂ K is precompact.

Then there exists x ∈ K such that T (x) = x.

Tarki’s Fixed Point theorem relies upon the notion of partial order.

Theorem 2.2.4 (Tarski). Let (X,≤) be a partially ordered set such that any subset

Y ⊂ X has a supremum. Let T : X → X be an order preserving mapping, i.e. a

mapping such that

x ≤ y ⇒ T (x) ≤ T (y).

Then there exists x ∈ X such that x = T (x).

The proof of Tarki’s Lemma is an exercise.

3. Cauchy Problem. Introduction

In Rn+1 = R × Rn, n ≥ 1, we introduce the coordinates x ∈ R and y ∈ Rn. Let

Ω ⊂ Rn+1 be an open set and let f ∈ C(Ω; Rn) be a continuous function. Given a

point (x0, y0) ∈ Ω we consider the Cauchy Problem{
y′ = f(x, y)

y(x0) = y0.
(2.3.35)

A function y ∈ C1(I; Rn) is a solution to the problem if:

i) I ⊂ R is an interval such that x0 ∈ I;
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ii) (x, y(x)) ∈ Ω for all x ∈ I;

iii) y′(x) = f(x, y(x)) for all x ∈ I (the differential equations is solved);

iv) y(x0) = y0 (the initial datum is attained).

We are interested in the following questions:

a) Existence of solutions;

b) Uniqueness of solutions;

c) Dependence of solutions from x0, y0, and f (regularity and stability).

Integrating the differential equation y′ = f(x, y) on the interval with end-points

x0 and x we get the integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt = Ty(x), (2.3.36)

where y 7→ Ty is a mapping defined on a suitable functional space. A solution to

the Cauchy Problem is then a fixed point of the mapping T . On the other hand, if

a continuous function y solves the fixed point equation (2.3.36) then y is of class C1

and solves the Cauchy Problem (2.3.35).

We fix the functional space. For a δ > 0 consider the real vector space

V = C([x0 − δ, x0 + δ]; Rn). (2.3.37)

Endowed with the norm

‖y‖ = max
x∈[x0−δ,x0+δ]

|y(x)|, y ∈ V, (2.3.38)

the vector space V is a Banach space, because any Cauchy sequence in V converges

to a function in V . For any ε > 0, the subset X of V

X =
{
y ∈ V : y(x0) = y0, ‖y − y0‖ ≤ ε

}
(2.3.39)

is closed because both conditions y(x0) = y0 and ‖y − y0‖ ≤ ε are preserved by the

uniform (pointwise) convergence. Then the metric space (X, d) is complete w.r.t. the

metric d(y, z) = ‖y − z‖.
We shall see that for a suitable choice of δ and ε the mapping T : X → X

Ty(x) = y0 +

∫ x

x0

f(t, y(t)) dt (2.3.40)

is well defined, i.e. it is Ty ∈ X for all y ∈ X.

4. Local existence and uniqueness under the Lipschitz condition

Definition 2.4.1. Let Ω ⊂ Rn+1 be an open set. We say that a function f ∈
C(Ω; Rn) has the local Lipschitz property in y if for any compact set K ⊂ Ω there

exists a constant L > 0 such that

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2| (2.4.41)

for all (x, y1), (x, y2) ∈ K.
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Theorem 2.4.2. Let Ω ⊂ Rn+1 be an open set, (x0, y0) ∈ Ω, and let f ∈ C(Ω; Rn)

be a function with the local Lipschitz property in y. Then there exists δ > 0 such

that the Cauchy Problem (2.3.35) has a unique solution y ∈ C1(I; Rn) in the interval

I = [x0 − δ, x0 + δ] .

Proof. Let δ > 0 and ε > 0 be such that K = [x0 − δ, x0 + δ] × {y ∈ Rn :

|y − y0| ≤ ε} ⊂ Ω. Let H ⊂ Ω be any compact set such that K ⊂ int(H). For f is

continuous on H, the number

M = sup
(x,y)∈H

|f(x, y)| < +∞

is finite. Let X be the set introduced in (2.3.39) and let T be the mapping (2.3.40).

For any y ∈ X we have for x ∈ I

|Ty(x)− y0| ≤
∣∣∣ ∫ x

x0

|f(t, y(t))|dt
∣∣∣ ≤M |x− x0| ≤ δM.

In fact it is (t, y(t)) ∈ K for all t ∈ I. Possibly choosing a smaller δ > 0 (this does

not affect M), we can assume that δM ≤ ε. With such a choice, it is Ty ∈ X for all

y ∈ X. The choice of δ > 0 is independent from x0 and y0 as long as K ⊂ int(H).

We prove that the mapping T : X → X has a unique fixed point. It is enough to

show that, for some k ∈ N, the iterated mapping T k is a contraction. Let y, ȳ ∈ X
and x ∈ I. We have (with e.g. x ≥ x0)

|Ty(x)− T ȳ(x)| =
∣∣∣ ∫ x

x0

(
f(t, y(t))− f(t, ȳ(t)

)
dt
∣∣∣

≤
∫ x

x0

|f(t, y(t))− f(t, ȳ(t)|dt

≤ L

∫ x

x0

|y(t)− ȳ(t)|dt ≤ L|x− x0| · ‖y − ȳ‖.

Here, L is the Lipschitz constant for f relative to the compact set H. Analogously,

it is (e.g. x ≥ x0)

|T 2y(x)− T 2ȳ(x)| =
∣∣∣ ∫ x

x0

(f(t, Ty(t))− f(t, T ȳ(t))dt
∣∣∣

≤ L

∫ x

x0

|Ty(t)− T ȳ(t)|dt

≤ L2‖y − ȳ‖
∫ x

x0

(t− x0)dt ≤ L2 (x− x0)
2

2
‖y − ȳ‖.

By induction, we get for any k ∈ N and x ∈ I

|T ky(x)− T kȳ(x)| ≤ Lk|x− x0|k

k!
‖y − ȳ‖,

which implies

‖T ky − T kȳ‖ ≤ (Lδ)k

k!
‖y − ȳ‖.
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Because

lim
k→+∞

(Lδ)k

k!
= 0,

there exists k ∈ N such that (Lδ)k

k!
< 1. For such a k, the mapping T k is a contraction.

Then T has a unique fixed point y ∈ X. Then it is y ∈ C1([x0 − δ, x0 + δ]; Rn) and y

solves the Cauchy Problem (2.3.35). �

5. Peano’s example

Consider the Cauchy problem{
y′(x) = 2

√
|y(x)|, x ∈ R,

y(0) = 0
(2.5.42)

The function f(x, y) = 2
√
|y| is not locally Lipschitz in the variable y. The Lipschitz

property (2.4.41) fails in a neighborhood of y = 0 and the assumptions of Theorem

2.4.2 are not fulfilled. The Cauchy Problem could have more than one solution.

In fact, a solution is the constant function y = 0. A second solution can be found

separating the variables: 2 = y′/
√
|y|. Integrating this equation on the interval

between 0 and x ∈ R we get

2x =

∫ x

0

y′(t)√
|y(t)|

dt =

∫ y(x)

0

1√
|z|
dz =

{
2
√
y(x), if y(x) > 0

−2
√
−y(x), if y(x) < 0.

In the change of variable z = y(t) we used the initial datum y(0) = 0. Then we find

the solution y ∈ C1(R)

y(x) =

{
x2 if x ≥ 0,

−x2 if x < 0.

On the other hand, for all real numbers α ≤ 0 ≤ β, the function

yαβ(x) =


(x− β)2 if x ≥ β,

0 if α < x < β,

−(x− α)2 if x ≤ α

is of class C1(R) and solves the Cauchy Problem (2.5.42). So there is a continuum of

solutions.

6. Maximal solutions

Let f ∈ C(Ω; Rn) be a function satisfying the local Lipschitz condition (2.4.41)

and let (x0, y0) ∈ Ω.

Proposition 2.6.1. Under the hypotheses of Theorem 2.4.2, let I1 and I2 be two

open intervals containing x0 and assume that y1 ∈ C1(I1; Rn) and y2 ∈ C1(I2; Rn) are

solutions to the Cauchy Problem (2.3.35). Then it is y1 = y2 on I1 ∩ I2.
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Proof. The set A = {x ∈ I1 ∩ I2 : y1(x) = y2(x)} is relatively closed in I1 ∩ I2
because y1 and y2 are continuous. We show that A is also open in I1∩I2. Since I1∩I2
is connected it then follows that A = I1 ∩ I2.

Let x̄0 ∈ A and ȳ0 = y1(x̄0) = y2(x̄0). By Theorem 2.4.2 there exists δ > 0 such

that the Cauchy Problem {
y′ = f(x, y)

y(x̄0) = ȳ0
(2.6.43)

has a unique solution y ∈ C1(I; Rn) with I = [x̄0 − δ, x̄0 + δ]. For a small δ > 0 it is

I ⊂ I1 ∩ I2. It then follows that y = y1 = y2 in I, and thus I ⊂ A. �

Consider the family A of all pairs (J, yJ) where J ⊂ R is an open interval contain-

ing x0 and yJ ∈ C1(J ; Rn) is a solution to the Cauchy Problem (2.3.35). By Theorem

2.4.2, it is A 6= ∅.
Let I ⊂ R be the interval I =

⋃
J , where the union is over all intervals J such

that (J, yJ) ∈ A. Let y ∈ C1(I; Rn) be the function defined by

y(x) = yJ(x) if x ∈ J. (2.6.44)

The function y is well defined because by Proposition 2.6.1 it is yJ = yJ ′ on J ∩ J ′.
Moreover, y is a solution to the Cauchy Problem (2.3.35).

Definition 2.6.2 (Maximal solution). The function y defined in (2.6.44) is called

maximal solution to the Cauchy Problem (2.3.35).

Theorem 2.6.3 (Continuation criterion). Let I = (a0, b0) ⊂ R be an open interval

with −∞ < a0 < b0 < +∞, Ω = I × Rn, and f ∈ C(Ω; Rn) be a function satisfying

the local Lipschitz property in y. If y ∈ C1((a, b); Rn) is the maximal solution to the

Cauchy Problem (2.3.35), for some interval (a, b) ⊂ (a0, b0), then we have either

i) b = b0; or,

ii) lim
x↑b
|y(x)| = +∞.

There is an analogous statement for a.

Proof. Assume by contradiction that b < b0 and there exists a sequence xk ∈
(a, b), k ∈ N, such that

lim
k→+∞

xk = b and sup
k∈N
|y(xk)| ≤M0,

for some constant M0 < +∞. Letting ȳk = y(xk) ∈ Rn, possibly taking a subsequence

we can assume that

lim
k→+∞

ȳk = ȳ0

for some ȳ0 ∈ Rn.

We study the Cauchy Problem{
z′(x) = f(x, z(x))

z(xk) = ȳk.
(2.6.45)
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Fix a compact set H ⊂ Ω such that (b, ȳ0) ∈ int(H) and let

M = max
(x,y)∈H

|f(x, y)| < +∞.

For some ε > 0 and for some large enough k ∈ N, the compact set

K = [xk, 2b− xk]× {y ∈ Rn : |y − ȳk| ≤ ε}

is contained in H. Let us introduce the functional space

X =
{
z ∈ C([xk, 2b− xk]; Rn) : z(xk) = ȳk, ‖z − ȳk‖ ≤ ε

}
.

For large enough k ∈ N we also have 2(b− xk)M ≤ ε. Then, the integral operator

Tz(x) = ȳk +

∫ x

xk

f(t, z(t))dt

maps X into itself, i.e. T : X → X.

As in the proof of Theorem 2.4.2, some iterated of T is a contraction on X and

therefore by Theorem 2.1.3 there exists a unique solution z ∈ C1([xk, 2b− xk]; Rn) to

the Cauchy Problem (2.6.45).

On the other hand, the function y solves the same Cauchy Problem on the interval

[xk, b) and by uniqueness it is y = z on [xk, b). This shows that y can be continued as

a solution to the Cauchy Problem (2.3.35) beyond b. This contradicts the maximality

of y. �

7. Gronwall’s Lemma

Lemma 2.7.1. Let I ⊂ R be an interval, x0 ∈ I, and ϕ ∈ C(I) be a non negative

ϕ ≥ 0 continuous function. If there exist α, β ∈ R, α, β ≥ 0, such that

ϕ(x) ≤ α + β

∫ x

x0

ϕ(t) dt, for all x ∈ I with x ≥ x0, (2.7.46)

then

ϕ(x) ≤ αeβ(x−x0) for all x ∈ I with x ≥ x0. (2.7.47)

Proof. Let Φ : I → R be the function

Φ(x) = α + β

∫ x

x0

ϕ(t) dt.

It is Φ ∈ C1(I) and moreover, Φ′(x) = βϕ(x) for all x ∈ I, by the Fundamental

Theorem of Calculus. From (2.7.46) it follows that Φ′(x) ≤ βΦ(x) for x ∈ I, because

β ≥ 0. The function Ψ(x) = e−β(x−x0)Φ(x) satisfies

Ψ′(x) = −βe−β(x−x0)Φ(x) + e−β(x−x0)Φ′(x) = e−β(x−x0)
(
− βΦ(x) + Φ′(x)

)
≤ 0

and Ψ(x0) = Φ(x0) = α. It follows that Ψ(x) ≤ α for x ≥ x0, i.e.

Φ(x) ≤ αeβ(x−x0)

for all x ∈ I with x ≥ x0. This implies (2.7.47), because ϕ(x) ≤ Φ(x), by (2.7.46). �
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8. Existence in the large

Theorem 2.8.1 (Global solutions). Let I = (a0, b0) with −∞ ≤ a0 < b0 ≤ +∞,

Ω = I ×Rn, and f ∈ C(Ω; Rn) be a continuous function satisfying the local Lipschitz

assumption (2.4.41). Assume that for any compact set K ⊂ I there exists a constant

C ≥ 0 such that

|f(x, y)| ≤ C(1 + |y|), for all x ∈ K and y ∈ Rn. (2.8.48)

Then the Cauchy Problem (2.3.35), with x0 ∈ I and y0 ∈ Rn, has a (unique) global

solution defined on I.

Proof. Let y ∈ C1(J ; Rn) be the maximal solution to the Cauchy Problem

(2.3.35), with J = (a, b) ⊂ I. Assume by contradiction that b < b0. By Theorem

2.6.3 it is

lim
x↑b
|y(x)| = +∞. (2.8.49)

Let K = [x0, b] and C > 0 such that (2.8.48) holds. From

y(x) = y0 +

∫ x

x0

f(t, y(t))dt, x ∈ J,

we get for x ∈ J with x ≥ x0

|y(x)| ≤ |y0|+ C

∫ x

x0

(1 + |y(t)|)dt ≤ |y0|+ C(b− x0) + C

∫ x

x0

|y(t)| dt.

By the Gronwall’s Lemma it follows that

|y(x)| ≤
{
|y0|+ C(b− x0)}eC(x−x0), x ∈ (x0, b),

and therefore (2.8.49) cannot hold. �



CHAPTER 3

Linear systems

1. Introduction

Denote by Mn(R), n ≥ 1, the vector space of n× n matrices with real entries. If

A = (aij)i,j=1,...,n ∈ Mn(R) and y ∈ Rn, we denote by Ay the standard matrix-vector

product where y is thought of as a column vector, and precisely

Ay =

 a11 · · · a1n
...

...

an1 · · · ann


 y1

...

yn

 =


∑n

j=1 a1jyj
...∑n

j=1 anjyj

 .

The matrix norm of A is

‖A‖ = max
|y|=1
|Ay|.

The matrix norm has the following properties:

i) |Ay| ≤ ‖A‖|y| for all y ∈ Rn;

ii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈Mn(R);

iii) ‖AB‖ ≤ ‖A‖ · ‖B‖ for all A,B ∈Mn(R).

Let I = (a, b) ⊂ R be an interval. A function A : I → Mn(R) is continuous if

A(x) = (aij(x))i,j=1,...,n for x ∈ I and aij ∈ C(I) for all i, j = 1, ..., n.

Let A : I → Mn(R) be continuous and let b : I → Rn be a continuous mapping.

A system of differential equations of the form

y′ = A(x)y + b(x) (3.1.50)

is called linear. The function f : I × Rn → Rn

f(x, y) = A(x)y + b(x).

has the following properties:

1) f ∈ C(I × Rn; Rn);

2) f has the local Lipschitz property in y;

3) for any compact set K ⊂ I there is a constant C > 0 such that

|f(x, y)| ≤ C(1 + |y|), for all x ∈ K, y ∈ Rn;

In fact, for any compact set K ⊂ I it is L = maxx∈K ‖A(x)‖ < +∞ and thus

|f(x, y1)− f(x, y2)| = |A(x)y1 − A(x)y2| = |A(x)(y1 − y2)|
≤ ‖A(x)‖|y1 − y2| ≤ L|y1 − y2|

25
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for all x ∈ K and y1, y2 ∈ Rn. This shows 2). Moreover, let M = maxx∈K |b(x)| and

C = max{L,M}. Then we have

|f(x, y)| ≤ |A(x)y|+ |b(x)| ≤ C(|y|+ 1), x ∈ K, y ∈ Rn.

By Theorem 2.4.2, the Cauchy problem{
y′ = A(x)y + b(x)

y(x0) = y0
(3.1.51)

has a unique local solution, for any x0 ∈ I and y0 ∈ Rn. On the other hand, by

Theorem 2.8.1 the maximal solution of the Cauchy Problem (3.1.51) is defined on the

whole interval I. In the following, by solution of the differential equation (3.1.50) we

mean a maximal solution.

2. Homogeneous equations

A differential equation of the form (3.1.50) with b = 0 is called homogeneous.

Theorem 3.2.1. Let A : I → Mn(R) be continuous. The set of solutions of the

differential equation

y′ = A(x)y, x ∈ I, (3.2.52)

is a real vector space of dimension n ∈ N.

Proof. Let S = {y ∈ C1(I; Rn) : y is a solution of (3.2.52)} be the set of solu-

tions. If y, z ∈ S, then αy + βz ∈ C1(I; Rn) is also a solution, for any α, β ∈ R:

(αy + βz)′ = αy′ + βz′ = αA(x)y + βA(x)z = A(x)(αy + βz), x ∈ I.

Then S is a linear subspace of C1(I; Rn).

We show that the dimension of S is n. For some fixed x0 ∈ I, define the mapping

T : S → Rn

T (y) = y(x0). (3.2.53)

T is linear: T (αy+βz) = αy(x0)+βz(x0) = αT (y)+βT (z). T is injective, i.e. T (y) =

0 implies y = 0. In fact, y solves equation (3.2.52) with initial condition y(x0) = 0.

The solution to this problem is unique and 0 is a solution. Then it is y = 0. Finally,

T is surjective because for any y0 ∈ Rn the differential equation (3.2.52) with initial

datum y(x0) = y0 has a solution y ∈ C1(I; Rn). �

Proposition 3.2.2. Let S ⊂ C1(I; Rn) be the space of solutions to (3.2.52) and

let y1, ..., yn ∈ S. The following are equivalent:

i) y1, ..., yn are a basis of S;

ii) det[y1(x0), ..., yn(x0)] 6= 0 for all x0 ∈ I;

iii) det[y1(x0), ..., yn(x0)] 6= 0 for some x0 ∈ I.

By [y1, ..., yn] we mean the n× n matrix with columns y1, ..., yn ∈ Rn.
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Definition 3.2.3 (Fundamental matrix). If one of the three equivalent conditions

of Proposition 3.2.2 holds, then the functions y1, ..., yn are called a fundamental system

of solutions of the differential equation y′ = Ay. The matrix Y = [y1, ..., yn] is then

called a fundamental matrix for the equation.

Proof of Proposition 3.2.2. i)⇒ii) Let x0 ∈ I, and let T : S → Rn be the

isomorphism defined in (3.2.53). Then y1(x0) = Ty1, ..., yn(x0) = Tyn form a basis

for Rn. This is equivalent with ii).

iii)⇒i) Let x0 ∈ I be such that iii) holds and let T : S → Rn be the isomorphism

(3.2.53) relative to x0. Then T−1 : Rn → S is also an isomorphisms. It follows that

y1 = T−1(y1(x0)), ..., yn = T−1(yn)(x0) is a basis of S. �

Definition 3.2.4 (Wronski determinant). Let y1, ..., yn ∈ S be solutions to the

differential equations (3.2.52). The function w ∈ C1(I; Rn)

w(x) = det[y1(x), ..., yn(x)], x ∈ I, (3.2.54)

is called Wronski determinant of y1, ..., yn.

Theorem 3.2.5. The Wronski determinant w of y1, ..., yn ∈ S solves the differ-

ential equation

w′ = trA(x)w, x ∈ I, (3.2.55)

where trA(x) =
n∑
i=1

aii(x) is the trace of the matrix A(x) = (aij(x))i,j=1,...,n.

Proof. If y1, ..., yn are linearly dependent then w(x) = 0 for all x ∈ I and

equation (3.2.55) trivially holds. Assume that y1, ..., yn are linearly independent,

i.e. w(x) 6= 0 for all x ∈ I. Denote by Y : I →Mn(R) the fundamental matrix having

as columns the solutions y1, ..., yn. Letting yj = (y1j, ..., ynj)
T , j = 1, ..., n, we have

Y (x) = (yij(x))i,j=1,...,n, x ∈ I.

We check equation (3.2.55) at the point x0 ∈ I, i.e. we show that w′(x0) = trA(x0)w(x0).

To this aim, let zj ∈ C1(I; Rn) be the solution to the Cauchy problem{
z′ = A(x)z

z(x0) = ej,
(3.2.56)

where ej = (0, ..., 0, 1, 0, ..., 0) with 1 at the jth position. The functions z1, ..., zn are a

basis for the space if solutions to the differential equation z′ = Az. Letting, as above,

Z(x) = (zij(x))i,j=1,...,n, x ∈ I,

there exists an invertible matrix C ∈ GLn(R) such that

Y (x) = CZ(x), x ∈ I.

We show that the function v(x) = detZ(x) solves v′(x0) = trA(x0). In fact, we have

v′(x) =
d

dx

∑
σ∈Sn

(−1)sgnσ

n∏
i=1

ziσ(i)(x) =
∑
σ∈Sn

(−1)sgnσ

n∑
j=1

z′jσ(j)(x)
∏
i 6=j

ziσ(i)(x),
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where ∏
i 6=j

ziσ(i)(x0) = 0 unless σ = Id,

and

z′jj(x0) = (A(x0)zj(x0))j =
n∑
k=1

ajk(x0)zkj(x0) =
n∑
k=1

ajk(x0)δkj(x0) = ajj(x0).

Then it is v′(x0) = trA(x0). Now the general result follows on differentiating the

identity

w = detY = det(CZ) = detC detZ = detCv.

In fact,

w′(x0) = detCv′(x0) = detC trA(x0) = trA(x0)w(x0),

because v(x0) = 1. �

3. Inhomogeneous equations

Consider an inhomogeneous linear differential equation of the form

y′ = A(x)y + b(x), (3.3.57)

with A ∈ C(I;Mn(R)) and b ∈ C(I; Rn) for some open interval I ⊂ R.

Let Y be a fundamental matrix for the homogeneous equation y′ = A(x)y, i.e. Y ′ =

AY and detY 6= 0 on I. Then, any solution y to this equation is of the form

y(x) = Y (x)c, x ∈ I, (3.3.58)

for some (column) vector c ∈ Rn. We look for a solution to (3.3.57) of the form

(3.3.58) with c ∈ C1(I; Rn). This method is called “variation of constants”. In this

case,

y′ = Y ′c+ Y c′ = AY c+ Y c′ = Ay + Y c′.

Plugging this identity into (3.3.57), we get Y c′ = b. Being Y invertible, by an

integration over an interval [x0, x] we find

c(x) = c0 +

∫ x

x0

Y (t)−1b(t)dt,

for some c0 ∈ Rn. Thus we find the solution

y(x) = Y (x)
(
c0 +

∫ x

x0

Y (t)−1b(t)dt
)
. (3.3.59)

Theorem 3.3.1. Let Y be a fundamental matrix for the homogeneous equation

y′ = Ay. For any c0 ∈ Rn the function y in (3.3.59) is a solution to (3.3.57).

Moreover, any solution to (3.3.57) is of the form (3.3.59) for some c0 ∈ Rn.

Proof. The first statement is an easy computation. Let y be the function (3.3.59)

and let z ∈ C1(I; Rn) be a solution to (3.3.57). Then

(z − y)′ = z′ − y′ = Az + b− (Ay + b) = A(z − y).

It follows that z − y = Y c1 for some c1 ∈ Rn and the claim follows. �



4. EXPONENTIAL OF A MATRIX 29

4. Exponential of a matrix

For a matrix A ∈Mn(C) define the exponential matrix eA ∈Mn(C) on letting

eA =
+∞∑
k=0

Ak

k!
.

In order to prove that the series converges, we show that the sequence of matrices

(Bk)k∈N ⊂Mn(C)

Bk =
k∑

h=0

Ah

h!
, k ∈ N,

is a Cauchy sequence in the norm ‖ · ‖. In fact, for any ε > 0 there exists N ∈ N such

that for all k ≥ N and for all p ∈ N we have

‖Bk+p −Bk‖ =
∥∥∥ k+p∑
h=k+1

Ah

h!

∥∥∥ ≤ k+p∑
h=k+1

‖A‖h

h!
≤ ε.

Notice that the normed space (Mn(C), ‖ · ‖) is complete.

We list some properties of the exponential matrix.

4.1. Exponential of the sum. If A,B ∈Mn(C) and AB = BA, then

eA+B = eAeB. (3.4.60)

The proof of this fact is left as an exercise.

4.2. Diagonal matrix. Let λ1, ..., λn ∈ C. The exponential matrix of a diagonal

matrix A ∈Mn(C) of the form

A =

 λ1 0
. . .

0 λn

 is eA =

 eλ1 0
. . .

0 eλn

 .

This follows directly from the formula for the exponential.

4.3. Block matrix. Let Aj ∈Mkj(C) for j = 1, ..., p, with k1 + ...+kp = n. The

exponential matrix of a block matrix A ∈Mn(C) of the form

A =

 A1 0
. . .

0 Ap

 is eA =

 eA1 0
. . .

0 eAp

 .

This also follows directly from the formula for the exponential.
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4.4. Fundamental Jordan block. Consider a matrix A ∈Mn(C) of the form

A =


λ 1 0

λ
. . .
. . . 1

0 λ

 , A = λIn + J, with J =


0 1 0

0
. . .
. . . 1

0 0

 ,

and λ ∈ C. The matrix A is called fundamental Jordan block of order n relative to

λ ∈ C. Later, we shall use the notation A = Jn(λ).

We show that for any t ∈ R we have

etA = eλt



1 t t2/2! . . . tn−1/(n− 1)!

1 t
...

1
. . . t2/2!
. . . t

0 1

 . (3.4.61)

The matrix Jk = J . . . J k-times, k = 0, 1, ..., n− 1, has 1 on the (k + 1)-th left-right

downwards diagonal and 0 otherwise. Moreover, it is Jk = 0 for k ≥ n. Then we

have

+∞∑
k=0

tkAk

k!
=

+∞∑
k=0

tk

k!

k∑
h=0

(
k

h

)
λhJk−h

=
+∞∑
h=0

λh
h+n−1∑
k=h

tk

k!

(
k

h

)
Jk−h

=
+∞∑
h=0

λhth

h!

n−1∑
p=0

tp

p!
Jp.

4.5. Conjugation and exponentiation. Let A,B ∈ Mn(C) and C ∈ GLn(C)

be matrices such that A = CBC−1. Then we have

eA = CeBC−1.

In fact

eA =
+∞∑
k=0

Ak

k!
=

+∞∑
k=0

(CBC−1)k

k!
=

+∞∑
k=0

CBkC−1

k!
= CeBC−1.

5. Linear systems with constant coefficients

Let A ∈Mn(R) be an n× n matrix and consider the differential equation

y′ = Ay, x ∈ R. (3.5.62)

This is a linear, homogeneous system of differential equations with constant coeffi-

cients. The solutions are defined on R and the set of solutions is a real vector space
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of dimension n. For some x0 ∈ R, fix the initial data y(x0) = y0 ∈ Rn. The solu-

tion to the differential equation with this initial data is a fixed point of the mapping

T : X → X

Ty(x) = y0 +

∫ x

x0

Ay(t) dt = y0 + A

∫ x

x0

y(t) dt, x ∈ R, (3.5.63)

where X = {y ∈ C(R; Rn) : y(x0) = y0}. We can interchange integral and A, because

A has constant coefficients.

The fixed point is unique and can be obtained as the limit of T ky for k → +∞,

for any y ∈ X. In particular, we can choose the constant function y = y0. In this

case we have

Ty(x) = y0 + (x− x0)Ay0,

and, in general, we find for any k ∈ N

T ky(x) =
k∑

h=0

(x− x0)
h

h!
Ahy0.

This formula can be checked by induction. It holds for k = 0, 1, with the convention

A0 = In, the identity matrix. Assume it holds for k. Then we have

T k+1y(x) = T (T ky)(x) = y0 + A

∫ x

x0

T ky(t) dt

= y0 + A
k∑

h=0

Ahy0

∫ x

x0

(t− x0)
h

h!
dt

= y0 +
k∑

h=0

(x− x0)
h+1

(h+ 1)!
Ah+1y0 =

k+1∑
h=0

(x− x0)
h

h!
Ahy0.

For any compact set K ⊂ R, the sequence of matrices

Bk(x) =
k∑

h=0

(x− x0)
h

h!
Ah, k ∈ N,

converges uniformly for x ∈ K. From the theory of power series, it follows that the

function ϕ : R→Mn(R)

ϕ(x) = e(x−x0)A =
+∞∑
h=0

(x− x0)
h

h!
Ah

is of class C∞, and in fact it is analytic.

Proposition 3.5.1. Let A ∈ Mn(R). For any x0 ∈ R and y0 ∈ Rn, the function

y ∈ C∞(R; Rn)

y(x) = e(x−x0)Ay0

is the unique solution to the Cauchy Problem y′ = Ay and y(x0) = y0.
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Proof. The function y is the unique fixed point of the mapping T in (3.5.63).

Alternatively, the function y can be differentiated term by term, because the series

of the derivatives converges uniformly on compact sets. Then we find

y′(x) =
+∞∑
h=1

(x− x0)
h−1

(h− 1)!
Ahy0 = A

+∞∑
h=1

(x− x0)
h−1

(h− 1)!
Ah−1y0 = Ay(x), x ∈ R.

Moreover, y(x0) = y0. �

Definition 3.5.2 (Jordan block). A matrix A ∈Mn(C) of the form

A =

 Jk1(λ) 0
. . .

0 Jkp(λ)

 ,

where λ ∈ C, k1 + ...+ kp = n, and Jk1(λ), ..., Jkp(λ) are fundamental Jordan blocks,

is called Jordan block of orders k1, ..., kp relative to λ ∈ C. We denote A = Jk1...kp(λ).

The exponential of a Jordan block can be computed using the rules of Section 4.

By known results from Linear Algebra, for any matrix A ∈ Mn(R) with complex

eigenvalues λ1, ..., λm ∈ C there exists a matrix C ∈ GLn(C) such that A = CBC−1,

where B is the Jordan normal form of A, i.e.

B =

 Jk1
1 ...k

1
p1

(λ1) 0
. . .

0 Jkm1 ...kmpm (λm)

 , (3.5.64)

with k1
1 + ... + k1

p1
+ ... + km1 + ... + kmpm = n and Jk1

1 ...k
1
p1

(λ1), ..., Jkm1 ...kmpm (λm) are

Jordan blocks relative to the eigenvalues λ1, ..., λm.

Proposition 3.5.3. Let A ∈ Mn(R), A = CBC−1 where C ∈ GLn(C) and B is

as in (3.5.64). A fundamental system of solutions of the homogeneous linear equation

y′ = Ay is given by the columns of the (real) matrix

exA = C

 e
xJ
k11...k

1
p1

(λ1)
0

. . .

0 e
xJkm1 ...kmpm

(λm)

C−1, x ∈ R.

Proof. This follows from Proposition 3.5.1 and by the computation rules of

Section 4. �

6. Higher order linear equations

Let f, ak ∈ C(I), k = 0, 1, ..., n − 1, be continuous functions in some interval

I ⊂ R. We transform the linear n-th order differential equation

y(n) + an−1(x)y(n−1) + ...+ a1(x)y′ + a0(x)y = f(x), x ∈ I, (3.6.65)
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into a linear system. Consider the mapping T : Cn(I)→ C1(I; Rn)

Ty =


y

y′

...

y(n−1)

 .

The vector of functions z = Ty satisfies the system of equations
z′i = zi+1, i = 1, ..., n− 1,

z′n = f(x)−
n−1∑
k=0

ak(x)zk+1,

which can be written in the following way

z′ = Az + F, with A =


0 1

0 1

0
. . .
. . . 1

−a0 −a1 . . . −an−1

 and F =


0
...

0

f

 .

(3.6.66)

Proposition 3.6.1. Let y ∈ Cn(I) and z = Ty ∈ C1(I; Rn). Then y solves

equation (3.6.65) if and only if z solves system (3.6.66). Moreover, the set of solutions

y ∈ Cn(I) of equation (3.6.65) with f = 0 is a real vector space of dimension n.

The proof of this proposition is straightforward.

7. Higher order linear equations with constant coefficients

We solve the differential equation (3.6.65) in the homogeneous case f = 0 and

with constant coefficients a0, a1, ..., ak ∈ R. Equivalently, we solve the linear system

z′ = Az, with A =


0 1

0 1

0
. . .
. . . 1

−a0 −a1 . . . −an−1

 ∈Mn(R). (3.7.67)

We establish some algebraic properties of the matrix A. The characteristic polynomial

in the variable λ ∈ C of the matrix A is

p(λ) = det(A− λI) = (−1)n
n∑
k=0

akλ
k,
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with an = 1. In fact, we can develop the determinant in the last row:

p(λ) = det


−λ 1

−λ 1

−λ . . .
. . . 1

−a0 −a1 . . . −an−1 − λ


= −(−1)n+1a0 − (−1)n+2a1(−λ)1 − ...− (−1)2n(an−1 + λ)(−λ)n−1

= (−1)n
(
a0 + a1λ+ ...+ (an−1 + λ)λn−1

)
.

The geometric multiplicity (i.e. the dimension of the eigenspace) of any eigenvalue

λ ∈ C of A is 1 and a corresponding eigenvector is

vλ =


1

λ
...

λn−1

 . (3.7.68)

Indeed, let v = (v1, ..., vn)t be an eigenvector of A, Av = λv. If v1 = 0 then it follows

that v = 0. We can then assume v1 = 1 and from vi+1 = λvi we deduce that v = vλ
as in (3.7.68).

A Jordan chain of vectors v0, v1, ..., vr−1 relative to the eigenvector v with eigen-

value λ of algebraic multiplicity r ≥ 1 is defined through the recursive relations v0 = v

and (A − λ)vi+1 = vi, i = 0, 1, ..., r − 2. Jordan chains will be used to transform A

into its Jordan normal form.

In our case, a Jordan chain relative to the eigenvalue λ ∈ C of algebraic multi-

plicity rλ is given by the vectors

vλ,i =
1

i!
Di
λvλ, i = 0, 1, ..., rλ − 1,

where Di
λ is the i-th derivative operator w.r.t. λ. Explicitly, we have

vλ,0 =


1

λ

λ2

...

λn−1

 , vλ,1 =


0

1

2λ
...

(n− 1)λn−2

 , vλ,2 =


0

0

1
...

(n−1)(n−2)
2

λn−3

 , etc.

(3.7.69)

We check that (A − λ)vλ,i+1 = vλ,i for all i = 0, 1, ..., rλ − 1. Let us introduce the

following notation:

vλ,i = (v1
i , ..., v

n
i )t, vji =

1

i!
Diλj−1.

Then we have to check that

vj+1
i+1 − λv

j
i+1 = vji , j = 1, ..., n− 1, −

n−1∑
k=0

akv
k+1
i+1 − λvni+1 = vni , i+ 1 ≤ rλ − 1.
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The last equation is equivalent with

0 =
n−1∑
k=0

akD
i+1λk + λDi+1λn−1 + (i+ 1)Diλn−1

=
n−1∑
k=0

akD
i+1λk +Di+1λn

=
n∑
k=0

akD
i+1λk = (−1)nDi+1p(λ).

The equation Di+1p(λ) = 0 is satisfied as soon as i+1 ≤ rλ−1, because it is p(λ) = 0

with (algebraic) multiplicity rλ.

Now we determine the Jordan normal form of the matrix A. Let λ1, ..., λp ∈ C be

the eigenvalues of A and vλ1 , ..., vλp the corresponding eigenvectors. Denote by rλj the

algebraic multiplicity of λj, for j = 1, ..., p. Finally, let vkλj with k = 0, 1, ..., rλj − 1

be a Jordan chain relative to vλj = v0
λj

.

Let C ∈ GLn(C) be the matrix

C = [v0
λ1
. . . v

rλ1
−1

λ1
. . . v0

λp . . . v
rλp−1

λp
].

Then A has the Jordan normal form

A = C

Jrλ1
(λ1)

. . .

Jrλp (λp)

C−1,

where Jrλ1
(λ1),..., Jrλp (λp) are fundamental Jordan blocks. The exponential of A is

then

exA = C

e
xJrλ1

(λ1)

. . .

e
xJrλp

(λp)

C−1,

where the exponential of a fundamental Jordan block is computed in (3.4.61).

The column of the matrix exAC are a fundamental system of complex valued

solutions for the system of equations z′ = Az. The n functions appearing in the first

row of the matrix exAC are thus n linearly independent complex valued solutions of

equation (3.6.65) with f = 0. Then the following functions are a system of n linearly

independent complex valued solution to the equation

eλ1x, xeλ1x, ..., xrλ1
−1eλ1x, . . . , eλpx, xeλpx, ..., xrλp−1eλpx. (3.7.70)

In order to get real valued solutions notice that λ ∈ C is an eigenvalue for A if and

only if λ̄ is an eigenvalue, because A has real coefficients. Complex valued solutions

are thus coupled, and by linear combinations we obtain real valued solutions.

Theorem 3.7.1. Let ak ∈ R, k = 0, 1, ..., n − 1, and an = 1. Let µ1, ..., µq ∈ R
and λ1 = α1 + iβ1, ..., λp = αp + iβp, λ̄1, ..., λ̄p ∈ C \R be the real respectively complex
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solutions of the equation
n∑
k=0

akλ
k = 0.

Let rµi ≥ 1 be the algebraic multiplicity of µi, and let rλj ≥ 1 be the algebraic multi-

plicity of λj (and so also of λ̄j). A basis of solutions to the differential equation

y(n) + an−1y
(n−1) + ...+ a1y

′ + a0y = 0, x ∈ R, (3.7.71)

is given by the functions

eµ1x, xeµ1x, . . . , xrµ1−1eµ1x

...

eµqx, xeµqx, . . . , xrµq−1eµqx

along with
eα1x sin(β1x), xeα1x sin(β1x), . . . , xrλ1

−1eα1x sin(β1x)

eα1x cos(β1x), xeα1x cos(β1x), . . . , xrλ1
−1eα1x cos(β1x)

...

eαpx sin(βpx), xeαpx sin(βpx), . . . , xrλp−1eαpx sin(βpx)

eαpx cos(βpx), xeαpx cos(βpx), . . . , xrλp−1eαpx cos(βpx).


