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Introduction

Let α > 0 be a real number and consider the vector fields in the plane X = ∂x
and Y = |x|α∂y. By means of X and Y several analytical and geometrical objects

can be defined in R2. We can define the gradient of a differentiable function u as

the vector Dαu = (Xu, Y u) = (∂xu, |x|α∂yu). This gradient is “subelliptic” in the

sense that it can degenerate on the y axis. The corresponding “subelliptic” second

order operator is Lα = X2 + Y 2 = ∂2
x + |x|2α∂2

y . In the case α = 1, this Laplacian is

known as Grushin operator, one of the most simple and better understood elliptic–

degenerate operators. The vector fields X and Y can also be used to introduce a

notion of weighted perimeter Pα(E) for Lebesgue measurable sets E ⊂ R2. Pα is one

of the most simple examples of perimeter measure in non–Euclidean metric spaces.

Finally, considering X and Y as a possibly degenerating basis for the tangent space

at points in the plane, it is possible to define a metric dα on R2. The resulting metric

space (R2, dα) is then an example of sub–Riemmanian or Carnot–Carathéodory space,

sometimes known as Grushin plane.

In this work we study some problems connecting Dα, Lα, Pα and dα, in the plane

and in more general situations. This research is part of a more general research pro-

gram on Analysis in Metric Spaces, a subject that, in the last years, has raised a

great interest in many different areas of mathematics: linear and nonlinear partial

differential equations, functional spaces and Sobolev–Poincaré inequalities, quasicon-

formal mappings, theory of perimeters, rectifiability and currents, sub–Riemannian

and Carnot–Carathéodory geometry, differentiability properties of functions. Evi-

dence for this increasing interest is given by the many books recently appeared on

related topics [BR], [DS], [AT], [ASC], [HK2], [H].

In Chapter 1 we prove a sharp isoperimetric inequality for the perimeter Pα in the

plane. This seems to be the first sharp isoperimetric result in the sub–Riemannian

setting. In Chapter 2 we study symmetry properties for critical semilinear equations

involving higher dimensional generalizations of Lα. The results are connected with

the problem of determining sharp constants and extremal functions for Sobolev in-

equalities for subelliptic gradients as Dα. Of independent interest are also the tools

used, especially the Kelvin transform we have found for Grushin operators. In Chap-

ter 3 we study regular domains in Rn for Grushin metrics. Our results have interesting

applications to the theory of functional inequalities and to the study of the boundary

behavior of Lα–harmonic functions.

Carnot–Carathéodory spaces have a metric (Hausdorff) dimension, say Q > 2,

larger than their topological dimension, and the isoperimetric inequality gives an
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6 INTRODUCTION

upper bound for the volume of bounded sets (their Q dimensional Hausdorff measure)

in terms of the Q − 1 dimensional Hausdorff measure of the boundary. Apparently,

the first result of this type is due to Pansu in the case of the Heisenberg group [P]. In

more general Carnot–Carathéodory spaces, isoperimetric inequalities are discussed by

Gromov in [G]. Relationships between isoperimetric inequalities, Sobolev inequalities

and heat kernels are also discussed in various settings in [VSC], [FGaW], [CDG1]

and [GN1].

In the Grushin plane, the α–perimeter of a measurable set E ⊂ R2 can be defined

as follows:

Pα(E) = sup

{∫
E

(∂xϕ1 + |x|α∂yϕ2) dxdy : ϕ1, ϕ2 ∈ C1
0(R2), sup

R2

(ϕ2
1 + ϕ2

2)1/2 ≤ 1

}
.

(1)

This definition is a special case of the one given in [GN1] for Carnot–Carathéodory

spaces and also of the one introduced in [A] for more general metric spaces.

The relation between Pα and the Grushin metric dα can be described in terms of

Minkowski content. Precisely, if E is a bounded open set with regular boundary, then

Pα(E) = Mα(∂E) := lim
ε↓0

|{p ∈ R2 : 0 < distα(p;E) < ε}|
ε

,

where | · | stands for Lebesgue measure in the plane. This identity holds in general

Carnot–Carathéodory spaces (see [MSC]). By a general result due to Ambrosio [A],

α–perimeter also has a representation in terms of Hausdorff measures.

The main result in Chapter 1 is the following theorem.

Theorem 1. Let α > 0 and Q = α + 2. There exists a constant c(α) > 0 such

that for any measurable set E ⊂ R2 with finite measure

|E| ≤ c(α)Pα(E)
Q
Q−1 . (2)

The constant c(α) is determined by equality in (2) achieved by the isoperimetric set

Eα =

{
(x, y) ∈ R2 : |y| <

∫ π/2

arcsin |x|
sinα+1(t) dt, |x| < 1

}
. (3)

Precisely,

c(α) =
α + 1

α + 2

(
2

∫ π

0

sinα(t)dt

)− 1
α+1

. (4)

Isoperimetric sets are unique up to vertical translations and dilations of the form

(x, y) 7→ δλ(x, y) = (λx, λα+1y), λ > 0.

The number Q = 2 + α is the “homogeneous” dimension of the metric space

(R2, dα) with Lebesgue measure. The size of balls B in the metric dα has been

described by Franchi and Lanconelli [FL] by means of the boxes

Box((x, y), r) = [x− r, x+ r]× [y − r(|x|+ r)α, y + r(|x|+ r)α].
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Precisely, there exist constants 0 < c1 < c2 such that Box(p, c1r) ⊂ B(p, r) ⊂
Box(p, c2r) for all p ∈ R2 and r > 0. (Similar estimates play a crucial role in Chapter

3). Therefore, the size of small balls with center away from x = 0 is approximately of

Euclidean type, whereas the Lebesgue measure of B((0, y), r) is comparable to r2+α.

The number Q = 2 + α is the isoperimetric dimension of the Grushin plane.

The perimeter Pα is (Q−1)–homogeneous with respect to the dilations δλ, whereas

Lebesgue measure is Q–homogeneous (see Proposition 1.1.2). Using these homogene-

ity properties, the problem of finding the sharp constant in (2) can be reduced to

solving the minimum problem

min
{
Pα(E) : E ⊂ R2 measurable set with |E| = 1

}
. (5)

A key step in the proof of existence of solutions is to show that the class of admissible

sets can be restricted to sets which are symmetric both in the x and in the y direction.

In fact, solutions must be symmetric with respect to the y axis. The argument relies

upon an adaptation of Steiner symmetrization. After a suitable change of variable Ψ,

the α–perimeter of a set E is equal to the Euclidean perimeter of the set F = Ψ(E)

(see Proposition 1.1.3). By a result of De Giorgi [DG], the Euclidean perimeter

of the Steiner symmetrized set F ∗ is less or equal than that of F . It follows that

Pα(Ψ−1(F ∗)) ≤ Pα(E) and the problem is reduced to studying how the map Ψ changes

volume (see Theorem 1.2.1).

Besides symmetry, solutions to problem (5) must also be convex. This implies

Lipschitz regularity of the boundary of minimum sets, and then, using an integral

representation for α–perimeter proved in Theorem 1.1.1, it is possible to write down

the Euler–Lagrange equation for problem (5), a simple ordinary differential equation

that yields the explicit solutions (3).

A simple corollary of the isoperimetric inequality (2) is the inequality |E| ≤
c(α)Mα(∂E)

Q
Q−1 for bounded open sets (Corollary 1.3.1). This is the kind of isoperi-

metric inequality suggested by Gromov in [G] for non–equiregular sub–Riemannian

manifolds.

The case α = 1 has a special interest in connection with the Heisenberg group. In

this particular case the isoperimetric ball

E1 =

{
(x, y) ∈ R2 : |y| < 1

2

(
arccos |x|+ |x|

√
1− |x|2

)
, |x| < 1

}
is bounded by two geodesics for the Grushin metric d1 which are symmetric with

respect to the y axis (see Section 4). The same phenomenon seems to appear in the

Heisenberg group, as conjectured by Pansu in [P]. Moreover, identifying the Grushin

plane with a vertical hyperplane of R3 and the y axis with the vertical axis of R3, then

by rotating E1 around the vertical axis one obtains a set which is believed to solve the

isoperimetric problem in the Heiseneberg group (see also [Mo], [LM] and [DGN2]).

Our interest in the Heisenberg isoperimetric problem was the original motivation to

the study of the problems discussed in Chapter 1.
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By an argument of Federer and Fleming [FF] and Maz’ya [Ma], inequality (2)

yields a Sobolev–Gagliardo–Nirenberg inequality for the Grushin subelliptic gradient.

Precisely, (∫
R2

|u|
Q
Q−1dxdy

)Q−1
Q

≤ c(α)
Q−1
Q

∫
R2

|Dαu| dxdy

for functions u ∈ C∞0 (R2). Here c(α) is the constant (4) and the inequality is sharp

(Corollary 1.3.2). However, contrary to the Euclidean setting, the isoperimetric in-

equality does not provide the sharp constant in the Sobolev embedding(∫
R2

|u|
2Q
Q−2dxdy

)Q−2
Q

≤ c

∫
R2

|Dαu|2dxdy. (6)

Indeed, extremal functions for inequality (6) in the case α = 1 have been recently

found by Beckner in [B]. They are functions of the form u(x, y) = ((1+x2)2+4y2)−1/4,

and their level sets are not isoperimetric balls.

The results of Chapter 2 are related to the problem of finding extremal functions

for inequality (6). We shall study a higher dimensional generalization of the problem.

Let x ∈ Rm, y ∈ Rk, α > 0 and n = m+ k, m, k ≥ 1. In Rn, inequality (6) reads(∫
Rn
|u|2∗dxdy

)1/2∗

≤ c

(∫
Rn

(|Dxu|2 + |x|2α|Dyu|2)dxdy

)1/2

, (7)

where

2∗ =
2Q

Q− 2
and Q = m+ k(α + 1).

The number Q is the “dimension” and 2∗ is the Sobolev conjugate exponent to 2

relatively to this dimension. The natural space for this inequality is D1(Rn), the

functions u vanishing at infinity having weak partial derivatives satisfying ‖Dαu‖2 <

+∞, where this last expression denotes the right hand side of (7). Sobolev inequalities

of type (7) are proved in [FGaW], [FGuW] and [GN1].

The first step in the search for extremal functions is to prove some a priori sym-

metry reducing in this way the class of competitors. In the case α = 0, the standard

technique is based on rearrangement inequalities. Indeed, the L2 norm of the (usual)

gradient of functions in Rn having given L
2n
n−2 norm is minimized in the class of radial

functions. Extremal functions for the (usual) Sobolev inequality were determined us-

ing this approach by Talenti [T] and Aubin [Au]. In our case, the natural conjecture

is that the class of competitors could be restricted to functions separately radial in

the x and y variables. However, the proof of the symmetry in the variable x is not

yet known and, in any case, the problem would still remain two dimensional.

A different approach to symmetry is provided by partial differential equations

techniques. Extremal positive functions for (7) must satisfy (up to a multiplicative

geometric constant) the critical point equation

Lu = ∆xu+ |x|2α∆yu = −u2∗−1 in Rn. (8)
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The exponent 2∗− 1 = Q+2
Q−2

is the critical exponent for L. When α = 0, this equation

becomes the well studied Yamabe equation (n ≥ 3)

∆u = −u
n+2
n−2 in Rn. (9)

Gidas, Ni and Nirenberg proved in [GNN], under some assumptions on the behavior

at infinity, that every positive solution of problem (9) is radial. These assumptions

have been later removed by Caffarelli, Gidas and Spruck in [CGS]. The proofs

rely on the Maximum Principle and on Alexandrov’s moving plane method. A key

point in this method is that the reflection of a solution of (9) with respect to any

hyperplane is still a solution. This is no longer true for (8), because this equation is

not invariant under x–translations. This corresponds to the difficulty in proving the

x–radial symmetry in the rearrangement approach.

It is worth noticing that the Yamabe problem has been completely solved in the

Heisenberg group by Jerison and Lee [JL1, JL2]. In particular, they were able to

determine all positive solutions u = u(x, y, t) in Rn×Rn×R of the semilinear equation

n∑
j=1

(
∂

∂xj
+ yj

∂

∂t

)2

u+

(
∂

∂yj
− xj

∂

∂t

)2

u = −u
Q+2
Q−2 , (10)

where Q = 2n+2. The operator in the left hand side is known as Kohn or Heisenberg

Laplacian. This operator acts on functions u = u(z, t) which are radial in the variable

z = (x, y) ∈ R2n as a Grushin operator with m = 2n, k = 1 and α = 1. The difficult

radial symmetry in z for solutions of (10) was established in [JL2] by means of some

identities of complex analytic character satisfied by solutions. These results have been

recently generalized by Garofalo and Vassilev in [GV2] to groups of Heisenberg type,

but even in this setting the symmetry in the variables of the first layer is still an open

problem.

We shall study equation (8) in the space C2(Rn) ∩D1(Rn). The main tool of our

investigation is a Kelvin transform for the Grushin operator L = ∆x + |x|2α∆y. Let

x ∈ Rm, y ∈ Rk and write z = (x, y) ∈ Rn. Introduce the “norm” (in Chapter 2 we

use a different normalization)

‖z‖ =
(
|x|2(α+1) + (α + 1)2|y|2

) 1
2(α+1) .

The function Γ(z) = ‖z‖2−Q is a fundamental solution for L with pole at the origin.

In the case α ∈ N, integral representations formulas for the fundamental solution of

L with pole at arbitrary points in Rn have been recently computed by Beals, Greiner

and Gaveau in [BGG]. The norm ‖ · ‖ is 1–homogeneous for the group of anisotropic

dilations δλ(x, y) = (λx, λα+1y), λ > 0. Define the inversion I : Rn \ {0} → Rn \ {0}
by letting I(z) = δ‖z‖−2(z). The Kelvin transform of a function u : Rn → R is

u∗(z) = Γ(z)u(I(z)), z 6= 0. (11)

Equation (8) is invariant for the Kelvin transform.
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Theorem 2. If u ∈ C2(Rn) solves Lu = −u2∗−1 in Rn then Lu∗ = −(u∗)2∗−1 in

Rn \ {0}.

The Kelvin transform in the Heisenberg group was discovered by Korànyi [K].

The existence of such a transform also characterizes a special subclass of groups of

Heisenberg type, and precisely the ones appearing as nilpotent part in the Iwasawa

decomposition of simple Lie groups of real rank one (see [CDKR]). A Kelvin trans-

form is also known for multiharmonic functions (see [C]). Apparently, there are not

many other examples. It is well known that in groups of Heisenberg type the subel-

liptic Laplacian acting on functions which are radial in the first layer of variables is

a Grushin operator with α = 1. Thus, Theorem (2) yields an improvement of some

results proved in [GV2] by removing the “Iwasawa assumption”.

The proof of Theorem 2 relies on a conformality property for the inversion I in a

suitable metric structure relating the “derivative” of I to the fundamental solution

Γ (see Lemma 2.2.2 and Theorem 2.2.3). Thanks to Theorem 2, we could replace

the method of “moving planes” with a method of “moving spheres”. The function

δλu(z) = λ
Q
2
−1u (δλ(z)) solves equation (8), if the function u does. Let uλ(z) =

(δλu)∗(z) for λ > 0. Developing Cheng and Liongming’s approach to the moving

planes method in [CL], we prove in Theorem 2.3.6 the following symmetry result.

Theorem 3. Let u ∈ C2(Rn) ∩ D1(Rn) be a positive solution of Lu = −u2∗−1.

Then there exists λ > 0 such that u = uλ.

After a rescaling, we can assume λ = 1 in Theorem 3. The statement then is

u = u∗, the solution is entirely determined by its values on the set ‖z‖ ≤ 1. Since

equation (8) is invariant with respect to translations in the variable y, Theorem 3 can

be applied to any such translation of a solution u. In Corollary 2.3.7 we show that

the solution u must then satisfy

u(0, y) = u(0, y0)(1 + |y − y0|2)−β, where β =
Q− 2

2(α + 1)
, (12)

for some y0 ∈ Rk. This condition and Theorem 3 yield a hyperbolic radial symmetry

for solutions to (8). This phenomenon already appeared in [B], where extremal

functions for (6) with α = 1 are determined by means of a rearrangement technique

in the hyperbolic plane.

We describe the hyperbolic symmetry in the case m = k = 1. Let H = {ζ =

ξ + iη ∈ C : ξ > 0} be the half plane endowed with the hyperbolic metric, and

introduce the following functional change of variable for ξ > 0

U(ζ) = ξβu
(
ξ

1
α+1 , η

)
. (13)

The reason for introducing such a change of variable is that the equation Lu = −u2∗−1

becomes a semilinear equation involving the hyperbolic Laplacian (see (2.4.4)) which

is invariant under Moebius transformations. In Proposition 2.4.3, we shall show how

to construct the Kelvin transform (11) using (13) and a suitable hyperbolic reflection.
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Theorem 4. If u ∈ C2(R2) ∩D1(R2) is a positive solution of Lu = −u2∗−1 with

u = u∗ and y0 = 0 in (12), then the function U defined in (13) is radially symmetric

about the point (1, 0) for the hyperbolic metric.

This theorem gives a non trivial symmetry involving simultaneously the variables

x and y. A corollary of the higher dimensional version of this result proved in Theorem

2.4.4 is the reduction of equation (8) to an equation involving only x. Precisely, if

u = u∗ > 0 solves Lu = −u2∗−1 with y0 = 0 in (12), then the function v(x) = u(x, 0),

x ∈ Rm, solves the problem divx(pDxv)− qv = −pv2∗−1 |x| < 1
∂v

∂ν
+
(Q

2
− 1
)
v = 0 |x| = 1,

(14)

where p = p(x) and q = q(x) are suitable radial functions (see Corollary 2.4.5).

We have not yet been able to prove that any positive solution of (14) must be radial

in x. However, in the last section of Chapter 2 we prove symmetry and uniqueness

in the case m = k = 1. In this case, Problem (14) becomes
(pu′)′ − qu+ pu2∗−1 = 0, in (−1, 1)

u > 0, in (−1, 1)

αu(1) + 2u′(1) = 0

αu(−1)− 2u′(−1) = 0,

(15)

where p(x) = (1− |x|2(α+1)) and q(x) = α(α + 1)|x|2α.

Using a variant of the energy method introduced by Kwong and Li in [KL] we

prove in Theorem 2.5.3 that any solution of (15) must be an even function. Then,

by a shooting argument we show in Theorem 2.5.5 that the problem has at most one

solution.

Chapter 3, the most difficult one, deals with regular domains in Rn for Grushin

metrics. There are several definitions of “regular domain”. We recall the notion of

domain with the interior (twisted) cone property (or John domain). Consider an

open set Ω in a metric space (M,d). Given a rectifiable path γ : [0, 1]→M , the cone

with core at γ and aperture ε > 0 is the set C(γ, ε) =
⋃

0<t<1B
(
γ(t), ε length(γ|(0,t))

)
,

where B denote metric balls. The set Ω is a John domain with John constant ε and

center x0 ∈ Ω if for any x ∈ Ω there is a cone C(γ, ε) ⊂ Ω such that γ(0) = x and

γ(1) = x0.

The cone property was introduced in the Euclidean setting by John in his paper

[Joh] on the rigidity of quasiisometric maps in Rn. Besides its importance in geo-

metric function theory, this property plays a central role in the theory of first order

Sobolev spaces (see e.g. [Re], [Bes], [M], [Bo], [MP] and the more recent references

[SS], [BK], [HK1], [KOT]). The cone property is also related to chaining conditions

that are useful in the proof of Sobolev–Poincaré inequalities. This fact was recognized

by Jerison in [J] and later used by several authors (see [L], [FGuW], [GN1], [BKL]).
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In the memoir [HK2] by Haj lasz and Koskela, a nice reference on the subject, all

these ideas are developed in general metric spaces.

Other classes of domains appear in more refined questions in harmonic analysis,

partial differential equations and quasiconformal mappings: uniform domains and

non–tangentially accessible domains are the most important examples. The defini-

tion of uniform domain (or (ε, δ)–domain) is due to Martio and Sarvas [MS] and to

Jones [Jo] (see Definition 3.5.1). In particular, Jones’ extension theorem for Sobolev

functions in uniform domains has been generalized to subelliptic Sobolev spaces in

[GN2], [VG] and [G1]. Uniform domains also play a special role in the trace prob-

lem for Sobolev functions. This theory has been developed in Carnot–Carathéodory

spaces by Danielli, Garofalo and Nhieu [DGN1] (see also [MM1]). A subclass of uni-

form domains is formed by non–tangentially accessible domains (briefly nta domains)

which, in the Euclidean case, were introduced by Jerison and Kenig [JK] in connec-

tion with the study of the boundary behavior of harmonic functions. The notion

of nta domain is purely metric (see Definition 3.5.3) and plays an important role in

potential theory, boundary behavior problems for harmonic functions and harmonic

measures (see, for instance, [CG] and [FeF] for the subelliptic case).

In spite of this general theory, not many examples of regular domains are known

in metric spaces non bi–Lipschitz equivalent to Rn with the Euclidean metric. Some

results for metrics associated with vector fields, the case we are interested in, can

be found in [HH], [CT], [VG], [CG], [CGN], [G2], [CGP], [FeF], [DGN1]. In

particular, in [MM2] it is shown that any C2 bounded domain in homogeneous

(Carnot) groups of step 2 is non–tangentially accessible. In the same work a sufficient

condition for the John property is provided for the step 3 case (Engel group). The

difficulty of the problem of finding examples is due to the fact that even the C∞

regularity of the boundary does not necessarily guarantee the metric regularity of the

domain. At characteristic points may appear a “cuspidal behavior” of the boundary

which destroys regularity (see [BM] for a study of the “boundary accessibility” at

characteristic points in the Heisenberg group). This was already noticed in [J] just

in the case of the Grushin plane. Motivated by the need of understanding the role of

characteristic points we studied regular domains for Grushin metrics.

We describe the model situation considered in Chapter 3. Let α1, α2 ∈ N be fixed

natural numbers and consider the vector fields in R3

X1 =
∂

∂x1

, X2 = xα1
1

∂

∂x2

, X3 = xα1
1 x

α2
2

∂

∂x3

. (16)

These vector fields induce on R3 a metric d, which is known as control, Carnot–

Carathéodory or sub–Riemannian distance associated with (16). The problem is the

following: given a bounded open set Ω ⊂ R3, find geometric conditions on ∂Ω ensuring

the John (uniform, nta) property in the metric space (R3, d).

A point x ∈ ∂Ω is characteristic if X1, X2, X3 are all tangent to the boundary at

x. In this case any integral curve of the vector fields starting from x is tangent to the

boundary at this point and the cone property becomes critical. On the other hand, if
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x is noncharacteristic then there is an integral curve transversal to ∂Ω starting from

x which will be the core of a suitable interior cone. The quantitative understanding

of this phenomenon requires a precise knowledge of metric balls.

By the results of [FL], balls B(x, r) in the metric d are comparable with the

following 3–dimensional boxes (see Theorem 3.1.1)

Box(x, r) = Q(x, r)× [x3 − F3(x, r), x3 + F3(x, r)],

where Q(x, r) = [x1− r, x1 + r]× [x2−F2(x, r), x2 +F2(x, r)], F2(x, r) = r(|x1|+ r)α1 ,

and F3(x, r) = F2(x, r)(|x2|+ F2(x, r))α2 .

Now consider an open set in R3 of the form Ω = {(x1, x2, x3) ∈ R3 : x3 >

ϕ(x1, x2)} for some function ϕ ∈ C1(R2). We are going to introduce a definition of

“admissible boundary”. Assume for a moment that 0 ∈ ∂Ω is a characteristic point,

i.e. X1ϕ(0) = ∂1ϕ(0) = 0. A curve γ core of a cone C(γ, ε) ⊂ Ω with vertex near 0

must be approximately of the form γ(t) = (0, 0, t), t > 0. For x3 > 0 and r > 0 small,

the box

Box((0, 0, x3), r) = [−r, r]× [−rα1+1, rα1+1]× [x3 − r(α1+1)(α2+1), x3 + r(α1+1)(α2+1)]

is very large in the first two components with respect to the third one. In fact, the

vertical size of the box behaves as r(α1+1)(α2+1) = rd3 . Therefore, in order the cone

property to hold, X1ϕ and X2ϕ are expected to vanish fast enough at 0. Quantita-

tively, this can be formulated in the following way.

The boundary ∂Ω is said to be admissible if there is a constant C > 0 such that

for all x = (x1, x2) ∈ R2 and r > 0 we have∑
i=1,2

osc(Xiϕ,Q(x, r)) ≤ C
(
r
∑
i=1,2

|Xiϕ(x)|
d3−2
d3−1 + osc(λ3, Q(x, r)

)
. (17)

Here, λ3(y) = yα1
1 yα2

2 is the coefficient of X3. The oscillation of the derivatives of the

function ϕ along the vector fields X1 and X2 is bounded by a sum of two terms. The

first term in the right hand side vanishes on the characteristic set, while the second

one gives an amount of oscillation admitted also at characteristic points. The latter is

determined by the oscillation of the function λ3 on Q(x, r), the section of metric balls

in the first two coordinates. This oscillation is also related to the size of metric balls

in the vertical direction. The appropriate balance between the two terms is described

by the power d3−2
d3−1

appearing in the first term. This delicate choice is a key point.

In Definition 3.2.6, we generalize (17) and we introduce a class of domains with

admissible boundary in the n−dimensional situation. Condition (17) can be easily

checked. For instance, in Theorem 3.3.2 we show that the open set

Ω = {(x1, x2, x3) ∈ R3 :
(
|x1|2(α1+1) + x2

2

)1+α2 + x2
3 < 1}

has admissible boundary for the vector fields (16).

Relatively to R3, the main results in Chapter 3 can be stated as follows (see

Theorems 3.4.3 and 3.5.7).



14 INTRODUCTION

Theorem 5. If Ω ⊂ R3 is a domain with admissible boundary, then: (i) it is a

John domain in the metric space (R3, d); (ii) it is non–tangentially accessible in the

metric space (R3, d).

Actually, statement (i) is contained in statement (ii). The proof relies upon a

careful construction of cones. The main problem has been to understand how to

choose the core γ. This construction is introduced in the proof of Theorem 3.4.3. The

reading of Chapter 3 could be difficult. The main steps through it are the following:

1) structure of the boxes (3.1.12); 2) condition (3.2.4) for admissible surfaces; 3)

construction of John curves in Theorem 3.4.3; 4) discussion preceding Lemma 3.5.6;

5) Theorem 3.5.7.

Even though we are not going to discuss any application, we would like to illustrate

the interest of Theorem 5 with two examples. A corollary of part (i) is the following

Sobolev–Poincaré inequality. Let Ω ⊂ R3 be an admissible domain and let Q =

1 + (α1 + 1)(α2 + 2). For any 1 ≤ p < Q there exists a constant C > 0 such that for

all functions u ∈ C1(Ω)(∫
Ω

|u(x)− uΩ|
pQ
Q−pdx

)Q−p
pQ

≤ C
(∫

Ω

|Dαu(x)|pdx
) 1
p
,

where |Dαu|2 =
∑3

i=1 |Xiu|2 and uΩ denotes the average of u over Ω. This inequality

is proved for John domains in various metric spaces in [FGuW], [GN1] and [HK2].

A corollary of Theorem 5 part (ii) is the following Besov trace estimate. Let

Ω ⊂ R3 be an admissible domain, 1 < p < +∞ and s = 1 − 1/p. Then there is a

constant C > 0 such that for all functions u ∈ C1(Ω) ∩ C(Ω̄)∫
∂Ω×∂Ω

|u(x)− u(y)|pdµ(x)dµ(y)

d(x, y)psµ(B(x, d(x, y)))
≤ C

∫
Ω

|Dαu(x)|pdx.

Here, d is the Grushin metric, B denotes a metric ball, and µ is a surface measure on

∂Ω depending on X1, X2, X3 (this is the perimeter measure induced by Ω, which can

be defined analogously to (1)). Besov estimates of this kind are proved in [DGN1]

assuming Ω to be a uniform domain with Ahlfors regular boundary in a Carnot–

Carathéodory space.

Finally, we describe the author’s contribution to the results contained in this work.

Chapters 1 and 3 are based on the papers [Mo], [MM3], [MM4], [MM5]. The last

three are joint work with Daniele Morbidelli. Chapter 2 is entirely new and has

been written for this work. The results are part of a research program together with

D. Morbidelli on critical semilinear equations. Besides being a friend, Daniele is my

favorite coauthor. Actually, it is not possible to determine exactly the contribution

of each of us to our research, which is based on a day by day exchange of ideas.

Nevertheless, I try to give some indication. The form (3) of Grushin isoperimetric sets

and the key symmetry argument for the proof of Theorem 1 have been found by the

author. The form (11) of the Kelvin transform for L and Theorem 2 were originally

established by the author, but the elegant and shorter conformal proof based on
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Theorem 2.2.3 has been shown to me by D. Morbidelli. It is simply impossible to

say who of us discovered condition (17) for regular boundaries in Grushin spaces.

However, it was D. Morbidelli who realized how to prove a key technical step towards

the uniform condition (this is Lemma 3.5.6). All other results are joint work to which

we gave the same contribution.

This Habilitationsschrift collects part of my research work as postdoc at the Math-

ematisches Institut of Bern University in the years 2002–2003. I would like to acknowl-

edge with gratitude the Institut for the opportunity it gave me to work under the

best conditions. Especially, I would like to thank M. Reimann and Z. Balogh for

their friendly hospitality. With M. Rickly I shared many interesting discussions. His

comments helped me to improve Chapter 1.





CHAPTER 1

Isoperimetric inequality in the Grushin plane

1. Perimeter in the Grushin plane

We define the perimeter of a measurable set in the Grushin plane and we study

some of its basic properties. In this chapter α ≥ 0 is a fixed real number. A measur-

able set E ⊂ R2 is a Lebesgue measurable set in the plane and its measure is denote

by |E|.
Introduce the family of test functions

F(R2) =
{
ϕ = (ϕ1, ϕ2) ∈ C1

0(R2; R2) : ‖ϕ‖∞ ≤ 1
}
,

where ‖ϕ‖∞ = sup
R2

(ϕ2
1 + ϕ2

2)1/2.

The α–divergence of a vector valued function ϕ ∈ C1(R2; R2) is divαϕ = ∂xϕ1 +

|x|α∂yϕ2. Following [GN1], we define the α–perimeter of a measurable subset E of

R2 as

Pα(E) = sup
ϕ∈F(R2)

∫
E

divαϕ(x, y) dxdy. (1.1.1)

Two measurable sets E,F ⊂ R2 are said to be equivalent if |E \ F | = |F \ E| = 0.

Equivalent sets have the same α–perimeter. Our results are stated and hold up to

equivalence of sets. If Pα(E) < +∞, the set E is said to have finite α–perimeter. We

shall only consider sets E with finite measure |E| < +∞. In the sequel, when α = 0

we shall omit the subscript α, reducing our definitions to the classical (Euclidean)

ones.

A key feature of definition (1.1.1) is the following lower semicontinuity property.

Let (Eh)h∈N be a sequence of measurable sets whose characteristic functions are con-

verging in L1
loc(R2) to the characteristic function of a set E. Then

Pα(E) ≤ lim inf
h→∞

Pα(Eh). (1.1.2)

Such a lower semicontinuity and a compactness argument will give the existence of

isoperimetric sets.

When the set E has regular boundary, its α–perimeter has the following integral

representation.

Theorem 1.1.1. Let E ⊂ R2 be a bounded open set with Lipschitz boundary.

Then

Pα(E) =

∫
∂E

(
n1(x, y)2 + |x|2αn2(x, y)2

)1/2
dH1, (1.1.3)

17
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where n(x, y) = (n1(x, y), n2(x, y)) is the (outward) unit normal to ∂E at the point

(x, y) ∈ ∂E, and H1 is the 1–dimensional Hausdorff measure in the plane.

Proof. Since ∂E is locally the graph of Lipschitz functions, the normal n(x, y)

is defined for H1 − a.e. (x, y) ∈ ∂E and is a H1−measurable function on ∂E. Let

F ⊂ ∂E be the set of points of ∂E where n is defined.

Fix a test function ϕ ∈ F(R2) and recall that ‖ϕ‖∞ ≤ 1. Using the divergence

theorem and the Cauchy–Schwarz inequality we get∫
E

divαϕdxdy =

∫
∂E

(n1ϕ1 + |x|αn2ϕ2) dH1 ≤
∫
∂E

(
n2

1 + |x|2αn2
2

)1/2
dH1 := I.

The inequality Pα(E) ≤ I follows by taking the supremum over all test functions.

We have to prove the converse inequality I ≤ Pα(E). Note first that the set

G = {(x, y) ∈ F : x = 0 and n1(x, y) = 0} is at most countable, because it is discrete.

Fix a number ε > 0. By Lusin theorem there exists a compact set K ⊂ F \ G such

that n|K is continuous on K andH1(∂E\K) ≤ ε. Let B = {(x, y) ∈ R2 : x2+y2 ≤ 1},
Q = [−1, 1]× [−1, 1]. Fix a homeomorphism g : B → Q.

The function ν : K → B defined by

ν(x, y) =
(n1(x, y), |x|αn2(x, y))

[n1(x, y)2 + |x|2αn2(x, y)2]1/2
, (x, y) ∈ K,

is continuous on K. The map g◦ν : K → Q can be extended to a continuous function

from R2 to Q with compact support (this can be seen by applying Tietze–Urysohn

theorem to both its components). Taking the composition of this function with g−1

we find a continuous function ψ ∈ C0(R2;B) such that ψ = ν on K. Write

I =

∫
∂E

(n1ψ1 + |x|αn2ψ2) dH1 −
∫
∂E\K

(
n1ψ1 + |x|αn2ψ2 −

(
n2

1 + |x|2αn2
2

)1/2
)
dH1.

Since H1(∂E \K) ≤ ε, ‖n‖∞ ≤ 1 and ‖ψ‖∞ ≤ 1, there exists a constant C depending

on α and E such that∫
∂E\K

∣∣∣n1ψ1 + |x|αn2ψ2 −
(
n2

1 + |x|2αn2
2

)1/2
∣∣∣ dH1 ≤ Cε.

Then it follows that ∫
∂E

(n1ψ1 + |x|αn2ψ2) dH1 ≥ I − Cε.

Let (Jη)η>0 be a family of mollifiers and define ψη = Jη∗ψ. Then ψη ∈ C∞0 (R2; R2),

‖ψη‖∞ ≤ 1 and ψη → ψ uniformly as η → 0. Choosing ϕ = ψη with η > 0 small

enough we get ∫
E

divαϕdxdy =

∫
∂E

(n1ϕ1 + |x|αn2ϕ2) dH1 ≥ I − 2Cε,

and since ϕ ∈ F(R2) we have Pα(E) ≥ I − 2Cε. But ε > 0 is arbitrary. Then the

claim Pα(E) ≥ I is proved. �
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Consider the real number Q = 2 + α. Lebesgue measure and α–perimeter are

respectively Q–homogeneous and (Q− 1)–homogeneous with respect to the dilations

(x, y) 7→ δλ(x, y) = (λx, λα+1y).

Proposition 1.1.2. Let E ⊂ R2 be a measurable set. Then for all λ > 0

(i) |δλ(E)| = λQ|E|;
(ii) Pα(δλ(E)) = λQ−1Pα(E).

Proof. We prove (ii). Let ϕ ∈ F(R2) and write∫
δλ(E)

divαϕ(x, y) dxdy =

∫
δλ(E)

(
∂xϕ1(x, y) + |x|α∂yϕ2(x, y)

)
dxdy

=

∫
E

(1

λ
∂ξϕ1(λξ, λα+1η) + λα|ξ|α 1

λα+1
∂ηϕ2(λξ, λα+1η)

)
λQdξdη

= λQ−1

∫
E

divα(ϕ ◦ δλ)(ξ, η) dξdη ≤ λQ−1Pα(E),

because ϕ ◦ δλ ∈ F(R2). Taking the supremum over test functions gives Pα(δλ(E)) ≤
λQ−1Pα(E). The converse inequality is obtained in the same way. �

We introduce a change of variable that transforms the α–perimeter of a set into the

Euclidean perimeter of the transformed set. Consider the functions Φ,Ψ : R2 → R2

defined by

Φ(ξ, η) =
(

sgn(ξ)|(α + 1)ξ|
1

α+1 , η
)
, Ψ(x, y) =

(
sgn(x)

|x|α+1

α + 1
, y

)
. (1.1.4)

Clearly, Ψ is a homeomorphism and Φ is its inverse. Notice that | det JΦ(ξ, η)| =

|(α + 1)ξ|−
α
α+1 for ξ 6= 0.

Proposition 1.1.3. Let E ⊂ R2 be a measurable set and define F = Ψ(E). Then

P (F ) = Pα(E).

Proof. Take a test function ϕ ∈ F(R2). A short computation gives∫
E

divαϕ(x, y)dxdy =

∫
E

[∂xϕ1(x, y) + |x|α∂yϕ2(x, y)] dxdy

=

∫
F

[∂ξ(ϕ1 ◦ Φ)(ξ, η) + ∂η(ϕ2 ◦ Φ)(ξ, η)] dξdη.

Note that the function ∂ξ(ϕ1 ◦ Φ)(ξ, η) = |(α + 1)ξ|−
α
α+1 (∂1ϕ1)(Φ(ξ, η)) is in L1(R2),

because ∂1ϕ1 is bounded and with compact support, and the singular term |ξ|−
α
α+1 is

locally integrable. The same happens for ∂η(ϕ2 ◦ Φ).

By known density theorems for Sobolev spaces

P (F ) = sup
ψ∈F(R2)

∫
F

divψ(ξ, η)dξdη

= sup

{∫
F

divψ(ξ, η)dξdη : ψ1, ψ2 ∈W1,1(R2), ψ2
1 + ψ2

2 ≤ 1 a.e.

}
.
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Then it follows that ∫
E

divαϕ(x, y)dxdy ≤ P (F ).

Taking the supremum over test functions we find Pα(E) ≤ P (F ). The converse

inequality can be achieved by the same argument, using the function Ψ instead of

Φ. �

2. Isoperimetric inequality

We prove the isoperimetric inequality in the Grushin plane. First we need a

theorem that reduces the problem to convex and symmetric sets. To this aim we

introduce some definitions concerning geometrical properties of sets. A set E ⊂ R2 is

x–symmetric if (x, y) ∈ E implies (−x, y) ∈ E. E is y–symmetric if (x, y) ∈ E implies

(x,−y) ∈ E. Finally, E is said to be symmetric if it is both x– and y–symmetric.

Given a set E ⊂ R2 define for every x, y ∈ R

Ex = {y ∈ R : (x, y) ∈ E}, Ey = {x ∈ R : (x, y) ∈ E}.

A set E ⊂ R2 is x–convex if Ey is an (open or empty) interval for all y ∈ R. E is

y–convex if Ex is an (open or empty) interval for all x ∈ R. Finally, E will be said

to be separately convex if it is both x– and y–convex.

Theorem 1.2.1. Let E ⊂ R2 be a measurable set with Pα(E) < +∞ and 0 <

|E| < +∞. There exists a symmetric, convex set E∗ ⊂ R2 such that Pα(E∗) ≤ Pα(E)

and |E∗| = |E|. Moreover, in case α > 0, if E is not (equivalent to) an x–symmetric

and convex set, then the strict inequality Pα(E∗) < Pα(E) holds.

Proof. Let E ⊂ R2 be a measurable set with positive and finite measure and

finite perimeter. Define F = Ψ(E), where Ψ is the map introduced in (1.1.4). By

Proposition 1.1.3, P (F ) = Pα(E) < +∞. Moreover, letting

µ(F ) =

∫
F

|(α + 1)ξ|βdξdη, β = − α

α + 1
,

we find

|E| =
∫

Φ(F )

dxdy =

∫
F

| det JΦ(ξ, η)|dξdη = µ(F ).

Let F1 be the Steiner symmetrization of F in the η–direction. Precisely,

F1 =

{
(ξ, η) ∈ R2 : |η| < 1

2
|F ξ|

}
.

Here, | · | stands for 1 dimensional Lebesgue measure. By [DG, Teorema II], (see also

[T, Section 3.8]), P (F1) ≤ P (F ), where the inequality is strict if F is not (equivalent

to) an η–convex set. Moreover, by Fubini–Tonelli Theorem

µ(F ) =

∫
F

|(α + 1)ξ|βdξdη =

∫ +∞

−∞
|(α + 1)ξ|β|F ξ| dξ

=

∫ +∞

−∞
|(α + 1)ξ|β|F ξ

1 | dξ = µ(F1),
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because |F ξ| = |F ξ
1 | for all ξ ∈ R.

Let F2 be the Steiner symmetrization of F1 in the ξ–direction. Precisely,

F2 =

{
(ξ, η) ∈ R2 : |ξ| < 1

2
|F η

1 |
}
.

Then, as above, P (F2) ≤ P (F1) ≤ P (F ). Consider the volume

µ(F2) =

∫
F2

|(α + 1)ξ|βdξdη =

∫ +∞

−∞

(∫
F η2

|(α + 1)ξ|β dξ

)
dη.

In order to estimate the last term, we use the following elementary fact. Given

a measurable set I ⊂ R with finite measure, denote by I∗ = (−|I|/2, |I|/2)) its

symmetrized set. Since the number β is negative, we have |ξ|β ≥ (|I|/2)β if ξ ∈ I∗,
and |ξ|β ≤ (|I|/2)β if ξ ∈ I \ I∗. Thus∫

I

|ξ|βdξ =

∫
I∩I∗
|ξ|βdξ +

∫
I\I∗
|ξ|βdξ ≤

∫
I∩I∗
|ξ|βdξ +

(
|I|
2

)β
|I \ I∗|

=

∫
I∩I∗
|ξ|βdξ +

(
|I|
2

)β
|I∗ \ I| ≤

∫
I∗
|ξ|βdξ.

The inequality is strict if and only if I is not equivalent to I∗.

From the above considerations it follows that µ(F2) ≥ µ(F1) with equality if and

only if F1 is (equivalent to) an x–symmetric and x–convex set.

F2 is a symmetric, separately convex open set. Moreover, ∂F2 is the union of the

image of four 1–Lipschitz curves. This can be easily visualized by looking at the set

after a rotation of 45 degrees. More precisely, for all s ∈ R such that the set written

below is nonempty, define the function

ϑ(s) = sup

{
t > |s| :

(
t+ s√

2
,
t− s√

2

)
∈ F2

}
.

F2 is separately convex and then ϑ is 1–Lipschitz. Moreover, ∂F2∩{ξ > 0, η > 0} is a

graph of the form t = ϑ(s) in the variables s = (ξ−η)/
√

2 and t = (ξ+η)/
√

2. From a

well known characterization of Euclidean perimeter, it follows that P (F2) = H1(∂F2).

Let F3 = co(F2) be the convex hull of F2. Since F2 ⊂ F3, it follows that µ(F2) ≤
µ(F3) with strict inequality if F2 is not a convex set. Write ∂F3 = (∂F3∩∂F2)∪(∂F3\
∂F2), where ∂F3 \ ∂F2 is the disjoint union of an at most countable family of line

segments In = (pn, qn) ⊂ R2, n ∈ N. Analogously, ∂F2 = (∂F2 ∩ ∂F3) ∪ (∂F2 \ ∂F3),

where ∂F2 \ ∂F3 is the disjoint union of an at most countable family of rectifiable

curves γn, n ∈ N. After a relabelling, we can assume that γn connects pn and qn.

Then the length of γn is greater than that of In, and therefore P (F3) = H1(∂F3) ≤
H1(∂F2) = P (F2).

Define E∗ = δλ(Φ(F3)), where λ > 0 is chosen in order to ensure |E∗| = |E|
(it turns out that λ ≤ 1, see below). The set E∗ is symmetric because Φ preserves

symmetry. We show that E∗ is also convex. Since the map δλ is linear, it is sufficient to

show that Φ(F3) is convex. Let (x0, y0), (x1, x1) ∈ Φ(F3) and write (xi, yi) = Φ(ξi, ηi),
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(ξi, ηi) ∈ F3, i = 0, 1. Φ(F3) is symmetric and separately convex and therefore we can

without loss of generality assume x0, x1 ≥ 0. Clearly, Φ(τ(ξ0, η0) + (1− τ)(ξ1, η1)) ∈
Φ(F3), τ ∈ [0, 1], because F3 is convex. From the concavity inequality

τξ
1

α+1

0 + (1− τ)ξ
1

α+1

1 ≤ (τξ0 + (1− τ)ξ1)
1

α+1 , τ ∈ [0, 1], ξ0, ξ1 ≥ 0,

and from x–symmetry, x– and y–convexity of Φ(F3), it follows that τΦ(ξ0, η0) + (1−
τ)Φ(ξ1, η1) ∈ Φ(F3) for all τ ∈ [0, 1].

Notice that |Φ(F3)| = µ(F3) ≥ µ(F2) ≥ µ(F1) = µ(F ) = |E|, and then it must be

λ ≤ 1, with λ < 1 if E is not (equivalent to) an x–symmetric, convex set. Moreover,

by Propositions 1.1.2 and 1.1.3 it follows that

λ1−QPα(E∗) = Pα(Φ(F3)) = P (F3) ≤ P (F2) ≤ P (F ) = Pα(E).

Hence, Pα(E∗) ≤ Pα(E) with strict inequality if E is not (equivalent to) an x–

symmetric, convex set. �

A measurable set with positive and finite measure minimizing the ratio Pα(E)
Q
Q−1/|E|

will be called an isoperimetric set. The class of isoperimetric sets is invariant under

dilations (x, y) 7→ δλ(x, y), λ > 0, and under vertical translations (x, y) 7→ (x, y + h),

h ∈ R.

Theorem 1.2.2. Let α > 0 and Q = α+2. There exists a constant c(α) > 0 such

that for any measurable set E ⊂ R2 with finite measure

|E| ≤ c(α)Pα(E)
Q
Q−1 . (1.2.1)

The constant c(α) is determined by equality in (1.2.1) achieved by the isoperimetric

set

Eα =

{
(x, y) ∈ R2 : |y| <

∫ π/2

arcsin |x|
sinα+1(t) dt, |x| < 1

}
. (1.2.2)

Precisely,

c(α) =
α + 1

α + 2

(
2

∫ π

0

sinα(t)dt

)− 1
α+1

. (1.2.3)

Isoperimetric sets are unique up to dilations and vertical translations.

Proof. Consider the following minimum problem

min{Pα(E) : E ⊂ R2 measurable set with |E| = 1}. (1.2.4)

We study the existence of solutions by the direct method of the calculus of variations.

By Theorem 1.2.1 the class of admissible sets can be restricted to symmetric and

convex sets. Recall that a set is symmetric if it is both x– and y–symmetric. Define

A = {E ⊂ R2 :E symmetric, convex set with |E| = 1 and Pα(E) ≤ k}.

Here k > 0 is any fixed constant large enough to ensure A 6= ∅. Such a constant does

exist.
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We claim that any set E ∈ A is contained in the rectangle [−a, a]× [−b, b], where

a > 0 and b > 0 depend only on k and α. Fix a number ε > 0. Let ψε ∈ C1(R)

be an increasing function such that ψε(y) = 1 if y ≥ ε and ψε(y) = −1 if y ≤ −ε.
Take a set E ∈ A and let a = sup{x > 0 : |Ex| > 0}, b = sup{y > 0 : |Ey| > 0},
aε = sup{x > 0 : |Ex| > 2ε} and bε = sup{y > 0 : |Ey| > 2ε}. The numbers aε
and bε are both finite and tend respectively to a and b, as ε → 0. Choose the test

function ϕε(x, y) = (0, ϑ(x, y)ψε(y)) ∈ F(R2), where ϑ ∈ C1
0(R2) is a function such

that χE ≤ ϑ ≤ 1. We have

k ≥ Pα(E) ≥
∫
E

|x|α∂y(ϑ(x, y)ψε(y))dxdy =

∫
E

|x|α∂yψε(y)dxdy

=

∫ a

−a
|x|α

∫
Ex
∂yψε(y)dy dx ≥ 2

∫ aε

−aε
|x|αdx = 4

aα+1
ε

α + 1
.

(1.2.5)

Since aε → a when ε→ 0, we get 4aα+1 ≤ k(α + 1). A similar argument shows that

4b ≤ k. The claim is proved.

Let (Eh)h∈N ⊂ A be a minimizing sequence for problem (1.2.4)

lim
h→∞

Pα(Eh) = inf{Pα(E) : E ∈ A}.

The sets Fh = Ψ(Eh) are contained in the bounded set Ψ([−a, a]× [−b, b]). Moreover,

by Proposition 1.1.3, P (Fh) = Pα(Eh) ≤ k for all h ∈ N. The space of functions with

bounded variation BV(R2) is compactly embedded in L1
loc(R2). Therefore, possibly

extracting a subsequence, there exists a measurable set F ⊂ Ψ([−a, a]× [−b, b]) such

that χFh → χF in L1(R2). Letting E = Φ(F ), it follows that χEh → χE in L1(R2).

The set E is (equivalent to) an x− and y−symmetric and convex set. This follows

from the fact that χEh can be also assumed to converge almost everywhere to χE. By

the lower semicontinuity (1.1.2)

Pα(E) ≤ lim inf
h→∞

Pα(Eh) = inf{Pα(E) : E ∈ A}.

Thus E is a minimum, because E ∈ A. By Proposition 1.1.2 this set is also a solution

of the problem

min

{
Pα(E)

Q
Q−1

|E|
: E ⊂ R2 measurable set with 0 < |E| < +∞

}
. (1.2.6)

The set E is convex and therefore its boundary ∂E is locally the graph of Lipschitz

functions. In a neighborhood of the point (0, b) ∈ ∂E, b > 0, the set ∂E can be written

as a Lipschitz graph of the form y = ϕ(x). We are led to the following situation. Let

δ > 0, ϕ ∈ Lip(−δ, δ) and assume that {(x, ϕ(x)) : x ∈ (−δ, δ)} = ∂E ∩ {(x, y) ∈
R2 : −δ < x < δ, y > 0}. Fix a function ϑ ∈ C1

0

(
− δ, δ

)
. For |t| < t0 let Et be

the set obtained from E by replacing ∂E ∩ {(x, y) ∈ R2 : −δ < x < δ, y > 0} with

{(x, ϕ(x) + tϑ(x)) : x ∈ (−δ, δ)}. Denote by (nt1, n
t
2) the unit normal to ∂Et. By
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Theorem 1.1.1 and by the length formula

d

dt
Pα(Et)

∣∣∣∣
t=0

=
d

dt

∫
∂Et∩{|x|<δ,y>0}

[
nt1(x, y)2 + |x|2αnt2(x, y)2

]1/2
dH1

∣∣∣∣
t=0

=
d

dt

∫ δ

−δ

[
(ϕ′(x) + tϑ′(x))2 + |x|2α

]1/2
dx

∣∣∣∣
t=0

=

∫ δ

−δ

ϕ′(x)ϑ′(x)

[ϕ′(x)2 + |x|2α]1/2
dx.

(1.2.7)

We can interchange derivative and integral because∣∣∣∣ ∂∂t [(ϕ′(x) + tϑ′(x))2 + |x|2α
]1/2∣∣∣∣ =

|(ϕ′(x) + tϑ′(x))ϑ′(x)|
[(ϕ′(x) + tϑ′(x))2 + |x|2α]1/2

≤ |ϑ′(x)| ∈ L1(−δ, δ).
Analogously,

d

dt
|Et|
∣∣∣∣
t=0

=
d

dt

∫ δ

−δ
(ϕ(x) + tϑ(x))dx

∣∣∣∣
t=0

=

∫ δ

−δ
ϑ(x)dx = −

∫ δ

−δ
xϑ′(x)dx.

The set E is a solution of Problem (1.2.6), and hence

Pα(E)
Q
Q−1

|E|
≤ Pα(Et)

Q
Q−1

|Et|
, |t| < t0.

Thus

0 =
d

dt

Pα(Et)
Q
Q−1

|Et|

∣∣∣∣∣
t=0

=
Pα(E)

1
Q−1

|E|2

(
Q

Q− 1
|E|
∫ δ

−δ

ϕ′(x)ϑ′(x)

[ϕ′(x)2 + |x|2α]1/2
dx+ Pα(E)

∫ δ

−δ
xϑ′(x)dx

)
.

(1.2.8)

The function ϑ ∈ C1
0(−δ, δ) is arbitrary. Therefore it must be

Q

Q− 1
|E| ϕ′(x)

[ϕ′(x)2 + |x|2α]1/2
+ Pα(E)x = c, for a.e. x ∈ (−δ, δ),

for some constant c ∈ R. The function ϕ must be even because the set E is x–

symmetric. Then ϕ′ is odd and this implies c = 0. Setting λ = Q−1
Q

Pα(E)
|E| we find

ϕ′(x) = −sgn(x)
λ|x|α+1

[1− λ2x2]1/2
for a.e. x ∈ (−δ, δ). (1.2.9)

This equation shows that ϕ′, which a priori is only a locally bounded measurable

function, is in fact a continuous function, and the equation is satisfied for all |x| < 1/λ.

Letting a = sup{x > 0 : |Ex| > 0}, a regularity argument similar to the one

discussed above shows that ∂E is of class C1 in a neighborhood of (a, 0). Then it

must be ϕ(a) = 0, ϕ′(a) = −∞ and a = 1/λ. Hence, for x ∈ [0, a]

ϕ(x) =

∫ a

x

tα+1

a (1− (t/a)2)1/2
dt = aα+1

∫ π/2

arcsin(x/a)

sinα+1(t) dt.
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The parameter a > 0 is fixed by means of the volume constraint |E| = 1.

If we choose λ = a = 1 then we find the isoperimetric set Eα in (1.2.2). By (1.2.9)

with λ = 1 and Theorem 1.1.1 we also find

Pα(Eα) = 4

∫ 1

0

[
ϕ′(x)2 + |x|2α

]1/2
dx = 4

∫ 1

0

|x|α√
1− x2

dx = 2

∫ π

0

sinα(t)dt.

Moreover |Eα| = Q−1
Q
Pα(Eα). Therefore, the isoperimetric constant c(α) is given by

c(α) =
|Eα|

Pα(Eα)
Q
Q−1

=
Q− 1

Q
Pα(Eα)

1
1−Q =

Q− 1

Q

(
2

∫ π

0

sinα(t)dt

) 1
1−Q

.

The statement concerning uniqueness follows from Theorem 1.2.1 and from the

previous analysis. �

3. Minkowski content and sharp Sobolev inequality

The isoperimetric inequality (1.2.1) can be restated in metric terms. Moreover it

implies a sharp Sobolev inequality for the Grushin gradient.

We briefly introduce the definition of the Grushin metric in R2. General Grushin

metrics will be discussed in detail in Section 1 of Chapter 3. Consider the vector fields

in the plane X = ∂x and Y = |x|α∂y. A Lipschitz continuous curve γ : [0, 1]→ R2 is

admissible if there exist measurable functions h = (h1, h2) ∈ L∞([0, 1]; R2) such that

γ̇ = h1X(γ) + h2Y (γ) almost everywhere. The length of the curve γ is by definition

Lα(γ) =

∫ 1

0

|h(t)|dt.

The metric dα : R2 × R2 → [0,+∞) is defined by setting

dα(p, q) = inf
{
Lα(γ) : γ admissible curve such that γ(0) = p and γ(1) = q

}
.

(1.3.1)

Consider a bounded open set E ⊂ R2 and define the distance distα(p;E) =

infq∈E dα(p, q). The Minkowski content of ∂E in the Grushin plane is defined as

Mα(∂E) = lim inf
ε↓0

|{p ∈ R2 : 0 < distα(p;E) < ε}|
ε

. (1.3.2)

If E is a bounded open set with boundary of class C2, then “lim inf” in (1.3.2) can

be replaced by “lim” and the identity Mα(∂E) = Pα(E) holds. This can be proved

as in [MSC] Theorem 5.1.

Let us introduce the following notation for the Grushin gradient of a function

f ∈ C1(R2). We simply write Dαf(x, y) = (∂xf(x, y), |x|α∂yf(x, y)).

We shall need some general theorems which are proved for Lipschitz vector fields.

For this reason we state the next results only for the case α ≥ 1. The following

corollary gives a sharp isoperimetric inequality for Minkowski content.
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Corollary 1.3.1. Let α ≥ 1, Q = 2 + α and let c(α) be the constant in (1.2.3).

Then, for any bounded open set E ⊂ R2 it holds

|E| ≤ c(α)Mα(∂E)
Q
Q−1 . (1.3.3)

Proof. Let E ⊂ R2 be a bounded open set and write %(p) = distα(p;E). For

any ε > 0 let Eε = {p ∈ R2 : %(p) < ε}. Without loss of generality we can assume

that |Eε \ E| converges to zero as ε ↓ 0, otherwise Mα(∂E) = +∞.

By Theorem 3.1 in [MSC] we have the Eikonal equation

|Dα%(x, y)| = 1 (1.3.4)

for almost every (x, y) ∈ R2 \ Ē. From the coarea formula proved in Theorem 5.2 of

[GN1] it follows

|Eε \ E| =
∫
Eε\E
|Dα%(x, y)|dxdy =

∫ ε

0

Pα(Eτ )dτ. (1.3.5)

Given ε > 0, it cannot be Pα(Eτ ) >
|Eε\E|
ε

for all τ ∈ (0, ε), otherwise (1.3.5) would

be false. Then, for every ε > 0 there exists τ(ε) ∈ (0, ε) such that

Pα(Eτ(ε)) ≤
|Eε \ E|

ε
.

From (1.1.2), by taking the lim inf we find Pα(E) ≤ Mα(∂E) and the claim follows

from (1.2.1). �

By a straightforward adaptation of the argument in Remark 6.6 of [FF], the

isoperimetric inequality (1.2.1) implies a sharp Sobolev inequality for the Grushin

gradient.

Corollary 1.3.2. Let α ≥ 1, Q = 2 + α and let c(α) be the constant in (1.2.3).

Then for any f ∈ C∞0 (R2)(∫
R2

|f |
Q
Q−1dxdy

)Q−1
Q

≤ c(α)
Q−1
Q

∫
R2

|Dαf |dxdy. (1.3.6)

The constant in this inequality is sharp.

Proof. For any t > 0 define Et = {(x, y) ∈ R2 : |f(x, y)| > t} and

ft(x, y) =

{
t if (x, y) ∈ Et,
|f(x, y)| if (x, y) ∈ R2 \ Et.

Then, for any h > 0, ft+h(x, y) ≤ ft(x, y) + hχEt(x, y) and thus

‖ft+h‖ Q
Q−1
≤ ‖ft + hχEt‖ Q

Q−1
≤ ‖ft‖ Q

Q−1
+ h|Et|

Q−1
Q .

Then

‖f‖ Q
Q−1

=

∫ +∞

0

d

dt
‖ft‖ Q

Q−1
dt ≤

∫ +∞

0

|Et|
Q−1
Q dt ≤ c(α)

Q−1
Q

∫ +∞

0

Pα(Et)dt.
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By Sard Lemma the sets {|f(x, y)| = t} are C∞ curves for almost every t > 0.

Then, by the coarea formula and by Theorem 1.1.1∫
R2

|Dαf |dxdy =

∫
R2

(( ∂xf
|∇f |

)2

+ |x|2α
( ∂yf
|∇f |

)2
)1/2

|∇f |dxdy

=

∫ +∞

0

∫
{|f |=t}

(
n2

1 + |x|2αn2
2

)1/2
dH1 dt

=

∫ +∞

0

Pα(At) dt.

We denoted by n = (n1, n2) the unit normal to the level sets {|f | = t}.
The sharpness of the constant can by proved in the following way. Take a bounded

open set E ⊂ R2 with boundary of class C2 and define, as before, %(p) = distα(p;E).

For any ε > 0 let

fε(p) =


1 if p ∈ Ē,
1− 1

ε
%(p) if 0 < %(p) < ε

0 if %(p) ≥ ε.

Apply the Sobolev inequality to fε. Letting ε → 0 and using the Eikonal equation

(1.3.4) and the identity Mα(∂E) = Pα(E) we get the isoperimetric inequality (1.2.1).

�

4. Grushin and Heisenberg isoperimetric sets

The isoperimetric problem in the Heisenberg group (an interesting still open prob-

lem) was the original motivation for our study of the isoperimetric inequality in the

Grushin plane. In the next proposition we describe the special interest of the case

α = 1 and then we discuss some connection and analogy between Grushin and Heisen-

berg isoperimetric sets.

Proposition 1.4.1. Let E1 be the isoperimetric set in (1.2.2) for the choice α = 1.

Then

E1 =

{
(x, y) ∈ R2 : |y| < 1

2

(
arccos |x|+ |x|

√
1− |x|2

)
, |x| < 1

}
. (1.4.1)

Moreover, ∂E1 consists of two geodesics in the metric space (R2, d1), where d1 is the

metric defined in (1.3.1). These geodesics connect the antipodal points (0,±π/4) of

∂E1 and are symmetric with respect to the y–axis.

Proof. We discuss for a moment the general case α > 0. Geodesics in the metric

space (R2, dα), i.e. curves with minimal length connecting points, are solution of a

particular system of differential equations. Consider the Hamilton function

H(x, y, ξ, η) =
1

2
(ξ2 + |x|2αη2)
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and the corresponding problem (it is enough to study the case x ≥ 0)
ẋ = ∂ξH(x, y, ξ, η) = ξ x(0) = 0

ẏ = ∂ηH(x, y, ξ, η) = x2αη y(0) = y0

ξ̇ = −∂xH(x, y, ξ, η) = −αx2α−1η2 ξ(0) = 1

η̇ = −∂yH(x, y, ξ, η) = 0 η(0) = −λ.

Geodesics starting from the point (0, y0) are to be found (after a reparameteriza-

tion) among curves γ(t) = (x(t), y(t)) solving this problem. We refer to [Be] for a

motivation of this fact. The choice ξ(0) = 1 corresponds to arclength parameteriza-

tion and determines ẋ(0) = 1. The parameter λ > 0 controls the direction of the

curve. The first, third and fourth equations give ẍ+αλ2x2α−1 = 0 and by integration

ẋ2 + λ2x2α = 1 and thus ẋ = (1− λ2x2α)
1/2

. Denoting by y′ the derivative of y with

respect to x we find

y′(x) =
dy

dt

dt

dx
= − λx2α

(1− λ2x2α)1/2
.

If α = 1 this differential equation coincides with the differential equation (1.2.9).

Integrating this equation for y0 = π/4 and λ = 1 we find a curve in the quadrant

Q = {x, y ≥ 0} whose support is ∂E1 ∩ Q, where E1 is the isoperimetric set (1.4.1).

The union of this curve with its reflection in the {y < 0} half space gives a geodesic

in (R2, d1) connecting the antipodal points (0,±π/4) of ∂E1.

�

The set in R3 obtained letting rotate E1 around the y–axis is the conjectured

solution of the Heisenberg isoperimetric problem. In R3 consider the vector fields

X = ∂x +y∂t and Y = ∂y−x∂t. (Here, the variable t plays the role the variable y did

in the Grushin plane). These vector fields are left invariant for the group operation

(x, y, t) · (ξ, η, τ) = (x+ ξ, y + η, t+ τ + ξy − xη).

The H–perimeter of a measurable set E ⊂ R3 is

PH(E) = sup
ϕ∈F(R2)

∫
E

(Xϕ1(x, y, t) + Y ϕ2(x, y, t)) dxdydt.

If E ⊂ R3 has smooth boundary, then its H–perimeter has the following integral

representation

PH(E) =

∫
∂E

√
(ν1 + yν3)2 + (ν2 − xν3)2dH2, (1.4.2)

where ν = (ν1, ν2, ν3) is the unit Euclidean normal to ∂E. The proof is the same

as in Theorem 1.1.1. It can be checked that PH(p · E) = PH(E) and |p · E| = |E|
for any point p ∈ R3. Moreover, PH(δλ(E)) = λ3PH(E) and |δλ(E)| = λ4|E|, where

δλ(x, y, t) = (λx, λy, λ2t), λ > 0.

The isoperimetric problem in the Heisenberg group is to find a solution of

min
{
PH(E) : E ⊂ R3 measurable set with |E| = 1

}
. (1.4.3)
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The existence of solutions is proved in [LR]. Pansu conjectured in [P] that solutions

are sets foliated by geodesics for the Heisenberg Carnot–Carathéodory metric, and

recently some numerical evidence has been provided supporting this conjecture (see

[LM]). Moreover, a surface with Heisenberg constant mean curvature must be fo-

liated by geodesics (this was explained to me by S. Pauls) and the boundary of an

isoperimetric set, if smooth, has constant mean curvature.

Now, consider the group G of all orthogonal transformations (matrices) T : R3 →
R3 of the form

T =

(
A 0

0 detA

)
,

where A ∈ O(2) is a 2 × 2 orthogonal matrix. It can be checked that PH(T (E)) =

PH(E) for all T ∈ G. This suggests that sets solving problem (1.4.3) and having

barycenter at the origin should satisfy T (E) = E for all T ∈ G.

Definition 1.4.2. An open set E ⊂ R3 belongs to the class A if E = {(z, t) ∈
C × R = R3 : |t| < ϕ(|z|)} for some non negative function ϕ ∈ C([0, %]) ∩ C2(0, %),

% > 0, with ϕ(%) = 0, ϕ′(0) = 0 and ϕ′(%) = −∞.

If solutions are in the class A then they can be determined explicitly (see Proposi-

tion 3.4 in [Mo], Theorem 3.3 in [LM] and [DGN2]). The difficult problem is to show

that solutions must have cylindrical symmetry. In the Grushin plane we proved the

required symmetry and regularity properties of isoperimetric sets in Theorem 1.2.1.

In the Heisenberg three dimensional situation is no longer clear how to “rearrange”

sets preserving measure and not increasing H–perimeter.

Proposition 1.4.3. If the isoperimetric problem (1.4.3) has a solution in the

class A, then it is a dilation δλ of the set

E =
{

(z, t) ∈ C× R : |t| < 1

2

(
arccos |z|+ |z|

√
1− |z|2

)
, |z| < 1

}
.

Moreover, the set E is foliated by a family of Heisenberg geodesics connecting the

antipodal points (0, 0,±π/4).

Proof. The statement concerning foliation by geodesics is proved in [LM]. We

compute the set E. Let E = {|t| < ϕ(|z|)} and write f : D → [0,+∞), f(z) = ϕ(|z|),
D = {z ∈ C : |z| < %}, % > 0. We write z = x + iy. Denoting by ν = (ν1, ν2, ν3) the

Euclidean outward unit normal to ∂E, from the representation formula (1.4.2) and

from the area formula we find

PH(E) =

∫
∂E

√
(ν1 + yν3)2 + (ν2 − xν3)2 dH2

= 2

∫
D

√
(ν1 + yν3)2 + (ν2 − xν3)2

√
1 + |∇f(z)|2dxdy,

where in the last integral we have written ν = ν(z, f(z)) and ∇f = (∂xf, ∂yf). Using

ν(z, f(z)) =
(−∇f(z), 1)√
1 + |∇f(z)|2

,
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we also get

PH(E) = 2

∫
D

√
(∂xf(z)− y)2 + (∂yf(z) + x)2 dxdy

= 2

∫
D

√
|∇f(z)|2 + (x∂yf(z)− y∂xf(z)) + |z|2 dxdy.

Letting ψ(r) = 2ϕ(
√
r), i.e. f(z) = 1

2
ψ(|z|2), we have ∂xf = xψ′ and ∂yf = yψ′, and

using polar coordinates we find

PH(E) = 2

∫
D

√
|z|2(ψ′(|z|2) + 1) dxdy

= 4π

∫ %

0

r2
√

1 + ψ′(r2)2 dr = 2π

∫ %2

0

√
r
√

1 + ψ′(r)2 dr.

In the same way

|E| = 2

∫
D

f(z) dxdy = π

∫ %2

0

ψ(r) dr.

If E solves problem (1.4.3) then the function ψ minimizes the functional

J(ψ) = 2π

∫ σ

0

√
r
√

1 + ψ′(r)2 dr

among non negative functions satisfying

ψ ∈ C([0, σ]) ∩ C2(0, σ), ψ(σ) = 0, ψ′(σ) = −∞, π

∫ σ

0

ψ(r) dr = 1, σ > 0.

By the Lagrange multiplier theorem for variational problems with integral constraint

there exists λ 6= 0 such that the function ψ solves the Euler–Lagrange equation

d

dr

∂H(r, ψ, ψ′)

∂z
=
∂H(r, ψ, ψ′)

∂u
,

where H(r, u, z) = 2π
√
r
√

1 + z2 + πλu. This gives the differential equation

d

dr

(
√
r

ψ′(r)√
1 + ψ′(r)2

)
= λ.

Integrating this equation we obtain

ψ′(r) = −
√

λ2r

1− λ2r
.

The condition ψ′(%2) = −∞ gives λ2%2 = 1 and using ψ(%2) = 0 we finally find

ϕ(r) =
1

2
ψ(r2) = %2

∫ arccos(r/%)

0

cos2 ϑ dϑ =
%2

2

[
arccos

r

%
+
r

%

√
1−

(r
%

)2
]
.

The parameter % is fixed by the volume constraint |E| = 1. �



CHAPTER 2

Kelvin transform and critical semilinear equations

1. Introduction

Let x ∈ Rm, y ∈ Rk, n = m + k, α > 0. We write z = (x, y) ∈ Rn. The Grushin

operator is the subelliptic Laplacian

L = ∆x + (α + 1)2|x|2α∆y, (2.1.1)

where

∆x =
m∑
j=1

∂2

∂x2
j

and ∆y =
k∑
i=1

∂2

∂y2
i

.

We can define the Grushin gradient Dα = (Dx, (α+ 1)|x|αDy), where Dx and Dy are

the gradients with respect to the variables x and y, respectively. If f : Rn → Rm and

g : Rn → Rk the Grushin divergence of the vector function (f, g) is

divα(f, g) = divxf + (α + 1)|x|αdivyg,

where divx and divy are divergences with respect to the x and y variables, respectively.

With this notation, Lu = divαDαu.

A natural Sobolev space is associated with the gradient Dα. For u ∈ C∞0 (Rn)

define the norm

‖u‖H1
α

=
(∫

Rn
(|u(z)|2 + |Dαu(z)|2)dz

)1/2

,

and let H1
α(Rn) be the completion of C∞0 (Rn) with respect to the norm ‖ · ‖H1

α
.

The Sobolev embedding for functions in H1
α(Rn) is proved in [FGaW] (see also

[FGuW] and [GN1]). Precisely, there exists a constant C > 0 such that for all

u ∈ H1
α(Rn) (∫

Rn
|u(z)|

2Q
Q−2dz

)Q−2
2Q ≤ C

(∫
Rn
|Dαu(z)|2dz

)1/2

.

Here, the number

Q = m+ (α + 1)k (2.1.2)

is the “homogeneous dimension” of Rn for L and Dα, and 2∗ = 2Q
Q−2

is the correspond-

ing Sobolev conjugate exponent.

Non negative extremal functions for the Sobolev inequality are (up to a multi-

plicative geometric constant) weak solutions of the Euler–Lagrange equation

Lu = −u2∗−1. (2.1.3)

31
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The exponent Q+2
Q−2

= 2∗−1 is the critical exponent for L. We are interested in finding

symmetry properties of (and possibly determine all) positive solutions of equation

(2.1.3).

Introduce the “norm”

‖z‖ =
(
|x|2(α+1) + |y|2

) 1
2(α+1) . (2.1.4)

This “norm” is 1–homogeneous for the group of anisotropic dilations δλ : Rn → Rn,

λ > 0, defined by

δλ(x, y) = (λx, λα+1y). (2.1.5)

For a suitable constant c = c(m, k, α) 6= 0, the function

Γ(z) = c‖z‖2−Q, (2.1.6)

is a fundamental solution with pole at the origin for the operator L.

Proposition 2.1.1. For all z 6= 0 we have LΓ(z) = 0.

The proof of this proposition is in the Appendix at the end of the Chapter.

Proposition 2.1.1 can be improved. The constant c = c(m, k, α) 6= 0 in (2.1.6) can

be fixed in such a way that ∫
Rn
〈DαΓ, Dαϕ〉dxdy = ϕ(0)

for all ϕ ∈ C∞0 (Rn). For integers α, integral representations for the fundamental

solution of L with pole at arbitrary points of Rn have been constructed in [BGG].

We do not need these stronger statements, and from now on we choose c = 1 in

(2.1.6).

2. Inversion and Kelvin transform in Grushin spaces

We define a Kelvin transform for the operator L. To this aim we first introduce

an inversion in Rn.

Definition 2.2.1. Define I : Rn \ {0} → Rn \ {0} by setting

I(z) = δ‖z‖−2(z), z 6= 0. (2.2.1)

Clearly, I2 is the identity. In the next propositions we prove some basic properties

of I. We denote by JI(z) = det ∂I(z)
∂z

the determinant Jacobian of I at the point z 6= 0.

Lemma 2.2.2. For all z 6= 0 we have |JI(z)| = Γ(z)
2Q
Q−2 .

Proof. Let Φ(z) = ‖z‖, S = {z ∈ Rn : Φ(z) = 1}, consider an open set A ⊂ S

and set Ω = {δt(z) : z ∈ A, t > 0}. We preliminary show that for t > 0∫
δt(A)

1

|∇Φ(z)|
dHn−1(z) = tQ−1µ(A), where µ(A) =

∫
A

1

|∇Φ(z)|
dHn−1(z).

(2.2.2)
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Indeed, by the coarea formula∫
δt(A)

1

|∇Φ|
dHn−1 = lim

ε→0

1

ε

∫ t+ε

t

∫
δs(A)

1

|∇Φ|
dHn−1 ds

= lim
ε→0

1

ε

∫
Ω∩{t<‖z‖<t+ε}

dz = tQ lim
ε→0

1

ε

∫
Ω∩{1<‖ζ‖<1+ε/t}

dζ

= tQ lim
ε→0

1

ε

∫ 1+ε/t

1

∫
δs(A)

1

|∇Φ|
dHn−1ds = tQ−1µ(A).

We performed the change of variable z = δt(ζ), which has has determinant Jacobian

tQ.

Now fix a positive number r > 0 and for any δ > 0 define the open set Ωδ = {δt(z) :

z ∈ A, r < t < r + δ}. The inverted set is I(Ωδ) = {δt(z) : z ∈ A, r < 1/t < r + δ}.
By the coarea formula and by (2.2.2)

|Ωδ| =
∫ r+δ

r

∫
δt(A)

1

|∇Φ|
dHn−1dt = µ(A)

∫ r+δ

r

tQ−1dt,

and analogously,

|I(Ωδ)| = µ(A)

∫ 1/r

1/(r+δ)

tQ−1dt.

If z ∈ Rn is a point such that ‖z‖ = r > 0 then

|JI(z)| = lim
δ→0

|I(Ωδ)|
|Ωδ|

= lim
δ→0

∫ 1/r

1/(r+δ)

tQ−1dt∫ r+δ

r

tQ−1dt

= r−2Q = ‖z‖−2Q.

�

The next theorem and the following corollary describe the conformal nature of I.

Let z = (x, y) ∈ Rn be a point such that x 6= 0 and define the “singular Riemmanian

norm” of a vector ζ = (ξ, η) ∈ Rn at z as

|ζ|z =
√
|ξ|2 + (α + 1)−2|x|−2α|η|2. (2.2.3)

Theorem 2.2.3. For all z = (x, y) ∈ Rn with x 6= 0 we have

lim
ζ→z

|I(ζ)− I(z)|I(z)

|ζ − z|z
= |JI(z)|1/Q. (2.2.4)

Proof. Define Ix(z) ∈ Rm and Iy(z) ∈ Rk by the relation I(z) = (Ix(z), Iy(z)),

and let N(z) = |x|2(α+1) + |y|2. Then

|I(ζ)− I(z)|2I(z) = |Ix(ζ)− Ix(z)|2 + (α + 1)−2|Ix(z)|−2α|Iy(ζ)− Iy(z)|2

=
∣∣∣ ξ

N(ζ)
1

α+1

− x

N(z)
1

α+1

∣∣∣2 +
N(z)

2α
α+1

(α + 1)2|x|2α
∣∣∣ η

N(ζ)
− y

N(z)

∣∣∣2
= N(z)−

2
α+1

{∣∣∣ξ(N(ζ)

N(z)

)− 1
α+1 − x

∣∣∣2 +
1

(α + 1)2|x|2α
∣∣∣η(N(ζ)

N(z)

)−1

− y
∣∣∣2}.
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By a Taylor development of the function N(ζ) at the point z,

N(ζ)

N(z)
= 1 +

1

N(z)

{
2(α + 1)|x|2α〈x, ξ − x〉+ 2〈y, η − y〉

}
+ o(|z − ζ|), (2.2.5)

and therefore (N(ζ)

N(z)

)−1

= 1− 1

N(z)
{· · · }+ o(|z − ζ|),(N(ζ)

N(z)

)−1/(α+1)

= 1− 1

(α + 1)N(z)
{· · · }+ o(|z − ζ|),

where the curly bracket is defined as in (2.2.5).

In the following N replaces N(z). Note that {· · · } = O(|z − ζ|). We get

|JI(z)|−2/Q|I(ζ)−I(z)|2I(z) =
∣∣∣ξ − x− 1

(α + 1)N
{· · · }ξ

∣∣∣2
+

1

(α + 1)2|x|2α
∣∣∣η − y − 1

N
{· · · }η

∣∣∣2 + o(|z − ζ|2)

= |ζ − z|2z −
2

(α + 1)N
〈ξ − x, ξ〉{· · · }+

|ξ|2

(α + 1)2N2
{· · · }2

− 1

(α + 1)2|x|2α
2

N
〈η − y, η〉{· · · }+

|η|2

(α + 1)2|x|2αN2
{· · · }2

+ o(|z − ζ|2)

= |ζ − z|2z +R(z, ζ).

If R(z, ζ) = o(|z − ζ|2), the proof of the theorem is completed. It is enough to show
that the quantity

R(z, ζ)
{· · · }

=
2

N2(α+ 1)2

[
− (α+ 1)N〈ξ − x, ξ〉+ |ξ|2(α+ 1)|x|2α〈x, ξ − x〉+ |ξ|2〈y, η − y〉

− N

|x|2α
〈η − y, η〉+ (α+ 1)|η|2〈x, ξ − x〉+

|η|2

|x|2α
〈y, η − y〉

]
=

2
N2(α+ 1)

〈ξ − x, ξ〉
(
− (|x|2(α+1) + |y|2) + |x|2α|ξ|2 + |η|2

)
+

2
N2(α+ 1)2

〈η − y, y〉
(
|ξ|2 − |x|

2(α+1) + |y|2

|x|2α
+
|η|2

|x|2α

)
+ o(|z − ζ|)

is an o(|z − ζ|). In the last equality we replaced 〈ξ − x, x〉 with 〈ξ − x, ξ〉 (and the

same we did for η) and we consequently added an o(|z − ζ|). Now the claim follows

from the fact that both the round brackets in the last two lines tend to zero when

ζ → z. �

Corollary 2.2.4. Let u, v ∈ C1(Rn). Then for z 6= 0

〈Dα(u ◦ I)(z), Dα(v ◦ I)(z)〉 = |JI(z)|2/Q〈Dαu(I(z)), Dαv(I(z))〉. (2.2.6)
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Proof. We preliminary show that if z = (x, y) and x 6= 0 then

|Dαu(z)| = lim sup
ζ→z

|u(ζ)− u(z)|
|ζ − z|z

. (2.2.7)

Since u is of class C1,

|u(ζ)− u(z)| = |〈Du(z), ζ − z〉+ o(|ζ − z|)| ≤ |Dαu(z)||ζ − z|z + o(|ζ − z|),

and thus

lim sup
ζ→z

|u(ζ)− u(z)|
|ζ − z|z

≤ |Dαu(z)|.

Choosing ζi = (ξi, ηi), i ∈ N, with

ξi = x+
1

i
Dxu(z), ηi = y +

1

i
(α + 1)−2|x|−2αDyu(z)

we obtain (2.2.7).

By Theorem 2.2.3 and (2.2.7) we get

|Dα(u ◦ I)(z)| = lim
ζ→z

|I(ζ)− I(z)|I(z)

|ζ − z|z
lim sup
ζ→z

|u(I(ζ))− u(I(z))|
|I(ζ)− I(z)|I(z)

= |JI(z)|1/Q|Dαu(I(z))|.

Developing this last identity for the function u ◦ I + v ◦ I we find (2.2.6). �

Now we introduce the Kelvin transform of a function in the Grushin space. The

relation of this functional transformation with the geometry of the hyperbolic space

will be explained in Section 4.

Definition 2.2.5. Let u : Rn → R be a function. The Kelvin transform u∗ :

Rn \ {0} → R of u is defined by

u∗(z) = Γ(z)u(I(z)), z 6= 0. (2.2.8)

We need the following Lemma.

Lemma 2.2.6. If u ∈ H1
α(Rn) 1 is a non negative weak solution of Lu = −u2∗−1

in Rn \ {0}, then it is a weak solution in Rn.

Proof. For ε > 0 let ψε be the function defined by ψε(z) = 0 for ‖z‖ < ε,

ψε(z) = 1 for ‖z‖ > 2ε, and ψε(z) =
Γ(z)− ε2−Q

(2ε)2−Q − ε2−Q for ε ≤ ‖z‖ ≤ 2ε. Since u is a

weak solution in Rn \ {0}, we have for any ϕ ∈ C∞0 (Rn)∫
Rn

(ψε〈Dαu,Dαϕ〉+ ϕ〈Dαu,Dαψε〉)dz =

∫
Rn
〈Dαu,Dα(ψεϕ)〉dz =

∫
Rn
u2∗−1ψεϕdz.

1Mi sembra che

lim
ε→0

εQ−2

∫
ε<‖z‖<2ε

|Dαu|2dz = 0

dovrebbe bastare.
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By dominated convergence,

lim
ε→0

∫
Rn
u2∗−1ψεϕdz =

∫
Rn
u2∗−1ϕdz, and

lim
ε→0

∫
Rn
ψε〈Dαu,Dαϕ〉dz =

∫
Rn
〈Dαu,Dαϕ〉dz.

If we show that

lim
ε→0

∫
Rn
ϕ〈Dαu,Dαψε〉dz = 0, (2.2.9)

our claim is proved. By Hölder inequality we have∫
Rn
|ϕ〈Dαu,Dαψε〉|dz ≤

εQ−2 max |ϕ|
1− 22−Q

(∫
ε<‖z‖<2ε

|Dαu|2dz
)1/2(∫

ε<‖z‖<2ε

|DαΓ|2dz
)1/2

,

and a dilatation argument shows that∫
ε<‖z‖<2ε

|DαΓ|2dz = ε2−Q
∫

1<‖z‖<2

|DαΓ|2dz.

Therefore ∫
Rn
|ϕ〈Dαu,Dαψε〉|dz ≤ C

(
εQ−2

∫
ε<‖z‖<2ε

|Dαu|2dz
)1/2

,

and the last term is infinitesimal as ε→ 0. �

Theorem 2.2.7. (a) For any u ∈ H1
α(Rn)∫

Rn
|u∗(z)|

2Q
Q−2dz =

∫
Rn
|u(z)|

2Q
Q−2dz and

∫
Rn
|Dαu

∗(z)|2dz =

∫
Rn
|Dαu(z)|2dz.

(b) For any non negative function u ∈ H1
α(Rn), Lu = −u2∗−1 in weak sense on

Rn if and only if Lu∗ = −(u∗)2∗−1 in weak sense on Rn.

Proof. We prove statement (b). By Lemma 2.2.6 it suffices to consider test

functions ϕ ∈ C∞0 (Rn \ {0}). In this case ϕ∗ ∈ C∞0 (Rn \ {0}). By Lemma 2.2.2

|JI(z)| = Γ(z)
2Q
Q−2 and then∫

Rn
(u∗)2∗−1ϕ∗dz =

∫
Rn
u(I(z))2∗−1ϕ(I(z))|JI(z)|dz =

∫
Rn
u2∗−1ϕdz.

Now let v = u ◦ I and ψ = ϕ ◦ I. Using (2.2.6) we find

〈Dαu
∗, Dαϕ

∗〉 = 〈Dα(Γv), Dα(Γψ))〉
= Γ2〈Dαv,Dαψ〉+ vψ|DαΓ|2 + Γ〈Dα(ψv), DαΓ〉
= Γ2〈Dαv,Dαψ〉+ divα(vψΓDαΓ),

because LΓ = 0. On the other hand, by (2.2.6)

〈Dαv(z), Dαψ(z)〉 = |JI(z)|2/Q〈Dαu(I(z)), Dαϕ(I(z))〉,
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and we get∫
Rn
〈Dαu

∗, Dαϕ
∗〉dz =

∫
Rn

(
Γ2〈Dαv,Dαψ〉+ divα(vψΓDαΓ)

)
dz

=

∫
Rn

Γ2〈Dαv,Dαψ〉dz =

∫
Rn
〈Dαu(I(z)), Dαϕ(I(z))〉|JI(z)|dz

=

∫
Rn
〈Dαu(z), Dαϕ(z)〉dz.

It follows that the statement∫
Rn
〈Dαu,Dαϕ〉dz =

∫
Rn
u2∗−1ϕdz for all ϕ ∈ C∞0 (Rn \ {0})

holds for u if and only if it holds for u∗. This ends the proof of (b). Part (a) is proved

in the same way.

�

3. Simmetries for semilinear equations

Definition 2.3.1. Let u : Rn → R be a function. For λ > 0, define the functions

δλu and uλ by letting

δλu(z) = λ
Q
2
−1u (δλ(z)) , uλ(z) = (δλu)∗(z), z 6= 0.

2

Proposition 2.3.2. If Lu = −u2∗−1 then δλu and uλ, λ > 0, solve the same

equation.

Proof. The statement concerning δλu is a simple computation. The statement

concerning uλ is a consequence of Theorem 2.2.7. �

The next theorem is a special case of Bony’s Maximum Principle (see Theorem

3.1 in [Bon]).

Theorem 2.3.3 (Maximum Principle). Let Ω ⊂ Rn be a connected open set and

let w ∈ C2(Ω) be a function such that w ≥ 0 and Lw ≤ 0 in Ω. If there is z0 ∈ Ω

such that w(z0) = 0 then w ≡ 0 in Ω.

We also need the following version of Hopf Lemma.

Lemma 2.3.4 (Hopf Lemma). Let v ∈ Rk with |v| = 1, t ∈ R, Ω = {(x, y) ∈ Rn :

〈y, v〉 > t}, and (0, y0) ∈ ∂Ω. If a function u ∈ C2(Ω) ∩ C1(Ω̄) satisfies u > 0 in Ω,

u(0, y0) = 0 and Lu ≤ 0 in Ω, then 〈Dyu(0, y0), v〉 > 0.

Proof. Let y1 = y0 + v, z0 = (0, y0), z1 = (0, y1) and z = (x, y). The point

z1 = z0 + (0, v) belongs to Ω. The function

Λ(z) = Γ(z − z1)− Γ(z0 − z1)

2Piu’ preciso
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satisfies LΓ(z) = 0 for z 6= z1, Λ(z) = 0 for ‖z − z1‖ = γ1 := ‖z0 − z1‖ and Λ(z) = 1

for ‖z − z1‖ = γ0, for a suitable γ0 ∈ (0, γ1).

Define the ring R = {z ∈ Rn : γ0 < ‖z − z1‖ < γ1} ⊂ Ω. If ε > 0 is small enough,

the function uε(z) = u(z)− εΛ(z) is strictly positive where ‖z − z1‖ = γ1, because u

is strictly positive on this set. Moreover uε(z) = u(z) ≥ 0 where ‖z− z1‖ = γ0. Since

uε ≥ 0 on ∂R and

Luε(z) = Lu(z)− εLΛ(z) = Lu(z) ≤ 0 on R,

by the Maximum Principle it follows that u ≥ εΛ on R. Thus, using u(0, y0) = 0, we

find

〈Dyu(0, y0), v〉 = lim
t→0

u(0, y0 + tv)

t
≥ ε lim

t→0

Λ(0, y0 + tv)

t

= ε lim
t→0

1

t

{
|y0 − y1 + tv|

2−Q
α+1 − |y0 − y1|

2−Q
α+1

}
= ε lim

t→0

1

t

{
(1− t)

2−Q
α+1 − 1

}
= ε

Q− 2

α + 1
> 0.

�

3

Proposition 2.3.5. Let u ∈ C2(Rn)∩H1
α(Rn) be a positive function solving Lu =

−u2∗−1. Then the function u∗ can be continuously extended to a positive function on

Rn. In particular,

lim
‖z‖→∞

u(z)

Γ(z)
= u∗(0) > 0. (2.3.1)

Proof. By Theorem 2.2.7 |Dαu
∗| ∈ L2(Rn) and Lu∗ = −(u∗)2∗−1 in Rn. Exactly

as in Theorem 10.1 in [GV1], it can be shown that u∗ ∈ L∞(Rn). Then, the statement

follows from Theorem 6.1 in [CDG2], the subelliptic version of Serrin’s theorem on

removability of singularities. �

Theorem 2.3.6. Let u ∈ C2(Rn)∩H1
α(Rn) be a positive solution of Lu = −u2∗−1.

Then there exists λ > 0 such that u = uλ.

Proof. By Propositions 2.3.2 and 2.3.5, possibly replacing u with δλu for a suit-

able λ > 0, we can assume u(0) = u∗(0). Then we have to prove that u = u∗. Let

wλ = uλ − u and define

Σλ = {z ∈ Rn : ‖z‖ > λ1/2}, Ωλ = {z ∈ Σλ : wλ(z) < 0}.

Notice that wλ = 0 on ∂Σλ. We prove the following two statements:

Step 1. There is R0 > 0 such that Ωλ = ∅ for all λ > R0;

Step 2. We have inf{λ ≥ 1 : Ωλ = ∅} = 1.

3COntrollare meglio la seguente Proposizione. Chiarire se u∗ ∈ C2.
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Proof of Step 1. The function wλ satisfies

Lwλ = Luλ − Lu = u2∗−1 − u2∗−1
λ =

Q+ 2

Q− 2
ū

4
Q−2 (u− uλ) = −ψ(z)wλ

where ū = ū(z) is a number between uλ(z) and u(z) (mean value theorem), and

ψ = ψ(z) is defined by the last equality. Let v be a positive function which will be

discussed soon. Setting

w̄λ =
wλ
v

=
uλ − u
v

we have Lwλ = w̄λLv + 2〈Dαv,Dαw̄λ〉+ vLw̄λ, and therefore w̄λ satisfies

Lw̄λ + 2
〈Dαv,Dαw̄λ〉

v
+

(
Lv
v

+ ψ

)
w̄λ = 0. (2.3.2)

We show that there exist v > 0 and R0 > 0 independent from λ such that for all

z ∈ Ωλ with λ ≥ 1 and ‖z‖ > R0 we have

Lv(z)

v(z)
+ ψ(z) < 0. (2.3.3)

We choose v = δεu and we determine an appropriate ε > 0. By Proposition 2.3.2

L(δεu) = −(δεu)2∗−1, and by Proposition 2.3.5

lim
‖z‖→∞

δεu(z)

Γ(z)
= lim
‖z‖→∞

ε
Q
2
−1u(δε(z))

εQ−2Γ(δε(z))
= ε1−Q

2 u∗(0),

and hence also

lim
‖z‖→∞

‖z‖4

∣∣∣∣L(δεu)(z)

δεu(z)

∣∣∣∣ = lim
‖z‖→∞

(
δεu(z)

Γ(z)

) 4
Q−2

= ε−2u∗(0)
4

Q−2 . (2.3.4)

If z ∈ Ωλ then uλ(z) < u(z) and therefore ū ≤ u(z). Thus, by Proposition 2.3.5 there

exists a constant γ > 0 such that

ψ(z) ≤ 2∗ − 1u(z)
4

Q−2 ≤ γ‖z‖−4, z ∈ Ωλ, λ ≥ 1.

The constant γ does not depend on λ ∈ [1,+∞). Fixing ε > 0 in such a way that

ε−2u∗(0)
4

Q−2 > γ, it follows from (2.3.4) that there exists R0 > 1 independent from

λ ∈ [1,∞) such that for all z ∈ Ωλ with ‖z‖ > R0 the claim (2.3.3) holds.

Now, the following claim also easily follows. There exists R0 > 0 such that if

λ ∈ [1,+∞) and z ∈ Σλ is a negative minimum point of the function w̄λ, then

‖z‖ ≤ R0. The number R0 is the one fixed above. By contradiction, if z∗ with

‖z∗‖ > R0 is a negative minimum for w̄λ, then Lw̄λ(z∗) ≥ 0. On the other hand, by

(2.3.2) and (2.3.3) we have Lw̄λ(z∗) < 0.

In order to prove Step 1 it suffices to show that if λ > R0 and Ωλ 6= ∅, then wλ
must achieve a negative minimum in Ωλ. This follows from

lim
‖z‖→∞

w̄λ(z) = lim
‖z‖→∞

Γ(z)

v(z)

(
uλ(z)

Γ(z)
− u(z)

Γ(z)

)
= ε

Q
2
−1
(λQ2 −1u(0)− u∗(0)

u∗(0)

)
= ε

Q
2
−1(λ

Q
2
−1 − 1) ≥ 0

(2.3.5)
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for λ ∈ [1,∞). We used the assumption u(0) = u∗(0).

Proof of Step 2. Let

λ0 = inf{λ ≥ 1 : Ωλ = ∅}.

By continuity we have wλ0 ≥ 0 and Lwλ0 ≤ 0 in Σλ0 . By the Maximum Principle

Theorem 2.3.3, only two cases can occur: either wλ0 ≡ 0 on Σλ0 , or wλ0 > 0 on Σλ0 .

In the first case we have u = uλ0 on ‖z‖ > λ0, and precisely

u(z) = uλ0(z) = λ
Q
2
−1

0 Γ(z)u
(
δλ0/‖z‖2(z)

)
.

Dividing this identity by Γ(z) and letting ‖z‖ → ∞ yields u∗(0) = λ
Q
2
−1

0 u(0) and

thus λ0 = 1 because of the choice u(0) = u∗(0).

In the second case we have wλ0 > 0 on Σλ0 . Assume by contradiction that λ0 > 1.

From the definition of λ0 it follows that there exists a sequence λh ∈ (1, λ0) converging

to λ0 such that Ωλh 6= ∅. Every wλh has a negative minimum point zh ∈ Σλh ,

by (2.3.5). Moreover, ‖zh‖ ≤ R0 for all h ∈ N, and therefore – possibly taking

a subsequence – we can assume that zh → z0 ∈ Σ̄λ0 . Since wλ0 > 0 on Σλ0 , it

must be ‖z0‖ = λ
1/2
0 and wλ0(z0) = 0. Moreover, ∇wλh(zh) = 0 for all h, and thus

∇wλ0(z0) = 0. If z0 = (x0, y0) is such that x0 6= 0, this contradicts Hopf Lemma

for elliptic operators. If z0 = (x0, y0) with x0 = 0 this contradicts Lemma 2.3.4.

Therefore it must be λ0 = 1.

We have proved that λ0 = 1, that is u∗ ≥ u on ‖z‖ > 1. By the definition of

Kelvin transform this implies u ≥ u∗ on ‖z‖ ≤ 1. Repeating the previous argument

replacing u and u∗ (the assumption u(0) = u∗(0) is symmetric) we get u∗ ≤ u on

‖z‖ > 1. Thus u = u∗ and the theorem is proved.

�

Corollary 2.3.7. Let u ∈ C2(Rn)∩H1
α(Rn) be a positive solution of Lu = −u2∗−1

such that u = u∗. Then there exists y0 ∈ Rk such that for all y ∈ Rk

u(0, y) = u(0, y0)(1 + |y − y0|2)
2−Q

2(α+1) . (2.3.6)

Proof. The assumption u = u∗ reads

u(z) = ‖z‖2−Qu
(
δ1/‖z‖2(z)

)
, (2.3.7)

where z = (x, y).

For a fixed b ∈ Rk, define ub(z) = u(z + (0, b)). Clearly, Lub = −u2∗−1
b and hence,

by Theorem 2.3.6, there exists λb > 0 such that ub = (δλbu)∗, that is

u(z + (0, b)) =
(
‖z‖/λ1/2

b

)2−Q
u
(
δλb/‖z‖2(z) + (0, b)

)
.

Letting zb = z − (0, b), this identity becomes

u(z) =
(
‖zb‖/λ1/2

b

)2−Q
u
(
δλb/‖zb‖2(zb) + (0, b)

)
. (2.3.8)
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Multiplying (2.3.8) by ‖z‖Q−2 and letting ‖z‖ → ∞ we find

u∗(0) = lim
‖z‖→∞

‖z‖Q−2u(z) = λ
Q
2
−1

b lim
‖z‖→∞

(
‖zb‖/‖z‖

)2−Q
u
(
δλb/‖zb‖2(zb) + (0, b)

)
= λ

Q
2
−1

b u(0, b),

and using u(0) = u∗(0) we get

λ
Q
2
−1

b =
u(0, 0)

u(0, b)
. (2.3.9)

From (2.3.7) and (2.3.8) we also have for z ∈ Rn

‖z‖2−Qu
(
δ1/‖z‖2(z)

)
=
(
‖zb‖/λ1/2

b

)2−Q
u
(
δλb/‖zb‖2(zb) + (0, b)

)
.

Now let f(y) = u(0, y). Setting x = 0 in the last identity and using (2.3.9) we obtain

|y|
2−Q
α+1 f

(
y

|y|2

)
=
f(0)

f(b)
|y − b|

2−Q
α+1 f

(
λα+1
b (y − b)
|y − b|2

+ b

)
,

and by a first order Taylor approximation

|y|
2−Q
α+1

{
f(0) +

〈
∇f(0),

y

|y|2

〉
+ o

(
1

|y|

)}
=

=
f(0)

f(b)
|y − b|

2−Q
α+1

{
f(b) + λα+1

b

〈
∇f(b),

y − b
|y − b|2

〉
+ o

(
1

|y − b|

)}
.

(2.3.10)

The function f has a maximum point y0 ∈ Rk, because u is infinitesimal at infinity.

Without loss of generality, we can assume that y0 = 0 and ∇f(0) = 0. Using again

(2.3.9) and rearranging terms in (2.3.10), we get

f(0)−
2(α+1)
Q−2

{
1−

(
|y|
|y − b|

)Q−2
α+1

}
=

(
|y|
|y − b|

)Q−2
α+1

f(b)−
Q+2α
Q−2

〈
∇f(b),

y − b
|y − b|2

〉
+ o

(
1

|y|

)
.

We multiply this identity by yi, i = 1, ..., k, and let yi →∞. Notice that

lim
yi→+∞

yi

{
1−

(
|y|
|y − b|

)Q−2
α+1

}
= −Q− 2

α + 1
bi,

and

lim
yi→+∞

yi

〈
∇f(b),

y − b
|y − b|2

〉
= ∂if(b).

Whence,

f(0)−
2(α+1)
Q−2 ∇(1 + |b|2) = −2(α + 1)

Q− 2
f(b)−

Q+2α
Q−2 ∇f(b) = ∇(f(b)−

2(α+1)
Q−2 ),

and this finally gives for b ∈ Rk

f(b) = f(0)(1 + |b|2)−
Q−2

2(α+1) .

This is (2.3.6) with y0 = 0. �
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4. Grushin and hyperbolic symmetry

In this section we prove a radial symmetry property of solutions to the equation

Lu = −u2∗−1. After a suitable functional change of variable, such solutions become

radial functions in the hyperbolic space.

Definition 2.4.1. For a given function u = u(x, y) with x ∈ Rm and y ∈ Rk

define the function U = U(ξ, η) by

U(ξ, η) = |ξ|βu
(
|ξ|

1
α+1

ξ

|ξ|
, η

)
, β =

Q− 2

2(α + 1)
. (2.4.1)

We write U = Tu and u = T−1U .

In order to explain the meaning of the functional transformation T , we choose

m = 1 and we introduce the hyperbolic space. Let H = {ζ = (ξ, η) ∈ R×Rk : ξ > 0}
be the n = k + 1 dimensional hyperbolic spaces endowed with the quadratic form

gH(ζ) = ξ−2In, where In is the identity n × n matrix. This quadratic form induces

the hyperbolic metric dH on H. The Riemannian hyperbolic Laplacian is

∆H = ξ2∆ + (1− k)ξ∂ξ, where ∆ = ∂2
ξ +

k∑
i=1

∂2
ηi
. (2.4.2)

It is sometimes useful to work with the unit ball conformal model for the hyper-

bolic space. Let B = {(x, y) ∈ R × Rk = Rn : x2 + |y|2 < 1} be the n = k + 1

dimensional unit ball endowed with the quadratic form gB(x, y) = 4
(1−(x2+|y|2))2

In,

where In is the identity n × n matrix. This quadratic form induces the hyperbolic

metric dB on B. The conformal map S : B → H defined by

S(x, y) =
(1− (x2 + |y|2),−2y)

(1 + x)2 + |y|2
, (2.4.3)

is an isometry between the hyperbolic ball and the hyperbolic halfspace. Clearly,

S(0) = (1, 0) and it can be easily checked that S−1 = S.

The proof of the following proposition is a computation and it is omitted.

Proposition 2.4.2. Let m = 1. If u is a positive solution to the equation Lu =

−u2∗−1 in {(x, y) ∈ R× Rk : x > 0}, then U is a solution to the equation in H

∆HU +
Q(Q− 2)

4(α + 1)2
U = − 1

(α + 1)2
U2∗−1, (2.4.4)

where ∆H is the hyperbolic Laplacian (2.4.2).

Equation (2.4.4) is invariant under hyperbolic isometries. Indeed, it can be shown

that translations in the variable y of a function u = u(x, y) and Grushin dilations δλu

introduced in Definition 2.3.1 correspond to hyperbolic translations of the function

U . This observation suggests how to construct the Kelvin transform u∗ introduced in

(2.2.8).
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It is enough to consider the case m = k = 1. Let D = {z ∈ C : |z| < 1},
H = {ζ ∈ C : Reζ > 0} and according to (2.4.3) define S : D → H by

S(z) =
1− z
1 + z

, where ReS(z) =
1− |z|2

|1 + z|2
and ImS(z) =

−2y

|1 + z|2
. (2.4.5)

The map S is a conformal identification of D with H. Note that S coincides with

its inverse and that it maps z = 1 to ζ = 0 and z = −1 to ζ = ∞. The reflection

I : D → D, I(x+ iy) = (−x+ iy) is a hyperbolic isometry of D and takes −1 to 1.

Proposition 2.4.3. Fix m = k = 1 and for a given function u = u(x, y) in the

halfplane x > 0 let v = v(x, y) be the function defined by

u→ Tu = U → SU = UD → IUD = VD → SVD = V → T−1V = v, (2.4.6)

where SU = U ◦ S, IUD = UD ◦ I, etc. denote compositions. Then v = u∗, where u∗

is the Kelvin transform defined in (2.2.8).

Proof. Be definition (2.4.1) and (2.4.5) we have for z = x+ iy ∈ D

UD(z) =

(
1− |z|2

|1 + z|2

)β
u

((
1− |z|2

|1 + z|2

) 1
α+1

,
−2y

|1 + z|2

)
,

and hence

VD(z) = UD(I(z)) =

(
1− |z|2

(1− x)2 + y2

)β
u

((
1− |z|2

(1− x)2 + y2

) 1
α+1

,
−2y

(1− x)2 + y2

)
.

(2.4.7)

Analogously, for ζ = ξ + iη ∈ H we have

v(ζ) = ξ−
α
2 VD

(
1− |ξα+1 + iη|2

|1 + ξα+1 + iη|2
,

−2η

|1 + ξα+1 + iη|2

)
. (2.4.8)

Setting

x =
1− (ξ2(α+1) + η2)

(1 + ξα+1)2 + η2
, y =

−2η

(1 + ξα+1)2 + η2
,

we have

1− |z|2 =
4ξα+1

(1 + ξα+1)2 + η2
, (1− x)2 + y2 =

4(ξ2(α+1) + η2)

(1 + ξα+1)2 + η2
,

and therefore

1− |z|2

(1− x)2 + y2
=

ξα+1

ξ2(α+1) + η2
,

−2y

(1− x)2 + y2
=

η

ξ2(α+1) + η2
.

Plugging these expressions in (2.4.7), we finally get from (2.4.8)

v(ζ) = ξ−
α
2

(
ξα+1

ξ2(α+1) + η2

)β
u

((
ξα+1

ξ2(α+1) + η2

) 1
α+1

,
η

ξ2(α+1) + η2

)

=
1

(ξ2(α+1) + η2)
α

2(α+1)

u

(
ξ

(ξ2(α+1) + η2)
1

α+1

,
η

ξ2(α+1) + η2

)
.
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This shows that v = u∗, in accordance with the definition of Kelvin transform (2.2.8).

�

Proposition 2.4.3 shows that the Kelvin transform in the Grushin plane origins

from a reflection in the hyperbolic disk. The construction (2.4.6) not only produces

the correct form for the inversion z 7→ δ1/‖z‖2(z), but it also yields the fundamental

solution Γ(z) = ‖z‖2−Q for L appearing in the definition of u∗.

Now we prove the hyperbolic symmetry theorem. Let m, k ≥ 1 and for v ∈ Rm

with |v| = 1 consider the “halfspace”

Hv = {(x, y) ∈ Rm × Rk : x = tv, t > 0}.

Hv carries a natural structure of k + 1 dimensional hyperbolic space. We use the

coordinates (t, y) on Hv: by abuse of notation, (t, y) ∈ Hv stands for (tv, y) ∈ Hv.

Theorem 2.4.4. Let m, k ≥ 1 and n = m + k. If u ∈ C2(Rn) ∩ H1
α(Rn) is a

positive solution of Lu = −u2∗−1 with u = u∗ and y0 = 0 in (2.3.6), then for any

v ∈ Rm with |v| = 1 the function U = Tu restricted to Hv is dH–radially symmetric

about the point (1, 0) ∈ Hv, and precisely it is constant on the k–dimensional spheres{
(t, y) ∈ Hv :

(1 + t)2 + |y|2

4t
=

r2

1− r2

}
, r ∈ (0, 1). (2.4.9)

Proof. Let z = (x, y) ∈ Rn, b ∈ Rk, zb = z − (0, b). By Theorem 2.3.6 there

exists λb > 0 such that

u(z) =
(
‖zb‖/λ1/2

b

)2−Q
u
(
δλb/‖zb‖2(zb) + (0, b)

)
.

This is (2.3.8) in the proof of Corollary 2.3.7. Moreover, by (2.3.9) λb is determined

by u(0)λ
1−Q

2
b = u(0, b), and this, by (2.3.6) with y0 = 0, gives

λb = (1 + |b|2)
1

α+1 .

Let ζ = (ξ, η), ζb = ζ − (0, b) and |ζb| = (|ξ|2 + |η − b|2)1/2. By definition (2.4.1)

we have

U(ζ) = |ξ|β
(
|ζb|

1
α+1

λ
1/2
b

)2−Q

u

(
λb|ξ|

1
α+1

|ζb|
2

α+1

ξ

|ξ|
,
λα+1
b

|ζb|2
(η − b) + b

)
,

and using u(x, y) = |x|1−Q2 U(|x|αx, y) we finally get

U(ζ) = U

(
(1 + |b|2)ξ

|ζb|2
,
(1 + |b|2)(η − b)

|ζb|2
+ b

)
, b ∈ Rk. (2.4.10)

In order to prove the theorem it suffices to choose m = 1 and consider the case

ξ > 0. Let H and B be the hyperbolic halfspace and ball, respectively. The map

Ib : Rn \ {(0, b)} → Rn \ {(0, b)} given by

Ib(ξ, η) =

(
(1 + |b|2)ξ

|ζb|2
,
(1 + |b|2)(η − b)

|ζb|2
+ b

)
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is a spherical inversion with respect to the sphere

Σb = {(ξ, η) ∈ R× Rk : ξ2 + |η − b|2 = 1 + |b|2}.

Clearly, (1, 0) ∈ Σb for any b ∈ Rk. Let Σ+
b = Σb ∩ {ξ > 0}.

The conformal map S : B → H defined in (2.4.3) takes the “plane” πb = {(x, y) ∈
B : x + 〈b, y〉 = 0} onto the halfsphere Σ+

b , and S(0) = (1, 0). By Theorem 4.3.7

in [R] the points S(ζ) and S(Ib(ζ)) in B are symmetric with respect to the plane

πb for any ζ ∈ H. Therefore, by (2.4.10), the function UB : B → R defined by

UB(x, y) = U(S(x, y)) is symmetric with respect to the plane πb. Since b ∈ Rk is

arbitrary, the function UB is radial about the origin. Now, the claim follows from the

fact that S transform the spheres {(x, y) ∈ B : x2 + |y|2 = r2}, r ∈ (0, 1), into the

spheres (2.4.9). �

Corollary 2.4.5. Let m, k ≥ 1 and n = m + k. If u ∈ C2(Rn) ∩ H1
α(Rn) is a

positive solution of Lu = −u2∗−1 with u = u∗ and y0 = 0 in (2.3.6), then the function

v(x) = u(x, 0), x ∈ Rm, is a solution of the problem
divx(pDxv)− qv = −pv2∗−1 |x| < 1

v > 0 |x| < 1
∂v

∂ν
+
(Q

2
− 1
)
v = 0 |x| = 1,

(2.4.11)

where p(x) = (1− |x|2(α+1))k and q(x) = k(α + 1)(Q− 2)(1− |x|2(α+1))k−1|x|2α.

Proof. Let x ∈ Rm be a point such that 0 < |x| < 1. By Theorem 2.4.4 the

function y 7→ u(x, y) is radial, and therefore Dyu(x, 0) = 0. Then, for any i = 1, ..., k

∂2u

∂y2
i

(x, 0) = lim
ε→0

2

ε2

(
u(x, εei)− u(x, 0)

)
,

where ei = (0, ..., 1, ...0) ∈ Rk with 1 in the i–th coordinate.

Let U = Tu and let ξ = |x|αx. By Theorem 2.4.4, for any ε > 0 there is a unique

point ξε ∈ Rm of the form ξε = tξ with t ∈ (0, 1) and such that U(ξ, εei) = U(ξε, 0).

By (2.4.9), ξε is determined by the condition

(1− |ξε|)2

|ξε|
=

(1− |ξ|)2 + ε2

|ξ|
,

which gives

|ξε| =
1

2|ξ|

(
1 + |ξ|2 + ε2 −

√
(1 + |ξ|2 + ε2)2 − 4|ξ|2

)
.

Letting ϕ(ε) = |ξ√ε|, we get ϕ(0) = |ξ| and ϕ′(0) = |ξ|/(|ξ|2−1). Using the definition

(2.4.1) of U we have

u(x, εei) =
1

|ξ|β
U(ξ, εei) =

1

|ξ|β
U(ξε, 0) =

(
|ξε|
|ξ|

)β
u
(
|ξε|

1
α+1

x

|x|
, 0
)
.
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Therefore,

∂2u

∂y2
i

(x, 0) = lim
ε→0

2

ε

(
ϕ(ε)β

|ξ|β
u
(
ϕ(ε)

1
α+1

x

|x|
, 0
)
− u(x, 0)

)
=

2

|ξ|β
d

dε

(
ϕ(ε)βu

(
ϕ(ε)

1
α+1

x

|x|
, 0
))∣∣∣∣

ε=0

= − 1

(α + 1)(1− |x|2(α+1))

(
(Q− 2)u(x, 0) + 2〈Dxu(x, 0), x〉

)
.

The left hand side is a continuous function on |x| ≤ 1, and thus it must be

(Q− 2)u(x, 0) + 2〈Dxu(x, 0), x〉 = 0, for |x| = 1.

Moreover,

Lu(x, 0) = ∆xu(x, 0)− k(α + 1)|x|2α

1− |x|2(α+1)

(
(Q− 2)u(x, 0) + 2〈Dxu(x, 0), x〉

)
.

Multiplying the equation Lu(x, 0) = −u(x, 0)2∗−1 by p(x) = (1 − |x|2(α+1))k and

letting q(x) = k(α + 1)(Q− 2)(1− |x|2(α+1))k−1|x|2α, we finally get

divx(p(x)Dxu(x, 0))− q(x)u(x, 0) = −p(x)u(x, 0)2∗−1.

�

5. Uniqueness in the case m = k = 1

In this section we study the uniqueness of positive solution to the equation (2.1.3)

in the casem = k = 1. Let u ∈ C2(R2)∩H1
α(R2) be a positive solution with u = u∗ and

y0 = 0 in (2.3.6). Now we have Q = α+ 2 and we also write 2∗ = 2Q
Q−2

= 2(α + 2)/α.

By abuse of notation write u(x) = u(x, 0). Then, by Corollary 2.4.5 the function u

solves the problem 
(pu′)′ − qu+ pu2∗−1 = 0, in (−1, 1)

u > 0, in (−1, 1)

αu(1) + 2u′(1) = 0

αu(−1)− 2u′(−1) = 0,

(2.5.1)

where

p(x) = (1− |x|2(α+1)) and q(x) = α(α + 1)|x|2α. (2.5.2)

In a number of steps, we prove the following theorem.

Theorem 2.5.1. Problem (2.5.1) has at most one solution.

A first step is the study of the Cauchy problem with data at the point x = 1. For

λ ≥ 0 and δ > 0 consider the problem
(pu′)′ − qu+ p|u|2∗−2u = 0, in (1− δ, 1),

u(1) = λ,

u′(1) = −λα/2.
(2.5.3)
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Theorem 2.5.2. There is δ > 0 such that Problem (2.5.3) has a unique solution

uλ ∈ C1([1 − δ, 1]) ∩ C2([1 − δ, 1)]. Moreover, uλ and u′λ continuously depend on λ

uniformly on compact intervals.

The proof of Theorem 2.5.2 is a standard application of the contraction principle

and it is given in the Appendix at the end of the Chapter. The proof of Theorem

(2.5.1) is based on a variant of the energy method introduced by Kwong and Li in

[KL]. Let z be the function defined by z(x) = p(x)τu(x), where τ ∈ R is a parameter

to be appropriately chosen. The function z solves the equation

p2−4τz′′ + (1− 2τ)p1−4τp′z′ +Gz + p−τ(2∗+2)+2z2∗−1 = 0,

where G = τ 2p−4τ (p′)2−τp1−4τp′′−qp1−4τ . The condition ensuring −τ(2∗+2)+2 = 0

is

τ =
1

2

Q− 2

Q− 1
=

α

2(α + 1)
, (2.5.4)

and, using (2.5.2), a computation shows that in this case

G(x) =
α2|x|2α(

1− |x|2(α+1)
) 2α
α+1

, |x| < 1. (2.5.5)

Clearly, G′ > 0 on (0, 1). After all, the function z solves p2−4τz′′+ (1− 2τ)p1−4τp′z′+

Gz + z2∗−1 = 0, and therefore, introducing the energy

E(z) = p2−4τ (z′)2 +
2

2∗
z2∗ +Gz2, (2.5.6)

we have
d

dx
E(z(x)) = G′(x)z(x)2. (2.5.7)

We are ready to prove that solutions to Problem (2.5.1) are even functions.

Theorem 2.5.3. If u ∈ C2(−1, 1)∩C1([−1, 1]) solves Problem (2.5.1) then u′(0) =

0.

Proof. Assume by contradiction that u′(0) < 0. The function v(x) = u(−x)

is a new solution to Problem (2.5.1), because p and q are even functions. Clearly,

v(0) = u(0) and v′(0) > 0. We claim that u(x) < v(x) for all x ∈ (0, 1].

Let

r(x) =
u′(x)

u(x)
and R(x) =

v′(x)

v(x)
. (2.5.8)

We have r(0) < R(0). Assume by contradiction that there exists a point ξ ∈ (0, 1)

such that u(ξ) = v(ξ), and let ξ be the smallest one. It cannot be ξ = 1 because of

the uniqueness statement in Theorem 2.5.2. It must be u′(ξ) > v′(ξ) and therefore

r(ξ) > R(ξ). Then, by continuity, there exists a point b ∈ (0, ξ) such that r(b) = R(b).

Let b be the smallest one. Then r(x) < R(x) for x ∈ (0, b), that is u′/u < v′/v on
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the same interval. This condition is equivalent to (u/v)′ < 0 on (0, b), and thus the

function u/v is strictly decreasing on this interval. Let

η =
u(b)

v(b)
. (2.5.9)

Since u(0) = v(0), we have η ∈ (0, 1).

Define the functions z = pτu and ζ = pτv, where τ > 0 is the parameter fixed in

(2.5.4). Notice that

η =
z(b)

ζ(b)
=
z′(b)

ζ ′(b)
.

The last equality follows from u′(b)/v′(b) = η, which is implied by r(b) = R(b).

Let E(z) be the energy associated with z as in (2.5.6). Integrating (2.5.7) and

using G(0) = 0 and z′(0) = 0, we get

p(b)
2

α+1 (z′(b))2 +
2

2∗
z(b)2∗ +G(b)z(b)2 =

2

2∗
u(0)2∗ +

∫ b

0

G′(x)z(x)2dx. (2.5.10)

The same identity holds for ζ. Multiplying it by η2 we obtain

p(b)
2

α+1η2(ζ ′(b))2 +
2

2∗
η2ζ(b)2∗ +G(b)η2ζ(b)2 =

2

2∗
η2u(0)2∗ +

∫ b

0

G′(x)η2ζ(x)2dx.

(2.5.11)

Taking (2.5.9) into account, the difference of (2.5.10) and (2.5.11) yields

2

2∗
(1− η2−2∗)z(b)2∗ =

2

2∗
(1− η2)u(0)2∗ +

∫ b

0

G′(x)(z(x)2 − η2ζ(x)2)dx.

This is a contradiction. Indeed, the right hand side is strictly positive because G′ > 0

on (0, 1), z2 − η2ζ2 > 0 on (0, b) and η ∈ (0, 1). On the other hand 2∗ > 2, and

therefore the left hand side is strictly negative. The point ξ cannot exist.

We have proved that u < v on (0, 1]. Since u and v are solution to the differential

equation in (2.5.1), we have

v(pu′′ + p′u′ − qu+ pu2∗−1) = 0,

u(pv′′ + p′v′ − qv + pv2∗−1) = 0.

Letting w = uv′ − vu′ and subtracting the equations we obtain

(pw)′ = puv(u2∗−2 − v2∗−2). (2.5.12)

Integrating this equations on (x, 1) and using p(1) = 0, we get for x ∈ (0, 1)

w(x) =
1

p(x)

∫ 1

x

puv(v2∗−2 − u2∗−2)dt > 0, (2.5.13)

and hence r < R on (0, 1). The function u/v is strictly decreasing on (0, 1). Consis-

tently with (2.5.9), let

η =
u(1)

v(1)
=
u′(1)

v′(1)
.
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The last equality follows from the boundary conditions. Hospital’s rule also yields

lim
x→1

z(x)

ζ(x)
= lim

x→1

z′(x)

ζ ′(x)
= η.

By (2.5.6) and (2.5.7), we have for any x ∈ (0, 1)

E(z(x))− η2E(ζ(x)) = E(z(0))− η2E(ζ(0)) +

∫ x

0

G′(t)(z(t)2 − η2ζ(t)2)dt. (2.5.14)

We are going to let x→ 1 in this identity.

We first show that

u(x)− ηv(x) = O(1− x)2, for x→ 1. (2.5.15)

The functions u and v are in C1([0, 1]) and v > 0 on [0, 1]. Then u/v ∈ C1([0, 1]) and(u
v

)′
=
u′v − uv′

v2
= −w

v2
.

By the mean value theorem, there exists ξ ∈ (x, 1) such that

η − u(x)

v(x)
=
u(1)

v(1)
− u(x)

v(x)
=
(u
v

)′
(ξ)(1− x) = −w(ξ)

v(ξ)2
(1− x),

From (2.5.13) it follows that w(ξ) = (1−ξ)(γ1 +o(1)) for ξ → 1 and for some constant

γ1 ∈ R. Indeed, p(ξ) = O(1− ξ) and the limit

lim
ξ→1

1

(1− ξ)2

∫ 1

ξ

puv(v2∗−2 − u2∗−2)dx

exists finite, by Hospital rule. Then u(x)− ηv(x) = (1−x)2(γ2 + o(1)) for x→ 1 and

for some new constant γ2 ∈ R. This proves (2.5.15).

Recalling (2.5.5), we can compute

lim
x→1

G(x)(z(x)2 − η2ζ(x)2) = α2 lim
x→1

p(x)−
2α
α+1

+2τ (u(x)2 − η2v(x)2) = 0,

because p(x) = O(1− x) and − 2α
α+1

+ τ + 2 = α+2
α+1

> 0. A similar computation shows

that

lim
x→1

p(x)2−4τ (z′(x)2 − η2ζ ′(x)2) = 0.

It follows that

lim
x→1

E(z(x))− η2E(ζ(x)) = 0

and therefore, using E(z(0)) = E(ζ(0)) = 2
2∗
u(0)2∗ , we obtain from (2.5.14)

0 =
2

2∗
u(0)2∗(1− η2) +

∫ 1

0

G′(x)(z(x)2 − η2ζ(x)2)dx. (2.5.16)

This is a contradiction, because the right hand side is strictly positive. Indeed,

η ∈ (0, 1) and z/ζ = u/v > η on (0, 1). This is not possible.

�
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Thanks to Theorem 2.5.3, the uniqueness for Problem (2.5.1) is reduced to the

uniqueness for the following Problem:
(pu′)′ − qu+ pu2∗−1 = 0, in (0, 1)

u > 0, in (0, 1)

u′(0) = 0

αu(1) + 2u′(1) = 0.

(2.5.17)

Theorem 2.5.4. Two solutions u, v ∈ C1([0, 1]) ∩ C2([0, 1)) of Problem (2.5.17)

must intersect at least twice in (0, 1).

Proof. Let u and v be two solutions of Problem (2.5.17). They must intersect

at least once in (0, 1). Assume by contradiction that u < v on (0, 1). The function

w = uv′ − vu′ satisfies (2.5.12). Integrating this equation over (0, 1) with w(0) = 0

and p(1) = 1 we get ∫ 1

0

puv(v2∗−2 − u2∗−2)dx = 0,

and this is not possible, because u < v on (0, 1).

Now assume by contradiction that u and v intersect only once in (0, 1). For

example, assume that u(b) = v(b), u < v on (0, b) and u > v on (b, 1) for some

b ∈ (0, 1). Take a point x ∈ (0, 1). If x ∈ (0, b), an integration of (2.5.12) over (0, x)

yields

p(x)w(x) =

∫ x

0

puv(u2∗−2 − v2∗−2)dt < 0.

If x ∈ (b, 1), an integration of (2.5.12) over (x, 1) yields

−p(x)w(x) =

∫ 1

x

puv(u2∗−2 − v2∗−2)dt > 0.

In both cases w(x) < 0, or equivalently r(x) > R(x), where r and R are defined as in

(2.5.8). Now, the argument following (2.5.8) proves that the function u/v is strictly

increasing on (0, 1). Let

η =
u(1)

v(1)
=
u′(1)

v′(1)
.

Letting z = pτu and ζ = pτv and arguing as in the last part of the proof of Theorem

2.5.3, we get

0 =
2

2∗
(u(0)2∗ − η2v(0)2∗) +

∫ 1

0

G′(x)(z2 − η2ζ2)dx.

This is a contradiction because the right hand side is strictly negative. Indeed, u(0) <

v(0), η > 1, G′ > 0 and z2 − η2ζ2 < 0 on (0, 1). �

Now, Theorem 2.5.1 immediately follows from the following uniqueness theorem.

The proof relies upon a shooting argument.

Theorem 2.5.5. Problem (2.5.17) has at most one solution.
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Proof. Let u 6= v be two solutions to Problem (2.5.17) and assume that v(1) <

u(1). Let uλ be the maximal solution on [0, 1] to the Cauchy Problem (2.5.3) depend-

ing on the parameter λ ≥ 0. If λ = v(1) then by Theorem 2.5.2 we have uλ = v.

Let

λ∗ = inf{λ ∈ (0, u(1)) : u and uλ intersect at least twice in (0, 1)}.

By Theorem 2.5.4, u and v must intersect at least twice on (0, 1), and therefore the

above set is nonempty. It must be λ∗ > 0 because uλ uniformly converges to 0 as

λ→ 0, by Theorem 2.5.2.

The functions u and uλ∗ must intersect at least once in [0, 1), because of the

continuous dependence of uλ on λ. For the same reason, u and uλ∗ intersect at most

twice in [0, 1). There are four cases.

Case 1.a. There is only one intersection point and it is in (0, 1). Then it must be

uλ∗ ≤ u. This contradicts the uniqueness for the Cauchy problem with data at the

intersection point.

Case 1.b. There is only one intersection point and it is x = 0. Let

r =
u′

u
, Rλ =

u′λ
uλ
.

We claim that Rλ∗(0) = 0, and thus u′λ∗(0) = 0. Then u = uλ∗ by the uniqueness for

the Cauchy problem with data at the point x = 0. This is not possible. We prove the

claim. For any λ > λ∗ there are two points 0 < x1 < x2 < 1 such that u(x1) = uλ(x1),

u(x2) = uλ(x2) and u < uλ on (x1, x2). Then r(x1) < Rλ(x1) and r(x2) > Rλ(x2).

By continuity, there exists ξλ ∈ (x1, x2) such that r(ξλ) = Rλ(ξλ). Then it must by

ξλ → 0 as λ → λ∗ decreasing. The functions uλ and u′λ depend continuously on λ

(uniformly on [0, 1]), then

Rλ∗(0) = lim
λ↓λ∗

Rλ(ξλ) = lim
λ↓λ∗

Ru(ξλ) = 0.

Case 2. There are two intersection points and they are 0 and x∗ ∈ (0, 1).

Case 2.a. Assume that u′λ∗(0) < 0. Then u′(x∗) = u′λ∗(x
∗). This contradicts the

uniqueness for the Cauchy problem with data at x∗.

Case 2.b. We have u′λ∗(0) > 0. Let

λ∗∗ = inf{λ ∈ (0, λ∗) : u and uλ intersect only once in (0, 1)}.

Let xλ ∈ (0, 1) be the intersection point. If λ ∈ (λ∗∗, λ∗) then u′λ(0) > 0. If for some

λ ∈ (λ∗∗, λ∗) we have u′λ(0) < 0 then, by continuity, there exists µ ∈ (λ, λ∗) such

that u′µ(0) = 0. Then uµ solves Problem (2.5.17) and intersects u only once in (0, 1).

By Theorem 2.5.4 this is not possible. Notice that uµ > 0 on (0, 1), otherwise there

would be λ > 0 such that uλ ≥ 0 and uλ = 0 at some point in (0, 1). This would

contradict the uniqueness for the Cauchy problem.

Then for any λ ∈ (λ∗∗, λ∗) we have Rλ(0) > r(0) = 0, whereas Rλ(xλ) < r(xλ).

Thus there exists ξλ ∈ (0, xλ) such that Rλ(ξλ) = r(ξλ). It must be xλ → 0 as
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λ→ λ∗∗, whence uλ∗∗(0) = u(0) and u′λ∗∗(0) = 0. But then uλ∗∗ = u, and this is not

possible. �

Appendix

Proof of Proposition 2.1.1. Let

u(z) =
(
|x|2(α+1) + |y|2

) 2−Q
2(α+1) = N(z)β,

where we set

N(z) = |x|2(α+1) + |y|2, β =
2−Q

2(α + 1)
.

The function u is in C2(Rn \ {0} and for z 6= 0 we can compute

Lu = divxDxu+ (α + 1)2|x|2αdivyDyu,

where

Dxu = 2(α + 1)βNβ−1|x|2αx, Dyu = 2βNβ−1y.

We easily find

divxDxu = 2(α + 1)βNβ−2|x|2α
{

2(α + 1)(β − 1)|x|2(α+1) + (2α +m)N
}
,

divyDyu = 2βNβ−2
{

2(β − 1)|y|2 + kN
}
,

and therefore

∆xu+ (α + 1)2|x|2α∆yu = 2(α + 1)βNβ−1|x|2α
{

2(α + 1)(β − 1) + 2α +m+ k(α + 1)
}
.

Using β = 2−Q
2(α+1)

and Q = m+ k(α + 1) it can be checked that

2(α + 1)(β − 1) + 2α +m+ k(α + 1) = 0.

This proves that Lu(z) = 0 if z 6= 0.

�

Proof of Theorem 2.5.2. Existence and uniqueness follow from a standard

application of the contraction principle. Consider the integral operator

Tu(x) = λ+

∫ 1

x

1

p(t)

∫ 1

t

(
q(s)u(s)− p(s)|u(s)|2∗−2u(s)

)
ds dt,

acting on the complete metric space

X = {u ∈ C([1− δ, 1]) : u(1) = λ, ‖u− λ‖ ≤M},

for some δ > 0 and M > 0. Here, ‖u‖ = max
x∈[1−δ,1]

|u(x)|. Clearly, u = Tu if and only

u solves Problem (2.5.3). If δ > 0 is chosen small enough, T takes X into itself.

Moreover,

|Tu(x)− Tv(x)| ≤ L‖u− v‖
∫ 1

x

1− t
p(t)

dt,
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where L is a Lipschitz constant for f(x, u) = q(x)u− p(x)|u|2∗−2u on |u| ≤ λ+M . If

δ > 0 is small enough

L

∫ 1

1−δ

1− t
p(t)

dt < 1,

and thus T is a contraction. Therefore T has a unique fixed point.

Assume without loss of generality that for λ ∈ [0, λ0] the functions uλ and u′λ are

defined on [0, 1] and are uniformly bounded. Then, for x ∈ (0, 1) we have

|uλ(x)− uµ(x)| ≤ |λ− µ|+ L

∫ 1

x

|uλ(t)− uµ(t)|
∫ t

x

1

p(s)
ds dt

≤ |λ− µ|+ L1

∫ 1

x

|uλ(t)− uµ(t)|| log(1− t)|dt := Φ(x).

Here, L1 > 0 is a new uniform constant. Gronwall’s Lemma yields

Φ(1) ≥ Φ(x)e−L1(1−x)(1−log(1−x))

and therefore |uλ(x)− uµ(x)| ≤ |λ− µ|eL1(1−x)(1−log(1−x)) on [0, 1). Analogously,

sup
x∈[0,1]

|u′λ(x)− u′µ(x)| ≤ C sup
x∈[0,1]

|uλ(x)− uµ(x)|.

�





CHAPTER 3

Regular domains for Grushin metrics

1. Structure of Grushin metrics

In this preliminary section we recall definition and basic properties of the Grushin

metric. The structure Theorem 3.1.1 below, which is a special case of the results

proved by Franchi and Lanconelli in [FL], plays a central role in our study of regular

boundaries.

Let x ∈ Rn and consider the vector fields

Xj = λj(x)
∂

∂xj
, j = 1, . . . , n, (3.1.1)

where

λ1(x) = 1 and λj(x) =

j−1∏
i=1

|xi|αi , j = 2, ..., n. (3.1.2)

Assume that the real numbers αi satisfy

αi = 0 or αi ∈ [1,∞[. (3.1.3)

This condition ensures that the functions λj, and thus the vector fields Xj, are locally

Lipschitz continuous. If the numbers αi are integers then the functions λj in (3.1.2)

could be changed writing xαii instead of |xi|αi . All results still hold in this smooth

case.

The vector fields (3.1.1) induce on Rn a metric d in the following way (see [FL],

[FP] and [NSW]). A Lipschitz continuous curve γ : [0, T ]→ Rn, T ≥ 0, is subunit if

there exists a vector of measurable functions h = (h1, ..., hn) : [0, T ] → Rn such that

γ̇(t) =
∑n

j=1 hj(t)Xj(γ(t)) and |h(t)| ≤ 1 for a.e. t ∈ [0, T ]. Define d : Rn × Rn →
[0,+∞) by setting

d(x, y) = inf{T ≥ 0 : there exists a subunit curve γ : [0, T ]→ Rn

such that γ(0) = x and γ(T ) = y}.
(3.1.4)

The definition of the metric d still makes sense for any system of vector fieldsX1, ..., Xm,

even with m < n, provided d(x, y) is finite for all x, y. This happens, for instance

if the vector fields are smooth and satisfy Hörmander condition (see [NSW]). We

denote by B(x, r) = {y ∈ Rn : d(x, y) < r} the balls in Rn defined by the metric d.

For all j = 1, ..., n define inductively the functions Fj : Rn × [0,+∞) → [0,+∞)

by

F1(x, r) = r, F2(x, r) = rλ2(|x1|+ F1(x, r)), . . .

Fj(x, r) = rλj
(
|x1|+ r, |x2|+ F2(x, r), . . . , |xj−1|+ Fj−1(x, r)

)
.

(3.1.5)

55
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An inspection of the explicit form (3.1.2) of the functions λj shows that

Fj+1(x, r) = Fj(x, r)
(
|xj|+ Fj(x, r)

)αj , j = 1, . . . , n− 1. (3.1.6)

Note that Fj(x, r) actually depends only on x1, . . . , xj−1. Moreover, r 7→ Fj(x, r) is

increasing and it satisfies the following doubling property

Fj(x, 2r) ≤ CFj(x, r), x ∈ Rn, 0 < r <∞ (3.1.7)

for all j = 1, ..., n. By a direct computation, the following estimates can also be

established

Fj(x, r + s) ≤ C(Fj(x, r) + Fj(x, s)), 0 < r, s <∞, (3.1.8)

Fj(x+ Fk(x, r)ek, s) ≤ CFj(x, s), x ∈ Rn, 0 < r ≤ s < +∞, (3.1.9)

Fj(x, %r) ≤ %Fj(x, r), % ≤ 1, r > 0,

(1 + η)Fj(x, r) ≤ Fj
(
x, (1 + η)r

)
, η ≥ 0.

(3.1.10)

For all j = 1, ..., n, define inductively the real numbers dj by

d1 = 1, d2 = 1 + α1, . . . , dj = 1 +

j−1∑
i=1

diαi = (1 + α1) · ... · (1 + αj−1).

(3.1.11)

We say that dj is the degree of the variable xj. Note that Fj(0, r) = rdj .

The structure of the balls B(x, r) can be described by means of the boxes

Box(x, r) := {x+ h : |hj| < Fj(x, r), j = 1, ..., n}. (3.1.12)

For any fixed x ∈ Rn the function Fj(x, ·) is strictly increasing and maps ]0,+∞[

onto itself. We denote its inverse by Gj(x, ·) = Fj(x, ·)−1. The following structure

theorem is proved in [FL].

Theorem 3.1.1. There exists a constant C > 0 such that:

Box(x,C−1r) ⊂ B(x, r) ⊂ Box(x,Cr), x ∈ Rn, r ∈ ]0,+∞[

C−1d(x, y) ≤
n∑
j=1

Gj(x, |yj − xj|) ≤ Cd(x, y), x, y ∈ Rn.
(3.1.13)

Denote in the following by c% any positive constant depending on % > 0 such that

c% → 0, as % ↓ 0. The proof of the following Lemma is in the Appendix at the end of

the Chapter.

Lemma 3.1.2. Box(y, r) ⊂ Box
(
x, (1 + c%)r

)
for all x, y, r satisfying d(x, y) ≤ %r.
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2. Domains with admissible boundary

We introduce the notion of admissible boundary for a domain Ω ⊂ Rn of class C1.

A point x ∈ ∂Ω is said to be characteristic if all the vector fields X1, ..., Xn are tangent

to ∂Ω at x. We give a definition of regular surface requiring a uniform control on

the flatness behavior of the surface near characteristic points. The study of a domain

near the characteristic set of its boundary will be referred to as the “characteristic

case”.

If j = 1, ..., n and x = (x1, ..., xn) ∈ Rn we write x̂j = (x1, ..., xj−1, xj+1, ..., xn) ≡
(x1, ..., xj−1, 0, xj+1, ..., xn). Given a point x ∈ ∂Ω, we write locally ∂Ω as a graph of

the form xj = ϕ(x̂j) for some j = 1, . . . , n. We first discuss the case j = n.

Introduce the (n− 1)–dimensional box

Boxn(x̂n, r) = {x̂n + ĥn ∈ Rn−1 : |hi| < Fi(x̂n, r), i = 1, . . . , n− 1}, (3.2.1)

and let

Λn(x̂n, r) = sup
ŷn∈Boxn(x̂n,r)

|λn(ŷn)− λn(x̂n)|. (3.2.2)

The following proposition collects some properties of the functions Λn. The proof

is in the Appendix at the end of the Chapter.

Proposition 3.2.1. Assume that at least one of the numbers αj, j = 1, . . . , n,

is strictly positive. Then there exists a constant η > 0 such that for all x̂n ∈ Rn−1,

r > 0 and a ∈ ]0, 1]

Λn(x̂n, ar) ≤ h(a)Λn(x̂n, r), where h(a) =
a

a+ η(1− a)
. (3.2.3)

Moreover, Λn(x̂n, r)) ≥ rdn−1, Λn(x̂n, r) ≤ (C/r)Fn(x, r) and Λn(x, 2r) ≤ CΛn(x, r)

for some constant C > 0, and for all r > 0 and x̂n ∈ Rn−1.

In order to introduce the notion of “admissible surface” we first give the definition

for a graph of the form xn = ϕ(x̂n). This is the most degenerate case and contains all

the difficulties of the problem. Then we will show that a graph of the form xj = ϕ(x̂j)

with j 6= n can be studied reducing to the previous case. Finally, in Definition 3.2.6

we introduce the notion of domain with admissible boundary.

If A ⊂ Rn and f : A→ R is a function, recall the standard notation

osc(f, A) := sup
x,y∈A

|f(x)− f(y)|.

Definition 3.2.2. Let ϕ ∈ C1(Rn−1). The surface {xn = ϕ(x̂n)} is said to be

admissible if there exist C > 0 and r0 > 0 such that for all x̂n ∈ Rn−1, r ∈ ]0, r0]∑
i 6=n

osc(Xiϕ,Boxn(x̂n, r)) ≤ C
(
r
∑
i 6=n

|Xiϕ(x̂n)|
dn−2
dn−1 + Λn(x̂n, r)

)
. (3.2.4)

The meaning of condition (3.2.4) can be explained as follows. The oscillation of

the derivatives of the function ϕ along the vector fields X1, ..., Xn−1 is bounded by a

sum of two terms. The first term vanishes on the characteristic set, while the second
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term Λn(x̂n, r) gives an amount of oscillation admitted also at characteristic points.

This term is connected with the vertical size of metric balls in the n–coordinate. The

right balance between the two terms is given by the power dn−2
dn−1

. Note that, if at

least one of the numbers αi is strictly positive, then dn ≥ 2 and the exponent dn−2
dn−1

is

nonnegative.

Actually, we are interested in surfaces which are the boundary of bounded sets.

Definition 3.2.2 can be stated also for a bounded graph xn = ϕ(x̂n), letting x̂n belong

to a bounded open set of Rn−1.

Proposition 3.2.3. Let ϕ ∈ C1(Rn−1) satisfy (3.2.4). Then there exists C > 0

such that for all x̂n ∈ Rn−1, r ∈ ]0, r0]

osc(ϕ,Boxn(x̂n, r)) ≤ C
(
r
∑
i 6=n

|Xiϕ(x̂n)|+ rΛn(x̂n, r)
)
. (3.2.5)

Proof. Fix x̂n, ŷn ∈ Rn−1 and let δ = d(x̂n, ŷn). Then there is a subunit curve

γ : [0, δ]→ Rn−1 ∼= Rn−1 × {0} such that γ(0) = x̂n and γ(δ) = ŷn. Then we have

|ϕ(x̂n)− ϕ(ŷn)| ≤
∫ δ

0

∑
i 6=n

|Xiϕ(γ(t))|dt ≤ δ sup
Boxn(x̂n,δ)

∑
i 6=n

|Xiϕ|. (3.2.6)

By (3.2.4)

sup
Boxn(x̂n,δ)

∑
i 6=n

|Xiϕ| ≤
∑
i 6=n

|Xiϕ(x̂n)|+
∑
i 6=n

osc(Xiϕ,Boxn(x̂n, δ))

.
∑
i 6=n

|Xiϕ(x̂n)|+ δ
∑
i 6=n

|Xiϕ(x̂n)|
dn−2
dn−1 + Λn(x̂n, δ)

.
∑
i 6=n

|Xiϕ(x̂n)|+ Λn(x̂n, δ).

We used Hölder inequality δ|Xiϕ(x̂n)|
dn−2
dn−1 . δdn−1 + |Xiϕ(x̂n)| and the inequality

δdn−1 ≤ Λn(x̂n, δ) proved in Proposition 3.2.1. Now, (3.2.5) follows from the doubling

property Λn(x̂n, 2r) ≤ CΛn(x̂n, r) proved in Proposition 3.2.1.

�

Next we introduce admissible surfaces of the form {xj = ϕ(x̂j)}, j 6= n. We

would like to give a definition similar to Definition 3.2.2. The set Boxn(x̂n, r) is the

intersection of Box(x, r) with the plane {y ∈ Rn : yn = xn}. When j 6= n, the

intersection of Box(x, r) with the hyperplane {y ∈ Rn : yj = xj} depends on xj.

Thus (3.2.1) can not be trivially generalized. But, roughly speaking, the vector fields

Xj+1, . . . , Xn are “more degenerate” than Xj, and this suggests that the dependence

of the function ϕ(x̂j) on xj+1, . . . , xn needs a less careful control than the dependence

on x1, . . . , xj−1. In order to make this remark rigorous, define new functions and

vector fields

λ̃i(x) =

{
λi(x) if i ≤ j,

λj(x) if i ≥ j.
and X̃i = λ̃i∂i, i = 1, . . . , n. (3.2.7)
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The variable xj can now be viewed as the n−th variable with respect to the new

vector fields. All previous results hold for these vector fields. The functions F̃i(x, r)

are defined exactly as in (3.1.5). Set B̃ox(x, r) = {x+ h : |hi| < F̃i(x, r), i = 1, ..., n}
and denote by d̃ the metric constructed as in (3.1.4) using subunit curves with respect

to the vector fields X̃j. Let B̃(x, r) be the corresponding balls. In the following

proposition we list some easy relations between the distances d and d̃.

Proposition 3.2.4. For any C1 > 0 there is C2 > 0 such that:

(i) if |x|, |y|, r < C1 then B(x, r) ⊂ B̃(x,C2r) and d̃(x, y) ≤ C2d(x, y);

(ii) writing x′ = (x1, ..., xj) and x′′ = (xj+1, ..., xn), we have d((x′, x′′), (y′, x′′)) '
d̃((x′, x′′), (y′, x′′).

Proof. We have F̃i(x̂j, r) = F̃i(x̂j, r), if i ≤ j, while for i > j it is F̃i(x, r) =

Fj(x, r). Then, if i > j,

Fi(x, r) = Fj(x, r)
(
|xj|+ Fj(x, r)

)αj · · · (|xi−1|+ Fi−1(x, r)
)αi−1

≤ CFj(x, r) ≤ Fj(x,Cr) = F̃i(x,Cr),

as soon as |x|, r ≤ C. Then Box(x, r) ⊂ B̃ox(x,Cr). Thus (i) follows by Theorem

3.1.1.

In order to see (ii) recall that the function G̃i(x, ·) is the inverse of F̃i(x, ·). More-

over, if i ≤ j then F̃i(x, r) = Fi(x, r). Thus Theorem 3.1.1 gives

d
(
(x′, x′′), (y′, x′′)

)
'

j∑
i=1

Gi(x
′, |xi − yi|) =

j∑
i=1

G̃i(x
′, |xi − yi|) ' d

(
(x′, x′′), (y′, x′′)

)
This concludes the proof of (ii). �

The sections of the boxes B̃ox(x, r) with the planes {y ∈ Rn : yj = xj} do not

depend on xj. Thus we can set

B̃oxj(x̂j, r) = {x̂j + ĥj : |hi| < F̃i(x̂j, r), i 6= j} (3.2.8)

and Λ̃j(x̂j) = sup
ŷj∈gBoxj(x̂j ,r)

|λ̃j(ŷj)− λ̃j(x̂j)|. (3.2.9)

The function Λ̃j enjoys the properties of Proposition 3.2.1 (replace the subscript n

with j).

We are ready to give the general definition of admissible surface and of domain

with admissible boundary.

Definition 3.2.5. Let ϕ ∈ C1(Rn−1). The surface {xj = ϕ(x̂j)} is said to be

admissible if there exist C > 0 and r0 > 0 such that for all x̂j ∈ Rn−1, r ∈ ]0, r0]∑
i 6=j

osc(X̃iϕ, B̃oxj(x̂j, r)) ≤ C
(
r
∑
i 6=j

|X̃iϕ(x̂j)|
dj−2

dj−1 + Λ̃j(x̂j, r)
)
. (3.2.10)
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Definition 3.2.6 (Domain with admissible boundary). A connected bounded

open set Ω ⊂ Rn is said to be with admissible boundary if it is of class C1 and for all

x ∈ ∂Ω there exists a neighborhood U of x such that ∂Ω∩U is an admissible surface

according to Definitions 3.2.2 and 3.2.5.

3. An example in R3

We give examples of admissible surfaces and of bounded domains with admissible

boundary in R3. Consider the functions λ1 ≡ 1, λ2 = |x1|α1 , λ3 = |x1|α1|x2|α2 and

the corresponding vector fields

X1 = ∂1, X2 = |x1|α1∂2, X3 = |x1|α1|x2|α2∂3. (3.3.1)

We consider the case αi ≥ 1, i = 1, 2. The degrees of the variables x1, x2 and x3 are

respectively d1 = 1, d2 = 1 + α1, d3 = (1 + α1)(1 + α2).

We begin with the study of admissible surfaces of the form {x3 = ϕ(x1, x2)}. We

write x = (x1, x2) and |Xϕ| = |X1ϕ|+ |X2ϕ|. If ϕ ∈ C1(R2) condition (3.2.4) reads∑
i=1,2

osc(Xiϕ,Box3(x, r)) . r|Xϕ(x)|
d3−2
d3−1 + Λ3(x, r), (3.3.2)

where Box3(x, r) = {(x1 +u1F1(x, r), x2 +u2F2(x1, r)) : |u1|, |u2| ≤ 1} and Λ3(x, r) =

supBox3(x,r) |λ3 − λ3(x)|. Here F1(x, r) = r and F2(x, r) = r(|x1|+ r)α1 .

Using the relation (α ≥ 1)

(t+ r)α − tα ' αr(t+ r)α−1, t ≥ 0, r ≥ 0, (3.3.3)

we can write explicitly (see also (3.A.6) in the Appendix)

Λ3(x) & r
(
|x1|+ r

)α1−1(|x2|+ F2(x1, r)
)α2 + |x1|α1F2(x1, r)

(
|x2|+ F2(x1, r)

)α2−1

& r
(
|x1|+ r

)α1−1(|x2|+ F2(x1, r)
)α2 .

(3.3.4)

Theorem 3.3.1. Let N(x) = |x1|2d2 +x2
2 and assume that ϕ(x) = g(N(x)), where

g ∈ C2(0,+∞) is a function such that for some constant C > 0

0 ≤ g′(t) ≤ Ct
d3
2d2
−1 ≡ Ct

α2−1
2 , |g′′(t)| ≤ C

g′(t)

t
, g′(2t) ≤ Cg′(t), t > 0. (3.3.5)

Then the surface {x3 = ϕ(x1, x2)} is admissible.

Proof. We check (3.3.2). Without loss of generality we assume x1, x2 > 0. A

short computation gives

|X1ϕ(x)| ' x2α1+1
1 g′(N(x)) = xα1

1 {xd21 g
′(N(x))} := xα1

1 h1(x),

|X2ϕ(x)| ' xα1
1 {x2g

′(N(x))} := xα1
1 h2(x).

(3.3.6)
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Note that |h(x)| = |(h1(x), h2(x))| = N(x)1/2g′(x). Then |Xϕ(x)| ' |x1|α1N(x)1/2g′(N(x)).

Moreover

osc(Xiϕ,Box3(x, r)) . |(x1 + r)α1hi(x+ F (x, r))− xα1
1 hi(x)|

≤ ((x1 + r)α1 − xα1
1 )hi(x) + (x1 + r)α1(hi(x+ F (x, r))− hi(x))

. α1r(x1 + r)α1−1hi(x) + (x1 + r)α1(hi(x+ F (x, r))− hi(x)),

where we used (3.3.3). Writing h = (h1, h2) we find the estimate from above for the

oscillation∑
i=1,2

osc(Xiϕ,Box3(x, r)) . r(x1 + r)α1−1|h(x)|+ (x1 + r)α1 |h(x+ F (x, r))− h(x)|.

(3.3.7)

We already know that |h(x)| ' N(x)1/2g′(N(x)). In order to estimate the last term

in the right hand side we use the following inequality (as in (3.2.6))

|hi(x+ F (x, r))− hi(x)| . r sup
y∈Box3(x,r), k=1,2

|Xkhi(y)|.

A computation of second derivatives and condition g′′(t) ≤ Cg′(t)/t give

X1h1(x) ' xα1
1 {g′(N(x)) + x

2(α1+1)
1 g′′(N(x))} ' xα1

1 g
′(N(x)),

X2h1(x) ' x2x
2α1+1
1 g′′(N(x)) .

xα1+1
1 x2

N(x)
xα1

1 g
′(N(x)) . xα1

1 g
′(N(x)),

X1h2(x) = x2x
2α1+1
1 g′′(N(x)) . xα1

1 g
′(N(x)),

X2h2(x) = xα1
1 {g′(N(x)) + x2

2g
′′(N(x))} ' xα1

1 g
′(N(x)).

Hence we find

|h(x+ F (x, r))− h(x)| . r(x1 + r)α1g′
(
N(x+ F (x, r))

)
.

Coming back to (3.3.7), we see that condition (3.3.2) is guaranteed by

r(x1 + r)α1−1N(x)1/2g′(N(x)) + r(x1 + r)2α1g′(N(x+ F (x, r)))

. r
{
xα1

1 N(x)1/2g′(N(x))
} d3−2
d3−1 + r

(
x1 + r

)α1−1(
x2 + F2(x1, r)

)α2 ,
(3.3.8)

where the first term in the right hand side is provided by (3.3.6) and the second one

comes from (3.3.4).

Now two cases need to be distinguished: (A) x2 ≥ xα1+1
1 ; (B) x2 < xα1+1

1 .

Study of Case (A). We ignore the contribution of the first term in the right hand

side of (3.3.8) and we consider the second one only. Thus (3.3.8) is implied by

N(x)1/2g′(N(x)) + (x1 + r)α1+1g′(N(x+ F (x, r))) . (x2 + F2(x1, r))
α2 . (3.3.9)

Notice that in Case (A) N(x) ' x2
2.

We distinguish the following two subcases: (A1) x2 ≤ rα1+1; (A2) x2 > rα1+1.

Case (A1). We majorize the left hand side of (3.3.9) using x1 ≤ r and x2 ≤
rα1+1, and we set x = 0 in the right hand side obtaining the stronger condition
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rα1+1g′(r2(α1+1)) . rα2(α1+1), which can be rewritten as g′(r2d2) . rd3−2d2 . This last

inequality is satisfied by assumption (3.3.5).

Case (A2). Condition (3.3.9) is implied by

N(x)1/2g′(N(x)) + (x1 + r)α1+1g′(N(x+ F (x, r))) . xα2
2 .

We can use xα1+1
1 , rα1+1 ≤ x2 and N(x) ' N(x+F (x, r)) ' x2

2. This gives x2g
′(x2

2) .
xα2

2 , i.e. g′(x2
2) . x

d3/d2−2
2 . The latter inequality holds by assumption.

Study of Case (B). Here we have N(x) ' x
2(α1+1)
1 . Two subcases must be distin-

guished: (B1) x1 ≤ r; (B2) x1 > r.

Case (B1). In this case we ignore the contribution of the first term in the right

hand side of (3.3.8) and consider the second term only. Condition (3.3.8) is guaranteed

by

N(x)1/2g′(N(x)) + (x1 + r)α1+1g′(N(x+ F (x, r))) . (x2 + F2(x1, r))
α2 . (3.3.10)

Set x = 0 in the right hand side of (3.3.10) and use x1 ≤ r and x2 < rα1+1. We find

the stronger inequality rα1+1g′(r2(α1+1)) ≤ rα2(α1+1), i.e. g′(r2d2) ≤ rd3−2d2 .

Case (B2). We use here the contribution of the first term in the right hand side

of (3.3.8). Then we get the stronger inequality

(x1 + r)α1−1N(x)1/2g′(N(x)) + (x1 + r)2α1g′(N(x+ F (x, r)))

.
{
xα1

1 N(x)1/2g′(N(x))
} d3−2
d3−1 .

Since r ≤ x1 and x2 ≤ xα1+1
1 , we finally find the stronger condition x2α1

1 g′(x2d2
1 ) .

{xα1+d2
1 g′(x2d2

1 )}
d3−2
d3−1 , i.e. g′(x2d2

1 ) . xd3−2d2
1 . �

Finally, we give an example in R3 of bounded open set with admissible boundary.

Theorem 3.3.2. The open set Ω = {(x1, x2, x3) ∈ R3 :
(
|x1|2(α1+1)+x2

2

)1+α2+x2
3 <

1} has admissible boundary.

Proof. Let ε ∈ (0, 1) be fixed. The surface ∂Ω ∩ {|x3| > ε} can be studied by

means of Theorem 3.3.1. Indeed, the lower cap can be written in the form

x3 = −
(
1−N(x1, x2)1+α2

)1/2
= g(N(x1, x2))

where N(x1, x2) = |x1|2(α1+1) + x2
2, and, for any fixed t0 < 1, it is easy to see that the

function g(t) = −
(
1− t1+α2

)1/2
satisfies conditions (3.3.5) for t ∈ (0, t0).

The surface ∂Ω∩{|x3| < ε} is noncharacteristic, and hence admissible, away from

a neighborhood of its intersection with the plane x1 = 0. To complete the proof of

the theorem it is enough to show that ∂Ω is admissible in a neighborhood of (0, 1, 0).

Here, ∂Ω can be parameterized as follows

x2 =
((

1− x2
3

) 1
1+α2 − x2(α1+1)

1

)1/2

:= ϕ(x1, x3).

We check that the function ϕ satisfies condition (3.2.10). To this aim, as suggested

by (3.2.7), we consider the vector fields X̃1 = ∂1, X̃2 = |x1|α1∂2, X̃3 = |x1|α1∂3. We
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have to check∑
i=1,3

osc(X̃iϕ, B̃ox2(x̂2, r)) . r(|X̃1ϕ(x̂2)|+ |X̃3ϕ(x̂2)|)
d2−2
d2−1 + Λ̃2(x̂2, r), (3.3.11)

where d2 = 1 + α1 and

B̃ox2(x̂2, r) = {x̂2 + ĥ2 : |h1| < F̃1(x̂2, r) = r, |h3| < F̃3(x̂2, r) = r(|x1|+ r)α1}.

Write x = (x1, x3), F̃ = (F̃1, F̃3). An easy computation yields

|X̃1ϕ(x)| = h1(x)|x1|2α1+1 and |X̃2ϕ(x)| = h2(x)|x3| |x1|α1 ,

where h1 and h2 are positive Lipschitz continuous functions in a neighborhood of the

origin (we do not need their explicit form here). Assume without loss of generality

x1, x3 ≥ 0.

Next we estimate the left hand side of (3.3.11):

osc(X̃1ϕ, B̃ox2(x̂2, r)) .
∣∣h1(x+ F̃ (x, r))(x1 + r)2α1+1 − h1(x)x2α1+1

1

∣∣
.
∣∣h1(x+ F̃ (x, r))− h1(x)

∣∣x2α1+1
1

+ h1(x+ F̃ (x, r))
∣∣(x1 + r)2α1+1 − x2α1+1

1

∣∣
. rx2α1+1

1 + r(x1 + r)2α1 . r(x1 + r)2α1 .

(3.3.12)

We used the Lipschitz continuity of h1 and the estimate |F̃ (x, r)| . r. Moreover

osc(X̃3ϕ, B̃ox(x̂2, r)) .
∣∣h2(x+ F̃ (x, r))(x1 + r)α1(x3 + F̃3(x1, r))− h2(x)xα1

1 x3

∣∣
.
∣∣h2(x+ F̃ (x, r))− h2(x)

∣∣xα1
1 x3

+ h2(x+ F̃ (x, r))
∣∣(x1 + r)α1(x3 + F̃3(x1, r))− xα1

1 x3

∣∣
. rxα1

1 x3 +
∣∣(x1 + r)α1(x3 + F̃3(x1, r))− xα1

1 x3

∣∣.
(3.3.13)

The last term can be evaluated as follows

(x1 + r)α1(x3 + F̃3(x1, r))− xα1
1 x3

. (x1 + r)α1 − xα1
1 (x3 + F̃3(x1, r)) + xα1

1

(
(x3 + F̃3(x1, r))− x3

)
. r(x1 + r)α1−1 + F̃3(x1, r)x

α1
1 . r(x1 + r)α1−1.

(3.3.14)

Taking into account (3.3.12), (3.3.13), (3.3.14) and the equivalence Λ̃2(x̂2, r) '
r(x1 + r)α1−1, we conclude that condition (3.3.11) is implied by (x1 + r)2α1 + xα1

1 x3 +

(x1 + r)α1−1 . (x1 + r)α1−1, which is trivially satisfied. �

4. John domains for Grushin metrics

We show that admissible domains introduced in Section 2 are John domains in

the Grushin metric space (Rn, d).
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Definition 3.4.1. A bounded open set Ω ⊂ (Rn, d) is a John domain if there

exist x0 ∈ Ω and σ > 0 such that for all x ∈ Ω there exists a continuous curve

γ : [0, 1]→ Ω such that γ(0) = x, γ(1) = x0 and

dist
(
γ(t), ∂Ω

)
≥ σdiam

(
γ|[0,t]

)
. (3.4.1)

A curve satisfying (3.4.1) will be called a John curve, x0 will be called the center and

σ the John constant of Ω.

In general metric spaces the definition of John domain is given with length(γ|[0,t])
replacing diam(γ|[0,t]) in (3.4.1). Anyway, by a general result due to Martio and Sarvas

(see [MS, Theorem 2.7]), such definitions are in fact equivalent in doubling metric

spaces with geodesics. The metric space (Rn, d) is doubling endowed with Lebesgue

measure and moreover it is geodesics. We do not address this latter question here.

In our proofs we shall always work with John curves γ satisfying diam(γ|[0,t]) '
d(γ(t), γ(0)).

We need the following proposition. The proof is easy and can be found in [MM2].

Proposition 3.4.2. Let Ω ⊂ (Rn, d) be a bounded open set and for any r > 0

define Ωr = {y ∈ Ω : dist(y, ∂Ω) > r}. Assume that there exist r > 0 and σ > 0 such

that Ωr is arcwise connected and such that for any x ∈ Ω there is a continuous curve

γ : [0, 1]→ Ω such that γ(0) = x, γ(1) ∈ Ωr and

dist(γ(t), ∂Ω) ≥ σdiam(γ|[0,t]) (3.4.2)

for all t ∈ [0, 1]. Then Ω is a John domain.

The main result in this section is the following:

Theorem 3.4.3. If Ω ⊂ Rn is a domain with admissible boundary according to

Definition 3.2.6, then it is a John domain in the metric space (Rn, d).

Proof. We use Proposition 3.4.2. Given x̄ ∈ ∂Ω we show that there exists a

neighborhood U of x̄ and σ > 0 such that for all x ∈ Ω ∩ U there exists a curve γ

starting from x and satisfying (3.4.2). The claim follows choosing by compactness a

finite covering of ∂Ω.

Fix x̄ ∈ Ω and write locally ∂Ω as a graph of the form xj = ϕ(x̂j) for some

j = 1, . . . , n, where ϕ is a C1 function. We begin with the basic case j = n. Let

ϕ ∈ C1(Rn−1) be a function satisfying the admissibility condition (3.2.4) and assume

for the sake of simplicity that Ω = {xn > ϕ(x̂n)}.
We have to construct a John curve starting from a point x = x̂n + xnen ∈ Ω. To

this aim two different situations need to be distinguished:

max
i<n
|Xiϕ(x̂n)| ≤ λn(x̂n) (Case 1),

max
i<n
|Xiϕ(x̂n)| > λn(x̂n) (Case 2).

(3.4.3)

In Case 1, the characteristic case, we construct a John curve starting from x of the

form x + ten, t ≥ 0. In Case 2 the path must be split into two pieces. The first one
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starts from x in the coordinate direction ek, where k < n is such that the derivative

|Xkϕ(x̂n)| is “maximal” among all the |Xiϕ(x̂n)|, i = 1, . . . , n− 1, and moves in this

direction for a time t̄ = t̄(x) which must be established in a careful way (compare

(3.4.7)). The second part of the path will be of the form γ(t̄) + (t− t̄)en.

First of all we introduce the following notation

νi = νi(x̂n) = −∂iϕ(x̂n), Ni =
νi
|νi|

, if νi 6= 0, i 6= n, w(x̂n) =
∑
i 6=n

|Xiϕ(x̂n)|.

Case 1. Define

γ(t) = x+ ten = x̂n + (xn + t)en and δ ≡ δ(t) = Gn(x̂n, t) ' d(γ(t), γ(0)). (3.4.4)

Consider for small σ > 0

Box(γ(t), σδ) =
{(
xn + t+unFn(x, σδ)

)
en + x̂n + ûnF̂n(x, σδ) : |ui| ≤ 1, i = 1, ..., n

}
.

We used Fi(x+ ten, δ) = Fi(x, δ).

We claim that there exists σ > 0 independent from x such that Box(γ(t), σδ) ⊂ Ω,

i.e. such that the following condition holds:

xn + t+ unFn(x, σδ) > ϕ
(
x̂n + ûnF̂n(x, σδ)

)
, δ > 0, |ui| ≤ 1. (3.4.5)

This is the John condition (3.4.2). Since x ∈ Ω then xn − ϕ(x̂n) ≥ 0. Take the worst

case un = −1 in (3.4.5). Moreover, Fn(x, σδ) ≤ Fn(x, δ) = Fn(x,Gn(x, t)) = t. Thus,

condition (3.4.5) is easily seen to be implied by∣∣ϕ(x̂n + ûnF̂n(x, σδ)
)
− ϕ(x̂n)

∣∣ ≤ (1− σ)t, δ > 0, |ûn| ≤ 1.

Using the control (3.2.5) for the oscillation of ϕ, Case 1 and Proposition 3.2.1 we may

estimate the left hand side as follows∣∣ϕ(x̂n + ûnF̂n(x, σδ)
)
− ϕ(x̂n)

∣∣ ≤ osc(ϕ,Boxn(x̂n, σδ))

. σδw(x) + σδΛn(x̂n, σδ))

. σδλn(x̂n) + σFn(x̂n, δ) ' σFn(x̂n, δ).

In the last equivalence we used the trivial estimate δλn(x̂n) ≤ Fn(x, δ). Thus, (3.4.5)

is implied by σFn(x, δ) ≤ σ0t, where σ0 is a small but absolute constant. Since

t = Fn(x, δ), this inequality holds as soon as σ ≤ σ0.

Case 2. Assume that x satisfies Case 2 in (3.4.3). Take any k = 1, . . . , n − 1 such

that

|Xkϕ(x̂n)| ≥ 1

2
max
i<n
|Xiϕ(x̂n)| > 1

4
λn(x̂n). (3.4.6)

(The factors 1
2

and 1
4

will become relevant in the next section, where we prove that

admissible domains are non–tangentially accessible).

Fix ε0 > 0 and let δ̄ = δ̄(x) be the solution of the following equation

Λn(x̂n, δ̄) = ε0|Xkϕ(x̂n)|. (3.4.7)

(The function Λn(x, ·) is a homeomorphism of [0,∞[ onto itself). The number ε0 will

be fixed and will become an absolute constant in (3.4.16). Finally, set t̄ = Fk(x, δ̄).
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Define the first piece of the John curve letting for t ∈ [0, t̄]

γ(t) = x+ tNkek, and δ = δ(t) = Gk(x, t) ' d(γ(0), γ(t)).

For σ > 0 consider the Box(γ(t), σδ) =
{(
tNkek +

∑n
i=1

(
xi +uiFi(x+ tNkek, σδ)

)
ei :

|ui| ≤ 1, i = 1, ..., n
}
. We claim that there exist ε0, σ > 0 independent of x such that

the following John condition holds

Box(γ(t), σδ(t)) ⊂ Ω, t ∈ [0, t̄]. (3.4.8)

Points of the box belong to Ω as soon as for all u, |ui| ≤ 1, i = 1, . . . , n, we have

xn + unFn(x+ tNkek, σδ) > ϕ
(
tNkek +

∑
i 6=n

(
xi + uiFi(x+ tNkek, σδ)

)
ei

)
.

Take the worst case un = −1 and use xn > ϕ(x̂n). The inequality above is implied by

ϕ
(
tNkek +

∑
i 6=n

(
xi + uiFi(x+ tNkek, σδ)

)
ei

)
− ϕ(x̂n) + Fn(x+ tNkek, σδ) ≤ 0,

which can be rewritten as

I + II + Fn(x+ tNkek, σδ) ≤ 0, (3.4.9)

where we set

I =ϕ
(
tNkek +

∑
i 6=n

(
xi + uiFi(x+ tNkek, σδ)

)
ei

)
− ϕ(tNkek + x̂n),

II =ϕ(tNkek + x̂n)− ϕ(x̂n).

We claim that ε0 in (3.4.7) can be fixed independently from x in such a way that

II ≤ −1

2
t|νk| for all t ∈ [0, t̄]. (3.4.10)

Indeed, by the mean value theorem there exists ϑ ∈ [0, 1] such that

ϕ(x̂n + tNkek)− ϕ(x̂n) = ∂kϕ(x̂n + ϑtNkek)tNk

= ∂kϕ(x̂n)tNk + {∂kϕ(x̂n + ϑtNkek)− ∂kϕ(x̂n)}tNk

= −|νk|t+ {∂kϕ(x̂n + ϑtNkek)− ∂kϕ(x̂n)}tNk.

Notice that Case 2 in (3.4.3) ensures νk 6= 0 and λk(x̂n) 6= 0. The curly brackets

can be estimated by (3.2.4) as follows (notice that λk does not depend on xk and

t = Fk(x, δ))∣∣{∂kϕ(x̂n + ϑtNkek)− ∂kϕ(x̂n)}
∣∣ =

1

λk(x̂n)

∣∣Xkϕ(x̂n + ϑtNkek)−Xkϕ(x̂n)
∣∣

≤ 1

λk(x̂n)
osc(Xkϕ,Boxn(x̂n, δ))

.
1

λk(x̂n)

(
δw(x̂n)(dn−2)/(dn−1) + Λn(x̂n, δ)

)
.

1

λk(x̂n)

(
δ|Xkϕ(x̂n)|(dn−2)/(dn−1) + Λn(x̂n, δ)

)
.
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In the last inequality we used (3.4.6). Now, (3.4.10) is guaranteed by

C0

(
δ|Xkϕ(x̂n)|(dn−2)/(dn−1) + Λn(x̂n, δ)

)
≤ 1

2
|νk|λk(x̂n) =

1

2
|Xkϕ(x̂n)|, (3.4.11)

where C0 is a big but absolute constant. By Hölder inequality and Proposition 3.2.1

C0δ|Xkϕ(x̂n)|(dn−2)/(dn−1) ≤ 1

4
|Xkϕ(x̂n)|+ C1δ

dn−1 ≤ 1

4
|Xkϕ(x̂n)|+ C2Λn(x̂n, δ),

where C2 is a new big absolute constant. Using Λn(x̂n, δ) ≤ Λn(x̂n, δ̄) = ε0|Xkϕ(x̂n)|
(this is (3.4.7)) we see that (3.4.11) is guaranteed by a choice of ε0 > 0 such that

4(C0 + C2)ε0 ≤ 1.

Now, by the estimate on II, inequality (3.4.9) is implied by

I + Fn(x+ tNkek, σδ) ≤
1

2
t|νk|, t ∈ [0, t̄]. (3.4.12)

We claim that this inequality holds as soon as σ > 0 is small enough independently

from x.

First of all by (3.2.5) we find

I ≤
∣∣∣ϕ(tNkek +

∑
i 6=n

(
xi + uiFi(x+ tNkek, σδ)

)
ei

)
− ϕ(tNkek + x̂n)

∣∣∣
≤ osc

(
ϕ,Boxn(x̂n + tNkek, σδ)

)
. σδw(x̂n + tNkek) + σδΛn(x̂n + tNkek, σδ),

and by (3.2.4)

w(x̂n + tNkek) =
∑
i 6=n

|Xiϕ(x̂n + tNkek)|

≤
∑
i 6=n

|Xiϕ(x̂n)|+
∑
i 6=n

|Xiϕ(x̂n + tNkek)−Xiϕ(x̂n)|

≤ w(x̂n) +
∑
i 6=n

osc(Xiϕ,Boxn(x̂n, δ))

. w(x̂n) + δw(x̂n)(dn−2)/(dn−1) + Λn(x̂n, δ)

. w(x̂n) + Λn(x̂n, δ).

(3.4.13)

We used once again Hölder inequality and Proposition 3.2.1. Since Λn(x̂n+tNkek, σδ) .
Λn(x̂n, δ), using w(x̂n) ≤ |Xkϕ(x̂n)| we finally get

I . σδ(|Xkϕ(x̂n)|+ Λn(x̂n, δ)). (3.4.14)

Now we show that the second term in the left hand side of (3.4.12) satisfies the

same estimate (we will need (3.1.9)):

Fn(x+ tNkek, σδ) ≤ σFn(x+ tNkek, δ) . σFn(x, δ)

= σδλn(x̂n + F̂n(x, δ)) ≤ σδ(Λn(x̂n, δ) + λn(x̂n))

. σδ(Λn(x̂n, δ) + |Xkϕ(x̂n)|).
(3.4.15)

We used (3.4.6).
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Taking into account (3.4.14) and (3.4.15), and recalling that Λn(x̂n, δ) ≤ Λn(x̂n, δ̄) =

ε0|Xkϕ(x̂n)|, we see that condition (3.4.12) holds as soon as σδ|Xkϕ(x̂n)| . t|νk|,
i.e. C0σδ|Xkϕ(x̂n)| ≤ t|νk|, i.e. C0σδλk(x̂n) ≤ t for all t > 0. Here C0 > 0 is a big

but absolute constant. This inequality holds if σ > 0 is chosen in such a way that

σC0 ≤ 1, because δλk(x̂n) ≤ Fk(x̂n, δ) = t. This proves (3.4.12), and hence claim

(3.4.8), as well.

So far we have defined a John curve γ starting from a point x ∈ Ω satisfying Case

2 in (3.4.3) for a time t ∈ [0, t̄], where

t̄ = Fk(x, δ̄) and δ̄ solves Λn(x̂n, δ̄) = ε0|Xϕ(x̂n)|. (3.4.16)

The constant ε0 > 0 is from now on fixed. Now we define γ for times t ≥ t̄. Let

γ(t) = x+ t̄Nkek + (t− t̄)en, t ≥ t̄. (3.4.17)

We shall write s = t− t̄. Set

δ = δ(t) = δ̄ +Gn(x, t− t̄) = δ̄ +Gn(x, s) ' d(γ(0), γ(t)). (3.4.18)

For σ > 0 consider the box

Box(γ(t), σδ) =
{
sen + t̄Nkek +

n∑
i=1

(xi + uiFi(x+ t̄Nkek, σδ))ei : |ui| ≤ 1
}
.

Since ϕ(x̂n) ≤ xn, taking the worst case un = −1, the John condition Box(γ(t), σδ) ⊂
Ω is implied by

J + JJ + Fn(x+ t̄Nkek, σδ) ≤ s, (3.4.19)

where we set

J = ϕ
(
t̄Nkek +

∑
i 6=n

(xi + uiFi(x+ t̄Nkek, σδ))ei

)
− ϕ(t̄Nkek + x̂n),

JJ = ϕ(t̄Nkek + x̂n)− ϕ(x̂n).

By (3.4.10) with t = t̄, we have JJ ≤ −1
2
|νk|t̄. Hence, (3.4.19) is guaranteed by

J + Fn(x+ t̄Nkek, σδ) ≤ s+
1

2
|νk|t̄. (3.4.20)

We begin with the estimate of J. By (3.2.5)

J ≤ osc
(
ϕ,Boxn(x̂n + t̄Nkek, σδ)

)
. σδ

(
w(x̂n + t̄ekNk) + Λn(x̂n + t̄ekNk, σδ)

)
,

and by (3.4.13), (3.4.6) and Proposition 3.2.1 (use δ̄ ≤ δ)

δw(x̂n + t̄ekNk) . δw(x̂n) + δΛn(x̂n, δ̄) . δ|νk|λk(x̂n) + Fn(x̂n, δ).

On the other hand, by Proposition 3.2.1, (3.1.9), (3.4.18) and (3.1.8)

δΛn(x̂n + t̄ekNk, δ) . Fn(x̂n + t̄ekNk, δ)

. Fn(x̂n, δ) = Fn(x̂n, δ̄ +Gn(x̂n, s))

. Fn(x̂n, δ̄) + Fn(x̂n, Gn(x̂n, s)) = Fn(x̂n, δ̄) + s.
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Thus (3.4.20) is ensured by the inequality

σ(δ|νk|λk(x̂n) + Fn(x̂n, δ̄) + s) . s+
1

2
|νk|t̄,

which reduces to (recall that δ − δ̄ = Gn(x, δ), by (3.4.18))

σC0

(
δ̄|νk|λk(x̂n) +Gn(x̂n, s)λk(x̂n) + Fn(x̂n, δ̄)

)
≤ s+ |νk|t̄ (3.4.21)

for some absolute big constant C0 > 0. If in (3.4.21) we put s = 0 we get

σC0(δ̄|νk|λk(x̂n) + Fn(x̂n, δ̄))) ≤ |νk|t̄,

which holds for σ small enough (we have already proved it when we proved (3.4.12),

see also (3.4.14), (3.4.15) and (3.4.7)).

To complete the estimate (3.4.21), it will be enough to show that

σGn(x̂n, s)λk(x̂n)|νk| ≤ s+ |νk|t̄, for all s > 0, (3.4.22)

as soon as σ > 0 is small enough independently of x. Now, (3.4.22) is equivalent to

Gn(x̂n, s) ≤
s+ |νk|t̄
σλk|νk|

⇔ s ≤ Fn

(
x̂n,

s+ |νk|t̄
σλk|νk|

)
.

Notice that the function fn(x̂n, r) = 1
r
Fn(x̂n, r) is increasing in the variable r. From

s+ |νk|t̄ ≥ |νk|t̄ = |νk|Fk(x̂n, δ̄) ≥ |νk|δ̄λk(x̂n) ≥ σ|νk|δ̄λk(x̂n)

it follows

fn

(
x̂n,

s+ |νk|t̄
σλk|νk|

)
≥ fn(x, δ̄) & Λn(x̂n, δ̄),

by Proposition 3.2.1. Finally, recalling (3.4.7) we find out that (3.4.22) is implied by

s ≤ s+ |νk|t̄
σλk(x̂n)|νk|

Λn(x̂n, δ̄) =
ε0

σ
(s+ |νk|t̄),

which holds for all s > 0 as soon as σ ≤ ε0. Ultimately, this proves (3.4.19) and ends

the discussion of Case 2 and of the parameterization xn = ϕ(x̂n).

Now assume that x̄ ∈ ∂Ω is a point such that for a neighborhood U of x̄ the piece

of boundary ∂Ω ∩ U is a surface of type {xj = ϕ(x̂j)} for some j 6= n and for some

function ϕ of class C1 which satisfies the admissibility condition (3.2.10). We explain

how to construct a John curve starting from points x ∈ U ∩ {xj > ϕ(x̂j)}.
The functions λ̃i and the vector fields X̃i are defined in (3.2.7). By d̃ we denote

the metric induced on Rn by the vector fields X̃i. The boxes B̃oxj(x̂j, r) and the

function Λ̃j have been defined in (3.2.8) and (3.2.9), respectively. Without loss of

generality, we can assume U ⊂ {|xi| < 1 : i = 1, ..., n} and |∂iϕ(x̂j)| ≤ 1, i > j. Then

|X̃iϕ(x̂j)| ≤ λ̃j(x̂j), for all i > j. Thus the distinction of cases (3.4.3) simply is

max
i<j
|X̃iϕ(x̂j)| ≤ λ̃j(x̂j) (Case 1),

max
i<j
|X̃iϕ(x̂j)| > λ̃j(x̂j) (Case 2).
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In Case 1 we define a curve γ moving directly in the direction ej, analogously to

(3.4.4). In Case 2 we first define γ(t) = x + tNk, where k = 1, ..., j − 1 is any index

such that

|X̃kϕ(x̂j)| ≥
1

2
max
i<j
|X̃iϕ(x̂j)| >

1

4
λ̃j(x̂j),

and t ∈ [0, t̄], where now t̄ = Fk(x̂j, δ̄) and δ̄ solves Λ̃j(x̂j, δ̄) = ε0|X̃kϕ(x̂j)| instead of

(3.4.7). Then we let γ move in the direction ej, analogously to (3.4.17).

The curve γ so defined satisfies, for some σ > 0 independent of x, the John

condition with respect to the metric d̃, i.e. B̃(γ(t), σd̃iam(γ|[0,t])) ⊂ Ω, t ∈ [0, 1],

where B̃ denote balls in the metric d̃. The proof of this is exactly the same as for the

case j = n. By Proposition 3.2.4 (ii) it follows that d̃iam(γ|[0,t]) ' diam(γ|[0,t]) and

by (i) it also follows that B(γ(t), σdiam(γ|[0,t])) ⊂ Ω. This remark ends the proof of

the theorem. �

5. Non–tangentially accessible domains

We continue the analysis of domains with admissible boundary. We prove that

they satisfy a condition stronger than the John condition. In fact, admissible domains

are non–tangentially accessible. We begin with the definition of uniform domain.

Definition 3.5.1. An open set Ω ⊂ (Rn, d) is a uniform domain if there exists

ε > 0 such that for every x, y ∈ Ω there exists a continuous curve γ : [0, 1]→ Ω such

that γ(0) = x, γ(1) = y,

diam(γ) ≤ 1

ε
d(x, y), (3.5.1)

and for all t ∈ [0, 1]

dist(γ(t), ∂Ω) ≥ εmin{diam(γ|[0,t]), diam(γ|[t,1])}. (3.5.2)

For bounded domains, the uniform property is equivalent to the (ε, δ)–property

introduced in [Jo] in the Euclidean case and in [GN2] for Carnot–Carathéodory

spaces. This property requires that (3.5.1) and (3.5.2) hold only for pairs of points

x, y ∈ Ω such that d(x, y) ≤ δ, where δ is a positive number.

Usually, in the definition of uniform domain the curves γ are required to be rec-

tifiable and the diameter in (3.5.2) is replaced by the length (see, for instance, [V]).

Anyway, in doubling metric spaces with geodesics this stronger definition is equivalent

to the weaker one we are giving here (this is proved in [MS, Theorem 2.7]).

Next, we introduce the corkscrew condition.

Definition 3.5.2. An open set Ω ⊂ (Rn, d) satisfies the interior (exterior) corkscrew

condition if there exist r0 > 0 and ε > 0 such that for all r ∈ (0, r0) and x ∈ ∂Ω

the set B(x, r) ∩Ω (the set B(x, r) ∩ (Rn \Ω)) contains a ball of radius εr. An open

set Ω satisfies the corkscrew condition if it satisfies both the interior and the exterior

corkscrew condition.



5. NON–TANGENTIALLY ACCESSIBLE DOMAINS 71

If both Ω and Rn \ Ω̄ are John domains then Ω satisfies the corkscrew condition.

The notion of non–tangentially accessible domain was introduced in the Euclidean

case by Jerison and Kenig in [JK], and then generalized to the setting of metric spaces

associated with vector fields in [CG].

Let Ω ⊂ (Rn, d) be an open set and α ≥ 1. A sequence of balls B0, B1, ..., Bk ⊂ Ω

is an α–Harnack chain in Ω if Bi∩Bi−1 6= ∅ for all i = 1, ..., k, and α−1dist(Bi, ∂Ω) ≤
r(Bi) ≤ αdist(Bi, ∂Ω), where dist(Bi, ∂Ω) = infx∈Bi,y∈∂Ω d(x, y) and r(Bi) is the

radius of Bi.

Definition 3.5.3. A bounded open set Ω is a non–tangentially accessible domain

in the metric space (Rn, d) if the following conditions hold:

(i) there exists α ≥ 1 such that for all η > 0 and for all x, y ∈ Ω such that

dist(x, ∂Ω) ≥ η, dist(y, ∂Ω) ≥ η and d(x, y) ≤ Cη for some C > 0, there

exists an α–Harnack chain B0, B1, ..., Bk ⊂ Ω such that x ∈ B0, y ∈ Bk and

k depends on C but not on η;

(ii) Ω satisfies the corkscrew condition.

Remark 3.5.4. If Ω is a uniform domain according to Definition 3.5.1, then

condition (i) in Definition 3.5.3 is fulfilled (see [CT, Proposition 4.2]).

The following Lemma gives a useful sufficient condition for an open set to be

uniform. The proof is in the Appendix at the end of the Chapter.

Lemma 3.5.5. Let Ω ⊂ (Rn, d) be an open set. Assume that there exist constants

σ,C3, C2 > 0 such that for all x, y ∈ Ω there are John curves γx : [0, tx] → Ω and

γy : [0, ty]→ Ω of parameter σ, with γx(0) = x and γy(0) = y and such that

diam(γx) ≥ C3d(x, y), (3.5.3)

d(γx(tx), γy(ty)) ≤
σ

2
C3d(x, y), (3.5.4)

and

max
{

diam(γx), diam(γy)
}
≤ C2d(x, y). (3.5.5)

Then Ω is a uniform domain.

We recall some results established in the proof of Theorem 3.4.3, and in particular

we recall how to construct a John curve starting from a point in a domain with

admissible boundary. Consider an open set of the form Ω = {xn > ϕ(x̂n)}, take a

point x = x̂n + xnen ∈ Ω and introduce the following notation

νi = νi(x̂n) = −∂iϕ(x̂n) and Ni =
νi
|νi|

, if νi 6= 0, i 6= n. (3.5.6)

In order to construct a John curve γx : [0, 1] → Ω starting from x, two different

situations need to be distinguished:

max
i<n
|Xiϕ(x̂n)| ≤ λn(x̂n) (Case 1),

max
i<n
|Xiϕ(x̂n)| > λn(x̂n) (Case 2).

(3.5.7)
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In Case 1, the characteristic case, define the curve

γx(t) = x+ ten = x̂n + (xn + t)en, t ≥ 0. (3.5.8)

In Case 2, the curve γx is defined in two steps. First of all, take any k = 1, . . . , n− 1

such that |Xkϕ(x̂n)| is “maximal” in the following sense (this choice is not unique)

|Xkϕ(x̂n)| ≥ 1

2
max
i<n
|Xiϕ(x̂n)| > 1

4
λn(x̂n), (3.5.9)

and let δk(x) be the solution of the following equation in the variable δ

Λn(x̂n, δ) = ε0|Xkϕ(x̂n)|. (3.5.10)

The solution is unique because Λn(x̂n, ·) is strictly increasing. Here, ε0 > 0 is a

suitable constant which depends on the surface and whose choice is discussed in the

proof of Theorem 3.4.3. Finally, define the positive time t(x) = tk(x) by

tk(x) = Fk(x, δk(x)). (3.5.11)

The first piece of γx is defined for t ∈ [0, tk(x)] by letting

γx(t) = x+ tNkek. (3.5.12)

Here, Nk = Nk(x) depends on x. The number δk(x) essentially represents the diameter

of the first piece of the path. The second piece is

γ(t) = x+ tk(x)Nkek + (t− tk(x))en, t ≥ tk(x). (3.5.13)

In Theorem 3.4.3 we have proved the following. Assume that ϕ ∈ C1(Rn−1)

satisfies (3.2.4) and let Ω = {xn > ϕ(x̂n)}. Then there exists a constant σ > 0 such

that: if x ∈ Ω and Case 1 holds, then the curve γx defined as in (3.5.8) is a John

curve of parameter σ; if x ∈ Ω and Case 2 holds, then for any k such that (3.5.9)

holds, the curve γx defined in (3.5.12)–(3.5.13) is a John curve of parameter σ.

Now we start the core of our discussion. For any x ∈ Ω for which Case 2 in (3.5.7)

holds, fix a k = k(x) ∈ {1, . . . , n − 1} such that |Xkϕ(x̂n)| = maxi<n |Xiϕ(x̂n)|.
Introduce now the parameter ∆(x) (equivalent to the diameter of the first piece of

the path γx starting from x) as follows:

∆(x) =

{
0 if x satisfies (3.5.7), Case 1,

δk(x) if x satisfies (3.5.7), Case 2,

where, if x satisfies Case 2, δk(x) is given by (3.5.10).

Let % > 0 be a constant that will be fixed later. Given a pair of points x and

y ∈ Ω, we distinguish two cases. The first case is

d(x, y) > %max{∆(x),∆(y)} (Case A).

If Case A does not hold, assuming for instance ∆(x) ≥ ∆(y), it should be d(x, y) ≤
%∆(x). Moreover, if k = k(x) is the number selected above, we can write ∆(x) =
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δk(x). Then the second case is{ |Xkϕ(x̂n)| = max
i 6=n
|Xiϕ(x̂n)| > λn(x̂n)

d(x, y) ≤ %δk(x).
(Case B)

Case B is the more delicate one. The problem here is that if the points x and y are

very near and we want to connect them by a curve with total diameter comparable

with d(x, y), we have to use only the first piece of the paths γx and γy starting from

x and y. The following Lemma provides the suitable tools to prove that if y is near x

(in other words, if we are in Case B and % is small) then we can choose a John curve

γy from y which starts in the same direction of the curve γx starting from x. This

Lemma gives the correct bound on the oscillation of the horizontal derivatives Xiϕ

near characteristic points. The properties established in this lemma are crucial.

Lemma 3.5.6. Let ϕ ∈ C1(Rn−1) satisfy (3.2.4). There are a constant %0 > 0 and

a function % 7→ c% from (0, %0) to R+, with lim%↓0 c% = 0 and such that, if Case B

holds for a pair of points x, y ∈ {xn > ϕ(x̂n)} and for a number k = 1, . . . , n − 1,

then we have

|Xiϕ(x̂n)−Xiϕ(ŷn)| ≤ c%|Xkϕ(x̂n)| ∀ i = 1, . . . , n− 1, (3.5.14)

|Xkϕ(ŷn)| ≥ (1− c%)λn(ŷn), (3.5.15)

and, denoting by δk(y) the solution of (3.5.10) with ŷn replacing x̂n,

δk(y) ≥ 1

2
δk(x). (3.5.16)

Proof. Fix k ∈ {1, . . . , n − 1} such that |Xkϕ(x̂n)| = max
i=1,...,n−1

|Xiϕ(x̂n)|. Then

(3.2.4) gives

|Xiϕ(x̂n)−Xiϕ(ŷn)| ≤ osc
(
Xiϕ,Boxn(x̂n, d(x, y))

)
≤ C

(
d(x, y)|Xkϕ(x̂n)|

dn−2
dn−1 + Λn

(
x̂n, d(x, y)

))
≤ C

(
%δk(x)|Xkϕ(x̂n)|

dn−2
dn−1 + C%Λn

(
x̂n, δk(x)

))
,

by Case B and Proposition 3.2.1. Now, in order to estimate the right hand side note

that by (3.5.10) Λn(x̂n, δk(x)) = ε0|Xkϕ(x̂n)|. Moreover, by Proposition 3.2.1

δk(x) ≤ Λn

(
x̂n, δk(x)

)1/(dn−1)
=
(
ε0|Xkϕ(x̂n)|

)1/(dn−1)
.

Then (3.5.14) is proved. Letting i = k in (3.5.14) we get

|Xkϕ(ŷn)| ≥ (1− c%)|Xkϕ(x̂n)|. (3.5.17)

We are now ready to prove (3.5.15). By the definition of Λn we have

λn(ŷn) ≤ λn(x̂n) + Λn

(
x̂n, d(x, y)

)
≤ λn(x̂n) + Λn

(
x̂n, %δk(x)

)
≤ λn(x̂n) + c%ε0|Xkϕ(x̂n)| ≤ (1 + c%)|Xkϕ(ŷn)|,

where we used Case B to estimate λn(x̂n) and (3.5.17). Then (3.5.15) is proved.
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We prove (3.5.16). By (3.5.17) and by the definition of δk, we have

Λn

(
ŷn, δk(y)

)
= ε0|Xkϕ(ŷn)| ≥ ε0(1− c%)|Xkϕ(x̂n)|
≥ (1− c%)Λn

(
x̂n, δk(x)

)
.

(3.5.18)

Assume by contradiction that δk(y) < 1
2
δk(x). Then, we have

Boxn(ŷn, δk(y)) ⊂ Boxn

(
ŷn,

1

2
δk(x)

)
⊂ Boxn

(
x̂n,

1

2
(1 + c%)δk(x)

)
,

by Lemma 3.1.2 (recall that d(x, y) ≤ %δk(x), by Case B). Then

Λn

(
ŷn, δk(y)

)
= sup

ẑn∈Boxn(ŷn,δk(y))

|λn(ẑn)− λn(ŷn)|

≤ Λn

(
x̂n,

1

2
(1 + c%)δk(x)

)
+ |λn(x̂n)− λn(ŷn)|

≤ Λn

(
x̂n,

1

2
(1 + c%)δk(x)

)
+ Λn(x̂n, %δk(x))

≤
(
h
(1

2
(1 + c%)

)
+ h(%)

)
Λn(x̂n, δk(x)),

where h is the function introduced in Proposition 3.2.1. By the properties of h, we

immediately see that the last chain of inequalities is in contradiction with (3.5.18), if

% is small enough. This finishes the proof of Lemma 3.5.6. �

Using Lemma 3.5.6 we can prove that domains with admissible boundary are

non–tangentially accessible.

Theorem 3.5.7. If Ω ⊂ Rn is an admissible domain then it is a non–tangentially

accessible domain in the metric space (Rn, d).

Proof. We show that Ω is a uniform domain in the sense of Definition 3.5.1, and

this will prove condition (i) in Definition 3.5.3. Condition (ii) is a direct consequence

of Theorem 3.4.3.

It will be enough to consider the case Ω = {xn > ϕ(x̂n)} where ϕ ∈ C1(Rn−1) is

a function satisfying (3.2.4). We start the discussion with Case B. Let x, y ∈ Ω and

k ∈ {1, . . . , n−1} be as in Case B for some % > 0. The estimates provided by Lemma

3.5.6 and a choice of % small enough easily imply

|Xkϕ(ŷn)| ≥ 1

2
|Xiϕ(ŷn)|, for all i 6= n, (3.5.19)

|Xkϕ(ŷn)| > 1

2
λn(ŷn). (3.5.20)

By Theorem 3.4.3 and (3.5.9) there are two John curves γx and γy of parameter

σ > 0, starting respectively from x and y, which are of the form (compare (3.5.12))

γx(t) = x+ tNkek, t ≤ tk(x) and γy(t) = y + tNkek, t ≤ tk(y). (3.5.21)

The numbers tk(x) and tk(y) are respectively defined by tk(x) = Fk(x, δk(x)) and

tk(y) = Fk(y, δk(y)), where δk(x) and δk(y) are solutions of equation (3.5.10) written

in x and y, respectively. Moreover, note that γx and γy are parallel. This is a
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consequence of the fact that (3.5.19) and (3.5.20) give (3.5.9) with y instead of x.

In addition, Xkϕ(x̂n) and Xkϕ(ŷn) must have the same sign by (3.5.14) and thus

Nk(x) = Nk(y) (recall (3.5.6)). We denoted both by Nk.

We claim that if % > 0 is small enough, there exist constants C2, C3 > 0 (inde-

pendent of x and y) and times tx ≤ tk(x) and ty ≤ tk(y) such that the curves γx
and γy satisfy assumptions (3.5.3)–(3.5.5) of Lemma 3.5.5. This will show that Ω is

a uniform domain.

Define the numbers

δ∗ =
1

2%
d(x, y) and t∗ = Fk(x, δ

∗). (3.5.22)

Since we are in Case B, we trivially have δ∗ ≤ δk(x)
2

and by (3.5.16) δ∗ ≤ δk(y). It

follows that t∗ ≤ tk(x), tk(y). We would like to apply Lemma 3.5.5 for the times tx =

ty = t∗. This would require the estimate (3.5.4), i.e. d(γx(t
∗), γy(t

∗)) ≤ σC3

2
d(x, y).

Unfortunately, it may happen that γx(t
∗) belongs (or is very near) to the plane {xk =

0}. In this case the size of the boxes may become too small (this can be seen letting

xk = 0 in (3.1.5)) and estimate (3.5.4) does not seem to hold. To overcome this

problem we operate as follows.

Consider the projection of x onto the k’th coordinate plane xk = 0 and denote it

by π(x) =
∑

i 6=k xiei. We distinguish the following two cases:

d
(
x+ t∗Nkek, π(x)

)
≥ 1

4
d
(
x, π(x)

)
, and (3.5.23)

d
(
x+ t∗Nkek, π(x)

)
<

1

4
d
(
x, π(x)

)
. (3.5.24)

We first study case (3.5.23). Case (3.5.24) can be reduced to the first one (this is

discussed after equation (3.5.30)). Choose tx = ty = t∗ and let γx : [0, t∗] → Ω and

γy : [0, t∗]→ Ω be as in (3.5.21). We first check (3.5.3), which is easier. By Theorem

3.1.1

diam(γx) ≥ C0δ
∗ = C0

d(x, y)

2%
, (3.5.25)

where C0 < 1 is an absolute constant. Then (3.5.3) holds with

C3 =
C0

2%
. (3.5.26)

Now we have to check (3.5.4), which is

d(γx(t
∗), γy(t

∗)) = d(x+ t∗Nkek, y + t∗Nkek) ≤
σC0

4%
d(x, y). (3.5.27)

We claim that there exists a constant C4 > 0 independent of %, x, y such that

d(γx(t
∗), γy(t

∗)) ≤ C4d(x, y), (3.5.28)

whenever x satisfies (3.5.23). Then (3.5.27) follows choosing % small enough to ensure

C4 ≤ σC0

4%
.
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To prove (3.5.28), first of all notice that by Theorem 3.1.1 condition (3.5.23)

implies Gk(π(x), |xk + t∗Nkek|) ≥ CGk(π(x), |xk|) and thus

|xk + t∗Nkek| ≥ Fk(π(x), CGk(π(x), |xk|)) ≥ CFk(π(x), Gk(π(x), |xk|)) = C|xk|,

for some absolute (small) constant C. This estimate together with the explicit form

(3.1.2) and (3.1.5) of the vector fields also implies

Fi(x+ t∗Nkek, s) ≥ ε1Fi(x, s), ∀s > 0, i = 1, . . . , n, (3.5.29)

where ε1 > 0 is a new absolute small constant. Then

|yi − xi| = Fi(x,Gi(x, |yi − xi|)) ≤ Fi(x,Cd(x, y)) ≤ ε−1
1 Fi(x+ t∗Nkek, Cd(x, y)).

This is equivalent to saying that y+ t∗Nkek ∈ Box
(
x+ t∗Nkek, Cd(x, y)

)
, which gives

(3.5.28) (by Theorem 3.1.1) provided C4 is large enough. Note that all such estimates

do not depend on %. This proves the claim (3.5.27).

We have proved hypotheses (3.5.3) and (3.5.4) of Lemma 3.5.5 under condition

(3.5.23). We discuss later condition (3.5.5).

Now we study case (3.5.24). We shall show that it can be essentially reduced to

case (3.5.23). By continuity there is t∗∗ < t∗ such that

d
(
x+ t∗∗Nkek, π(x)

)
=

1

4
d
(
x, π(x)

)
. (3.5.30)

In this case we choose tx = ty = t∗∗ and we define define δ∗∗ by t∗∗ = Fk(x, δ
∗∗).

Now we are using shorter paths. We have to make sure that their diameter is

large enough to ensure that (3.5.3) continue to hold. In order to check (3.5.3), notice

that the triangle inequality and (3.5.24) give

d(x, π(x)) ≥ d(x, γx(t
∗))− d(π(x), γx(t

∗)) > d(x, γx(t
∗))− 1

4
d(x, π(x)),

which yields d(x, π(x)) ≥ 4
5
d(x, γx(t

∗)). Thus, by (3.5.30)

diam(γx|[0,t∗∗]) ≥ d(x, π(x))− d(γx(t
∗∗), π(x)) =

3

4
d(x, π(x))

≥ 3

5
d(x, γx(t

∗)) ≥ 3

5
C3d(x, y),

where C3 is given by (3.5.26). In other words, changing δ∗ with δ∗∗ does not give

any problem in checking (3.5.3). We just have to modify slightly the constant C3 in

(3.5.26).

Moreover, since (3.5.30) holds, we can prove (3.5.28) and ultimately (3.5.27) with

t∗∗ instead of t∗. This shows that (3.5.4) holds in case (3.5.24), as well.

In order to finish the proof of the theorem in Case B, we have to check condition

(3.5.5). We check the upper bound for t∗, which is greater than t∗∗. The estimate

diam(γx|[0,t∗]) . C d(x,y)
%

follows from the definition of δ∗. It remains to estimate

the diameter of γy. Since by Theorem 3.1.1 diam(γy|[0,t∗]) ' Gk(y, t
∗), the proof is

concluded as soon as we show that

Gk(y, t
∗) ≤ 2Gk(x, t

∗).
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Since t∗ = Fk(x, δ
∗), the claim is equivalent to

Gk

(
y, Fk(x, δ

∗)
)
≤ 2δ∗ ⇔ Fk(x, δ

∗) ≤ Fk(y, 2δ
∗),

which holds (also with 1 + c% instead of 2) in force of (3.A.3) (in the statement of

Lemma 3.1.2 x and y can be interchanged). The proof of Case B is concluded.

Case A is the easy part. Denote by x̃ e ỹ the endpoints of the paths γx e γy at the

end of their first piece, i.e. x̃ = x + tk(x)(x)Nk(x)ek(x) and ỹ = y + tk(y)(y)Nk(y)ek(y).

Here k(x) may be different from k(y). This does not matter because the points are

not too near. It could also be x̃ = x or ỹ = y if one or both of the points belong to

Case 1 in (3.5.7). At any rate we have

d(x, x̃) ≤ ∆(x) ≤ 1

%
d(x, y).

The same estimate holds for d(y, ỹ) (we are assuming ∆(x) ≥ ∆(y)). Here % is small

but has been fixed in the proof of Case B. We have the paths

γx(s) = x̃+ sen and γy(s) = ỹ + sen,

with s ≥ 0. The proof of Case A can be concluded noting that by invariance with

respect to translations along the n−th direction we have, independently of s,

d(x̃+ sen, ỹ + sen) = d(x̃, ỹ) ≤ d(x̃, x) + d(x, y) + d(ỹ, y) ≤
(1

%
+ 1 +

1

%

)
d(x, y).

�

Appendix

Proof of Lemma 3.1.2. By definition, z ∈ Box(y, r) if and only if |zj − yj| ≤
Fj(y, r) for all j = 1, . . . , n. We need to prove

|zj − xj| ≤ Fj
(
x, (1 + c%)r

)
, j = 1, . . . , n. (3.A.1)

The assumptions of the lemma, Theorem 3.1.1 and the first inequality in (3.1.10) give

|zj − xj| ≤ |zj − yj|+ |yj − xj|
≤ Fj(y, r) + Fj(x,Cd(x, y)) ≤ Fj(y, r) + c%Fj(x, r).

(3.A.2)

We claim that

Fk(y, r) ≤ Fk
(
x, (1 + c%)r

)
for all k = 1, . . . , n. (3.A.3)

If the claim is proved, then inserting (3.A.3) in (3.A.2) we conclude

|zj − xj| ≤ Fj
(
x, (1 + c%)r

)
+ c%Fj(x, r) ≤ (1 + c%)Fj

(
x, (1 + c%)r

)
≤ Fj

(
x, (1 + c%)

2r
)
,

by (3.1.10) (in our notations (1 + c%)
2 = 1 + c%). Then the lemma is proved.

In order to show (3.A.3) we use induction on k. The statement is trivial for k = 1.

If (3.A.3) holds for some k then by (3.1.6)

Fk+1(y, r) = Fk(y, r)
(
|yk|+ Fk(y, r)

)αk
≤ Fk

(
x, (1 + c%)r

)(
|xk|+ |yk − xk|+ Fk

(
x, (1 + c%)r

))αk
.

(3.A.4)
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Recall that, by Theorem 3.1.1, |yk − xk| ≤ Fk(x,Cd(x, y)) ≤ c%Fk(x, r), and

c%Fk(x, r) + Fk
(
x, (1 + c%)r

)
≤ (1 + c%)Fk

(
x, (1 + c%)r

)
≤ Fk

(
x, (1 + c%)

2r
)
,

by (3.1.10). Inserting the last inequality into the second line of (3.A.4) we immediately

conclude the proof of (3.A.3). �

Proof of Proposition 3.2.1. Let x̂n ∈ Rn−1 and assume without loss of gen-

erality xi ≥ 0, i = 1, ..., n − 1. Take a < 1. The “reverse doubling” property (3.2.3)

is equivalent to
Λn(x,R)− Λn(x, aR)

Λn(x, aR)
≥ η(1− a)

a
.

It is easy to realize that Λn(x, t) =
n−1∏
j=1

(
xj + Fj(x, t)

)αj − n−1∏
j=1

x
αj
j . Then

Λn(x,R)− Λn(x, aR)

Λn(x, aR)
=

∏n−1
j=1

(
xj + Fj(x,R)

)αj −∏n−1
j=1

(
xj + Fj(x, aR)

)αj∏n−1
j=1

(
xj + Fj(x, aR)

)αj −∏n−1
j=1

(
xj
)αj =:

N

D
.

To write N recall that given nonnegative numbers mj ≤Mj, j = 1, . . . p, the difference

of their products can be written as follows

M1M2 · · ·Mp −m1m2 · · ·mp =

p∑
k=1

(Mk −mk)
k−1∏
i=1

Mi

p∏
i=k+1

mi (3.A.5)

Then

N =
n−1∑
k=1

{(
xk + Fk(x,R)

)αk − (xk + Fk(x, aR)
)αk}

·
k−1∏
i=1

(
xi + Fi(x,R)

)αi n−1∏
i=k+1

(
xi + Fi(x, aR)

)αi
&

n−1∑
k=1

αk
(
Fk(x,R)− Fk(x, aR)

)(
xk + Fk(x,R)

)αk−1
k−1∏
i=1

(
xi + Fi(x, aR)

)αi n−1∏
i=k+1

xαii .

Now note that, letting Fk(x, t) = tfk(x, t) (see (3.1.5)) we get

Fk(x,R)− Fk(x, aR) = Rfk(x,R)− aRfk(x, aR)

≥ R(1− a)fk(x, aR) =
1− a
a

Fk(x, aR).

Then

N &
1− a
a

n−1∑
k=1

αkFk(x, aR)
(
xk+Fk(x, aR)

)αk−1
k−1∏
i=1

(
xi+Fi(x, aR)

)αin−1∏
i=k+1

xαii '
1− a
a

D,

again by (3.A.5) and (3.3.3). Thus N/D ≥ σ 1−a
a

. Therefore the proof of (3.2.3) is

concluded.
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To prove the remaining statements use again (3.A.5) and (3.3.3) to write

Λn(x,R) '
n−1∑
k=1

αkFk(x,R)
(
xk + Fk(x,R)

)αk−1
k−1∏
i=1

(
xi + Fi(x,R)

)αi n−1∏
i=k+1

xαii .

(3.A.6)

Now, for any k = 1, ..., n− 1

αkFk(x,R)(xk + Fk(x,R))αk−1

k−1∏
i=1

(xi + Fi(x,R))αi
n−1∏
i=k+1

xαii ≤

≤ αk

n−1∏
i=1

(xi + Fi(x,R))αi =
1

R
Fn(x,R).

Then the second statement follows. Incidentally, note that the explicit estimate

of Λn(x, r) given in (3.A.6), together with (3.1.7), shows the doubling property

Λn(x, 2r) ≤ CΛn(x, r).

Finally, in order to prove that Λn(x̂n, R)) ≥ Rdn−1 it is enough to estimate from

below the right hand side of (3.A.6) using xj + Fj(x,R) ≥ Fj(x,R) ≥ Fj(0, R),

j = 1, . . . , n

Λn(x,R) &
n−1∑
k=1

(
Fk(0, R)

)αk k−1∏
i=1

(
Fi(0, R)

)αi n−1∏
i=k+1

(
Fi(0, R)

)αi = CRdn−1.

This ends the proof. �

Proof of Lemma 3.5.5. There exists a continuous curve γ̃ joining the point

γx(tx) to the point γy(ty) and satisfying the condition diam(γ̃) ≤ d(γx(tx), γy(ty)).

Consider the sum path γ = −γy + γ̃ + γx, where −γy stands for a reverse parameter-

ization. We first show condition (3.5.1):

diam(γ) ≤ diam(γx) + diam(γ̃) + diam(γy)

≤ C2d(x, y) +
σ

2
C3d(x, y) + C2d(x, y) ≤

(σ
2
C3 + 2C2

)
d(x, y).

Now we check (3.5.2). Take a point γx(t) with t ≤ tx. Since γx is a John curve of

parameter σ we have

dist(γx(t), ∂Ω) ≥ σdiam(γx|[0,t]) ≥ σmin{diam(γx|[0,t]), diam
(
− γy + γ̃ + γx|[t,tx]

)
}.

The same argument works for a point γy(t), t ≤ ty. Finally, given a point w ∈ γ̃, by

the triangle inequality, (3.5.3) and (3.5.4) we get

dist(w, ∂Ω) ≥ dist(γx(tx), ∂Ω)− d(w, γx(tx)) ≥ σdiam(γx)−
σ

2
C3d(x, y)

≥ σdiam(γx)−
σ

2
diam(γx) =

σ

2
diam(γx).

In order to provide a lower bound for the last term it is enough to note that the hy-

potheses of the lemma ensure that diam(γx) ' diam(γ) through constants depending

on σ,C3 and C2. �





Bibliography

[A] L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces,
Calculus of variations, nonsmooth analysis and related topics, Set-Valued Anal. 10 (2002),
no. 2-3, 111–128.

[AT] L. Ambrosio, P. Tilli, Selected topics on “Analysis in Metric Spaces”, Scuola Normale
Superiore, Pisa 2000.

[ASC] L. Ambrosio, F. Serra Cassano (Editors), Lecture Notes on Analysis in Metric Spaces,
Scuola Normale Superiore, Pisa 2000.
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(1998), 67–97.

[GV1] N. Garofalo, D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet
problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann. 318
(2000), no. 3, 453–516.



BIBLIOGRAPHY 83

[GV2] N. Garofalo, D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type
equations on groups of Heisenberg type, Duke Math. J. 106 (2001), no. 3, 411–448.

[G1] A. V. Greshnov, Extension of differentiable functions beyond the boundary of the domain
on Carnot Groups, Siberian Advances in Mathematics 7 (1997), 20–62.

[G2] A. V. Greshnov, Uniform and NTA-domains on Carnot groups, (Russian) Sibirsk. Mat.
Zh. 42 (2001), no. 5, 1018–1035, ii.
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