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Introduction

Analysis in metric spaces is a field in strong development and touches different
areas of classical analysis. The theory of Sobolev spaces in metric spaces has been
deeply studied [100], a general theory of currents in metric spaces has been developed
[10], the theory of quasiconformal maps has been generalized to metric spaces with
controlled geometry [105], the analysis on fractals has been linked to that of metric
spaces (see [57] and [161]). The first books on the subject begin to appear (see [6]
and [104]), and the English edition [95] of [93] should also be mentioned along with
[160].

A special class of metric spaces are Carnot-Carathéodory spaces. Even before
the formal introduction of these spaces, the metric structures involved have been
used in the study of hypoelliptic equations, degenerate elliptic equations, singular
integrals and differentiability properties of functions, along the path [108], [28], [52],
[156], [64], [77], [151], [172], [164] (and many others). A corresponding theory of
Sobolev spaces in C-C spaces has been systematically worked out, including Poincaré
inequalities, compactness theorems, embedding and extension theorems. We refer to
chapter 4 and to the references in [100] for an up to date bibliography on the subject,
which is considerably wide.

The study of C-C spaces from the point of view of Geometric Measure Theory is
more recent, only few results are known and some more detail can here be explained.
The first step was perhaps the proof of the isoperimetric inequality in the Heisenberg
group [154]. The connection with geometric Sobolev embeddings was subsequently
used to prove more general isoperimetric inequalities for C-C metrics in [73] and [89]
(but also in [26] within the theory of Dirichlet forms). The notion of set of finite
perimeter introduced by Caccioppoli ([35]) and De Giorgi ([58], [59]) has a natural
formulation in C-C spaces (see [80] and [89]) and enjoys several nice properties that
were used in [89] to prove the existence of minimal surfaces. This formulation is
a special case of a general definition of function with bounded variation in metric
spaces (see [138]). The problem of finding a good notion of rectifiable sets even
in the simplest non Riemmannian C-C space, the Heisenberg group, has obtained
only partial answers. The classical definition, which looks for sets that are Lipschitz
images of open sets of Euclidean spaces, does not work [9] and different proposals
have been put forward in [82] and [155]. The one proposed in the former paper
seems to be the most promising because there can rely upon it a proof of a structure
theorem for sets of finite perimeter in the Heisenberg group which is a counterpart of
the Euclidean one. However, some fundamental results of Geometric Measure Theory
in the Euclidean setting are no longer true in C-C spaces. For instance, the lack of
a covering theorem of Besicovitch type in C-C spaces (see [120] and [158]) yields
the difficult task of differentiating a general Radon measure. Moreover, the metric
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6 INTRODUCTION

differentiability of Lipschitz functions may fail [116]. Nevertheless, some deep results
in this direction have been obtained in [7] for the perimeter measure in the general
setting of metric spaces. The study of surface measures in C-C spaces is far from
being complete. Perimeter and Minkowski content of a sufficiently regular surface
agree [148] and, again in the Heisenberg group, perimeter equals spherical Hausdorff
measure of the right dimension, at least on regular surfaces [82]. Finally, in the
setting of Carnot groups some area and coarea formulas have been proved in [175],
[173], [129], [130], and the study of the isoperimetric set in the Heisenberg group
has begun and [123].

C-C spaces, and specifically Carnot groups, are also of great interest in the theory
of quasiconformal maps in metric spaces. Several characterizations, properties and
examples of such maps in the Heisenberg group have been given in [119] and [120]
(see also [44]), the connection with quasilinear equations has been explored in [39],
and the problem of regularity in Carnot groups has been studied in [18].

In Differential Geometry C-C spaces are also known under the name of sub-Rie-
mannian manifolds (see for example [31], [165] and the book [21]). The study of
geodesics in these manifolds has a controversial history (see [143] and [124]) and
seems still to be at its beginning. In [137] Carnot groups have been proved to be the
natural tangent space to a sub-Riemannian manifold with equiregular distribution
(see also [20] and [134]). Finally, in spite of their geometric flavour, the papers [153]
and [94] have had a great influence in the analytic literature, so as to impose the
expressions “Carnot group” and “Carnot-Carathéodory space”.

It is now time to introduce the metric spaces we are talking about. Suppose that
a family X = (X1, ..., Xm) of vector fields is given in Rn and that every couple of
points x, y ∈ Rn can be connected by a Lipschitz curve γ : [0, T ] → Rn such that for
a.e. t ∈ [0, T ]

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) and
m∑

j=1

hj(t)
2 ≤ 1.

Such a curve will be called X−subunit. The function d : Rn×Rn → [0, +∞) defined
by

d(x, y) = inf{T ≥ 0 : there exists a X−subunit curve γ : [0, T ] → Rn

such that γ(0) = x and γ(T ) = y}
is a metric and the metric space (Rn, d) is called Carnot-Carathéodory space (C-C
space). Typically, a C-C space is not bi-Lipschitz equivalent, not even locally, to any
Euclidean space and it is not Ahlfors regular either, but in most cases it is locally of
homogeneous type. C-C spaces are length spaces.

We underline the fact that the manifold considered will always be Rn or an open
subset of Rn endowed with Lebesgue measure, and not a more general manifold.
Similarly, we shall always have in mind vector fields rather than distributions (in the
sense of Differential Geometry). Once the vector fields are fixed and connect the
space a uniquely defined C-C metric is given. Our approach will be metric rather
than differential geometric.

The general problem may be described as the study of the interplay between
the analytical objects which can be defined directly by the vector fields X1, ..., Xm

(such as anisotropic Sobolev spaces, functions of bounded variation, sets of finite
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perimeter and sub-elliptic differential operators) and the analytical objects that are
instead defined using the metric (such as Lipschitz functions, rectifiable curves and
geodesics, properties of domains, different integral kernels, Minkowski content and
Hausdorff measures). Within such a general research program this thesis deals with
distances, boundaries and surface measures. Such topics are deeply connected with
several problems of Geometric Measure Theory and of Functional Analysis in metric
spaces.

The first item appearing in the title of the thesis is “distances”. The C-C distance
dK from a closed set K (typically a surface or a point) is a tool which must have nice
intrinsic properties to be useful. Motivated by the application of an intrinsic coarea
formula in C-C spaces (see chapter 5) we focus our attention on the eikonal equation
|XdK | = 1 which is studied in detail in chapter 2. The problem of “boundaries”, the
second item, is very delicate. Here comes into play a feature of C-C spaces that does
not appear in the Euclidean case: a boundary can be characteristic at some point,
i.e. all the vector fields X1, ..., Xm are tangent to the boundary at that point. If this
happens then the boundary and the open set it encloses are bad from all points of
view. Roughly speaking, in order to be regular a domain must have “flat” boundary
at characteristic points: this is the philosophy which inspired the regularity theorems
of chapter 3, theorems that have several applications to global Sobolev-Poincaré and
isoperimetric inequalities, embedding and extension of functions, regularity up to the
boundary of solutions of hypoelliptic equations. “Surface measures” is the third item.
Such measures are perimeter, Minkowski content and Hausdorff measures of suitable
dimension. Our results mainly deal with the first two and in particular we shall prove
that in a quite general C-C space perimeter and Minkowski content are the same.

The last chapter of the thesis describes an application to the Calculus of Variations
that will be discussed later. This chapter can be seen as a final summary of the entire
work: each of the previous chapters contains at least one theorem that here is needed
and used.

Not all the results the reader will find in the thesis are due to the author. The
original contributions are now going to be illustrated. All results in chapter 3 along
with Theorem 1.6.10 are joint work with D. Morbidelli of University of Bologna and
refer to the papers [146] and [147]. All results in chapter 6, in sections 1 and 2 of
chapter 5, in sections 3 and 6 of chapter 2 are joint work with F. Serra Cassano, my
thesis advisor, and refer to the papers [148] and [149]. Theorem 1.3.5 in chapter 1
and sections 4 and 5 in chapter 2 are due to the author and the results there proved
are mostly unpublished.

The basic properties of C-C spaces are studied in chapter 1. We introduce dif-
ferent definitions of the metric that turn out to be equal, we prove the Riemannian
approximation theorem, we study rectifiable curves and geodesics, we prove Chow
theorem for systems of vector fields satisfying the Hörmander condition and we state
the structure theorem of C-C balls of [151]. Then we introduce the main examples
of C-C spaces that will be object of study: Carnot groups, the Heisenberg group
and C-C spaces of Grushin type. Most of the results proved in this chapter are well
known, but we would like to mention two theorems that seem to be new.

In section 3 we show how to compute the metric derivative of Lipschitz curves in
C-C spaces. A Lipschitz curve γ : [0, 1] → (Rn, d) is differentiable almost everywhere
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and its derivative lies in the horizontal space, i.e. γ̇ = A(γ)h almost everywhere,
where A is the (n × m)−matrix whose columns are the coefficients of the vector
fields X1, ..., Xm, and h = (h1, ..., hm) is the vector of canonical coordinates of γ. In
Theorem 1.3.5 we prove that

lim
δ→0

d(γ(t + δ), γ(t))

|δ| = |h(t)|

for a.e. t ∈ [0, 1], thus obtaining the representation formula for the length of γ

Var(γ) =

∫ 1

0

|h(t)| dt,

where Var(γ) is the variation of γ with respect to the C-C distance d.
In section 6 we give a variant of the structure theorem of C-C balls of [151]

which is very useful in the study of problems involving non characteristic surfaces
(see Theorem 1.6.10). This theorem will be used in chapter 3 to show that domains
with non characteristic boundary are uniform and to prove a trace theorem on non
characteristic boundaries.

Chapter 2 deals with differentiability of Lipschitz functions in C-C spaces and
eikonal equations for C-C distance functions. The differentiability of Lipschitz func-
tions in metric spaces is a topic that seems to be arousing an increasing interest (see
for example [48]). There are two main results which are known in C-C spaces. Pansu
differentiability Theorem established in [153] states that any Lipschitz map between
two Carnot groups has almost everywhere a differential which is a homogeneous ho-
momorphism (see Theorem 2.1.6). On the other hand, if we consider only real valued
functions, but now in a general C-C space, then every Lipschitz function has weak
derivatives along the vector fields inducing the metric and these are L∞ functions.
This result has been proved in [81] and then in [90] (see Theorem 2.2.1). We prove
a differentiability Theorem of intermediate character: we consider real valued func-
tions, we require more regularity on the C-C space but we get a strong differentiability
result. More precisely, if (Rn, d, | · |) is a doubling C-C space induced by the vector
fields X1, ..., Xm which are “of Carnot type” (see (2.3.10)) and f : (Rn, d) → R is a
Lipschitz map then for almost every x ∈ Rn there exists a linear map T : Rn → R
such that

lim
y→x

f(y)− f(x)− T (y − x)

d(x, y)
= 0,

and this linear map actually is T = (X1f(x), ..., Xmf(x), 0, ..., 0) (see Theorem 2.3.3).
In order to prove the theorem we need a weak form of the Morrey inequality (see
(2.3.12)) which holds in very general situations, for example if the vector fields are of
Hörmander type and the C-C space is Ahlfors regular in a neighborhood of almost
every point.

In the second part of chapter 2 we study the eikonal equation for C-C metrics. If
K is a closed set in a C-C space (Rn, d) the distance from K is the function

dK(x) = inf{d(x, y) : y ∈ K}.
Since dK is 1−Lipschitz then |XdK(x)| ≤ 1 for a.e. x ∈ Rn. The problem is to prove
that

|XdK(x)| = 1 for a.e. x ∈ Rn \K.
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In Theorem 2.6.1 we prove this eikonal equation essentially whenever the differentia-
tion Theorem 2.3.3 is available.

In the special case of the Heisenberg group if K is one point we get a stronger
result. In Theorem 2.4.1 we show that the Heisenberg distance from the origin is of
class C∞ outside the center of the group and that here the eikonal equation holds
everywhere. Moreover, if K is a compact subset of a surface of class C1 having the
uniform ball property (see Definition 2.5.3) then the distance from the surface is of
class C1 and again the eikonal equation holds everywhere in a neighborhood of K (see
Theorem 2.5.8). This result relies upon a kind of Gauss Lemma in the Heisenberg
group which can be formulated as follows. If a hypersurface S of class C1 having
the uniform ball property is given in the Heisenberg group and its local equation is
f(z, t) = 0, then the geodesic flow starting from S having horizontal velocity

ν(z, t) =
∇Hf(z, t)

|∇Hf(z, t)|

realizes the distance from the surface (see Lemma 2.5.6). Here ∇Hf is the Heisenberg
gradient of f and ν(z, t) is the normalized projection onto the horizontal space of the
Euclidean normal to the surface at (z, t) (see chapter 2 section 5).

Chapter 3 is entirely devoted to regular domains in C-C spaces and to trace
theorems. The domains studied are John and uniform domains (see Definitions 3.1.1
and 3.1.10). John domains, which in the Euclidean setting have been introduced by
F. John [112], support the global Sobolev-Poincaré inequality (see [78], [89], [100]
for our metric setting), the Rellich-Kondrachov compactness theorem (see [89] and
[100]) and the relative isoperimetric inequality (see [78] and [89]). These results will
be discussed in chapter 4. Uniform domains (also known as (ε, δ)−domains) are a
sub-class of John domains and have been introduced by Martio and Sarvas [136] and
Jones [113]. In particular, in [113] an extension theorem for Sobolev functions in
uniform domains was proved, theorem generalized in [174] and [90] to the setting of
Carnot–Carathéodory spaces. In connection with the study of harmonic measures for
sub-elliptic equations a class of regular domains (ϕ−Harnack domains) has also been
introduced in [65] and [66].

In spite of all such results only few examples of John and uniform domains are
known in Carnot-Carathéodory spaces (to our knowledge, at least), and precisely:

(i) Carnot-Carathéodory balls are John domains. This is a general fact which
holds in any metric space with geodesics (see [100, Corollary 9.5] and see
also [74]).

(ii) Carnot-Carathéodory balls in groups of step 2 are uniform domains (see [92]
and also [174] for the special case of the Heisenberg group).

(iii) In groups of step 2 every connected, bounded open set of class C1,1 having
cylindrical symmetry in a neighborhood of each characteristic point (see [42]
for precise definitions) is a non tangentially accessible (nta) domain (see [42]
and [43]). This property is stronger than the uniform one.

(iv) In the Heisenberg group global quasiconformal maps preserve the uniform
property [44].

We prove that:
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1) If d is the Carnot-Carathéodory metric induced on Rn by a system of Hörman-
der vector fields and Ω ⊂ Rn is a connected, bounded open set of class C∞

without characteristic points on its boundary then Ω is a uniform domain in
(Rn, d) (see Theorem 3.2.1).

2) In the setting of Carnot-Carathéodory spaces of Grushin type we introduce
a class of admissible domains which are uniform (see Definition 3.3.1 and
Theorem 3.3.3).

3) In any group of step 2 a connected bounded open set with boundary of class
C1,1 is a uniform domain, and actually a nta−domain (see Theorem 3.4.2).

4) In a group of step 3 we introduce a class of admissible domains (see Definition
3.5.2) that are John domains (see Theorem 3.5.5). We also produce examples
of domains belonging to this class (see Example 3.5.6).

Result 3) proves a conjecture stated in [89], [42] and [43] and is sharp in the
sense that in groups of step 2 there are open sets of class C1,α for any α ∈ (0, 1)
which are not John domains (see Example 4.1.9). Result 2) is sharp, too. Moreover
we show that the Grushin ball in the plane is not uniform. In groups of step 3 the
C∞ regularity does not ensure metric regularity. In Section 5 we give a sufficient
condition for the John property expressed in terms of an inequality involving the
local equation of the boundary and its derivatives along the horizontal vector fields.
Precisely, consider two vector fields X1 and X2 in R4 generating a homogeneous group
of step 3 with commutators [X1, X2] = X3 and [X1, X3] = [X2, X3] = X4 (all other
commutators vanish). Let Ω = {Φ > 0} be a connected, bounded open set with
boundary ∂Ω = {Φ = 0} where Φ is a function of class C2, we require that for all
points in ∂Ω

|X2
1Φ|+ |X2

2Φ|+ |(X1X2 + X2X1)Φ| ≤ k(|X1Φ|1/2 + |X2Φ|1/2 + |X3Φ|),
where k > 0 is a uniform constant (see Definition 3.5.2). This condition can be
reformulated for the parametric representation of the surface (see formula (3.5.96))
and quantitatively describes the flatness behavior of the surface near characteristic
points.

The second group of results of chapter 3 deals with the trace problem for Sobolev
functions. Let us recall the following classical result of [87]. If 1 < p < +∞ and
Ω ⊂ Rn is a bounded open set with regular boundary ∂Ω, then there exists a constant
C > 0 such that for any u ∈ W1,p(Ω)

∫

∂Ω×∂Ω

|u(x)− u(y)|p
|x− y|n−1+ps

dHn−1(x)dHn−1(y) ≤ C

∫

Ω

|∇u(x)|p dx,

where s = 1 − 1/p is the fractional order of differentiability of the trace u = u|∂Ω,
and Hn−1 is the (n − 1)−Hausdorff measure in Rn. The problem of finding similar
estimates for vector fields has deserved some attention in the last years (see [71], [25],
[13], [56]) but even the choice of the fractional semi-norm to use in the left hand side
of the above inequality is not clear. We prove trace estimates of the following type.
Let Ω ⊂ Rn be a bounded open set with boundary ∂Ω of class C1. There exists C > 0
such that ∫

∂Ω×∂Ω

|u(x)− u(y)|p dµ(x)dµ(y)

d(x, y)psµ(B(x, d(x, y)))
≤ C

∫

Ω

|Xu(x)|p dx (∗)
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for all u ∈ C1(Ω) ∩ C(Ω). Here d is the C-C metric induced by the vector fields
X = (X1, ..., Xm), B is a C-C ball and µ is the surface measure µ = |Xn| Hn−1,
n(x) being the unit normal to ∂Ω at x. The measure µ, which is exactly the perimeter
measure of Ω (see chapter 5), seems to take correctly into account characteristic points
in ∂Ω.

The main problem with (∗) is, again, the regularity of the boundary ∂Ω. If ∂Ω
is smooth and does not contain characteristic points then the trace estimate holds
for a general system of Hörmander vector fields (see Theorem 3.6.4). The proof is
based on a technique inspired by the original paper of Gagliardo [87] which relies
upon the possibility of connecting points on the boundary ∂Ω by means of sub-unit
curves lying in Ω. When the boundary contains characteristic points the analysis is
much more difficult. But in the setting of the Grushin plane we introduce a class of
admissible domains of class C1, which is the same of 2) above (see Definition 3.7.3),
that are “flat” at characteristic points in such a way that the trace estimates hold
(see Theorem 3.7.5). By a non trivial counterexample this result will be shown to be
sharp in the sense that there exist domains of class C1 which are not admissible for
which the theorem fails (see Proposition 3.7.6).

In the remarkable paper [56], assuming some regularity on the measure µ and the
uniform property for Ω, the authors prove general trace theorems of the form (∗) for
Hörmander vector fields with applications to Carnot groups of step 2. Our results on
uniform domains proved in section 4 could help to give a very satisfactory answer to
the trace theorem in this class of groups.

Chapter 4 is a brief survey on the basic properties of anisotropic Sobolev spaces
and of functions with bounded X−variation. Here all results are well known, possibly
except the counterexample to the Sobolev-Poincaré inequality in the Heisenberg group
in Example 4.1.9.

Chapter 5 is entirely devoted to the study of surface measures in C-C spaces.
A first natural measure that can be introduced is the perimeter variational measure
induced by the vector fields X = (X1, ..., Xm). If ϕ ∈ C1(Rn;Rm) its X−divergence
is

divX(ϕ) = −
m∑

j=1

X∗
j ϕj

where X∗
j is the operator formally adjoint to Xj in L2(Rn). Then, if E ⊂ Rn is a

measurable set, its X−perimeter in an open set Ω ⊂ Rn is

|∂E|X(Ω) = sup

{∫

E

divX(ϕ) dx : ϕ ∈ C1
0(Ω;Rm), ||ϕ||∞ ≤ 1

}
.

Using measures of this type to integrate over the boundary of the level sets of a
function, a general coarea formula in C-C spaces can be obtained (see Theorem 5.1.6).

Let now (Rn, d) be the C-C space induced by the vector fields X and assume d
continuous. If K is a closed set (for instance a hypersurface) and r > 0, its r−tubular
neighborhood is

Ir(K) = {x ∈ Rn : min
y∈K

d(x, y) < r},
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and the Minkowski content of K in an open set Ω is, if the limit exists

M(K)(Ω) = lim
r↓0

|Ir(K) ∩ Ω|
2r

.

Our main Theorem states that if K = ∂E and E is an open set of class C2 such that
Hn−1(∂E ∩ ∂Ω) = 0 then

M(∂E)(Ω) = |∂E|X(Ω).

The proof is based on a Riemannian approximation technique (see Theorem 5.2.1).
Results concerning perimeter and Hausdorff measures are much less general and

are mainly confined to the Heisenberg group. Here, however, there is a nice result to
which, unfortunately, the author did not give any contribution.

The Heisenberg group Hn ≡ R2n+1 endowed with its C-C metric has a well dis-
tinguished metric and homogeneous dimension that is Q = 2n + 2. Therefore, the
natural dimension of a hypersurface is Q − 1. The (Q − 1)−dimensional spherical
Hausdorff measure of a set K ⊂ R2n+1 is

SQ−1
d (K) = γ(Q− 1) sup

δ>0
inf

{ +∞∑
j=1

(diam(Bj))
Q−1 : K ⊂

+∞⋃
j=1

Bj, diam(Bj) ≤ δ
}

,

where Bj are balls in the C-C Heisenberg metric d, and γ(Q − 1) is a suitable nor-
malization constant.

If K = ∂E and E is an open set of class C1 and Ω is an open set then (see
Corollary 5.3.12)

|∂E|X(Ω) = SQ−1
d (∂E ∩ Ω),

where here X denotes the system of Heisenberg vector fields. This result was first
proved in [82] for a metric equivalent to the C-C distance and then in [131] for the
C-C distance itself. The proof relies on a structure theorem for sets of finite perimeter
and on a differentiation of the perimeter measure made possible by the asymptotic
doubling estimates for perimeter established in [7]. A role is also played by the fact

that the set of characteristic points in a surface of class C1 is SQ−1
d −negligible, fact

proved in [17].
We finally come to chapter 6. Here the application of C-C spaces techniques to

the study of the Γ−convergence of functionals involving degenerate energies plays a
central role. Let Ω ⊂ Rn be a regular bounded open set and let A(x) be a non negative
matrix such that A(x) = C(x)C(x)T for all x ∈ Ω and for some (n ×m)−matrix C
with Lipschitz entries: the rows of C can be thought of as a system X = (X1, ..., Xm)
of vector fields. Fix 0 < V < |Ω| and for any ε > 0 define the functional Gε : L1(Ω) →
[0, +∞]

Gε(u) =





ε

∫

Ω

〈ADu, Du〉 dx +
1

ε

∫

Ω

W (u) dx if u ∈ C1(Ω), u ≥ 0 and

∫

Ω

u dv = V,

+∞ otherwise.

where W (u) = u2(1− u)2. In [139] Modica proved that when A = In is the identity
matrix the functionals Gε Γ−converge as ε ↓ 0 to the perimeter functional. After-
wards, many other results of the same type have been proved (we refer to the intro-
duction of chapter 6 for more detailed references and for the physical interpretation
of the problem), but all assuming some kind of ellipticity or coercivity.
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The perimeter |∂E|A(Ω) with respect to a non negative matrix can be defined (see
the definitions (4.2.15)−(4.2.16) in chapter 4) in such a way that it coincides with
|∂E|X(Ω) whenever A = CCT as above. Consider the functional G : L1(Ω) → [0, +∞]

G(u) =

{
|∂E|A(Ω) if u = χE and |E| = V,

+∞ otherwise.

The main theorem proved in chapter 6 states that the (relaxed of the) functionals Gε

Γ(L1(Ω))−converge to the functional G (see Theorem 6.3.3). The proof is based on
a Riemannian approximation of the vector fields X, which can be chosen monotonic
in a precise sense. Moreover, many examples can be found where each functional Gε

has, after relaxation, minimum and the family of such minima is compact in L1(Ω)
relatively to the parameter ε > 0.
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Basic notation

Rn n−dimensional Euclidean space
Hn n−Heisenberg group
G a Carnot group
Ω open set in Rn

d C-C metric induced by a given family of vector fields
|x| Euclidean norm of x ∈ Rn

‖x‖ homogeneous norm of x ∈ Rn in a Carnot group
B(x, r) open C-C ball centered at x ∈ Rn with radius r ≥ 0
U(x, r) open Euclidean ball centered at x ∈ Rn with radius r ≥ 0
Box(x, r) Ball−Box in a Carnot group or in a Grushin space

centered at x ∈ Rn with radius r ≥ 0
diam(K) C-C diameter of a set K ⊂ Rn

dK(x) dK(x) ≡ dist(x; K) C-C distance of x from a set K ⊂ Rn

Var(γ) total variation of a rectifiable curve in a C-C space
lengthp(γ) p−length of an admissible curve in a C-C space
∇ Euclidean gradient
∇H Heisenberg gradient
X gradient with respect to the vector fields X1, ..., Xm

A (n×m)−matrix of the vector fields X1, ..., Xm disposed in columns
C (m× n)−matrix of the vector fields X1, ..., Xm disposed in rows
div divergence
divX X−divergence
C1

0(Ω) continuously differentiable functions with support compactly contained in Ω
Lp(Ω) p−summable functions in Ω, 1 ≤ p ≤ +∞
W1,p(Ω) space of classical Sobolev functions in Ω
H1(Ω) W1,2(Ω)
BV(Ω) space of functions with bounded variation in Ω

W1,p
X (Ω) anisotropic Sobolev space associated with X

H1
X(Ω) W1,2

X (Ω)
BVX(Ω) space of functions with bounded X−variation in Ω
BVA(Ω) space of functions with bounded variation in Ω

with respect to a non negative matrix A
Lip(Ω, d) real valued Lipschitz functions from the C-C space (Ω, d)
Lip(Ω) real valued Lipschitz functions (Euclidean metric)
|Xf | X−variation measure of a L1

loc function f

|∂E|X X−perimeter measure of a measurable set E ⊂ Rn

|Df |A total variation of a L1
loc function f with respect to a non negative matrix A

15



16 BASIC NOTATION

|∂E|A perimeter of a measurable set E with respect to a non negative matrix A,
not to be confused with |∂E|X

M(K)(Ω) C-C Minkowski content of a compact set K ⊂ Rn in an open set Ω
Hk k−dimensional Hausdorff measure in Rn in the Euclidean metric
Hk

d k−dimensional Hausdorff measure in Rn in a specified C-C metric d
Sk

d k−dimensional spherical Hausdorff measure in Rn

in a specified C-C metric d
‖A‖ operator norm of a matrix A
|E| Lebesgue measure of a measurable set E ⊂ Rn

〈x, y〉 standard Euclidean inner product of x, y ∈ Rn

x · y x · y ≡ P (x, y) ≡ x + y + Q(x, y), product of x, y ∈ Rn

with respect to a Carnot group structure
δλ dilations in a Carnot group
⊂ contained
b compactly contained
↪→ embedding
µ A measure µ restricted to the set A
ej (0, ..., 0, 1, 0, ..., 0) with 1 in the j−th component
u . v u ≤ Cv with C > 0 absolute constant
u ' v u . v and v . u
spt(ϕ) support of the function ϕ
a.e. almost everywhere, always referred to Lebesgue measure



CHAPTER 1

Introduction to Carnot-Carathéodory spaces

1. Carnot-Carathéodory metrics

Let Ω ⊂ Rn be an open set and let X = (X1, ..., Xm) be a family a vector fields
with locally Lipschitz continuous coefficients on Ω. Vector fields will be written and
thought of indifferently as vectors and differential operators

Xj(x) = (a1j(x), ..., anj(x)) =
n∑

i=1

aij(x)∂i, j = 1, ..., m,

where aij ∈ Liploc(Ω), j = 1, ...,m and i = 1, ..., n. We shall write the coefficients aij

in the n×m matrix A = col [X1, ..., Xm], i.e.

A(x) =




a11(x) . . . a1m(x)
...

. . .
...

an1(x) . . . anm(x)


 . (1.1.1)

For every x ∈ Ω the vector fields span the vector space span{X1(x), ..., Xm(x)} which
has dimension less or equal than min{m,n}.

Definition 1.1.1. A Lipschitz continuous curve γ : [0, T ] → Ω, T ≥ 0, is
X−admissible if there exists a vector of measurable functions h = (h1, ..., hm) :
[0, T ] → Rm such that

(i) γ̇(t) = A(γ(t))h(t) =
∑m

j=1 hj(t)Xj(γ(t)) for a.e. t ∈ [0, T ];

(ii) |h| ∈ L∞(0, T ).

The curve γ is X−subunit, if it is X−admissible and ||h||∞ ≤ 1.

Let γ be a Lipschitz curve such that for a.e. t ∈ [0, T ] there exists h(t) ∈ Rm

such that γ̇(t) = A(γ(t))h(t) and |h(t)| ≤ M for some constant M > 0. By mea-
surable selection theorems it follows that the function t 7→ h(t) can be assumed to
be measurable (see [106] and [46]). In general, such function is not unique. But if
h(t) is required to be orthogonal to Ker(A(γ(t))) for a.e. t ∈ [0, T ] – or equivalently
h(t) ∈ Im(AT (γ(t))) – then h is also uniquely determined. We shall refer to such a h
as to the vector of canonical coordinates of γ with respect to X1, ..., Xm.

Introduce the Hamilton function H : Ω× Rn → R

H(x, ξ) =
m∑

j=1

〈Xj(x), ξ〉2 = 〈A(x)A(x)T ξ, ξ〉. (1.1.2)

The matrix B(x) = A(x)A(x)T is semidefinite positive and with locally Lipschitz
entries. The following proposition shows that subunit curves can be defined for a

17
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generic semidefinite positive quadratic form B on Ω even not admitting a factorization
B = AAT . This was the original definition of subunit curve in [64].

Proposition 1.1.2. A Lipschitz continuous curve γ : [0, T ] → Ω is X−subunit if
and only if

〈γ̇(t), ξ〉2 ≤
m∑

j=1

〈Xj(γ(t)), ξ〉2 (1.1.3)

for all ξ ∈ Rn, and for a.e. t ∈ [0, T ].

Proof. Let γ be a subunit curve and fix ξ ∈ Rn. By Schwarz inequality

〈γ̇(t), ξ〉2 =
( m∑

j=1

hj(t)〈Xj(γ(t)), ξ〉
)2

≤
m∑

j=1

〈Xj(γ(t)), ξ〉2

for a.e. t ∈ [0, T ].
Conversely, let t ∈ [0, T ] be a point of differentiability of γ and write

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) +
n∑

i=1

bi(t)∂i

for suitable vectors of coefficients h(t) = (h1(t), ..., hm(t)) ∈ Rm and b(t) = (b1(t), ...,
bn(t)) ∈ Rn. Choose ξ ∈ Rn such that 〈Xj(γ(t)), ξ〉 = 0 for all j = 1, ...,m. By (1.1.3)

〈b(t), ξ〉2 = 〈γ̇(t), ξ〉2 ≤
m∑

j=1

〈Xj(γ(t)), ξ〉2 = 0,

and thus 〈b(t), ξ〉 = 0. This means that γ̇(t) ∈ span{X1(γ(t)), ..., Xm(γ(t))}. We can
write γ̇(t) = A(γ(t))h(t) and assume that h(t) = A(γ(t))T ξ for some ξ = ξ(t) ∈ Rn.
Thus

|h(t)|4 = 〈h(t),A(γ(t))T ξ〉2 = 〈A(γ(t))h(t), ξ〉2

= 〈γ̇(t), ξ〉2 ≤
m∑

j=1

〈Xj(γ(t)), ξ〉2 = |A(γ(t))T ξ|2 = |h(t)|2,

and this proves that |h(t)|2 ≤ 1. ¤

We introduce the function that will be the metric object of our study. Define
d : Ω× Ω → [0, +∞] by

d(x, y) = inf{T ≥ 0 : there exists a X−subunit path γ : [0, T ] → Ω

such that γ(0) = x and γ(T ) = y}. (1.1.4)

If the above set is empty put d(x, y) = +∞. If x ∈ Ω is a fixed point the set of
the points y ∈ Ω such that d(x, y) < +∞ is the X−reachable set from x (or orbit
of x). We are interested in the case when orbits are equal to Ω. In general, if
X1, ...., Xm ∈ C∞(Ω;Rn) orbits are C∞ submanifolds of Ω [168].

Our next task is to prove that if d(x, y) < +∞ for all x, y ∈ Ω then d is a metric
in Ω. We need the following propositions. If A is a (n ×m)−matrix its norm is by
definition

‖A‖ := sup
h∈Rm,|h|≤1

|Ah|. (1.1.5)
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Lemma 1.1.3. Let x0 ∈ Ω and r > 0 be such that U = U(x0, r) = {x ∈ Rn :
|x−x0| < r} b Ω. Let M = supx∈U ‖A(x)‖ and γ : [0, T ] → Ω be a X−subunit curve
such that γ(0) = x0. If MT < r then γ(t) ∈ U for all t ∈ [0, T ].

Proof. Assume by contradiction that

t̄ := inf{t ∈ [0, T ] : γ(t) /∈ U} ≤ T.

Then

|γ(t̄)− x0| =
∣∣∣
∫ t̄

0

γ̇(τ) dτ
∣∣∣ =

∣∣∣
∫ t̄

0

A(γ(τ))h(τ) dτ
∣∣∣

≤
∫ t̄

0

|A(γ(τ))h(τ)| dτ ≤
∫ t̄

0

‖A(γ(τ))‖ |h(τ)| dτ

≤ t̄M ≤ TM < r,

and hence γ(t̄) ∈ U which is open. This is in contradiction with the definition of
t̄. ¤

Proposition 1.1.4. Let K b Ω be a compact set. There exists a constant β > 0
such that

d(x, y) ≥ β|x− y| (1.1.6)

for all x, y ∈ K.

Proof. Let ε > 0 and Kε = {x ∈ Ω : miny∈K |x − y| ≤ ε}. If ε is small enough
then Kε b Ω. Let M = supx∈Kε

‖A(x)‖, take x, y ∈ K and set r = min{ε, |x − y|}.
Let γ : [0, T ] → Ω be a X−subunit curve such that γ(0) = x and γ(T ) = y. Since
|γ(T )− γ(0)| = |x− y| ≥ r, by Lemma 1.1.3 we have TM ≥ r. If r = ε then

T ≥ ε

M
≥ ε

MD
|x− y|,

where D := supx,y∈K |x − y|. If r = |x − y| then T ≥ |x − y|/M . Since the subunit
curve γ is arbitrary, by the definition of d we get

d(x, y) ≥ min
{ 1

M
,

ε

MD

}
|x− y|. (1.1.7)

¤
Proposition 1.1.5. If d(x, y) < +∞ for all x, y ∈ Ω then (Ω, d) is a metric

space.

Proof. The symmetry property d(x, y) = d(y, x) follows from the fact that if
γ : [0, T ] → Ω is X−subunit then γ̄(t) = γ(T − t) is X−subunit too.

Moreover, if γ1 : [0, T1] → Ω and γ2 : [0, T2] → Ω are subunit curves such that
γ1(0) = x, γ1(T1) = z, γ2(0) = z and γ2(T2) = y then

γ(t) =

{
γ1(t) if t ∈ [0, T1]
γ2(t− T1) if t ∈ [T1, T1 + T2],

is a X−subunit curve such that γ(0) = x and γ(T1 + T2) = y. Taking the infimum
one finds the triangle inequality d(x, y) ≤ d(x, z) + d(z, y).

Finally, d(x, x) = 0 and if x 6= y by (1.1.6) it follows d(x, y) > 0. ¤
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The metric space (Ω, d) is called Carnot-Carathéodory (C-C) space. If x ∈ Ω,
r ≥ 0 and K ⊂ Ω we shall write

B(x, r) = {y ∈ Ω : d(x, y) < r} and diam(K) := sup
x,y∈K

d(x, y).

B(x, r) is the C-C ball centered at x and with radius r. If the vector fields X define
a C∞ distribution on Ω (or more generally on a manifold) which by iterated brackets
generates the tangent space at every point of Ω the resulting C-C space is also called
sub-Riemmaninan space (see [165] and [21]).

Inequality (1.1.6) shows that the Euclidean metric is continuous with respect to
the C-C metric d. The converse is in general not true. For example, consider in R2

the vector fields X1 = ∂x and X2 = a(x)∂y, where a ∈ Lip(R) is such that a(x) = 0
if x ≤ 0 and a(x) > 0 if x > 0. Any couple of points in R2 can be connected by
piecewise integral curves of X1 and X2, which therefore induce on R2 a finite C-C
metric d. But if x1 < 0

lim
y1→0

d((x1, y1), (x1, 0)) = 2|x1| 6= 0.

We now turn to a different definition of d which is useful in the study of the
geodesic problem. Let γ : [0, 1] → Ω be an X−admissible curve with canonical vector
of coordinates h ∈ L∞(0, 1)m. For 1 ≤ p ≤ +∞ define

lengthp(γ) = ||h||p =





( ∫ 1

0

|h(t)|p dt
)1/p

if 1 ≤ p < +∞
ess supt∈[0,1]|h(t)| if p = +∞,

(1.1.8)

and

dp(x, y) = inf{ lengthp(γ) : γ : [0, 1] → Ω is an X − admissible curve

such that γ(0) = x and γ(1) = y}. (1.1.9)

If the above set is empty put dp(x, y) = +∞.

Theorem 1.1.6. For all x, y ∈ Ω and for all 1 ≤ p ≤ +∞ the equality d(x, y) =
dp(x, y) holds.

Proof. By Hölder inequality ||h||1 ≤ ||h||p ≤ ||h||∞ for any h ∈ L∞(0, 1)m and for
all 1 ≤ p ≤ ∞. This yields d1(x, y) ≤ dp(x, y) ≤ d∞(x, y).

We show that d(x, y) = d∞(x, y). Let γ : [0, T ] → Ω be a X−subunit curve such
that γ(0) = x, γ(T ) = y and γ̇(t) = A(γ(t))h(t) for a.e. t ∈ [0, T ] with ||h||∞ ≤ 1.
The reparametrized curve γ̃ : [0, 1] → Ω defined by γ̃(t) = γ(Tt) is X−admissible

and ˙̃γ(t) = A(γ̃(t))h̃(t) for a.e. t ∈ [0, 1], where h̃(t) = Th(t). Because ||h̃||∞ ≤ T and
γ is arbitrary we get d∞(x, y) ≤ d(x, y). The converse inequality d(x, y) ≤ d∞(x, y)
can be proved in the same way.

If we show that d∞(x, y) ≤ d1(x, y) the theorem is proved. Let γ : [0, 1] → Ω be
an X−admissible curve such that γ(0) = x, γ(1) = y and γ̇(t) = A(γ(t))h(t). We
shall construct a new curve γ̃ such that length∞(γ̃) ≤ ||h||1. We may assume ||h||1 > 0.
Let ϕ : [0, 1] → [0, 1] be the absolutely continuous function defined by

ϕ(t) =
1

||h||1

∫ t

0

|h(τ)|dτ, t ∈ [0, 1].
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The function ϕ is non decreasing and its “inverse” function is ψ : [0, 1] → [0, 1]
defined by ψ(s) = inf{t ∈ [0, 1] : ϕ(t) = s}, which - being monotonic - is differen-
tiable for a.e. s ∈ [0, 1]. We need to differentiate the identity s = ϕ(ψ(s)) by the
chain rule. Let B = {t ∈ [0, 1] : ϕ is not differentiable at t} and D = {s ∈ [0, 1] :
ϕ is not differentiable at ψ(s)}. Since ϕ is absolutely continuous it transforms set
with zero measure into set with zero measure, but |B| = 0 and as a consequence
|ϕ(B)| = 0. From D ⊂ ϕ(B) it follows that |D| = 0. This proves that for a.e.

s ∈ [0, 1] we can write ϕ̇(ψ(s))ψ̇(s) = 1.
Define γ̃ : [0, 1] → Ω by γ̃(s) = γ(ψ(s)) for s ∈ [0, 1]. Let E = {s ∈ [0, 1] : γ is

not differentiable at ψ(s)}. Since γ is a Lipschitz curve, arguing as above we deduce
that |E| = 0. As a consequence for a.e. s ∈ [0, 1] we can compute

˙̃γ(s) = γ̇(ψ(s))ψ̇(s) = A(γ̃(s))h(ψ(s))ψ̇(s).

Notice that if |h(ψ(s))| 6= 0 then

ψ̇(s) =
1

ϕ̇(ψ(s))
=

||h||1
|h(ψ(s))| .

If for j = 1, ..., m we define

h̃j(s) =

{
||h||1 hj(ψ(s))

|h(ψ(s))| if |h(ψ(s))| 6= 0

0 if |h(ψ(s))| = 0,

then ˙̃γ(s) = A(γ̃(s))h̃(s) for a.e. s ∈ [0, 1]. As h̃ ∈ L∞(0, 1)m, then γ̃ is X−admissible

and finally ||h̃||∞ ≤ ||h||1 = length1(γ). ¤

2. Riemannian approximation of the C-C distance

In this section we show that C-C spaces are “limit” of Riemannian manifolds (see
[93] and [70]). Let d be the C-C metric induced on Rn by the family of vector fields
X1, ..., Xm ∈ Liploc(Rn;Rn).

Let J ∈ C∞
0 (Rn) be such that J(x) ≥ 0 for all x ∈ Rn, spt(J) ⊂ {x ∈ Rn : |x| < 1}

and
∫
Rn J(x) dx = 1, and introduce the mollifiers Jε(x) = 1

εn J(x/ε), ε > 0. Define

Xε
j (x) = Xj ∗ Jε(x) =

∫

Rn

Jε(x− y)Xj(y) dy, j = 1, ..., m.

Let Ω0 ⊂ Rn be a bounded open set, define

M := max
j=1,...,m

sup
x∈Ω0

|Xj(x)|, (1.2.10)

and let L > 0 be a constant such that

|Xj(x)−Xj(y)| ≤ L|x− y| for all x, y ∈ Ω0, j = 1, ..., m. (1.2.11)

Take Ω b Ω0 and 0 < ε < minx∈∂Ω, y∈∂Ω0 |x− y|. If x ∈ Ω

|Xε
j (x)−Xj(x)| =

∣∣∣
∫

Rn

(Xj(y)−Xj(x))Jε(y) dy
∣∣∣ ≤

∫

Rn

|Xj(y)−Xj(x)|Jε(y) dy

≤ L

∫

Rn

|x− y|Jε(y) dy ≤ Lε,

and supx∈Ω |Xε
j (x)| ≤ supx∈Ω0

|Xj(x)| ≤ M .
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If x ∈ Ω and ξ ∈ Rn with |ξ| = 1

|
m∑

j=1

〈Xε
j (x), ξ〉2 −

m∑
j=1

〈Xj(x), ξ〉2| ≤ 2M
m∑

j=1

|Xε
j (x)−Xj(x)| ≤ 2mMLε. (1.2.12)

Consider the family of m + n vector fields X
(k)
ε = (Xε

1 , ..., X
ε
m, 1/k∂1, ..., 1/k∂n), with

k ∈ N. Thanks to (1.2.12) there exists a decreasing sequence (εk)k∈N, εk → 0, such
that if x ∈ Ω and |ξ| = 1 then

m∑
j=1

〈Xj(x), ξ〉2 ≤ 1

k2
|ξ|2 +

m∑
j=1

〈Xεk
j (x), ξ〉2 =: Hk(x, ξ), (1.2.13)

and
Hk+1(x, ξ) ≤ Hk(x, ξ). (1.2.14)

By homogeneity (1.2.13) and (1.2.14) hold for ξ ∈ Rn.
Let d(k) be the C-C metric induced on Rn by the vector fields

X(k) := X(k)
εk

(1.2.15)

and consider the n× (m + n)−matrix

Ak = col[Xεk
1 , ..., Xεk

m , 1/k∂1, ..., 1/k∂n]. (1.2.16)

The matrix AkAT
k is definite positive. Indeed, if AkAT

k ξ = 0 then 〈AT
k ξ,AT

k ξ〉 = 0
and ξ = 0. The quadratic form on Rn

gk(x, ξ) = 〈(Ak(x)AT
k (x))−1ξ, ξ〉 (1.2.17)

is a Riemannian tensor which induces the metric d(k). To check this consider an
X(k)−admissible curve γ : [0, 1] → Rn such that γ̇(t) = Ak(γ(t))h(t) for a.e. t ∈ [0, 1].
The linear map AT

k (AkAT
k )−1Ak is the identity on Im(AT

k ). Then

gk(γ, γ̇) = 〈(Ak(γ)AT
k (γ))−1Ak(γ)h,Ak(γ)h〉 = |h|2,

a.e. on [0, 1], and thus
∫ 1

0

√
gk(γ(t), γ̇(t)) dt =

∫ 1

0

|h(t)| dt. (1.2.18)

The Riemannian metric is the infimum of integrals as in the left hand side and by
Theorem 1.1.6 the C-C metric is the infimum of integrals as in the right hand side. So
the Riemmanian metric induced by the quadratic form (1.2.17) and the C-C metric
d(k) are the same.

Theorem 1.2.1. Let (Rn, d) be the C-C space induced by the locally Lipschitz
vector fields X1, ..., Xm. Let Ω0, Ω, M and d(k) be defined as above. If K ⊂ Ω is such
that

(M + 1)diam(K) < min
x∈K, y∈∂Ω

|x− y| (1.2.19)

then

(i) d(k)(x, y) ≤ d(k+1)(x, y) ≤ d(x, y) for all k ∈ N and

lim
k→+∞

d(k)(x, y) = d(x, y) (1.2.20)

for all x, y ∈ K;
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(ii) if, in addition, d is continuous in the Euclidean topology then the convergence
(1.2.20) is uniform on K ×K.

Proof. Fix λ > 1 such that λ(M +1)diam(K) < minx∈K, y∈∂Ω |x−y|. Let x, y ∈ K
and let γ : [0, T ] → Rn be a X−subunit curve such that γ(0) = x and γ(T ) = y. In
view of (1.1.4) we can assume T ≤ λdiam(K). Lemma 1.1.3 and (1.2.19) thus imply
γ(t) ∈ Ω for all t ∈ [0, T ], and by (1.2.13) and Proposition 1.1.2 γ is also X(k)−subunit.
It follows that d(k)(x, y) ≤ d(x, y). Moreover, by (1.2.14) d(k)(x, y) ≤ d(k+1)(x, y).

Write dk = d(k)(x, y) and set δk = dk + 1/k. There exists a X(k)−subunit curve

γ̃k : [0, δk] → Rn such that γ̃k(0) = x, γ̃k(δk) = y. Write ˙̃γk = Ak(γ̃k)(h̃
k, b̃k), with

Ak as in (1.2.16), and h̃k = (h̃k
1, ..., h̃

k
m), b̃k = (̃bk

1, ..., b̃
k
n) measurable coefficients such

that |h̃k|2 + |̃bk|2 ≤ 1 a.e. on [0, δk]. We can assume δk ≤ λdiam(K) for all k ∈ N.
Moreover

sup
x∈Ω0

‖Ak(x)‖ ≤ M + 1

so that Lemma 1.1.3 and (1.2.19) imply γk(t) ∈ Ω for all k ∈ N and t ∈ [0, δk].

Define γk : [0, 1] → Ω by γk(t) = γ̃k(δkt). Then γ̇k = Ak(γk)(h
k, bk) with hk = δkh̃

k

and bk = δkb̃
k and thus |hk|2 + |bk|2 ≤ δ2

k a.e. on [0, 1]. Since γk(t) ∈ Ω for all k ∈ N
and t ∈ [0, 1], being this set bounded we get ||γk||∞ ≤ C1 < +∞ and consequently
||γ̇k||∞ ≤ C2 < +∞ for all k ∈ N. The sequence of curves (γk)k∈N is uniformly
bounded and uniformly Lipschitz continuous and by Ascoli-Arzelà Theorem there
exists a subsequence that converges uniformly to a Lipschitz curve γ : [0, 1] → Rn

such that γ(0) = x and γ(1) = y. On the other hand, the sequences (hk
j )k∈N and

(bk
i )k∈N are uniformly bounded in L∞(0, 1) and by the weak∗ compactness theorem

there exist subsequences which weakly∗ converge to hj, bi ∈ L∞(0, 1), j = 1, ..., m,
i = 1, ..., n. Without loss of generality the sequences (γk)k∈N, (hk

j )k∈N and (bk
i )k∈N can

be assumed to converge themselves. Now

γk(t) = x +

∫ t

0

( m∑
j=1

hk
j (s)X

εk
j (γk(s)) +

1

k

n∑
i=1

bk
i (s)ei

)
ds,

and taking the limit using the uniform convergence of (γk)k∈N, the weak convergence
of (hk

j )k∈N and (bk
i )k∈N, the uniform convergence (1.2.12) and Xj ∈ Lip(Ω;Rn) we

obtain

γ(t) = x +

∫ t

0

m∑
j=1

hj(s)Xj(γ(s))ds and thus γ̇(t) = A(γ(t))h(t),

where h = (h1, ..., hm). Since ||hk||∞ ≤ δk for all k ∈ N the lower semicontinuity of
|| · ||∞ with respect to the weak∗ convergence implies

||h||∞ ≤ lim inf
k→∞

||hk||∞ ≤ lim
k→∞

δk.

The curve γ̃ : [0, ||h||∞] → Rn defined by γ̃(t) = γ(t/||h||∞) is X−subunit and

d(x, y) ≤ ||h||∞ ≤ lim
k→∞

d(k)(x, y) ≤ d(x, y).

Equalities hold and the pointwise convergence of the metrics is proved.
Finally, suppose d continuous. The set K is bounded and without loss of generality

it can also be assumed closed in the topology of d which - being d continuous - is the
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Euclidean topology. Therefore K is compact. The functions d(k) : K×K → [0, +∞),
k ∈ N, are continuous and converge monotonically to d. Since K×K is compact this
implies the uniform convergence by Dini theorem. ¤

Remark 1.2.2. If X = (X1, ..., Xm) is a system of vector fields with Xj ∈
C∞(Rn;Rn) then Friedrichs regularization is not needed. For any k ∈ N let d(k) be the
C-C metric induced on Rn by the vector fields X(k) = (X1, ..., Xm, 1/k∂1, ..., 1/k∂n).
Every X(k)−subunit curve is X(h)−subunit for all h > k and also X−subunit. Then

d(k)(x, y) ≤ d(k+1)(x, y) ≤ d(x, y) for all k ∈ N and x, y ∈ Rn. (1.2.21)

If, in addition, C-C balls in the metric d(1) are bounded in the Euclidean metric
then the sequence of curves (γk)k∈N constructed in the proof of Theorem 1.2.1 may
be assumed to be equibounded and the Ascoli-Arzelà argument applies. Thus

lim
k→∞

d(k)(x, y) = d(x, y) (1.2.22)

for all x, y ∈ Rn and if the C-C metric metric d is continuous the convergence is
uniform on compact sets.

Remark 1.2.3. If X1, ..., Xm ∈ Liploc(Rn) ∩ L∞(Rn) then (1.2.19) is satisfied for
a compact set K ⊂ Rn as soon as Ω is a bounded open set containing it such that
the Euclidean distance of ∂Ω from K is large enough. Under such assumptions all
conclusions of Theorem 1.2.1 hold.

Remark 1.2.4. It is worth noticing that the proof of Theorem 1.2.1 implicitly
contains a proof of the local existence of geodesics in C-C spaces.

3. Rectifiable curves in C-C spaces

Let (M, d) be a metric space. The total variation of a curve γ : [0, 1] → M is by
definition

Var(γ) = sup
0≤t1<...<tk≤1

k−1∑
i=1

d(γ(ti+1), γ(ti)).

The supremum is taken over all finite partition of [0, 1]. If Var(γ) < +∞ the curve γ
is said rectifiable.

A curve γ : [0, 1] → M is L−Lipschitz, L ≥ 0, if d(γ(t), γ(s)) ≤ L|t − s| for all
t, s ∈ [0, 1]. Lipschitz curves are rectifiable and the total variation has an integral
representation in terms of the metric derivative

|γ̇|(t) := lim
δ→0

d(γ(t + δ), γ(t))

|δ| . (1.3.23)

The existence of the limit is a general fact that holds in any metric space as stated
in the next theorem (see [6]).

Theorem 1.3.1. Let (M,d) be a metric space and γ : [0, 1] → M a Lipschitz
curve. The metric derivative |γ̇|(t) exists for a.e. t ∈ [0, 1], is a measurable function
and

Var(γ) =

∫ 1

0

|γ̇|(t) dt.
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Aim of this section is to compute the metric derivative of Lipschitz curves in a
C-C space (Rn, d).

Proposition 1.3.2. If γ : [0, 1] → Rn is X−admissible then it is Euclidean
Lipschitz continuous.

Proof. If γ̇ = A(γ)h and h ∈ L∞(0, 1)m then

|γ(t)− γ(s)| =
∣∣∣
∫ t

s

A(γ(τ))h(τ)dτ
∣∣∣ ≤ ||h||∞ sup

x∈γ([0,1])

‖A(x)‖|t− s|.

¤
Proposition 1.3.3. A curve γ : [0, 1] → (Rn, d) is L−Lipschitz if and only it is

X−admissible and γ̇ = A(γ)h with ||h||∞ ≤ L.

Proof. If γ is X−admissible then by definition (1.1.4) d(γ(t), γ(s)) ≤ ||h||∞|t− s|
for all s, t ∈ [0, 1].

We assume now that γ is 1−Lipschitz and prove that it is X−subunit. By Propo-
sition 1.1.4 β|γ(t)− γ(s)| ≤ d(γ(t), γ(s)) ≤ |t− s| for some β > 0 and γ is Euclidean
Lipschitz continuous and thus differentiable a.e. on [0, 1]. Suppose that t = 0 is a point
of differentiability. For all k ∈ N let δk = (k+1)/k2. There exists a X−subunit curve
γk : [0, δk] → Rn such that γk(0) = γ(0) and γk(δk) = γ(1/k). Write γ̇k = A(γk)hk

a.e. on [0, δk] for some hk ∈ L∞(0, δk)
m with ||hk||∞ ≤ 1, and consider

k(γ(1/k)− γ(0)) = k

∫ δk

0

A(γ(0))hk(t) dt + k

∫ δk

0

(A(γk(t))−A(γk(0)))hk(t) dt.

Since A has locally Lipschitz entries there exists a constant C > 0 such that
∫ δk

0

|(A(γk(t))−A(γk(0)))hk(t)| dt ≤ C

∫ δk

0

|γk(t)− γk(0)| dt ≤ C

β
δ2
k.

Indeed, β|γk(t)− γk(0)| ≤ d(γk(t), γk(0)) ≤ δk. As kδ2
k → 0 we finally find

γ̇(0) = lim
k→+∞

k(γ(1/k)− γ(0)) = lim
k→+∞

k

∫ δk

0

A(γ(0))hk(t) dt.

The second limit exists, and in particular there exists

h(0) := lim
k→+∞

k

∫ δk

0

hk(t) dt, and |h(0)| ≤ lim inf
k→+∞

k

∫ δk

0

|hk(t)| dt ≤ 1.

We have proved that γ̇(t) = A(γ(t))h(t) and |h(t)| ≤ 1 for a.e. t ∈ [0, 1] and the
claim follows. ¤

Remark 1.3.4. Let Ω ⊂ Rn be and open set and let Φ : Ω → Φ(Ω) be a C1−diffeo-
morphism. Let X be a family of vector fields X1, ..., Xm ∈ Liploc(Ω;Rn), j = 1, ..., m
and define the new family Ξ of vector fields on Φ(Ω) by

Ξj(ξ) = dΦ(x)Xj(x), ξ = Φ(x),

where dΦ(x) is the differential of Φ at x ∈ Ω. Let A be the matrix of the vector fields
X as in (1.1.1) and B = dΦA the matrix of the transformed vector fields Ξ.
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If γ : [0, T ] → Ω is a X−subunit curve such that γ̇ = A(γ)h define the transformed
curve κ : [0, T ] → Φ(Ω) by

κ(t) = Φ(γ(t)) (1.3.24)

and notice that

κ̇(t) =
d

dt
Φ(γ(t)) = dΦ(γ(t))γ̇(t) = dΦ(γ(t))A(γ(t))h(t)

=
m∑

j=1

hj(t)dΦ(γ(t))Xj(γ(t)) =
m∑

j=1

hj(t)Ξj(κ(t)) = B(κ(t))h(t).
(1.3.25)

Thus X−subunit curves are transformed to Ξ−subunit ones. Moreover, the curves γ
and κ = Φ(γ) have the same canonical vector of coordinates h.

If d and % are the C-C metrics defined respectively on Ω by X and on Φ(Ω) by Ξ
it follows that

d(x, y) = %(Φ(x), Φ(y)) for all x, y ∈ Ω, (1.3.26)

and according to the definition of length of admissible curves (for any 1 ≤ p ≤ +∞
in (1.1.8))

lengthd(γ) = length%(κ).

Theorem 1.3.5. Assume that X1, ..., Xm are pointwise linearly independent. Let
γ : [0, 1] → (Rn, d) be a Lipschitz curve with canonical coordinates h ∈ L∞(0, 1)m.
Then

lim
δ→0

d(γ(t + δ), γ(t))

|δ| = |h(t)| (1.3.27)

for a.e. t ∈ [0, 1], and therefore

Var(γ) =

∫ 1

0

|h(t)| dt. (1.3.28)

Proof. By Theorem 1.3.1 identity (1.3.28) will hold if we prove (1.3.27).
By Proposition 1.3.3 if γ is Lipschitz then it is X−admissible and we can write

γ̇ = A(γ)h where A is the matrix of the vector fields (1.1.1). Define

E =
{

t ∈ (0, 1) : γ̇(t) exists and is A(γ(t))h(t), and lim
δ→0

1

δ

∫ t+δ

t

|h(τ)| dτ = |h(t)|
}

.

By Proposition 1.3.2 γ is differentiable a.e. and h ∈ L∞(0, 1)m. Therefore the set
[0, 1] \ E is negligible.

It will be enough to consider the case δ > 0. By Theorem 1.1.6

d(γ(t + δ), γ(t)) ≤
∫ t+δ

t

|h(τ)| dτ,

and thus if t ∈ E

lim sup
δ↓0

d(γ(t + δ), γ(t))

δ
≤ lim

δ↓0
1

δ

∫ t+δ

t

|h(τ)| dτ = |h(t)|. (1.3.29)
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Now fix t ∈ E, ε, η > 0 and set

Kη = γ([t, t + η]) and Kε,η = {x ∈ Rn : min
y∈Kη

|x− y| ≤ ε},
Dη = sup{|x− y| : x, y ∈ Kη} and Mε,η = sup

x∈Kε,η

‖A(x)‖,

and Mε = sup
|x−γ(t)|≤ε

‖A(x)‖.

Here ‖A‖ is the norm (1.1.5).
The vectors X1(γ(t)), ..., Xm(γ(t)) are linearly independent. Assume that A(γ(t)),

which is a n×m matrix, has the form

A(γ(t)) =

(
Im

0

)
, (1.3.30)

where Im is the identity m×m matrix.
By (1.1.7), if x, y ∈ Kη then

d(x, y) ≥ min
{ 1

Mε,η

,
ε

Mε,ηDη

}
|x− y|,

and thus

lim inf
δ↓0

d(γ(t + δ), γ(t))

δ
≥ min

{ 1

Mε,η

,
ε

Mε,ηDη

}
lim
δ↓0

|γ(t + δ)− γ(t)|
δ

≥ min
{ 1

Mε,η

,
ε

Mε,ηDη

}
|A(γ(t))h(t)|.

Notice that

lim
η↓0

min
{ 1

Mε,η

,
ε

Mε,ηDη

}
=

1

Mε

and lim
ε↓0

1

Mε

=
1

‖A(γ(t))‖ .

We first let η ↓ 0 and then ε ↓ 0 to find

lim inf
δ↓0

d(γ(t + δ), γ(t))

δ
≥ |A(γ(t))h(t)|

‖A(γ(t))‖ . (1.3.31)

By (1.3.30) we have ‖A(γ(t))‖ = 1 and moreover |A(γ(t))h(t)| = |h(t)|. Then
(1.3.31) reads

lim inf
δ↓0

d(γ(t + δ), γ(t))

δ
≥ |h(t)|,

which, along with (1.3.29), proves our thesis if A(γ(t)) is of the form (1.3.30).
If A(γ(t)) is not of the form (1.3.30) we argue in the following way. Since

X1(γ(t)), ..., Xm(γ(t)) are linearly independent there exists an invertible linear map
Φ : Rn → Rn such that ΦXj(γ(t)) = ej for j = 1, ...,m. Define the new family of
vector fields Ξj = ΦXj, j = 1, ..., m, let % be the C-C metric induced by them, and
let κ(t) = Φ(γ(t)) be the transformed curve. Now, if B = ΦA is the matrix of the
vector fields Ξ1, ..., Ξm then B(κ(t)) is of the form (1.3.30) and the above argument
does apply. Then

lim
δ↓0

%(κ(t + δ), κ(t))

δ
= |h(t)|.

Indeed, by (1.3.25) κ̇(t) = B(κ(t))h(t). But by (1.3.26) we have d(γ(t + δ), γ(t)) =
%(κ(t + δ), κ(t)) and our thesis is proved. This ends the proof of (1.3.27). ¤
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Remark 1.3.6. In the proof of Theorem 1.3.5 the assumption that X1, ..., Xm

be pointwise linearly independent can be omitted and formula (1.3.27) holds in quite
general C-C spaces. An alternative proof of Theorem 1.3.5 could be obtained using the
Riemmanian approximation discussed in section 2. If Vark(γ) denotes the variation of
γ in the Riemannian metric d(k) induced by X(k) then Vark(γ) ≤ Var(γ), as d(k) ≤ d.
If h(k) is the vector of canonical coordinates of γ with respect to X(k) then, assuming
formula (1.3.28) for the metric derivative in the Riemmanian case (recall also (1.2.18)),
we have

Vark(γ) =

∫ 1

0

|h(k)(t)| dt.

Moreover, a weak∗ compactness argument as in the proof of Theorem 1.2.1 and the
fact that h is the vector of canonical coordinates of γ yield

∫ 1

0

|h(t)| dt ≤ lim inf
k→∞

∫ 1

0

|h(k)(t)| dt,

and thus ∫ 1

0

|h(t)| dt ≤ Var(γ).

The easier opposite inequality is a consequence of Theorem 1.1.6. This proves formula
(1.3.28) and now (1.3.27) follows from Theorem 1.3.1.

4. Geodesics

In this section we study geodesics in C-C spaces and for a special class we shall
write the differential equations they have to satisfy. The general framework in which
study existence of geodesics is that of length metric spaces (see [33], [34] and [95]).

A metric space (M,d) is a length space (or space with intrinsic metric) if for each
x, y ∈ M

d(x, y) = inf{Var(γ) : γ : [0, 1] → M continuous and rectifiable

curve such that γ(0) = x and γ(1) = y}.
A continuous rectifiable curve γ : [0, 1] → M is a geodesic, if Var(γ) = d(γ(0), γ(1)).
By an arclength reparametrization a geodesic γ can always be reparametrized on the
interval [0, Var(γ)] in such a way that d(γ(t), γ(s)) = |t − s| for all s, t ∈ [0, Var(γ)]
(see [33]).

If x ∈ M and r > 0 write B(x, r) = {y ∈ M : d(x, y) < r} and denote by
B̄(x, r) = {y ∈ M : d(x, y) ≤ r} the closed ball. In length metric spaces the closure

of the open ball is the closed ball, i.e. B(x, r) = B̄(x, r) (see, for instance, [34]).

Proposition 1.4.1. Let (M, d) be a length space. If d(x, y) ≤ r and the closed
ball B̄(x, r) is compact then there exists a geodesic γ : [0, 1] → M connecting x to y.

We shall see the proof in the special case of C-C spaces. The following Hopf-Rinow
theorem is due to Cohn-Vossen [51] and Busemann [33], [34].

Theorem 1.4.2. In a locally compact length space (M, d) the following three con-
ditions are equivalent:

(i) closed balls are compact;
(ii) M is complete;
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(iii) every geodesic γ : [0, δ) → M , δ > 0, can be completed.

We now turn our analysis to C-C spaces.

Proposition 1.4.3. A C-C space (Rn, d) is a length space. Moreover, if d is
continuous the space is also locally compact.

Proof. If x, y ∈ Rn by Theorem 1.1.6

d(x, y) = inf{length1(γ) : γ : [0, 1] → Rn admissible , γ(0) = x and γ(1) = y}.
and by Theorem 1.3.5 length1(γ) = Var(γ). Up to a reparameterization rectifiable
curves are Lipschitz and thus admissible by Proposition 1.3.3. This proves that (Rn, d)
is a length space.

Assume d continuous. Fix x ∈ Rn, r0 > 0, K = {y ∈ Rn : |x − y| ≤ r0}
and M = maxx∈K ‖A(x)‖, where A is the matrix (1.1.1). By Proposition 1.1.3 if
0 < rM < r0 then B(x, r) ⊂ K. It follows that B̄(x, r) is compact in the Euclidean
topology and consequently in the topology of d. ¤

Theorem 1.4.4. Let (Rn, d) be a C-C space.

(i) If metric balls are bounded then for all x, y ∈ Rn there exists a geodesic
connecting them.

(ii) If d is continuous and K ⊂ Rn is compact there exists r > 0 such that if
x ∈ K and d(x, y) < r there exists a geodesics connecting x to y.

Proof. We prove statement (ii). Fix ε > 0, Kε = {x ∈ Rn : miny∈K |x − y| ≤ ε}
and M = supx∈Kε

‖A(x)‖. If x ∈ K and 0 < rM < ε then B̄(x, r) ⊂ Kε and thus
B̄(x, r) is compact. Take y ∈ B(x, r) and choose a sequence (γk)k∈N of rectifiable
curves γk : [0, 1] → Rn such that γk(0) = x, γk(1) = y, and Var(γk) ≤ d(x, y) + 1/k.
Such curves may be assumed to be Lipschitz in (Rn, d) with Lipschitz constant less
or equal than 1 + d(x, y) and moreover γk(t) ∈ B̄(x, r) for all t ∈ [0, 1] and k ∈ N.
By Ascoli-Arzelà Theorem there exists a subsequence - which may be assumed to be
(γk)k∈N itself - converging uniformly to a Lipschitz curve γ : [0, 1] → (Rn, d). Since
the total variation is lower semicontinuous with respect to the pointwise convergence

d(x, y) ≤ Var(γ) ≤ lim inf
k→+∞

Var(γk) = d(x, y),

and thus Var(γ) = d(x, y).
Statement (i) can be proved in the same way noticing that the sequence (γk)k∈N

is uniformly Lipschitz continuous also in the Euclidean metric by Propositions 1.3.3
and 1.3.2. ¤

Remark 1.4.5. If the vector fields are globally Lipschitz continuous then it is
easy to see using Gronwall Lemma that C-C balls are bounded.

Example 1.4.6. Let a ∈ Lip(R) be defined by a(x) = x if x ≥ 0 and a(x) = 0 if
x < 0. In R2 consider the vector fields

X1 = ∂x and X2 = a(x)∂y.

We show that R2 with the induced C-C metric d is not locally compact. A C-C ball
B(0, r), r > 0, is an Euclidean bounded open neighborhood of the origin 0 ∈ R2. If
0 < ε < r the open sets Ω = {(x, y) ∈ R2 : x > −ε} and Ωy = {(x, η) ∈ R2 : x <
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0 and η = y}, y ∈ R, form an open covering of B(0, r) which does not have any finite
subcovering. Notice that every Ωy is open in (R2, d).

(R2, d) is not locally compact. Nonetheless, metric balls are bounded and by
Theorem 1.4.4 geodesics exist globally. They could be computed explicitly.

The most promising way to derive geodesics equations in C-C spaces is to refor-
mulate the geodesic problem as an optimal control theory problem in order to apply
Pontryagin Maximum Principle. This seems to have been first realized in [31], [70],
[165].

Geodesics in C-C spaces are solution of the following control problem. We have
the state equation

ẋ(t) = A(x(t))h(t) for a.e. t ∈ [0, 1] (1.4.32)

with constraints

x(0) = x0 and x(1) = x1, x0, x1 ∈ Rn. (1.4.33)

The cost functional to minimize is J : L∞(0, 1)m → R

J(h) =
1

2

∫ 1

0

|h(t)|2 dt. (1.4.34)

By Theorem 1.1.6 the functional J is a “length” functional. Consider the minimum
problem

min{J(h) : there exists x ∈ Lip([0, 1];Rn) solving (1.4.32) relatively to h

and satisfying the constraints (1.4.33)}. (1.4.35)

A pair (x, h) that solves this minimum problem is said to be optimal. By Theorem
1.4.4 problem (1.4.35) has a solution if d(x0, x1) is small enough or more generally
if C-C balls are bounded. Pontryagin Maximum Principle gives necessary conditions
for a pair (x, h) to be optimal. Such conditions replace the Euler-Lagrange equations
of the Calculus of Variations. In our context the Maximum Principle can be stated
in the following way. We refer to [114] for a general introduction to it.

Theorem 1.4.7 (Pontryagin Maximum Principle). If the pair (x, h) is optimal
then there exist a λ ∈ {0, 1} (the “multiplier”) and ξ ∈ Lip([0, 1];Rn) (the “dual
variable”) such that:

(i) |ξ(t)|+ λ 6= 0 for all t ∈ [0, 1];

(ii) ξ̇ = − ∂
∂x
〈A(x)h, ξ〉 a.e. on [0, 1];

(iii) 〈A(x)h, ξ〉 − λ1
2
|h|2 = maxu∈Rm〈A(x)u, ξ〉 − λ1

2
|u|2 a.e. on [0, 1].

Definition 1.4.8. Geodesics corresponding to case λ = 1 are called normal.
Geodesics corresponding to case λ = 0 are called singular (or abnormal ).

In Riemannian spaces the case λ = 0 can not occur. That in C-C spaces singular
geodesics may actually exist was shown by Montgomery [142]. The Hamiltonian
formalism is particularly useful here. Introduce the Hamilton function

H(x, ξ) =
m∑

j=1

〈Xj(x), ξ〉2, (1.4.36)
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and the corresponding system of Hamilton equations




ẋ =
1

2

∂H(x, ξ)

∂ξ

ξ̇ = −1

2

∂H(x, ξ)

∂x
.

(1.4.37)

If (x, ξ) solves (1.4.37) (“bicharacteristics”) then H(x(t), ξ(t)) is constant.

Proposition 1.4.9. A normal geodesic x and its dual variable ξ solve equations
(1.4.37). A singular geodesic x and its dual variable ξ solve H(x(t), ξ(t)) ≡ 0.

Proof. If λ = 1 from (iii) in Theorem 1.4.7 we find the explicit expression for the
optimal control

h(t) = AT (x(t))ξ(t), (1.4.38)

which replaced in (ii) and in the state equation (1.4.32) gives (1.4.37).
If λ = 0 condition (iii) becomes 〈AT ξ(t), h〉 = maxu∈Rm〈AT ξ(t), u〉 and this forces

AT ξ = 0, which means

〈Xj(x(t)), ξ(t)〉 ≡ 0, j = 1, ..., m. (1.4.39)

¤

Example 1.4.10. Singular geodesics do not satisfy the system of Hamilton equa-
tions. The following example, which we mention without proofs, is analyzed in detail
in [124] section 2.3. In R3 consider the vector fields

X1 = ∂x and X2 = (1− x)∂y + x2∂z.

The C-C metric d is finite because X1 and X2 are bracket generating (see section 5).
The curve γ : [0, ε] → R3 defined by γ(t) = (0, t, 0) does not solve equations (1.4.37)
for any choice of ξ. But if ε > 0 is small enough γ is a geodesic.

5. Chow theorem

If the vector fields are smooth a general condition is known to imply connectivity,
the “maximal rank” Chow-Hörmander condition. Such connectivity result was first
proved by Chow [49], and named after Hörmander [108] that used the condition in
the study of hypoelliptic equations. Here we shall follow the approach developed in
[121].

If X =
∑n

i=1 ai(x)∂i and Y =
∑n

j=1 bj(x)∂i are smooth vector fields their commu-

tator (bracket) is the vector field

[X,Y ] =
n∑

i=1

n∑
j=1

(
aj(x)∂jbi(x)− bj(x)∂jai(x)

)
∂i, (1.5.40)

which amounts to write formally [X,Y ] = XY −Y X. Such product is skew-symmetric
[X, Y ] = −[Y, X] and satisfies the Jacobi relation [X, [Y, Z]]+[Z, [X, Y ]]+[Y, [Z,X]] =
0. In the Lie algebra formalism adX(Y ) := [X, Y ] is the adjoint representation.

By iterated brackets the vector fields X1, ..., Xm ∈ C∞(Rn;Rn) generate a Lie
algebra which shall be denoted by L(X1, ..., Xm) and for each x ∈ Rn this Lie algebra
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is a vector space L(X1, ..., Xm)(x). The Chow-Hörmander condition requires this
vector space to have maximal rank

rankL(X1, ..., Xm)(x) = n, for all x ∈ Rn. (1.5.41)

From a differential-geometric point of view condition (1.5.41) states that the vector
fields and their iterated brackets generate the whole tangent space at every point.

Before stating and proving Chow Theorem we introduce some preliminary notions
about exponential maps and about the Campbell-Hausdorff formula.

If Y ∈ C∞(Rn;Rn) and K ⊂ Rn is a compact set consider the Cauchy problem
{

γ̇x(t) = Y (γx(t))
γx(0) = x ∈ K.

The solution γx is defined for |t| ≤ δ for some δ > 0 and we can define the exponential
map

etY (x) = exp(tY )(x) = γx(t), |t| ≤ δ, x ∈ K. (1.5.42)

The function t → etY (x) is C∞ and

etY (x) = x + tY (x) + t2O(1), (1.5.43)

where O(1) is a function bounded for |t| ≤ δ and x ∈ K.
If X and Y are two non commuting indeterminates in a Lie algebra the Campbell-

Hausdorff formula links the composition of exponentials with a suitable exponential
(see [107], [108], [151, Appendix] and [170] for Lie groups).

If α = (α1, . . . , αk) is a multi-index of non negative integers define |α| = α1 + · · ·+
αk and α! = α1! · · ·αk!. If α and β are multi-indeces set

Dαβ(X,Y ) =

{
(adX)α1(adY )β1 · · · (adX)αk(adY )βk−1Y if βk 6= 0
(adX)α1(adY )β1 · · · (adX)αk−1X if βk = 0,

(1.5.44)

and

cαβ =
1

|α + β|α!β!
. (1.5.45)

The Campbell-Hausdorff formula states that

exp(X) exp(Y ) = exp(P (X,Y )) (1.5.46)

where P (X, Y ) is formally given by

P (X,Y ) =
∞∑

k=1

(−1)k+1

k

∑

αi+βi≥1

cαβDαβ(X,Y ). (1.5.47)

The inner sum ranges over all α = (α1, . . . , αk) and β = (β1, . . . , βk) satisfying αi +
βi ≥ 1. By direct computation it can be checked

P (X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y, X]] + R(X,Y ) (1.5.48)

where R(X,Y ) is a formal series of commutators of length at least 4. Moreover, one
can formally compute

exp(−Y ) exp(−X) exp(Y ) exp(X) = exp([X,Y ] + R(X, Y )), (1.5.49)
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where R(X, Y ) contains commutators of length at least 3. Formula (1.5.49) shows
that the exponential of the commutator [X, Y ] can be represented up to lower order
terms as a commutator of exponentials.

We now turn back to the Lie algebra generated by the vector fields X1, ..., Xm.
Let J = (Y1, ..., Yr) be a r−tuple of vector fields Yi ∈ {±X1, ...,±Xm}, i = 1, ..., r. If
x ∈ K and |t| ≤ δ define

E(J, t)(x) = etYr ... etY1(x). (1.5.50)

Notice that by Definition 1.1.4

d(x,E(J, t)(x)) ≤ |t|r. (1.5.51)

If I = (i1, ..., ik) is a vector of integer indeces 1 ≤ ij ≤ m, j = 1, ..., k, denote by
XI the iterated commutator

XI = [Xi1 , [Xi2 , · · · [Xik−1
, Xik ] · · · ]]. (1.5.52)

Both I and XI are said to have length k.

Theorem 1.5.1. Let X1, ..., Xm ∈ C∞(Rn;Rn) satisfy (1.5.41). Let K ⊂ Rn be a
compact set and assume that for all x ∈ K condition (1.5.41) is guaranteed by iterated
commutators of length less than or equal to k. Then there exists C > 0 such that for
all x, y ∈ K

d(x, y) ≤ C|x− y|1/k. (1.5.53)

Consider now a vector of indeces I = (i1, ..., ik) and let XI be the iterated
commutator defined in (1.5.52). By the Campbell-Hausdorff formula there exist
J = (Y1, ..., Yr) with r ≤ 4k−1 and C > 0 such that

|E(J, t)(x)− etXI (x)| ≤ Ct(k+1)/k (1.5.54)

for all x ∈ K and |t| ≤ δ (see Lemma 2.21 in [151] and [150]). For each commutator
in XI four terms “of smaller length” appear in the sequence J as in (1.5.49).

Define for |τ | ≤ τ0

EI(τ)(x) =

{
E(J, τ 1/k)(x) if τ ≥ 0
E(J−, (−τ)1/k)(x) if τ < 0,

(1.5.55)

where J− is a sequence of k vector fields that corresponds to −XI in such a way that
(1.5.54) holds.

The function τ → EI(τ)(x) is C1 in a neighborhood of τ = 0. Fix τ > 0 and write
τ + h = tk e τ = tk0 for some t, t0 > 0. Then (we shall omit x)

∂EI(τ)

∂τ
= lim

t→t0

E(J, t)− E(J, t0)

tk − tk0
=

1

ktk−1
0

∂E(J, t0)

∂t
,

and because of (1.5.54) and (1.5.43)

∂E(J, tk)

∂t
=

∂

∂t
etkXI + tkO(1)

= ktk−1XI(e
tkXI ) + tkO(1)

= ktk−1etkXI + tkO(1),
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where here and in the sequel O(1) is a bounded function for |t| ≤ δ and x ∈ K.
Finally

∂EI(τ)

∂τ
= XI(x) + τ 1/kO(1), (1.5.56)

and, analogously, if τ < 0 one can find

∂EI(τ)

∂τ
= XI(x) + (−τ)1/kO(1).

This shows that
∂EI(τ)(x)

∂τ
is continuous at τ = 0 and equals to XI(x).

Proof of Theorem 1.5.1. Let x0 ∈ K and fix n commutators XI1 , ..., XIn of length
less than or equal to k such that XI1(x0), ..., XIn(x0) are linearly independent. Let
EI1 , ..., EIn be the approximated exponential maps defined in (1.5.55).

If t ∈ Rn belongs to a neighborhood of the origin define

F (t) = EIn(tn) · · ·EI1(t1)(x0).

The map F is of class C1. From (1.5.56)

∂F (0)

∂ti
=

∂EIi
(0)

∂ti
(x0) = XIi

(x0),

and since

det JF (0) = det col[XI1(x0), ..., XIn(x0)] 6= 0,

F is a local diffeomorphism. There exist %, ε,M > 0 such that {x ∈ Rn : |x − x0| <
ε} ⊂ F ({t ∈ Rn : |t| < %}) and

|F (t)− F (t′)| ≥ M |t− t′| (1.5.57)

for all t, t′ ∈ {t ∈ Rn : |t| < %}.
Take x ∈ {x ∈ Rn : |x − x0| < ε}. The C-C distance d(x, x0) can be estimated

in the following way. There exists t ∈ Rn with |t| < % such that F (t) = x. Set
xi = EIi

(ti)(xi−1), i = 1, ...n, and notice that x = xn. By (1.5.51) with r ≤ 4k−1 and
recalling (1.5.55) we have

d(xi, xi−1) ≤ C|ti|1/k

where C > 0 depends only on K and k. Finally recalling (1.5.57)

d(x, x0) ≤
n∑

i=1

d(xi, xi−1) ≤ C

n∑
i=1

|ti|1/k ≤ nC|t|1/k ≤ nC

M1/k
|F (t)− F (0)|1/k

≤ nC

M1/k
|x− x0|1/k.

¤



6. DOUBLING METRIC SPACES AND STRUCTURE THEOREMS FOR C-C BALLS 35

6. Doubling metric spaces and structure theorems for C-C balls

6.1. Doubling metric spaces. Let (M, d) be a metric space endowed with a
Borel measure µ positive and finite on balls.

Definition 1.6.1. The space (M, d, µ) is said to be doubling (or of homogeneous
type) if there exists δ > 1 such that

µ(B(x, 2r)) ≤ δµ(B(x, r)) for all x ∈ M and r ≥ 0. (1.6.58)

The best constant δ in (1.6.58) is the doubling constant of M .

Definition 1.6.2. The space (M,d, µ) is said to be locally of homogeneous type
if for any compact set K ⊂ M there exist δ > 1 and r0 > 0 such that

µ(B(x, 2r)) ≤ δµ(B(x, r)) for all x ∈ K and 0 ≤ r ≤ r0. (1.6.59)

Proposition 1.6.3. Let (M, d, µ) be a metric space locally of homogeneous type.
For any compact set K ⊂ M there exists Q > 0, such that if x, x0 ∈ K, B0 = B(x0, R)
and B = B(x, r) with x ∈ B0 and r ≤ R then

µ(B)

µ(B0)
≥ 1

δ2

( r

R

)Q

. (1.6.60)

Proof. Let t = r/R ≤ 1 and fix k ∈ N such that 2k−1 ≤ t−1 < 2k. Then

µ(B0) ≤ µ(B(x, 2R)) = µ(B(x, 2r/t)) ≤ µ(B(x, 2k+1r)) ≤ δk+1µ(B(x, r)).

Now, k ≤ 1 + log2(R/r) and

δk ≤ δ1+log2(R/r) = δ
(R

r

)log2(δ)

,

and the claim follows with Q = log2(δ). ¤

Definition 1.6.4. The constant Q = log2(δ) is the local homogeneous dimension
of (M, d, µ) relative to the compact set K.

Spaces of homogeneous type were introduced by Coifman and Weiss [52] in the
study of maximal operators and singular integrals. Such spaces are of special interest
because a Lebesgue differentiation theorem holds.

Theorem 1.6.5. Let (M, d, µ) be a doubling metric space. If f ∈ Lp
loc(M, µ),

1 ≤ p < +∞, then

lim
r↓0

∫

B(x,r)

|f(x)− f(y)|p dµ(y) = 0

for µ−a.e. x ∈ M .

The proof of Theorem 1.6.5 relies on the continuity of the maximal operator (see
[163]).
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6.2. Nagel-Stein-Wainger theorem. Carnot-Carathéodory spaces arising from
vector fields satisfying the Chow-Hörmander condition are locally of homogeneous
type. This is one of the main results of the basic paper [151] which will be briefly
described.

Let X1, ..., Xm ∈ C∞(Rn;Rn) be a family of vector fields satisfying the maximal
rank condition (1.5.41). If Ω ⊂ Rn is a bounded open set there exists an integer k
such that condition (1.5.41) is verified at every x ∈ Ω by commutators of length equal
or less than k. Let {Y1, ..., Yq} be an enumeration of all the commutators with length
equal or less than k, so that rank{Y1, ..., Yq} = n for all x ∈ Ω. Denote by d(Yi) the
length of the commutator Yi. Let I be the family of all multi-indeces I = (i1, ..., in)
such that 1 ≤ ij ≤ q, and for any I ∈ I let (Yi1 , ..., Yin) be the corresponding n−tuple
of commutators. For I ∈ I and h ∈ Rn define

d(I) = d(Yi1) + ... + d(Yin) and ||h||I = max
j=1,...,n

|hj|1/d(Yij
).

In the homogeneous norm ||h||I the j−th component is weighted by the length of the
commutator Yij .

Finally, if I ∈ I introduce the function

λI(x) = det[Yi1(x)...Yin(x)],

and the exponential map

ΦI(x, h) = ΦI,x(h) = exp(h1Yi1 + ... + hnYin)(x).

Nagel-Stein-Wainger Theorem can now be stated.

Theorem 1.6.6. Let K ⊂ Ω be a compact set and let r0 > 0. There exist 0 <
η2 < η1 < 1 such that if I = (i1, ..., in) ∈ I, x ∈ K and 0 < r < r0 satisfy

|λI(x)|rd(I) ≥ 1

2
max
J∈I

|λJ(x)|rd(J), (1.6.61)

then

(i) if ||h||I < η1r then

1

4
|λI(x)| ≤ | det

∂ΦI

∂h
(x, h)| ≤ 4|λI(x)|; (1.6.62)

(ii) the following inclusions hold

B(x, η2r) ⊂ ΦI,x({h ∈ Rn : ||h||I < η1r}) ⊂ B(x, η1r); (1.6.63)

(iii) the function ΦI,x is one-to-one on {h ∈ Rn : ||h||I < η1r}.

Thesis (ii) represents C-C balls by means of the image under the exponential map
ΦI,x of “homogeneous rectangles”. From (1.6.62) and (1.6.63) the following corollary
easily follows, which proves the local doubling property for C-C balls measured by
the Lebesgue measure. The size of the balls B(x, r) is described by the functions

Λ(x, r) :=
∑
I∈I

|λI(x)|rd(I).
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Corollary 1.6.7. Let K ⊂ Ω be a compact set and let r0 > 0. There exists
C > 0 such that

1

C
|B(x, r)| ≤ Λ(x, r) ≤ C|B(x, r)| (1.6.64)

for all x ∈ K and 0 < r < r0.

Remark 1.6.8. Notice that d(I) ≤ kn for all I ∈ I. Then, if x ∈ K and
0 < r < r0

|B(x, 2r)| ≤ CΛ(x, 2r) = C
∑
I∈I

|λI(x)|(2r)d(I)

≤ C2kn
∑
I∈I

|λI(x)|rd(I) ≤ C22kn|B(x, r)|.

This is the local doubling property.

6.3. A variant of the structure theorem. Following the basic ideas contained
in [151] and its generalization in [150], we shall represent C-C balls restricted to
non characteristic surfaces by means of suitable exponential maps which are “small
perturbations” of the exponential of the commutators of the vector fields.

Write (x, t) ∈ Rn−1×R. Consider m vector fields X1, ..., Xm ∈ C∞(Rn;Rn) of the
form

Xj =
n−1∑
i=1

aij(x, t)∂i, j = 1, ..., m− 1, Xm = ∂t. (1.6.65)

and satisfying the Hörmander condition. We shall write Xm = T . For any multi-index
I = (i1, . . . , ik), 1 ≤ ij ≤ m and k ∈ N, let

X[I] = [Xi1 , [Xi2 , · · · [Xik−1
, Xik ] · · · ]],

where [X,Y ] denotes the commutator of the vector fields X and Y . If I = (i1, . . . , ik)
we set |I| = k and we say that the commutator X[I] has length or degree d(X[I]) = k.

For any commutator Y 6= T and for small s ∈ R we shall define a map expT (sY ) :
Rn−1 → Rn−1. We proceed by induction on d(Y ). If d(Y ) = 1 and Y = Xj with
j ∈ {1, ..., m− 1} define for x ∈ Rn−1

expT (sY )(x) =





exp(−sT ) exp(s(Xj + T ))(x) if s ≥ 0,

exp(s(Xj + T )) exp(−sT )(x)

= expT (|s|Y )−1(x) if s < 0.

(1.6.66)

The map is well defined provided x belongs to a compact set and s is small. We
also set expT (sT ) = exp(sT ). Suppose now d(Y ) = k, Y = X[J ] with |J | = k, and
J = (j1, ..., jk). Set J ′ = (j2, ..., jk) and define

expT (sY )(x) =





expT (s
k−1

k X[J ′])
−1 expT (s

1
k Xj1)

−1

· expT (s
k−1

k X[J ′]) expT (s
1
k Xj1)(x) if s ≥ 0,

expT (|s|Y )−1(x) if s < 0.

(1.6.67)

Some useful features of the maps expT are described in the following two lemmas.
In Lemma 1.6.9, which is a generalization of [151, Lemma 2.21], we shall use the
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Campbell-Hausdorff formula

exp(u) exp(v) = exp
(
u + v − 1

2
[u, v] + S(u, v)

)
,

where u and v are non commuting indeterminates and S is a formal sum of commu-
tators of u and v of length at least 3.

Lemma 1.6.9. For any commutator X[J ], J = (j1, . . . , jk), of length k ≥ 1

expT (sX[J ]) = exp
(
sX[J ] + sgn(s)

∑

|I|>k

cJ,I |s||I|/kX[I]

)
, (1.6.68)

where the cJ,I are suitable constants.

The formal equality (1.6.68) means that, if x belongs to a compact set K and
p > k is an integer, then

∣∣∣ expT (sX[J ])(x)− exp
(
sX[J ] + sgn(s)

∑

k<|I|≤p

cJ,Is
|I|/kX[I]

)
(x)

∣∣∣

≤ Cs(p+1)/k.

Proof. We proceed by induction. Consider first a commutator of length 1, i.e. a
vector field Xj, j = 1, . . . , m. Applying the Campbell-Hausdorff formula to (1.6.66)
we get for s > 0

expT (sXj) = exp(−sT ) exp(s(Xj + T ))

= exp
(
− sT + s(Xj + T ) +

1

2
s2[T, Xj + T ] + · · ·

)

= exp
(
sXj +

∑

|I|>1

c(j),Is
|I|X[I]

)
.

For s < 0 note that

expT (sXj) = expT (|s|Xj)
−1 = exp

(
− |s|Xj −

∑

|I|>1

c(j),I |s||I|X[I]

)
.

We prove now the inductive step. Recall first that an application of the Campbell-
Hausdorff formula asserts that, if u and v are non commuting indeterminates, then

exp(v)−1 exp(u)−1 exp(v) exp(u) = exp([u, v] + R),

where R = R(u, v) denotes a formal series containing commutators (of u and v) of
length at least 3. Let k > 1, J = (j1, ..., jk), J ′ = (j2, ..., jk) and s ≥ 0. Let also

u = s1/kXj1 +
∑

|I|>1

c(j1),Is
|I|/kX[I] and

v = s(k−1)/kX[J ′] +
∑

|I|>k−1

CJ ′,Is
|I|/kX[I].
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Note that [u, v] = sX[J ] + R̃, where R̃ is a series containing commutators of order at
least k + 1 of the original vector fields. Thus, by the inductive hypothesis

expT (sX[J ]) = expT (s
k−1

k X[J ′])
−1 expT (s

1
k Xj1)

−1

· expT (s
k−1

k X[J ′]) expT (s
1
k Xj1)

= exp(v)−1 exp(u)−1 exp(v) exp(u)

= exp([u, v] + R))

= exp(sX[J ] + R̃ + R))

= exp
(
sX[J ] +

∑

|I|>k

cJ,Is
|I|/kX[I]

)
,

for suitable constants cJ,I . We used the fact that the series R is actually a series of
commutators of length at least k + 1 of the original fields. If s < 0, formula (1.6.68)
follows analogously. ¤

From now on fix a bounded open set Ω0 ⊂ Rn and let {Y1, ..., Yq} be a fixed
enumeration of the commutators of length ≤ k, where k is large enough to ensure
that span{X[I](x, t) : |I| ≤ k} has dimension n at each point (x, t) ∈ Ω0. Assume also
that Yq = T .

Introduce the family of multi-indices I = {I = (i1, . . . , in−1) : 1 ≤ ij ≤ q − 1}.
Given a multi-index I ∈ I, set d(I) = d(Yi1) + · · · + d(Yin−1) and for h̃ = (h, hn) ∈
Rn−1 × R “small enough” define

ΦI,x(h) = expT (hn−1Yin−1) · · · expT (h1Yi1)(x, 0),

Φ̃I,x(h̃) = exp(hnT ) expT (hn−1Yin−1) · · · expT (h1Yi1)(x, 0)

= (ΦI,x(h), hn).

(1.6.69)

The form of the fields (1.6.65) guarantees that ΦI,x(h) ∈ {(x, t) ∈ Rn : t = 0} for
h ∈ Rn−1. Let also

||h||I = max
l=1,...,n−1

|hl|1/d(Yil
) and

λI(x) = det(Yi1(x, 0), . . . , Yin−1(x, 0)),

where the vectors Yil are thought of as vectors in Rn−1.

If I ∈ I define Ĩ = (I, q) and set d(Ĩ) = d(I) + 1. If h̃ = (h, hn) and (x, t) ∈ Ω0

define

||h̃||eI = max{||h||I , |hn|} and

λ̃eI(x, t) = det(Yi1(x, t), . . . , Yin−1(x, t), Yn(x, t))

where Yn = T and the vectors are thought of as vectors in Rn.
Let d be the C-C metric induced by the vector fields (1.6.65) on Rn and consider

the balls B((x, 0), r) = {(y, t) ∈ Rn : d((x, 0), (y, t)) < r} and B(x, r) = {y ∈ Rn−1 :
d((x, 0), (y, 0)) < r} . We now state and prove the structure theorem for the restricted
balls B.
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Theorem 1.6.10. Let Ω0 ⊂ Rn be a bounded open set. There exist r0 > 0 and
0 < a < b < 1 such that for any (x, 0) ∈ Ω0, I ∈ I and 0 < r < r0 such that the
inequality

|λI(x)|rd(I) ≥ 1

2
max
J∈I

|λJ(x)|rd(J) (1.6.70)

is satisfied, we have

(i) 1
4
|λI(x)| ≤ |JhΦI,x(h)| = |JehΦ̃I,x(h̃)| ≤ 4|λI(x)| for every ||h̃||eI < br, where

JhΦI,x(h) = det ∂
∂h

ΦI,x(h).

(ii) B((x, 0), ar) ⊂ Φ̃I,x({||h̃||eI < br}) ⊂ B((x, 0), r).

(iii) B(x, ar) ⊂ ΦI,x({||h||I < br}) ⊂ B(x, r).

(iv) The map Φ̃I,x is one to one on {||h̃||eI < br}.
Remark 1.6.11. Inclusions (iii) for the restricted balls are immediate consequence

of (ii) and of the structure (1.6.69) of the map Φ̃. Indeed, starting from (ii) we get

B(x, ar) ⊂ Φ̃I,x({||h̃||eI < br}) ∩ {t = 0} = ΦI,x({||h||I < br}).
The opposite inclusion is analogous.

Proof of Theorem 1.6.10. Since λI(x) = λ̃eI(x, 0), if (1.6.70) is verified for some

(n− 1)−tuple I ∈ I then the n−tuple Ĩ = (I, q) satisfies

|λ̃eI(x, 0)|rd(eI) ≥ 1

2
max
J∈I

|λ̃ eJ(x, 0)|rd( eJ). (1.6.71)

In [151, Theorem 7] it is proved that if Yj1 , . . . , Yjn are commutators of degrees

d1, . . . , dn which satisfy (1.6.71), then the map Φ̃∗
I,x defined by Φ̃∗

I,x(h̃) = exp(h1Yj1 +
· · · + hnYjn)(x, 0) satisfies (i), (ii) and (iv). Moreover in [150, Lemmas 3.2-3.6] the
following is proved. Assume that the exponential of any commutator Yj can be ap-
proximated by a map E(sYj) in the sense that

E(sYj) = exp
(
sYj + sgn(s)

∑

|I|>d(Yj)

k(j),I |s||I|/d(Yj)X[I]

)
,

where the k(j),I are constants and assume also that for a n-tuple of commutators
Yj1 , . . . , Yjn (1.6.71) holds at a point (x, 0) and for a radius r. Then the map

Φ̃I,x(h̃) = E(hnYjn) · · ·E(h1Yj1)(x, 0)

satisfies (i), (ii) and (iv). In view of Lemma 1.6.9 this assertion can be applied to the
map E = expT and the Theorem is proved. We also note that the estimate

µ(B((x, 0), r)) '
∑
I∈I

|λI(x)|rd(I) (1.6.72)

holds. ¤

The following factorization theorem will be needed in chapter 3. Define for λ > 0
and for any vector field Xj

S1(λ,Xj) = exp(λ(Xj − T )) exp(λT ),

S2(λ,Xj) = exp(−λT ) exp(λ(Xj + T )).
(1.6.73)
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Theorem 1.6.12. Let Y = X[J ] with J = (j1, ..., jk). The map expT (sY ), s ∈
R, can be factorized as the composition of a finite number of factors of the form
S1(h|s| 1k , τXj) and S2(h|s| 1k , τXj), where τ ∈ {−1, 1}, j = 1, ..., m and 1 ≤ h ≤ k.
Moreover, the number of factors depends only on k.

Proof. Since S2(h|s| 1k , τXj) = S1(h|s| 1k ,−τXj)
−1, if we prove the claim for s > 0

it will also follows for s < 0. Without loss of generality we can suppose s = 1. First
notice that

S1(h, τX) exp(T ) = exp(h(τX − T )) exp(hT ) exp(T )
= exp(T ) exp(T )−1 exp(−τX + T )S1(h + 1, τX)
= exp(T )S2(1,−τX)S1(h + 1, τX)

(1.6.74)

and

S2(h, τX) exp(T ) = exp(hT )−1 exp(h(τX + T )) exp(T )
= exp(T )S2(h + 1, τX) exp(−τX − T ) exp(T )
= exp(T )S2(h + 1, τX)S1(1,−τX).

(1.6.75)

The proof is by induction on k = d(Y ). If k = 1 the claim follows directly from
definition (1.6.66) with h = 1. Let k = d(Y ) > 1 and let Y = X[J ] with J = (j1, ..., jk).
If j1 6= m the claim follows directly from (1.6.67) and the inductive hypothesis on
X[J ′], J ′ = (j2, ..., jk). Suppose j1 = m and by the inductive hypothesis write

expT (X[J ′]) =

p∏
i=1

Sσi
(hi, τiXji

)

with σi ∈ {1, 2}, τi ∈ {−1, 1}, p ∈ N less than a constant depending on k, and
1 ≤ hi ≤ k − 1. Write

expT (X[J ]) = expT (X[J ′])
−1 exp(T )−1 expT (X[J ′]) exp(T )

= expT (X[J ′])
−1 exp(T )−1

p∏
i=1

Sσi
(hi, τiXji

) exp(T ).

By (1.6.74) and (1.6.75) exp(T ) can be shifted p times from right to left cancelling
exp(T )−1 and the claim follows. ¤

7. Carnot Groups

In this section we introduce Carnot groups, one of the main classes of C-C spaces.
Carnot groups are nilpotent Lie groups which admit a one parameter group of dila-
tions.

7.1. Lie groups. A Lie group is a differentiable manifold G endowed with a
group structure which is differentiable in the sense that the product (x, y) 7→ x · y
and the inversion x 7→ x−1 are smooth maps. We shall denote by 0 the identity of
the group.

If g ∈ G let τg : G → G be the left translation τg(x) = g · x. The Lie algebra g
of G is the set of the vector fields X ∈ Γ(TG), the sections of the tangent bundle,
which are left invariant, i.e. such that

(Xf)(τg(x)) = X(f ◦ τg)(x) (1.7.76)
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for all x, g ∈ G and for all f ∈ C∞(G). This set is a vector space, and, for the
commutator of left invariant vector fields is a left invariant vector field, it becomes a
Lie algebra. This algebra is canonically isomorphic to the tangent space to G at the
origin via the identification of X and X(0).

Let X ∈ g and consider the one parameter subgroup γX : R→ G which is solution
to the equation γ̇X(t) = X(γX(t)) with initial datum γX(0) = 0. The integral curve γX

is defined for all t ∈ R since left invariant vector fields are complete. The exponential
map exp : g → G is defined by exp(X) = γX(1). Define analogously exp(X)(g) taking
g as initial datum instead of the origin. The map exp is a diffeomorphism from a
neighborhood of 0 in g onto a neighborhood of 0 in G. If dτg : T0G → TgG denotes
the differential of τg at the origin, condition (1.7.76) means that X(g) = dτgX(0). It
follows that exp(X)(g) = τg(exp(X)) = g · exp(X). In particular

exp(Y ) · exp(X) = exp(X)(exp(Y )) (1.7.77)

for all X, Y ∈ g.
The algebraic structure of g determines that of G, and precisely

exp(X) · exp(Y ) = exp(P (X,Y )) (1.7.78)

for any X,Y ∈ g, where P (X,Y ) is given by the Campbell-Hausdorff formula (1.5.47).
The Lie algebra g endowed with product P (X, Y ) can be checked to be a Lie group.
The map P : a × a → g is analytic in a neighborhood a of the origin 0 ∈ g (see
[170, section 2.15]). Formula (1.7.78) is particularly useful when the Lie algebra is
nilpotent, becoming (1.5.47) a finite sum.

By induction define g1 = g and gi = [g, gi−1] for i > 1, where [g, gi] is the set of
the products [X, Y ] with X ∈ g and Y ∈ gi. The Lie group G is nilpotent of step
k ∈ N if gk 6= {0} and gk+1 = {0}. If G is a simply connected nilpotent Lie group
and g is its Lie algebra the exponential map exp : g → G is a global diffeomorphism
([170, Theorem 3.6.2]). In the sequel G will always be assumed to be connected and
simply connected.

7.2. Stratified algebras and groups. A nilpotent Lie group G is stratified if
its Lie algebra g admits a stratification, i.e. there exist linear subspaces V1, ..., Vk of
g such that

g = V1 ⊕ ...⊕ Vk, Vi = [V1, Vi−1] for i = 2, ..., k and Vk+1 = {0}. (1.7.79)

V1 is the first slice of g and it generates the whole algebra by iterated brackets.
Stratified groups are also called Carnot groups.

Fix λ > 0 and define δ̃λ : V1 → V1 by δ̃λ(X) = λX. This map can be extended

to g by δ̃λ(X) = λiX if X ∈ Vi and by linearity. The family (δ̃λ)λ>0 is a group of
automorphisms of g

δ̃λ([X,Y ]) = [δ̃λ(X), δ̃λ(Y )], and δ̃λµ(X) = δ̃λ(δ̃µ(X))

for all λ, µ > 0. In particular for all X, Y ∈ g

δ̃λ(P (X, Y )) = P (δ̃λ(X), δ̃λ(Y )), (1.7.80)

where P (X, Y ) is defined in (1.5.47).

The automorphisms δ̃λ induce a group of automorphisms of G via the exponential

map. Define δλ : G → G by δλ(x) = exp(δ̃λ(exp−1(x))). It can be checked that:
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(i) δλµ(x) = δλ(δµ(x)) for all λ, µ > 0 and x ∈ G;
(ii) δλ(x · y) = δλ(x) · δλ(y) for λ > 0 and x, y ∈ G.

We show for example (ii). Suppose that x = exp(X) and y = exp(Y ). Then by
(1.7.80)

δλ(x · y) = exp(δ̃λ(exp−1(exp(X) · exp(Y )))) = exp(δ̃λ(P (X,Y )))

= exp(P (δ̃λ(X), δ̃λ(Y ))) = exp(δ̃λ(X)) · exp(δ̃λ(Y ))

= δλ(x) · δλ(y).

7.3. Exponential coordinates. The underlying manifold of a Carnot group
can always be chosen to be Rn for some n ∈ N. Fix a vector basis X1, ..., Xn of a real
Lie algebra g of a n−dimensional Carnot group. If X, Y ∈ g then X =

∑n
i=1 xiXi and

Y =
∑n

i=1 yiXi for some x, y ∈ Rn. The coordinates (x1, ..., xn) are the exponential
coordinates of exp(X) ∈ G. A group law on Rn, which will still be denoted by ·, can
be introduced in the following way

x · y = z if and only if exp(X) · exp(Y ) = exp
( n∑

i=1

ziXi

)
, (1.7.81)

which is equivalent to require P (X, Y ) =
∑n

i=1 ziXi. With such a product Rn is a Lie
group whose Lie algebra is isomorphic to g. Since connected and simply connected
Lie groups are isomorphic if and only if the corresponding Lie algebras are isomor-
phic ([170, Theorem 2.7.5]), it follows that (Rn, ·) and G are isomorphic. Using the
Campbell-Hausdorff formula (1.5.47) the group law can be computed explicitely.

Example 1.7.1. Suppose we have a four dimensional stratified algebra with basis
{X1, X2, X3, X4} and generators X1, X2. Assume that [X1, X2] = X3, [X1, X3] =
[X2, X3] = X4 and all other commutators vanish. We have a stratified algebra of step
3. Write

X =
4∑

i=1

xiXi and Y =
4∑

i=1

yiXi

with x, y ∈ R4. By (1.5.48) the formal expression of P (X, Y ) reduces to

P (X,Y ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y, X]],

where

[X,Y ] = [x1X1 + x2X2 + x3X3 + x4X4, y1X1 + y2X2 + y3X3 + y4X4]

= (x1y2 − x2y1)[X1, X2] + (x1y3 − x3y1)[X1, X3] + (x2y3 − x3y2)[X2, X3]

= (x1y2 − x2y1)X3 + {(x1y3 − x3y1) + (x2y3 − x3y2)}X4

[X, [X, Y ]] = [x1X1 + x2X2 + x3X3 + x4X4, (x1y2 − x2y1)X3 + {· · · }X4]

= (x1 + x2)(x1y2 − x2y1)X4

[Y, [Y,X]] = [y1X1 + y2X2 + y3X3 + y4X4,−(x1y2 − x2y1)X3 − {· · · }X4]

= −(y1 + y2)(x1y2 − x2y1)X4.
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Therefore, the group law in R4 is

x · y =
(
x1 + y1, x2 + y2, x3 + y3 +

1

2
(x1y2 − x2y1), x4 + y4

+
1

2

{
(x1y3 − x3y1) + (x2y3 − y2x3)

}

+
1

12

{
(y1 + y2)(x2y1 − x1y2) + (x1 + x2)(x1y2 − x2y1)

})
.

In the general case the group law in Rn will be written as

x · y = P (x, y) = x + y + Q(x, y),

where P = (P1, ..., Pn) and Q = (Q1, ..., Qn) are polynomial functions. If g = V1 ⊕
... ⊕ Vk is a stratification, set mj = dim(Vj), j = 1, ..., k. If i is an index such that
m1 + ... + mdi−1 < i ≤ m1 + ... + mdi

for some 1 ≤ di ≤ k the coordinate xi will be
said to have degree di. Group dilations δλ : Rn → Rn can be written as

δλ(x) = (λd1x1, λ
d2x2, ..., λ

dnxn). (1.7.82)

If 1 ≤ i ≤ m1 then di = 1.
The following Lemma lists some properties of the group product that are of special

interest. Thesis (iv) will be useful in Lemma 2.1.4.

Lemma 1.7.2.

(i) For all x ∈ Rn the inverse element x−1 is −x.
(ii) For all x, y ∈ Rn and for all λ > 0 P (δλ(x), δλ(y)) = δλP (x, y).
(iii) P (x, 0) = P (0, x) = x for all x ∈ Rn.
(iv) Q1 = ... = Qm1 = 0 and Qi(x, y) for i > m1 is a sum of terms each of which

contains a factor (xjyl − xlyj) for some 1 ≤ j, l < i.
(v) If the coordinate xi has degree di ≥ 2 then Qi(x, y) depends only on the

coordinate of x and y which have degree strictly less then di.

Proof. Property (i) is a consequence of the fact that P (X, Y ) = 0 if and only if
X = −Y . Property (ii) simply states that dilations are group automomorphisms.

We prove (iv). Fix the basis (X1, ..., Xn) of g = V1⊕ ...⊕ Vr, r ≥ 2 being the step
of the group, which gives the exponential coordinates in Rn. (X1, ..., Xm1) is a basis
of V1. Let x, y ∈ Rn and consider

X =
n∑

i=1

xiXi and Y =
n∑

i=1

yiXi.

By definition, x · y = z if

P (X, Y ) =
n∑

i=1

ziXi,

where P (X, Y ) is given by the Campbell-Hausdorff formula

P (X,Y ) =
r∑

k=1

(−1)k+1

k

∑

αj+βj≥1

cαβDαβ(X, Y ),

where the multi-indeces α and β in the inner sum have length k, cαβ and Dαβ(X,Y )
are as in (1.5.45) and (1.5.44). Dαβ(X, Y ) is a commutator of the vector fields X and
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Y and has a length that depends on α and β. The sum of the Dαβ(X,Y ) with length
1 gives X + Y .

By induction on the length h ≥ 2 of Dαβ(X,Y ) we prove that for all multi-indeces
α and β

Dαβ(X,Y ) =
n∑

i=m1+1

pi
αβ(x, y)Xi

where each pi
αβ(x, y) is a polynomial which can be decomposed in a sum of terms each

of which contains a factor (xjyl − xlyj) for some 1 ≤ j, l ≤ n. This proves statement
(iv) because

Qi(x, y) =
r∑

k=1

(−1)k+1

k

∑

αj+βj≥1

cαβpi
αβ(x, y).

Notice that there can actually appear only terms (xjyl − xlyj) with 1 ≤ j, l < i
because Qi(x, y) is homogeneous of degree di with respect to dilations (1.7.82). (This
remark also proves (v)).

We prove the inductive base. If h = 2 then Dαβ(X,Y ) can be assumed to be the
form

[X,Y ] =
n∑

j,l=1

xjyl[Xj, Xl] =
∑

1≤j<l≤n

(xjyl − xlyj)[Xj, Xl],

with [Xj, Xl] ∈ V2 ⊕ ...⊕ Vr, and the inductive base is proved.
If Dαβ(X, Y ) is a commutator of length h then we can assume Dαβ(X, Y ) =

[X, Dᾱβ̄(X, Y )] for some multi-indeces ᾱ and β̄ such that Dᾱβ̄(X,Y ) is a commutator
of length h− 1. By the inductive hypothesis

[X, Dᾱβ̄(X, Y )] =
n∑

j=1

n∑
i=m1+1

xjp
i
ᾱβ̄(x, y)[Xj, Xi],

with [Xj, Xi] ∈ V2⊕ ...⊕Vr. The inductive step is proved because xjp
i
ᾱβ̄

(x, y) has the

required property.
¤

7.4. Left invariant vector fields. The Lie algebra g of a nilpotent Lie group
structure on Rn can be thought of as an algebra of left invariant differential operators
in Rn with respect to the group law.

Let X1, ..., Xn be a vector basis of g, write

Xj(x) =
n∑

i=1

aij(x)∂i, j = 1, ..., n,

and assume Xj(0) = ∂j. The coefficients aij ∈ C∞(Rn) and the product x·y = P (x, y)
are linked in the following way. Let γ : (−δ, δ) → Rn be a C1 curve such that γ(0) = 0
and γ̇(0) = ∂j. Since Xj is left invariant, if f ∈ C1(Rn) then

Xjf(x) = Xj(f ◦ τx)(0) = lim
t→0

f(P (x, γ(t)))− f(P (x, 0))

t

=
∂f

∂x
(x)

∂P

∂y
(x, 0)γ̇(0) =

∂f

∂x
(x)

∂P

∂yj

(x, 0).
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The vector fields have polynomial coefficients aij(x), and precisely

Xj(x) =
n∑

i=1

∂Pi

∂yj

(x, 0)∂i. (1.7.83)

As a consequence the following homogeneity property holds

aij(δλ(x)) = λdi−djaij(x), (1.7.84)

where di and dj are the degrees of xi and xj, respectively.

7.5. Carnot groups as C-C spaces. Let (Rn, ·) be a Carnot structure on Rn

with stratified algebra g = V1 ⊕ ... ⊕ Vk, k ≥ 2. Let m = m1 = dim(V1) and fix a
basis X = (X1, ..., Xm) of V1. Chow-Hörmander condition (1.5.41) is verified and X
induces a C-C metric d on Rn. By Theorem 1.5.1 for any compact set K ⊂ Rn there
exists C > 0 such that d(x, y) ≤ C|x − y|1/k for all x, y ∈ K. Such estimate can be
improved in the following way.

Proposition 1.7.3. For all x, y, h ∈ Rn and λ > 0

(i) d(τh(x), τh(y)) = d(x, y);
(ii) d(δλ(x), δλ(y)) = λd(x, y).

Proof. Statement (i) follows from the fact that γ : [0, T ] → Rn is a subunit curve
joining x to y if and only if τh(γ) ia a subunit curve joining τh(x) to τh(y).

We prove (ii). Let γ : [0, T ] → Rn be a subunit curve joining x to y

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) =
n∑

i=1

( m∑
j=1

hj(t)aij(γ(t))
)
∂i.

Define γλ : [0, λT ] → Rn by γλ(t) = δλ(γ(t/λ)). Then, by (1.7.84) with dj = 1 if
j = 1, ..., m

γ̇λ(t) =
n∑

i=1

λdi−1
( m∑

j=1

hj(t/λ)aij(γ(t/λ))
)
∂i

=
n∑

i=1

( m∑
j=1

hj(t/λ)aij(γλ(t))
)
∂i =

m∑
j=1

hj(t/λ)Xj(γλ(t)).

As γλ(0) = δλ(x), γλ(λT ) = δλ(y) and γλ is subunit it follows that d(δλ(x), δλ(y)) ≤
λT . Being γ arbitrary d(δλ(x), δλ(y)) ≤ λd(x, y) and the converse inequality can be
obtained in the same way. ¤

A C-C ball centered at x ∈ Rn with radius r ≥ 0 will be denoted be B(x, r). Recall
that di ≥ 1 is the degree of the coordinate xi. If x ∈ Rn introduce the homogeneous
norm

‖x‖ :=
n∑

i=1

|xi|1/di , (1.7.85)

and define the Box
Box(x, r) = {x · z ∈ Rn : ‖z‖ ≤ r}. (1.7.86)

Proposition 1.7.4.
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(i) For all x, h ∈ Rn and r, λ > 0 we have τhB(x, r) = B(τh(x), r) and δλB(x, r) =
B(δλ(x), λr).

(ii) Moreover, there exist 0 < c1 < c2 such that Box(x, c1r) ⊂ B(x, r) ⊂ Box(x, c2r)
for all x ∈ Rn and r ≥ 0.

Proof. Statement (i) is a corollary of Proposition 1.7.3. We prove (ii). By com-
pactness there exist 0 < q1 < q2 such that q1 ≤ ‖x‖ ≤ q2 for all x ∈ Rn such that
d(x, 0) = 1. Since ‖δλ(x)‖ = λ‖x‖ we immediately find q1d(x, 0) ≤ ‖x‖ ≤ q2d(x, 0)
for all x ∈ Rn and consequently

q1d(x, y) ≤ ‖y−1 · x‖ ≤ q2d(x, y) for all x, y ∈ Rn.

Since y ∈ Box(x, r) if and only if ‖y−1 · x‖ ≤ r the claim follows. ¤

Corollary 1.7.5. The metric space (Rn, d) is complete and locally compact.
Geodesics exist globally.

Definition 1.7.6. Let g = V1⊕...⊕Vk be a stratified Lie algebra. Its homogeneous
dimension is

Q =
k∑

i=1

i dim(Vi). (1.7.87)

If n ∈ N is the dimension of g as vector space then Q ≥ n. If (Rn, ·) is the Carnot
group associated with the Lie algebra g we shall say that its homogeneous dimension
is Q.

Proposition 1.7.7. If E ⊂ Rn is a Lebesgue measurable set |x ·E| = |E ·x| = |E|
and |δλE| = λQ|E| for all x ∈ Rn and λ ≥ 0. Moreover, |B(x, r)| = rQ|B(0, 1)| for
all x ∈ Rn and r ≥ 0.

Proof. Let dτx and dδλ be the differentials of τx and δλ. The first two statements
are a straightforward consequence of det(dτx) = 1 and det(δλ) = λQ. Moreover

|B(x, r)| = |δrτxB(0, r)| = rQ|τxB(0, r)| = rQ|B(0, 1)|.
¤

8. Heisenberg Group

8.1. Introduction. The Heisenberg group is the most simple non commutative
Carnot group and is a privileged object of study in Analysis and Geometry. Consider
a (2n + 1)−dimendional real Lie algebra g with basis {X1, ..., Xn, Y1, ..., Yn, T} and
assume that the non vanishing commutation relations are only

[Xi, Yi] = −4T i = 1, ..., n. (1.8.88)

The algebra is stratified g = V1 ⊕ V2 with V1 = span{X1, ..., Xn, Y1, ..., Yn} and V2 =
span{T}.

Using exponential coordinates the Lie algebra g induces a Lie group structure on
R2n+1 as in (1.7.81). Identify R2n+1 ≡ Cn × R and (x, y, t) ≡ (z, t) with x, y ∈ Rn,
t ∈ R and z = x + iy ∈ Cn. As in Example 1.7.1 using the relations (1.8.88) in
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the Campbell-Hausdorff formula (1.5.47) (which now is particularly simple being the
algebra of step 2) it can be found the group law

(z, t) · (ζ, τ) = (z + ζ, t + τ + 2Im(zζ̄))

=
(
z + ζ, t + τ + 2(〈y, ξ〉 − 〈x, η〉)), (1.8.89)

where z = x + iy and ζ = ξ + iη. Notice that, denoting by

I =

(
0 −In

In 0

)

the unit symplectic matrix, we can also write

〈y, ξ〉 − 〈x, η〉 =
n∑

j=1

(yjξj − xjηj) = 〈z, Iζ〉.

The center of the group is Z = {(z, t) ∈ R2n+1 : z = 0}. Homogeneous dilations
δλ : R2n+1 → R2n+1, λ > 0, are

δλ(z, t) = (λz, λ2t), (1.8.90)

and the homogeneous dimension is Q = 2n + 2.
The Heisenberg Lie algebra can be realized as an algebra of left invariant differ-

ential operators on R2n+1. Using formula (1.7.83) it can be found T = ∂t and

Xj = ∂xj
+ 2yj∂t, Yj = ∂yj

− 2xj∂t, j = 1, ..., n. (1.8.91)

These vector fields clearly satisfy the Chow-Hörmander condition, and a left invariant
C-C metric is induced on R2n+1. A ball B(0, r) centered at the origin and with radius
r ≥ 0 behaves like the box

Box(0, r) = {(z, t) ∈ R2n+1 : |z| ≤ r and |t| ≤ r2}.
The Heisenberg group is denoted by Hn. The Heisenberg gradient will be written as

∇H = (X1, ..., Xn, Y1, ..., Yn).

8.2. Geodesics in the Heisenberg group. The Heisenberg group endowed
with its left invariant C-C metric is a locally compact metric space and geodesics
exist globally (Corollary 1.7.5). We shall compute them explicitly.

Lemma 1.8.1. Geodesics in Hn are normal.

Proof. Let A = col [X1, ..., Xn, Y1, ..., Yn] be the matrix of the vector fields (1.8.91)
as in (1.1.1), and let γ : [0, 1] → Hn be a geodesic. Then

γ̇(s) = A(γ(s))h(s) for a.e. s ∈ [0, 1], (1.8.92)

with h = (h1, h2) and h1, h2 ∈ L2(0, 1)n. Write γ(s) = (x(s), y(s), t(s)).
We have to check that the case λ = 0 in Theorem 1.4.7 may not occur. Since

Ah =
n∑

j=1

h1jXj + h2jYj = (h1, h2, 2〈z, Ih〉),
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equations (ii) in Theorem 1.4.7 are




ξ̇ = 2βh2

η̇ = −2βh1

τ̇ = 0,
(1.8.93)

and therefore τ(s) = β ∈ R. Suppose by contradiction that the optimal pair
(γ(s), h(s)) corresponds to λ = 0. From (1.4.39)

{
ξ + 2βy = 0
η − 2βx = 0.

(1.8.94)

If β = 0 then ξ(s) ≡ η(s) ≡ 0 and this is not possible because of (i) in Theorem 1.4.7.
Then β 6= 0. Differentiating equations (1.8.94), replacing the result in (1.8.93) and
simplifying 2β 6= 0 we get {

ẋ(s) = −h1(s)
ẏ(s) = −h2(s).

But from (1.8.92) {
ẋ(s) = h1(s)
ẏ(s) = h2(s)

and thus h = 0 almost everywhere. This is not possible unless γ is a constant
curve. ¤

By Lemma 1.8.1 and Proposition 1.4.9 geodesics in Hn can be found solving the
system of Hamilton equations (1.4.37) with Hamiltonian

H((z, t), (ζ, τ)) =
n∑

j=1

(ξj +2yjτ)2 +(ηj−2xjτ)2 = |ζ|2 +4τ 2|z|2 +4τ〈z, Iζ〉. (1.8.95)

Translations of geoedsics are still geoesics since the metric is left invariant. Therefore,
it is enough to study geoedsics starting from the origin. Equations (1.4.37) give





ẋ = ξ + 2τy x(0) = 0
ẏ = η − 2τx y(0) = 0
ṫ = 4τ |z|2 + 2〈Iz, ζ〉 t(0) = 0

ξ̇ = 2τη − 4τ 2x ξ(0) = B
η̇ = −2τξ − 4τ 2y η(0) = A
τ̇ = 0 τ(0) = ϕ/4,

where A,B ∈ Rn and ϕ ∈ R. The choice ensuring the arclength parametrization
turns out to be |A|2 + |B|2 = 1 (see (1.8.97) below). The solutions are (we are not
interested in the dual curve)





x(s) =
A(1− cos ϕs) + B sin ϕs

ϕ

y(s) =
−B(1− cos ϕs) + A sin ϕs

ϕ

t(s) = 2
ϕs− sin ϕs

ϕ2
.

(1.8.96)
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In the limit case ϕ = 0 one gets (x(s), y(s), t(s)) = (Bs, As, 0). Finally, notice that

γ̇ =
n∑

j=1

(Aj sin ϕs + Bj cos ϕs)Xj(γ) + (Aj cos ϕs−Bj sin ϕs)Yj(γ). (1.8.97)

If (z, t) /∈ Z, that is z 6= 0, then (z, t) and (0, 0) can be connected only by one
geodesic. On the other side (0, 0) and (0, t), t 6= 0, can by connected by a continuous
family of geodesics even if t is small. Differently from the Riemannian case geodesics
in C-C spaces are not locally unique.

8.3. Heisenberg ball. From (1.8.96) a parametrization of the surface of the
unitary metric ball centered at the origin can be easily obtained. For the sake of
simplicity take n = 1 and let S = {(x, y, t) ∈ H1 : d((x, y, t), 0) = 1}.

If in (1.8.96) we choose s = 1, A = cos ϑ and B = sin ϑ we obtain the parametric
equations for S 




x(ϑ, ϕ) =
cos ϑ(1− cos ϕ) + sin ϑ sin ϕ

ϕ

y(ϑ, ϕ) =
− sin ϑ(1− cos ϕ) + cos ϑ sin ϕ

ϕ

t(ϑ, ϕ) = 2
(ϕ− sin ϕ)

ϕ2
,

(1.8.98)

with 0 ≤ ϑ ≤ 2π and −2π ≤ ϕ ≤ 2π. The surface S is of class C∞ where z 6= 0.

Remark 1.8.2. The singular antipodal points of the surface S, which have coor-
dinates (0, 0,±1/π), are Lipschitz points. Indeed, solving y(ϑ, ϕ) = 0 we find

ϑ(ϕ) = arctan
( sin ϕ

1− cos ϕ

)
and x(ϑ(ϕ), ϕ) =

√
2− 2 cos ϕ

ϕ
.

The path γ : [0, 2π] → H1 defined by

γ(ϕ) =
(√2− 2 cos ϕ

ϕ
, 0, 2

ϕ− sin ϕ

ϕ2

)

lies in ∂B(0, 1) ∩ {(x, y, t) ∈ R3 : y = 0} and joins the point (1, 0, 0) to the “north
pole” (0, 0, 1

π
). Its derivative at ϕ = 2π is

γ̇(2π) =
(
− 1

2π
, 0,− 1

π2

)
.

This shows that we can put on the “north pole” outside the unitary ball a cone with
angular opening 2 arctan(π/2). ¤

9. Grushin space

9.1. Grushin metrics. In this section we analyze the C-C metric induced by
a family of vector fields not of Hörmander type, metric that has been introduced in
[76] and [77]. We consider Rn with n ≥ 2 and fix 1 ≤ m ≤ n − 1. We shall write
(x, y) ∈ Rm × Rk = Rn, k = n−m. Consider

X1 = ∂x1 , ..., Xm = ∂xm , Y1 = |x|α∂y1 , ..., Yk = |x|α∂yk
, (1.9.99)

where α > 0. If α is a positive even integer the Hörmander condition (1.5.41) can
by checked but the C-C metric is defined for any α > 0 and is finite because every
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couple of points in Rn can be connected by polygonals piecewise integral curves of
the vector fields. We shall call the induced C-C metric d on Rn the Grushin metric.

The metric is invariant with respect to translations in the y variable, precisely for
any x, ξ ∈ Rm and y, η, h ∈ Rk

d((x, y + h), (ξ, η + h)) = d((x, y), (ξ, η)). (1.9.100)

Introduce the one parameter group of dilations δλ : Rn → Rn defined by δλ(x, y) =
(λx, λα+1y) for λ > 0. The distance from the origin is 1−homogeneus with respect to
such dilations. Precisely, if (x, y) ∈ Rn and λ > 0 then d(0, δλ(x, y)) = λd(0, (x, y)).
Indeed, if γ : [0, T ] → Rn is a subunit curve such that γ(0) = 0 and γ(T ) = (x, y) the
curve γλ : [0, λT ] → Rn defined by γλ(t) = δλγ(t/λ) is subunit and joins 0 to δλ(x, y).

Grushin metric can be estimated more explicitly on the whole space by means of
polygonal integral curves. The following proposition is a special case of [76] (see also
[72]).

Proposition 1.9.1. Assume k = 1 and let λ > 0. There exists c ≥ 1 such that
for all P = (x, y) and Q = (ξ, η) ∈ Rn with |x| ≥ |ξ|

d(P, Q) ≤ |x− ξ|+ |y − η|
|x|α ≤ c d(P, Q) if |x|α+1 ≥ λ|y − η|,

1

3
d(P,Q) ≤ |x− ξ|+ |y − η| 1

α+1 ≤ c d(P, Q) if |x|α+1 < λ|y − η|.

Proof. Without loss of generality we consider the case m = 1 (i.e. n = 2). Thanks
to (1.9.100) we can suppose η = 0. Assume moreover x ≥ 0 and y ≥ 0.

Since d((ξ, 0), (x, 0)) = |x − ξ| and |x| ≥ |ξ|, we have to estimate the distance
between (x, 0) and (x, y). If h ≥ 0 set T (h) := 2h + y

(x+h)α and consider the subunit

curve γh : [0, T (h)] → R2

γh(t) =





(x + t, 0) if t ∈ [0, h)
(x + h, (x + h)αt) if t ∈ [h, T (h)− h]
(x + h− t, y) if t ∈ (T (h)− h, T (h)].

Notice that γh(0) = (x, 0) and γh(T (h)) = (x, y). If xα+1 ≥ λy choose h = 0. By
definition (1.1.4)

d((x, 0), (x, y)) ≤ T (0) =
y

xα
.

If xα+1 < λy choose h = y
1

α+1 −x (which amounts to solve T ′(h) = 0 up to a constant
before y). Then

d((x, 0), (x, y)) ≤ T (h) = 2
(
y

1
α+1 − x

)
+

y

y
α

α+1

≤ 3y
1

α+1 .

Consider now any subunit curve γ = (γ1, γ2) : [0, T ] → R2 joining (x, 0) to (x, y)




γ1(t) = x +

∫ t

0

h1(τ) dτ

γ2(t) =

∫ t

0

|γ1(τ)|αh2(τ) dτ,
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with γ2(T ) = y, and h1(t)
2 + h2(t)

2 ≤ 1 for a.e. t ∈ [0, T ]. We assume h1(t) =
h2(t) = 1, weakening in this way the subunit condition. Moreover, by symmetry we
can reduce to the case γ(T/2) = y/2. Thus

y

2
=

∫ T/2

0

(x + τ)α dτ =
1

α + 1

(
(x + T/2)α+1 − xα+1)

)
,

and writing T = xS

(α + 1)y

2xα+1
=

(
(1 + S/2)α+1 − 1)

)
. (1.9.101)

If xα+1 ≥ λy the left hand side of (1.9.101) is bounded from above by (α + 1)/(2λ)
and the solution S of the equation has to satisfy (1 + S/2)α+1 ≤ (1 + qS) for some

q > 0 depending on α and λ. Thus T = xS ≥ (α+1)y
2qxα . As γ is arbitrary it follows that

d((x, 0), (x, y)) ≥ (α + 1)y

2qxα
.

We consider the case xα+1 < λy. From (1.9.101)

S

2
=

((α + 1)y

2xα+1
+ 1

) 1
α+1 − 1 =

y
1

α+1

x

[((α + 1)

2
+

xα+1

y

) 1
α+1 − x

y
1

α+1

]
≥ q̄

y
1

α+1

x
,

for some q̄ > 0 depending on α and λ. Whence T = xS ≥ 2q̄y
1

α+1 . As γ is arbitrary
it follows that

d((x, 0), (x, y)) ≥ 2q̄y
1

α+1 .

¤

Remark 1.9.2. If k > 1 Proposition 1.9.1 still holds, but 2k cases should be
distinguished according to that |x|α+1 ≥ λ|yi−ηi| or |x|α+1 < λ|yi−ηi| for i = 1, ..., k.

Grushin balls can be represented by suitable boxes. If (x, y) ∈ Rn and r ≥ 0
define

Box((x, y), r) = {(ξ, η) ∈ Rn : |x− ξ| ≤ r and |y − η| ≤ r(|x|+ r)α}. (1.9.102)

Proposition 1.9.3. There exist constants 0 < c1 < c2 such that for all (x, y) ∈ Rn

and r ≥ 0

Box((x, y), c1r) ⊂ B((x, y), r) ⊂ Box((x, y), c2r). (1.9.103)

Proof. It follows from Proposition 1.9.1. ¤

Corollary 1.9.4. The metric space (Rn, d) is locally compact and complete.
Geodesics exist globally.

Proof. By Proposition 1.9.1 the metric d is continuous in the Euclidean topology
and from Proposition 1.4.3 it follows that (Rn, d) is locally compact. By Proposition
1.9.3 closed C-C balls are bounded and thus compact (the topology of (Rn, d) is the
Euclidean topology) and from Theorem 1.4.4 geodesics exist globally. ¤
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9.2. Geodesics and balls. Our next task is to compute geodesics solving Hamil-
ton equations (1.4.37). Geodesics in Grushin spaces have been first studied in [70]. We
have to check that singular geodesics may not occur. We are interested in geodesics
starting from (0, 0) ∈ Rn. The Hamiltonian is

H((x, y), (ξ, η)) = |ξ|2 + |x|2α|η|2,

where x, ξ ∈ Rm and y, η ∈ Rk. By Proposition 1.4.9 singular geodesics should verify
H((x(t), y(t)), (ξ(t), η(t))) ≡ 0, being γ(t) = (x(t), y(t)) the geodesic and (ξ(t), η(t))
the dual curve given by Theorem 1.4.7. Then |ξ(t)| ≡ 0 and since |η(t)| 6= 0 (by
condition (i) in Theorem 1.4.7), it follows that |x(t)| ≡ 0. This implies that if
γ(0) = (0, 0) then γ(t) = (0, 0) for all t ≥ 0. This is not possible and geodesic
must be normal.

We find the system of equations

{
ẋ = ξ, ξ̇ = −α|η|2|x|2α−2x,
ẏ = |x|2αη, η̇ = 0.

Fix the initial data x(0) = y(0) = 0, ξ(0) = ξ and η(0) = η. We look for a solution
x(t) = ϕ(t)ξ for some real function ϕ ≥ 0 such that ϕ(0) = 0 and ϕ̇(0) = 1. One
finds the equation ϕ̈ + α|η|2ϕ2α−1 = 0 which can be explicitly solved, for example, if
α = 1. In this case the solution is

ϕ(t) =
sin(|η|t)
|η| , 0 ≤ t ≤ π

|η| ,

and geodesics are γ(t) = (x(t), y(t)) where

x(t) =
sin(|η|t)
|η| ξ, y(t) =

|ξ|2
|η|2

(2|η|t− sin(2|η|t)
4

) η

|η| , 0 ≤ t ≤ π

|η| . (1.9.104)

Notice that

γ̇(t) = cos(|η|t)
m∑

j=1

ξjXj(γ(t)) +
|ξ| sin(|η|t)

|η|
k∑

i=1

ηiYi(γ(t)),

and therefore γ is parametrized by arclength if |ξ| = 1.
Take m = 2 and k = 1. Write ξ = (cos(ϕ), sin(ϕ)) and η = ϑ. The boundary of

the Grushin ball B((0, 0), r) ⊂ R3, r > 0, has the parametrization





x1(ϕ, ϑ) =
sin(ϑr)

ϑ
cos(ϕ)

x2(ϕ, ϑ) =
sin(ϑr)

ϑ
sin(ϕ)

y1(ϕ, ϑ) =
2ϑr − sin(2ϑr)

4ϑ2
,

(1.9.105)

where 0 ≤ ϕ < 2π and −π ≤ rϑ ≤ π. The parametrization is smooth except that in
the “north pole” (0, 0, r2/(2π)) which is a Lipschitz point.
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Take m = 1 and k = 2. Write η = (% cos(ϑ), % sin(ϑ)). The boundary of the
Grushin ball B((0, 0), r) ⊂ R3, r > 0, has the parametrization





x1(%, ϑ) = ±sin(%r)

%

y1(%, ϑ) =
2%r − sin(2%r)

4%2
cos(ϑ),

y2(%, ϑ) =
2%r − sin(2%r)

4%2
sin(ϑ),

(1.9.106)

where 0 ≤ ϑ < 2π and 0 ≤ % ≤ π/r The parametrization is smooth except that in
circular section in the plane {x1 = 0}.

10. References and comments

The metric d was introduced in [77] and [64] to study second order elliptic degen-
erate differential equations but the construction is usually attributed to Carathéodory
[45]. The Hölder estimate (1.5.53) of the metric d is deeply linked with the theory
of subelliptic operators. The second order differential operator naturally associated
with the (selfadjoint) vector fields X1, ..., Xm is the sum of squares Laplacian

L = −
m∑

j=1

X2
j .

Fefferman and Phong proved in [64] that the Hölder estimate (1.5.53) of exponent 1/k
for the distance d induced by the vector fields is in fact equivalent to the subelliptic
estimate

||u||Hε ≤ CK(〈Lu, u〉+ ||u||2)
for all u ∈ C1

0(K), K ⊂ Rn compact set, where 0 < ε < 1/k. Actually, the subelliptic
estimate holds for the sharp exponent ε = 1/k [117].

Other different but equivalent definitions of d can be found in [151]. C-C spaces
have also been extensively studied from the geometric point of view as sub-Rieman-
nian spaces (see for instance [94] and the book [21] where an extensive bibliography
can be found). Proposition 1.1.4 is well known (see for example [100]), while in the
proof of Theorem 1.1.6 we essentially followed [111].

A study of rectifiable curves in Euclidean spaces can be found in [62] and for
general metric spaces in [6]. In this latter book Theorem 1.3.1 is proved. In the proof
of Proposition 1.3.3 we essentially followed [100]. A general theorem of existence of
length minimizing curves in compact metric spaces is proved in [6]. Geodesics in C-C
spaces have been explicitly computed in [88], [31], [70] and general references to the
subject are [165], [142], [143], [98], [1]. In the monograph [124] singular geodesics
in the case of rank 2 distributions (sub-Riemannian spaces with metric induced by 2
vector fields) are extensively studied. The most general condition known to rule out
singular geodesics is the “strong bracket generating hypothesis” introduced in [165]
but it applies only to a subclass of vector fields of step 2.

Carnot groups are well known in Harmonic Analysis and in the study of hypoellip-
tic differential operators as nilpotent or homogeneous groups ([67], [156] and [164]).
Many topics in Analysis in groups are dealt with in [172]. A beautiful introduction to
the Heisenberg group are chapters XII and XIII of [164], where particular attention is
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paid to the links with complex analysis and partial differential equations. Geodesics
in the Heisenberg group were first computed in [31]. The shape of the Heisenberg
ball was studied in [144] in order to show that it is not isoperimetric.





CHAPTER 2

Differentiability of Lipschitz maps
and eikonal equation for distance functions

In this chapter we study different notions of differentiability of Lipschitz maps and
the eikonal equation for C-C metrics. Differentiability of Lipschitz maps in metric
spaces is a topic that seems to arouse an increasing interest (see, for instance, [48]).
As far as C-C spaces in concerned a classical theorem due to P. Pansu [153] states that
Lipschitz maps between Carnot groups have a differential which is a homogeneous
homomorphism. In section 1 we follow the original proof except that in the one
dimensional reduction step which has been shortened (see Lemma 2.1.4). Pansu’s
proof works when the map is defined in an open set. However, the theorem still
holds for Lipschitz maps defined on a measurable set (see [175] and [129]). A weaker
but more general result is the differentiability in sense of distribution of real valued
Lipschitz functions in quite arbitrary C-C spaces which has been proved in [81] and
then in [90] (see Theorem 2.2.1). Our contribution is a strong differentiability theorem
for Lipschitz maps in C-C spaces assuming some structure on the vector fields (see
Theorem 2.3.3).

The eikonal equation for the distance from a point in C-C spaces was known to
hold in the sense of viscosity solution [38]. We improve this result showing that the
equation holds almost everywhere [148], allowing d to be the distance from a closed
set (Theorem 2.6.1). In the special case of the Heisenberg group we prove that the
solution is classical because the distance function is regular outside the center of the
group [144]. Within the study of the distance from a non characteristic surface in the
Heisenberg group we also prove a kind of Gauss Lemma stating that the Heisenberg
gradient of the distance from a regular surface is the intrinsic normal to the surface
(see Lemma 2.5.6 and Theorem 2.5.8).

1. Differentiability of Lipschitz functions between Carnot groups

Let G = (Rn, ·, δλ, d) and Ḡ = (Rn̄, ·̄, δ̄λ, d̄) be two Carnot groups. In the sequel
the group law signs · and ·̄ will be sometimes omitted.

A map ϕ : G→ Ḡ is a homogeneous homomorphism if ϕ is a group homomorphism
and ϕ(δλ(x)) = δ̄λ(ϕ(x)) for all x ∈ G and λ > 0. A map f : G → Ḡ is Lipschitz if
there exists a constant L > 0 such that d̄(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ G.

If f : G→ Ḡ, x, ξ ∈ G and t > 0 define

R(x, ξ; t) = δ̄1/t(f(x)−1f(xδt(ξ))).

Definition 2.1.1. A map f : G→ Ḡ is Pansu-differentiable (or differentiable) at
x ∈ G if for all ξ ∈ G there exists

Df(x; ξ) := lim
t↓0

R(x, ξ; t),

57
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and the convergence is uniform with respect to ξ. The map Df(x; ·) : G→ Ḡ is the
differential of f at x.

Remark 2.1.2. If Df(x; ξ) exists then there also exists Df(x; δλ(ξ)) = δ̄λDf(x; ξ)
for all λ > 0. Indeed

δ̄1/t(f(x)−1f(xδt(δλ(ξ)))) = δ̄λδ̄1/λt(f(x)−1f(xδλt(ξ))),

and thus

Df(x; δλ(ξ)) = lim
t→0+

δ̄1/t(f(x)−1f(xδt(δλ(ξ))))

= δ̄λ lim
t→0+

δ̄1/t(f(x)−1f(xδt(ξ))) = δ̄λDf(x; ξ).

¤

Lipschitz maps between Carnot groups are differentiable almost everywhere and
their differential is a homogeneous homomorphism. Here we shall follow Pansu’s
original proof of this theorem except that in the one dimensional reduction step
(Lemma 2.1.4 below). In G = Rn we fix the Lebesgue measure and denote by |E| the
measure of a measurable set E ⊂ G.

Proposition 2.1.3. Let f : G → Ḡ be a Lipschitz map. If for some ξ1, ξ2 ∈ G
the derivatives Df(x; ξ1) and Df(x; ξ2) exist for a.e. x ∈ G, then there also exists
Df(x; ξ1ξ2) = Df(x; ξ1)Df(x; ξ2) for a.e. x ∈ G.

Proof. By Remark 2.1.2 we can assume that d(ξ1, 0) = d(ξ2, 0) = 1. Let Ω ⊂ G
be an open set with finite Lebesgue measure and let η > 0. By Lusin and Egorov
Theorems there exists a compact set K ⊂ Ω such that

(i) |Ω \ E| ≤ η;
(ii) Df(x; ξ1) and Df(x; ξ2) exist and are continuous at x ∈ K;
(iii) R(x, ξ2; t) → Df(x; ξ2) as t ↓ 0 uniformly for x ∈ K.

If we prove the claim for all x ∈ K we are done. Since δλ and δ̄λ are group
automorphisms, “adding and substracting” f(xδt(ξ1)) we find

R(x, ξ1ξ2; t) = δ̄1/t(f(x)−1f(xδt(ξ1ξ2))) = δ̄1/t(f(x)−1f(xδt(ξ1)δt(ξ2)))

= δ̄1/t(f(x)−1f(xδt(ξ1))f(xδt(ξ1))
−1f(xδt(ξ1)δt(ξ2)))

= δ̄1/t(f(x)−1f(xδt(ξ1))) δ̄1/t(f(xδt(ξ1))
−1f(xδt(ξ1)δt(ξ2)))

= R(x, ξ1; t) R(xδt(ξ1), ξ2; t).

(2.1.1)

and R(x, ξ1; t) → Df(x; ξ1) as t → 0+.
If ε > 0 by (iii) there exists tε > 0 such that

d̄(R(y, ξ2; t), Df(y; ξ2)) ≤ ε

for all y ∈ K as soon as t ≤ tε.
If it were xδt(ξ1) ∈ K then d̄(Df(xδt(ξ1); ξ2), Df(x; ξ2)) ≤ ε if t ≤ tε (possibly

shrinking tε), and

d̄(R(xδt(ξ1), ξ2; t), Df(x; ξ2)) ≤d̄(R(xδt(ξ1), ξ2; t), Df(xδt(ξ1); ξ2))

+ d̄(Df(xδt(ξ1); ξ2), Df(x; ξ2)) ≤ 2ε,
(2.1.2)



1. DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS BETWEEN CARNOT GROUPS 59

which would prove that

lim
t→0

R(x, ξ1ξ2; t) = Df(x; ξ1)Df(x; ξ2).

In general xδt(ξ1) /∈ K. Let B(x, r) a C-C ball centered at x with radius r. By
the differentiation Theorem in doubling metric spaces 1.6.5

lim
r↓0

|B(x, r) ∩K|
|B(x, r)| = 1 and lim

r↓0
|B(x, r) \K|
|B(x, r)| = 0 for a.e. x ∈ K.

Let λ(t) = dist(xδt(ξ1), K) = d(xδt(ξ1), x̄(t)) for some x̄(t) ∈ K and define ξ̄1(t) =
δ1/t(x

−1x̄(t)) so that x̄(t) = xδt(ξ̄1(t)). By Proposition 1.7.3

d(xδt(ξ1), x) = d(δt(ξ1), 0) = td(ξ1, 0) = t,

and consequently B(xδt(ξ1), λ(t)) ⊂ B(x, t+λ(t))\K. Let Q ≥ n be the homogeneous
dimension of G. By Proposition 1.7.7

( λ(t)

t + λ(t)

)Q

=
|B(x, t + λ(t)) \K|
|B(x, t + λ(t))| ≤ |B(x, t + λ(t)) \K|

|B(x, t + λ(t))| .

As the right hand side tends to zero we deduce that

lim
t↓0

λ(t)

t
= 0. (2.1.3)

Notice that

λ(t) = d(xδt(ξ1), x̄(t)) = d(xδt(ξ1), xδt(ξ̄1(t))) = d(δt(ξ1), δt(ξ̄1(t))) = td(ξ1, ξ̄1(t))

and from (2.1.3) it follows that

lim
t↓0

d(ξ1, ξ̄1(t)) = 0. (2.1.4)

We already noticed in (2.1.1) that

R(x, ξ1ξ2; t) = R(x, ξ1; t)R(xδt(ξ1), ξ2; t).

Our aim is to show that R(xδt(ξ1), ξ2; t) converges to Df(x; ξ2). The point xδt(ξ1)
has to be projected on K in order to apply the argument in (2.1.2). Write

R(xδt(ξ1), ξ2; t) = δ̄1/t(f(xδt(ξ1))
−1f(xδt(ξ̄1(t))))

δ̄1/t(f(xδt(ξ̄1(t)))
−1f(xδt(ξ̄1(t))δt(ξ2)))

δ̄1/t(f(xδt(ξ̄1(t))δt(ξ2))
−1f(xδt(ξ1)δt(ξ2))) = R1(t) ·R2(t) ·R3(t).

If L > 0 is the Lipschitz constant of f we immediately find (again by Proposition
1.7.3)

d̄(R1(t), 0) = d̄(δ̄1/tf(xδt(ξ̄1(t))), δ̄1/tf(xδt(ξ1)))

≤ L

t
d(xδt(ξ̄1(t)), xδt(ξ1)) ≤ Ld(ξ̄1(t), ξ1)

and analogously

d̄(R3(t), 0) = d̄(δ̄1/tf(xδt(ξ1)δt(ξ2)), δ̄1/tf(xδt(ξ̄1)δt(ξ2)))

≤ L

t
d(xδt(ξ1ξ2), xδt(ξ̄1(t)ξ2))

≤ Ld(ξ1ξ2, ξ̄1(t)ξ2).
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By (2.1.4) this shows that both R1(t) and R3(t) converge to zero.
Consider now R2(t). Since xδt(ξ̄1(t)) ∈ K the argument in (2.1.2) does apply and

thus lim
t↓0

R2(t) = Df(x; ξ2). ¤

The next step is to compute the derivative of Lipschitz curves in a Carnot group
according to Definition 2.1.1. The following Lemma should be compared with Theo-
rem 1.3.5.

Let G = (Rn, ·, δλ, d) be a Carnot group and assume that X = (X1, ..., Xm) is a
system of generators of the Lie algebra of the group such that Xj(0) = ej. We shall
denote by A the matrix of the coefficients of the vector fields.

Lemma 2.1.4. Let γ : [0, 1] → G be a Lipschitz curve. Then γ is X−admissible
and if h ∈ L∞(0, 1)m is its vector of canonical coordinates then

lim
t↓0

δ1/t(γ(s)−1 · γ(s + t)) = (h1(s), ..., hm(s), 0, ..., 0)

for a.e. s ∈ [0, 1].

Proof. By abuse of notation we identify h and (h1, ..., hm, 0, ..., 0). By Proposition
1.3.3 γ is X−admissible and γ̇(s) = A(γ(s))h(s) for a.e. s ∈ [0, 1]. Define

E = {s ∈ [0, 1] : γ̇(s) = A(γ(s))h(s) exists and s is a Lebesgue point of h}.
Let s ∈ E and assume without loss of generality that s = 0. Since the statement is
translation invariant we may also assume γ(0) = 0. We have to prove that

lim
t↓0

δ1/t(γ(t)) = (h1(0), ..., hm(0), 0, ..., 0).

Recall that we write x · y = P (x, y) = x + y + Q(x, y). By formula (1.7.83) for a.e.
t ∈ [0, 1]

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) =
m∑

j=1

hj(s)ej +
m∑

j=1

hj(t)
∂Q(γ(t), y)

∂yj

∣∣∣
y=0

.

We begin with i = 1, ..., m. Since Qi = 0 we immediately find

lim
t↓0

γi(t)

t
= lim

t↓0

∫ t

0

hi(s) ds = hi(0).

Assume now that the i−th coordinate has degree k ≥ 2 and that the claim has
been proved for the degrees 1, 2, ..., k − 1. If we denote by Q̄i(x, y) the sum of the
monomials in Qi(x, y) in which y appears linearly we can write

m∑
j=1

hj(t)
∂Qi(γ(t), y)

∂yj

∣∣∣
y=0

= Q̄i(γ(t), h(t)).

Notice that Qi(γ, h) depends only on the coordinates of γ and h with degree strictly
less than k. Moreover, since Q̄i is homogeneous of degree k each monomial in
Q̄i(γ(t), h(t)) contains the components γ1(t), ..., γi−1(t) homogeneously of degree k−1.
Thus s1−kQ̄i(γ(s), h(s)) = Q̄i(δ1/s(γ(s)), h(s)) and

∣∣∣γi(t)

tk

∣∣∣ ≤ 1

tk

∫ t

0

|Q̄i(γ(s), h(s))| ds ≤
∫ t

0

|Q̄i(δ1/s(γ(s)), h(s))| ds.
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By the inductive hypothesis (δ1/t(γ(t)))j → hj(0) as t ↓ 0 for all j−coordinates with
degree less or equal than k − 1 and therefore

lim sup
t↓0

∣∣∣γi(t)

tk

∣∣∣ ≤ |Q̄i(h(0), h(0))|.

But Q̄i(h(0), h(0)) = 0 by Lemma 1.7.2 (iv) and the statement is proved.
¤

Remark 2.1.5. Let V = {λej; λ ∈ R and j = 1, ..., m}. Since the Lie algebra of
the group is nilpotent and stratified then by (1.7.81) it follows that there exists r̄ ∈ N
and C > 0 such that for every ξ ∈ G there exist ξ1, ..., ξr̄ ∈ V such that ξ = ξ1 · ... · ξr̄

and |ξi| ≤ C|ξ| (see [67, Lemma 1.40]).

Theorem 2.1.6. Let f : G→ Ḡ be a Lipschitz map. Then Df(x; ·) exists for a.e.
x ∈ G and is a homogeneous homomorphism.

Proof. Fix j = 1, ..., m and write x̂j = (x1, ..., xj−1, 0, xj+1, ..., xn). The curve
γx̂j

: R→ Ḡ defined by γx̂j
(t) = f(exp(tXj)(x̂j) is Lipschitz, and by Lemma 2.1.4 it

is differentiable (according to Definition 2.1.1) at a.e. t ∈ R. Let Ej = {x ∈ Rn : γx̂j

is differentiable at xj} and define E =
⋃m

j=1 Ej. By Fubini Theorem |G \ E| = 0.
Let x ∈ E and since the statement is translation invariant assume without loss of

generality x = 0. Let K = ∂B(0, 1) = {v ∈ G : d(v, 0) = 1}. If v ∈ K we have to
prove that there exists

Df(0; v) = lim
t↓0

R(0, v; t) = lim
t↓0

δ̄1/t(f(0)−1 · f(δt(v)))

and that the convergence is uniform for v ∈ K. Since Ḡ with its C-C metric d̄ is a
complete metric space (Corollary 1.7.5) it is enough to show that for all ε > 0 there
exists tε > 0 such that

sup
v∈K

d̄(R(0, v; t), R(0, v; s)) ≤ (1 + 2L)ε

as soon as 0 < s, t ≤ tε. Here L is the Lipschitz constant of f .
Since K is compact we can find v1, ..., vk ∈ K such that K ⊂ ⋃k

i=1 B(vi, ε). Write
v = vi for some i. By Remark 2.1.5 we can write v = ξ1 · ... · ξr̄ where each ξi is of
the form λej for some λ ∈ R and j = 1, ..., m. Without loss of generality we can also
assume λ = 1. Now, if γ(t) = f(exp(tXj)(0))

Df(0; ξi) = lim
t↓0

δ1/t(f(0)−1f(δt(ξi)) = lim
t↓0

(γ(0)−1 · γ(t))

exists for all i because 0 ∈ E. By Proposition 2.1.3 Df(0; v) exists too and

Df(0; v) = Df(0; ξ) · ... ·Df(0; ξr̄).

Fix tε > 0 such that
sup

i=1,...,k
d̄(R(0, vi; t), R(0, vi; s)) ≤ ε

for all 0 < s, t ≤ tε. If v ∈ K there exists vi such that d(v, vi) ≤ ε and

d̄(R(0, v; t), R(0, v; s)) ≤ d̄(R(0, v; t), R(0, vi; t)) + d̄(R(0, vi; t), R(0, vi; s))

+ d̄(R(0, vi; s), R(0, v; s))

≤ (1 + 2L)ε.
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Indeed

d̄(R(0, v; t), R(0, vi; t)) =
1

t
d̄(f(0)−1f(δt(v)), f(0)−1f(δt(vi)))

≤ L

t
d(δt(v), δt(vi)) ≤ Lε,

and d̄(R(0, v; s), R(0, vi; s)) ≤ Lε by the same estimate. ¤

Proposition 2.1.7. Let f : G→ R be a Lipschitz map. Then

Df(x; ξ) =
m∑

j=1

ξjXjf(x), (2.1.5)

for a.e. x ∈ G and for all ξ ∈ G.

Proof. Consider first the case f ∈ C1
0(Rn). Definition 2.1.1 reads

Df(x; ξ) = lim
t↓0

f(x · δt(ξ))− f(x)

t
=

d

dt
f(x · δt(ξ))

∣∣∣
t=0

=
∂f(x)

∂x

d

dt
P (x · δt(ξ))

∣∣∣
t=0

,

and writing ξ̄ = (ξ1, ..., ξm, 0, ..., 0)

d

dt
P (x, δt(ξ))

∣∣∣
t=0

=
∂P (x, 0)

∂y

d

dt
δt(ξ)

∣∣∣
t=0

=
∂P (x, 0)

∂y
ξ̄.

On the other hand, by formula (1.7.83) if j = 1, ...,m

Xjf(x) =
∂f(x)

∂x

∂P (x, 0)

∂y
,

and (2.1.5) is proved.
If f : G → R is Lipschitz take ϕ ∈ C1

0(Rn) and ξ ∈ Rn. By the dominated
convergence theorem∫

Rn

Df(x)(ξ)ϕ(x) dx =

∫

Rn

lim
t↓0

f(x · δt(ξ))− f(x)

t
ϕ(x) dx

= lim
t↓0

∫

Rn

f(x · δt(ξ))− f(x)

t
ϕ(x) dx.

Indeed, if L ≥ 0 is the Lipschitz constant of f then |f(x · δt(ξ)) − f(x)| ≤ Ld(x ·
δt(ξ), x) = Ld(δt(ξ), 0) = tLd(ξ, 0).

The Lebesgue measure is left and right invariant so we can perform a change of
variable to find∫

Rn

f(x · δt(ξ))− f(x)

t
ϕ(x) dx =

∫

Rn

f(x)
ϕ(x · (δt(ξ))

−1)− ϕ(x)

t
dx.

Since (δt(ξ))
−1 = δt(ξ

−1) = δt(−ξ) the above discussion shows that

lim
t↓0

ϕ(x · (δt(ξ))
−1)− ϕ(x)

t
= −

m∑
j=1

ξjXjϕ(x),

and integrating by parts we get
∫

Rn

Df(x; ξ)ϕ(x) dx = −
∫

Rn

f(x)
m∑

j=1

ξjXjϕ(x) dx =

∫

Rn

ϕ(x)
m∑

j=1

ξjXjf(x) dx,



2. WEAK DERIVATIVES OF LIPSCHITZ FUNCTIONS IN C-C SPACES 63

as every Xj is self-adjoint. ¤

2. Weak derivatives of Lipschitz functions in C-C spaces

Lipschitz functions in general C-C spaces always have weak derivatives along the
vector fields that are essentially bounded functions. When the function is the distance
function this result was first proved in [81], which we shall here follow along with [75],
and then in [90] for a generic Lipschitz function.

Theorem 2.2.1. Let (Rn, d) be a C-C space associated with a family of locally
Lipschitz vector fields X = (X1, ..., Xm). Assume that the metric d is continuous with
respect to the Euclidean topology. If f : Rn → R is a function such that for some
L ≥ 0

|f(x)− f(y)| ≤ Ld(x, y) for all x, y ∈ Rn, (2.2.6)

then the derivatives Xjf , j = 1, ..., m exist in distributional sense, are measurable
functions and |Xf(x)| ≤ L for a.e. x ∈ Rn.

In the proof of Theorem 2.2.1 a lemma is needed. Let Y (x) =
∑n

i=1 ai(x)∂i be a
non vanishing locally Lipschitz vector field and consider the Cauchy Problem{

γ̇x(t) = Y (γx(t))
γx(0) = x

If K ⊂ Rn is a compact set there exists T > 0 such that the solution γx(t) is defined
for all |t| ≤ T and x ∈ K. Define Φ : K × [−T, T ] → Rn by Φ(x, t) = γx(t). If t is
fixed the map Φ(·, t) is a local diffeomorphism and Φ(K × [−T, T ]) ⊂ K1 for some
compact set K1.

Lemma 2.2.2.

(1) For any |t| ≤ T , the map Φ(·, t) is Lipschitz on K;
(2) there exists C > 0 such that | det JxΦ(x, t)| ≤ 1 + C|t| for a.e. x ∈ K and

for all |t| ≤ T .

Proof. Let M > 0 be a Lipschitz constant for Y relatively to K1. Then (we
consider t ≥ 0)

|Φ(x, t)− Φ(y, t)| = |x +

∫ t

0

Y (Φ(x, s)) ds− y −
∫ t

0

Y (Φ(y, s)) ds|

≤ |x− y|+
∫ t

0

|Y (Φ(x, s))− Y (Φ(y, s))| ds

≤ |x− y|+ M

∫ t

0

|Φ(x, s)− Φ(y, s)| ds.

By Gronwall Lemma |Φ(x, t)− Φ(y, t)| ≤ M̄ |x− y| with M̄ = eMT . By Rademacher
Theorem Φ(·, t) is differentiable for a.e. x. Let x ∈ K be such a point. From

|Φi(x + sej, t)− Φi(x, t)| ≤ |s|δij + M

∫ t

0

|Φ(x + sej, τ)− Φ(x, τ)| dτ

≤ |s|δij + M1|s|t



64 2. LIPSCHITZ MAPS AND EIKONAL EQUATION

(M1 := MM̄) it follows that
∣∣∣∂Φi(x, t)

∂xj

∣∣∣ ≤ δij + M1t

and finally for some C > 0 we have det JxΦ(x, t)| ≤ 1 + Ct for a.e. x ∈ K. ¤

Proof of Theorem 2.2.1. Let Y ∈ {X1, ..., Xm}. By (2.2.6) the function f is
continuous in the Euclidean topology and Y f is a well defined distribution. If Y f is
a continuous and linear operator on L1(Rn) it follows that Y f ∈ L∞(Rn).

Fix x̄ ∈ int(K) and let U = U(x̄, ε) := {x ∈ Rn : |x − x̄| ≤ ε} ⊂ K for some
ε > 0. The claim is that there exists C > 0 such that

|〈Y f, ϕ〉| ≤ C||ϕ||1 for all ϕ ∈ C∞
0 (U).

Such estimate, if proved, will hold by density for all ϕ ∈ L1(U). Integrating by parts

〈Y f, ϕ〉 = −
∫

U

f(x)
n∑

i=1

∂i(ai(x)ϕ(x)) dx

= −
∫

U

f(x)Y ϕ(x) dx−
∫

U

f(x)ϕ(x)div(Y ) dx.

The divergence of Y is (essentially) locally bounded and therefore for some C > 0
not depending on ϕ

∣∣∣
∫

U

f(x)ϕ(x)div(Y ) dx
∣∣∣ ≤ C sup

x∈U
|f(x)|||ϕ||1. (2.2.7)

In order to estimate the first integral consider
∫

U

f(x)Y ϕ(x) dx = lim
t→0

1

t

∫

U

f(x)(ϕ(Φ(x, t))− ϕ(x)) dx.

Write Φt(x) = Φ(x, t), let Ψt(y) = Φ−1
t (y) and perform the change of variable x =

Ψt(y) to get
∫

U

f(x)ϕ(Φ(x, t)) dx =

∫

Φt(U)

f(Ψt(y))ϕ(y)| det JΨt(y)| dy.

Being ϕ ∈ C∞
0 (U) we may assume spt(ϕ) ⊂ Φt(U) ∩ U it |t| if small enough, and

the integration domain Φt(U) can be replaced with U . By Lemma 2.2.2 the estimate
| det JΨt(y)| ≤ 1 + C|t| holds and thus
∣∣∣
∫

U

f(x)Y ϕ(x) dx
∣∣∣ =

∣∣∣ lim
t→0

∫

U

(
f(Ψt(x))| det JΨt(x)| − f(x)

)
ϕ(x) dx

∣∣∣

≤ lim sup
t→0

1

|t|
∫

U

(
|f(Ψt(x))− f(x)|+ C|t||f(Ψt(x))|

)
|ϕ(x)| dx.

The path t → Ψt(x) is an integral curve of −Y . Thus by (2.2.6) |f(Ψt(x))− f(x)| ≤
Ld(Ψt(x), x) ≤ L|t|. This yields

1

|t|
∫

U

|f(Ψt(x))− f(x)||ϕ(x)| dx ≤ L||ϕ||1.
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Now, for t > 0 there exists λ(t) > 0 such that Ψt(x) ∈ U(x̄, ε + λ(t)) for all x ∈ U
and λ(t) → 0 as t ↓ 0. Therefore we can write∫

U

|f(Ψt(x))||ϕ(x)| dx ≤ ||ϕ||1 sup
x∈U(x̄,ε+λ(t))

|f(x)|,

and finally ∣∣∣
∫

U

f(x)Y ϕ(x) dx
∣∣∣ ≤ (L + sup

x∈U
|f(x)|)||ϕ||1. (2.2.8)

By (2.2.7) and (2.2.8)

|〈Y f, ϕ〉| ≤
(
L + C sup

x∈U(x̄,ε)

|f(x)|
)
||ϕ||1.

and this shows that Y f is a continuous linear functional on L1(U(x̄, ε)), ad as a
consequence Y f ∈ L∞(U(x̄, ε)) and

||Y f, L∞(U(x̄, ε))|| ≤ L + C sup
x∈U(x̄,ε)

|f(x)|. (2.2.9)

Let now x ∈ Rn be a point such that f(x) = 0 (this is not restrictive), |Xf(x)| > 0
and |Xf | is approximatively continuous at x. Applying the above argument to the
vector field

Y (x) =
m∑

j=1

Xjf(x)

|Xf(x)|Xj,

whose integral curves are X−subunit, we find from (2.2.9)

|Xf(x)| = |Y f(x)| = lim
ε↓0
||Y f, L∞(U(x̄, ε))|| ≤ L.

¤

3. Differentiability of Lipschitz functions in C-C spaces

The weak derivatives of a real valued Lipschitz function in a C-C space define a
“differential” that exists almost everywhere. But the space needs some more proper-
ties.

Let (Rn, d) the the Carnot-Carathéodory space associated with the vector fields
X1, ..., Xm ∈ Liploc(Rn;Rn), m ≤ n. The vector fields will be assumed to be of the
form

Xj(x) = ∂j +
n∑

i=m+1

aij(x)∂i, j + 1, ...,m. (2.3.10)

Secondly, (Rn, d) endowed with Lebesgue measure will be assumed to be a locally
homogeneous metric space. Precisely, we assume that for any compact set K ⊂ Rn

there exist δ > 1 and r0 > 0 such that

|B(x, 2r)| ≤ δ|B(x, r)| for all x ∈ K and 0 ≤ r ≤ r0. (2.3.11)

Finally, we assume the following Morrey type inequality which will be discussed
in chapter 4. For a.e. x ∈ Rn there exist C > 0, p ≥ 1 and r0 > 0 such that for all
0 < r < r0 and f ∈ Lip(Rn, d)

|f(x)− f(y)| ≤ Cr
(∫

B(x,r)

|Xf(z)|p dz
)1/p

for all y ∈ B(x, r). (2.3.12)
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Example 2.3.1. Assumptions (2.3.10), (2.3.11) and (2.3.12) hold in any Carnot
group. But there are many other C-C spaces satisfying them. Consider, for instance,
R3 endowed with the C-C metric induced by the vector fields X1 = ∂x1 and X2 =
∂x2 + x2

1∂x3 . Since [X1, X2] = 2x1∂x3 and [X1, [X1, X2]] = 2∂x3 the Chow-Hörmander
condition is satisfied. If x1 6= 0 the homogeneous dimension of (R3, d, | · |) in a
neighborhood of x is 4 and the Morrey inequality (2.3.12) holds. This will be explained
in chapter 4.

We introduce a suitable definition of differential. If x = (x1, ..., xn) ∈ Rn we shall
write x̄ = (x1, ..., xm) ∈ Rm.

Definition 2.3.2. Let (Rn, d) be a C-C space associated with a family of locally
Lipschitz vector fields X = (X1, ..., Xm) of the form (2.3.10) A function f : Rn → R
is X−differentiable at x ∈ Rn if there exists a linear transformation T : Rm → R
such that

lim
y→x

f(y)− f(x)− T (ȳ − x̄)

d(x, y)
= 0.

The X−differential of f at x is dXf(x) := T .

Theorem 2.3.3. Let (Rn, d) be a C-C space associated with a family of locally
Lipschitz vector fields X = (X1, ..., Xm). Assume (2.3.10), (2.3.11) and (2.3.12). A
Lipschitz function f ∈ Lip(Rn, d) is X−differentiable for a.e. x ∈ Rn and dXf(x) =
(X1f(x), ..., Xmf(x)).

Proof. The proof follows an idea of Calderón [37]. By Theorem 2.2.1 the deriva-
tives Xjf(x), j = 1, ...,m, exist for a.e. x ∈ Rn. By (2.3.11) Lebesgue differentiation
Theorem 1.6.5 applies and

lim
r↓0

∫

B(x,r)

|Xf(z)−Xf(x)|p dz = 0 (2.3.13)

for a.e. x ∈ Rn and for all p ≥ 1.
Fix x ∈ Rn such that |Xf(x)| < ∞, (2.3.13) holds and (2.3.12) holds for some

p ≥ 1 which from now on is fixed. Define

g(y) = f(y)− 〈Xf(x), x̄− ȳ〉,

and notice that by (2.3.10)

Xg(y) = Xf(y)−Xf(x).

By (2.3.12) we obtain

|g(y)− g(x)| ≤ Cr
(∫

B(x,r)

|Xg(z)|p dz
)1/p

for all y ∈ B(x, r).
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Choosing r = 2d(x, y) we get

|f(y)− f(x)− 〈Xf(x), x̄− ȳ〉|
d(x, y)

=
|g(y)− g(x)|

d(x, y)

≤ 2C
(∫

B(x,2d(x,y))

|Xg(z)|p dz
)1/p

≤ 2C
(∫

B(x,2d(x,y))

|Xf(z)−Xf(x)|p dz
)1/p

.

The last term tends to zero as d(x, y) → 0 owing to (2.3.13). ¤

4. Eikonal equation for the Heisenberg distance

The Heisenberg Hn group has been introduced in chapter 1. We recall that Hn is
identified with Cn×R ≡ R2n+1. The Heisenberg gradient is∇H = (X1, ..., Xn, Y1, ..., Yn)
where

Xj = ∂xj
+ 2yj∂t, Yj = ∂yj

− 2xj∂t, j = 1, ..., n. (2.4.14)

In this section the function d : Hn → [0, +∞) is the Heisenberg C-C distance from
the origin. Recall that Z = {(z, t) ∈ Hn : z = 0} is the center of the group. We begin
with the following Theorem proved in [144].

Theorem 2.4.1. The function d is of class C∞ in Hn \ Z and

|∇Hd(z, t)| = 1 (2.4.15)

for all (z, t) ∈ Hn such that z 6= 0.

Proof. For the sake of simplicity we consider the case n = 1. Set Ω = {(ϑ, ϕ, %) ∈
R3 : ϑ ∈ R, −2π ≤ ϕ% ≤ 2π, % ≥ 0} and define Φ : Ω → H1 by

Φ(ϑ, ϕ, %) = (x(ϑ, ϕ, %), y(ϑ, ϕ, %), t(ϑ, ϕ, %)), (2.4.16)

where 



x(ϑ, ϕ, %) =
cos ϑ(1− cos ϕ%) + sin ϑ sin ϕ%

ϕ

y(ϑ, ϕ, %) =
− sin ϑ(1− cos ϕ%) + cos ϑ sin ϕ%

ϕ

t(ϑ, ϕ, %) = 2
(ϕ%− sin ϕ%)

ϕ2
.

(2.4.17)

We chose A = cos ϑ, B = sin ϑ and s = % in (1.8.96). The range of Φ is H1. In fact,
if % > 0 is fixed, then equations (2.4.17) with ϑ ∈ [0, 2π) and −2π/% ≤ ϕ ≤ 2π/%
parametrize the boundary of the ball B(0, %).

One can compute the determinant of the Jacobian

det JΦ(ϑ, ϕ, %) = 4
ϕ% sin ϕ%− 2(1− cos ϕ%)

ϕ4
.

It is easily seen that the equation s sin s+2 cos s = 2 has the solutions s = 0,±2π for
|s| ≤ 2π. This means that

det JΦ(ϑ, ϕ, %) = 0

if and only if ϕ% = ±2π or % = 0 (the case ϕ = 0 must be excluded). The set of the
points Φ(ϑ, ϕ, %) with ϕ% = ±2π is exactly Z.
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By the inverse function Theorem the function Φ is a local diffeomorphism in the
open set {(ϑ, ϕ, %) ∈ R3 : % > 0 and |ϕ%| < 2π}. Moreover, by the definition of d we
have Ψ(ϑ, ϕ, %) := d(Φ(ϑ, ϕ, %)) ≡ %. The function Ψ just defined is of class C∞ and
since d = Ψ ◦ Φ−1 then d is of class C∞ in H1 \ Z.

The above discussion is still true in Hn for n > 1. The Heisenberg group satisfies
the hypotheses of Theorem 2.2.1, and since d is clearly 1−Lipschitz

|∇Hd(z, t)| ≤ 1 (2.4.18)

for a.e. (z, t) ∈ Hn. But |∇Hd| is continuous on Hn \ Z and (2.4.18) holds for (z, t) ∈
Hn \ Z.

Fix z 6= 0 and let γ : [0, T ] → Hn be the geodesic joining 0 to (z, t), which exists
and is unique as shown in chapter 1. In particular γ is of class C∞ and

γ̇(s) =
n∑

j=1

h1jXj(γ(s)) + h2jYj(γ(s)),
n∑

j=1

h1j(s)
2 + h2j(s)

2 = 1 for all s ∈ [0, T ].

Notice that γ(s) /∈ Z for all s > 0. Differentiating the identity s = d(γ(s)) we find

1 =
d

ds
d(γ(s)) = 〈Dd(γ(s)), γ̇(s)〉

=
n∑

j=1

h1j(s)Xjd(γ(s)) + h2j(s)Yjd(γ(s)) ≤ |∇Hd(γ(s))|

for all s ∈ (0, T ]. Choosing s = T we get |∇Hd(z, t)| ≥ 1, which along with (2.4.18)
gives |∇Hd(z, t)| = 1. ¤

5. Distance from a surface in the Heisenberg group

In this section we study the eikonal equation for the distance from a surface in
the Heisenberg group. Let d be the left invariant C-C metric in Hn and for a closed
set K ⊂ Hn define the function dK : Hn → [0, +∞)

dK(z, t) = inf
(ζ,τ)∈K

d((z, t), (ζ, τ)).

Since dK is the lower envelope of a family of 1−Lipschitz functions bounded from
below, then dK is 1−Lipschitz. By Theorem 2.2.1 |∇HdK(z, t)| ≤ 1 for a.e. (z, t) ∈ Hn.
In section 6 we shall prove - in a more general framework - that |∇HdK(z, t)| = 1 for
a.e. (z, t) ∈ Hn \K. In this section we consider the special case when K is a surface
which has a “uniform tangent ball” property.

We introduce some more notation. The horizontal space of Hn is the 2n−dimen-
sional vector bundle spanned by the vector fields X1, ..., Xn, Y1, ..., Yn. Precisely

H(z, t) := span{X1(z, t), ..., Xn(z, t), Y1(z, t), ..., Yn(z, t)} ⊂ R2n+1.

Define the map π(z,t) : H(z, t) → R2n

π(z,t)

( n∑
j=1

aiXi(z, t) + biYi(z, t)
)

= (a1, ..., an, b1, ..., bn).
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Let A(z, t) be the matrix of the coefficients of the Heisenberg vector fields (2.4.14) as
in (1.1.1) and define %(z,t) : R2n → R2n+1 by

%(z,t)(v) = A(z, t)v.

Notice that if %T
(z,t) : R2n+1 → R2n is the transposed map of %(z,t) then

∇Hf(z, t) = %T
(z,t)(∇f(z, t)),

for any f ∈ C1(R2n+1).

Definition 2.5.1. Let S ⊂ R2n+1 be a surface of class C1 locally given by the
equation f = 0. A point (z, t) ∈ S is said to be non characteristic if |∇Hf(z, t)| 6= 0.
The surface is non characteristic if all its points are non characteristic.

The Euclidean normal to the surface S at a point (z, t) ∈ S is

ν(z, t) =
∇f(z, t)

|∇f(z, t)| .

The point (z, t) is non characteristic if the projection of ν(z, t) onto the horizontal
space H(z, t) does not vanish.

As a first step we show that a geodesic starting from the center of a ball hits the
surface of the ball in the direction given by the projection of the Euclidean normal
to the surface onto the horizontal space.

Lemma 2.5.2. Let B = B((z0, t0), %) be the ball of Hn centered at (z0, t0) with
radius % > 0. Let (z, t) ∈ ∂B \ (z0, t0) · Z, and let γ : [0, %] → Hn be the geodesic
joining (z0, t0) to (z, t). Then

π(z,t)(γ̇(%)) = ∇Hd((z, t), (z0, t0)). (2.5.19)

Proof. For the sake of simplicity we consider the case n = 1 and write X = X1 and
Y = Y1. We begin with (z0, t0) = 0. Let (z, t) ∈ ∂B(0, %) \ Z, and fix ϑ ∈ [0, 2π) and
ϕ ∈ (−2π%, +2π%) such that Φ(ϑ, ϕ, %) = (z, t). The map Φ was defined in (2.4.16).

The geodesic γ joining 0 to (z, t) has velocity (recall (1.8.97))

γ̇(τ) = (cos ϑ sin ϕτ + sin ϑ cos ϕτ)X(γ(τ)) + (cos ϑ cos ϕτ − sin ϑ sin ϕτ)Y (γ(τ)),

for all 0 ≤ τ ≤ %. Hence,

π(z,t)(γ̇(%)) = (cos ϑ sin ϕ% + sin ϑ cos ϕ%, cos ϑ cos ϕ%− sin ϑ sin ϕ%). (2.5.20)

Write d(z, t) = d((z, t), 0). The derivatives Xd(z, t) and Y d(z, t) can be computed
by means of the map Φ. Indeed

Xd(z, t) = (Xd)(Φ(ϑ, ϕ, %)) = (dΦ−1X)d ◦ Φ(ϑ, ϕ, %).

Here dΦ−1 stands for the differential of Φ−1, map that exists because (z, t) /∈ Z, and

dΦ−1X = c1(ϑ, ϕ, %)
∂

∂ϑ
+ c2(ϑ, ϕ, %)

∂

∂ϕ
+ c3(ϑ, ϕ, %)

∂

∂%
.

As d(Φ(ϑ, ϕ, %)) ≡ % we find Xd(Φ(ϑ, ϕ, %)) = c3(ϑ, ϕ, %) and an explicit computation
of c3(ϑ, ϕ, %) gives

Xd(Φ(ϑ, ϕ, %)) = cos ϑ sin ϕ% + sin ϑ cos ϕ%.
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Analogously

Y d(Φ(ϑ, ϕ, %)) = cos ϑ cos ϕ%− sin ϑ sin ϕ%.

By (2.5.20) this proves the thesis (2.5.19) if (z0, t0) = 0.
We study the case (z0, t0) 6= 0. If (z, t) ∈ ∂B((z0, t0), %) \ (z0, t0) · Z, let (ζ, τ) ∈

∂B(0, %) \Z be such that (z0, t0) · (ζ, τ) = (z, t) and consider the geodesic γ̃ : [0, %] →
H1 joining 0 to (ζ, τ). The curve γ = (z0, t0) · γ̃ is the geodesic joining (z0, t0) to (z, t).

If ˙̃γ = aX(γ̃) + bY (γ̃), by the left invariance of the vector fields X and Y we find

π(z,t)(γ̇(%)) = π(z,t)(a(%)X(γ(%)) + b(%)Y (γ(%))) = (a(%), b(%)) = π(ζ,τ)( ˙̃γ(%)).

By the first part of the proof

π(z,t)(γ̇(%)) = π(ζ,τ)( ˙̃γ(%)) = ∇Hd(ζ, τ),

and again by the left invariance of the vector fields

∇Hd(ζ, τ) = (∇Hd)((z0, t0)
−1 · (z, t))

= ∇H(d((z0, t0)
−1 · (z, t))) = ∇Hd((z, t), (z0, t0)).

¤

Since our analysis is local we can assume that S = ∂E where E is an open set in
R2n+1. In this way we can define the signed distance from S

dS(z, t) =





inf
(ζ,τ)∈S

d((z, t), (ζ, τ)) if (z, t) ∈ E

− inf
(ζ,τ)∈S

d((z, t), (ζ, τ)) if (z, t) ∈ R2n+1 \ E.

Definition 2.5.3. Let E ⊂ R2n+1 be an open set. A set K ⊂ ∂E is said to have
the uniform interior ball property relatively to E if there exists %0 > 0 such that for
all (z, t) ∈ K there exists (ζ, τ) ∈ E such that B((ζ, τ), %0)∩ ∂E = {(z, t)}. K is said
to have the uniform ball property if it has the uniform interior ball property relatively
both to E and to R2n+1 \ E

Example 2.5.4. In H1 = C×R consider E = {(z, t) ∈ H1 : t > 0} and S = ∂E =
{(z, t) ∈ H1 : t = 0}. We briefly show that K = {(z, 0) ∈ S : |z| ≥ ε} has the uniform
ball property for any ε > 0.

By the parametric equations (1.8.98) for the Heisenberg ball and from Remark
(1.8.2) it can be easily computed the total Euclidean size in the vertical direction of
B(0, r), which is 2r2/π. The left translation of B(0, r) by the vector (0, r2/π) ∈ C×R
is indeed an Euclidean translation. Thus

B((0, r2/π), r) ∩ S = {(z, 0) ∈ S : |z| = 2r/π}
because 2r/π is the radial coordinate at which the maximal height in the surface
∂B(0, r) is achieved. Choosing %0 < επ/2 the uniform ball property can be checked
for K ⊂ S.

Remark 2.5.5. If K is a subset of non characteristic points in a surface of class
C2 in R3 ≡ H1 then it should have the uniform ball property. At present I am not
able to prove (or disprove) this statement.
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Lemma 2.5.6 (Gauss Lemma in Hn). Let S = ∂E ⊂ R2n+1 be a surface of class
C1 given by the equation f = 0 (f > 0 in E) and let K ⊂ S be a compact set with the
uniform ball property. There exists %0 > 0 such that for all (z, t) ∈ K there exists a
geodesic γ : [−%0, %0] → Hn such that γ(0) = (z, t), % = dS(γ(%)) for all |%| ≤ %0 and

π(z,t)(γ̇(0)) =
∇Hf(z, t)

|∇Hf(z, t)| . (2.5.21)

Proof. Without loss of generality we shall prove the claims for % ≥ 0. There exists
%0 > 0 such that for all (z, t) ∈ K there exists (ζ, τ) ∈ E such that B((ζ, τ), %0)∩S =
{(z, t)}. Let (z, t) and (ζ, τ) be fixed and write B := B((ζ, τ), %0). Since S is of class
C1 by Remark 1.8.2 (z, t) /∈ (ζ, τ) · Z and thus (z, t) is a regular point of ∂B. It
follows that S and ∂B have the same tangent space at (z, t)

T(z,t)S = T(z,t)∂B,

and as a consequence they also have the same Euclidean normal at (z, t) with opposite
sign. Let ν(z, t) be the inward unit normal to ∂B at (z, t).

Let γ : [0, %0] → R2n+1 be the (unique) geodesic such that γ(0) = (z, t) and

γ(%0) = (ζ, τ). As B((ζ, τ), %0) ∩ S = {(z, t)} then dS(γ(%)) = % for all 0 ≤ % ≤ %0.
Moreover, by Lemma 2.5.2

π(z,t)(γ̇(0)) = −∇Hd((z, t), (ζ, τ)), (2.5.22)

where in the derivatives ∇Hd((z, t), (ζ, τ)) the point (ζ, τ) has to be thought as fixed.
On the other hand

∇d((z, t), (ζ, τ))

|∇d((z, t), (ζ, τ))| = −ν(z, t) = − ∇f(z, t)

|∇f(z, t)| ,

and hence

−∇Hd((z, t), (ζ, τ)) =
|∇d((z, t), (ζ, τ))||∇Hf(z, t)|

|∇f(z, t)|
∇Hf(z, t)

|∇Hf(z, t)| . (2.5.23)

By Theorem 2.4.1 |∇Hd((z, t), (ζ, τ))| = 1 and (2.5.23) implies

|∇d((z, t), (ζ, τ))||∇Hf(z, t)|
|∇f(z, t)| = 1,

so that (2.5.22) and (2.5.23) give (2.5.21). ¤
Remark 2.5.7. If S = ∂E ⊂ R2n+1 is a surface of class C1 and K = {(z, t)} ⊂ S

has the interior ball property then (z, t) is a non characteristic point of S. Indeed,
T(z,t)S = T(z,t)∂B for some ball B and (z, t) is a regular point of ∂B which is non
characteristic for ∂B.

Theorem 2.5.8. Let S = ∂E ⊂ R2n+1 be a surface of class C1 and let (z̄, t̄) ∈ S
be a point having a neighborhood in S with the uniform ball property. Then the signed
distance dS is of class C1 in a neighborhood of (z̄, t̄) and moreover |∇HdS| = 1 in this
neighborhood.

Proof. Let U ⊂ S be a neighborhood of (z̄, t̄) with the uniform ball property.
Let γ, λ be variables in R2n+1 and recall the definition of the Heisenberg Hamiltonian
H(γ, λ) in (1.8.95).
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Let (z, t) ∈ U and notice that |∇Hf(z, t)| 6= 0 by Remark 2.5.7. Therefore we can
consider the Cauchy problem 




γ̇ =
1

2

∂H(γ, λ)

∂λ

λ̇ = −1

2

∂H(γ, λ)

∂γ
γ(0) = (z, t)

λ(0) = ∇f(z,t)
|∇Hf(z,t)| .

(2.5.24)

There exists %0 > 0 such that the solution (γ(z,t)(s), λ(z,t)(s)) of (2.5.24) is defined for
|s| ≤ %0 for all (z, t) ∈ U . Let (γ, λ) be such a solution. Since γ̇(s) ∈ H(γ(s)) then

γ̇(s) = %γ(s)(πγ(s)(γ̇(s))). (2.5.25)

Moreover, from (1.4.38) it follows that γ̇(s) = %γ(s)(%
T
γ(s)(λ(s))) and thus the following

identity holds

πγ(s)(γ̇(s)) = %T
γ(s)(λ(s)).

Writing (γ, λ) = (γ(z,t), λ(z,t)) and taking s = 0 we finally find

π(z,t)(γ̇(z,t)(0)) = %T
(z,t)(λ(z,t)(0)) =

∇Hf(z, t)

|∇Hf(z, t)| .

Define Ψ : U × [−%0, %0] → R2n+1 letting Ψ((z, t), s) = γ(z,t)(s). The function Ψ
is of class C1. If we prove that Ψ is a local diffeomorphism it follows that dS is of
class C1. In order to check this define Θ : U × [−%0, %0] → [0, +∞) by Θ((z, t), s) =
dS(Ψ((z, t), s)). By Lemma 2.5.6 (take %0 smaller if necessary) Θ((z, t), s) ≡ s and so
Θ is smooth. Consequently, if Ψ is invertible, dS = Θ ◦Ψ−1 is of class C1.

We show that the differential dΨ((z, t), 0) : T(z,t)S ⊕ R → R2n+1 is an isomor-
phism. It is easy to see that if v ∈ T(z,t)S then dΨ((z, t), 0)v = v. We show that

dΨ((z, t), 0)( ∂
∂s

) is transversal to T(z,t)S.
Let ϕ ∈ C1(R2n+1) be a test function and compute

dΨ((z, t), 0)
( ∂

∂s

)
ϕ =

d

ds
ϕ ◦Ψ((z, t), s)

∣∣∣
s=0

= dϕ(Ψ((z, t), 0))
∂Ψ

∂s
((z, t), 0)

= dϕ(z, t)γ̇(z,t)(0) = dϕ(z, t)%(z,t)

( ∇Hf(z, t)

|∇Hf(z, t)|
)
.

This shows that

dΨ((z, t), 0)
( ∂

∂s

)
= %(z,t)

( ∇Hf(z, t)

|∇Hf(z, t)|
)
.

Assume by contradiction that

dΨ((z, t), 0)
( ∂

∂s

)
∈ T(z,t)S.

Since ∇f(z, t) is orthogonal to T(z,t)S, it follows that

0 = 〈%(z,t)(∇Hf(z, t)),∇f(z, t)〉 = 〈∇Hf(z, t), %T
(z,t)∇f(z, t)〉 = |∇Hf(z, t)|2,

and thus ∇Hf(z, t) = 0. But this is not possible because (z, t) is non characteristic
by Remark 2.5.7.
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Finally, we show that |∇HdS| = 1 in a neighborhood of (z̄, t̄). Take (z, t) in a
neighborhood of (z̄, t̄) in Hn where dS is of class C1. Let T = dS(z, t) > 0 and
let γ : [0, T ] → Hn be a geodesic such that γ(T ) = (z, t) and dS(γ(s)) = s for all
0 ≤ s ≤ T . This identity can be differentiated at s = T to find

1 = 〈∇dS(z, t), γ̇(T )〉 = 〈∇dS(z, t), %(z,t)(π(z,t)(γ̇(T )))〉
= 〈%T

(z,t)∇dS(z, t), π(z,t)(γ̇(T ))〉 = 〈∇HdS(z, t), π(z,t)(γ̇(T ))〉.
We used (2.5.25). As a consequence 1 ≤ |∇HdS(z, t)||π(z,t)(γ̇(T ))| ≤ |∇HdS(z, t)|.
Theorem 2.2.1 gives the opposite inequality a.e. and by continuity |∇HdS| = 1 in a
neighborhood of (z̄, t̄). ¤

6. Eikonal equation for distance functions in C-C spaces

Let (Rn, d) be a C-C space induced by the vector fields X1, ..., Xm ∈ Liploc(Rn;Rn).
We shall assume the following hypotheses:

(H1) The metric d is continuous with respect to the Euclidean topology of Rn.
(H2) The metric space (Rn, d) is complete.

If (H1) holds then by Theorem 1.4.2 hypothesis (H2) is equivalent to require the
boundedness of C-C balls with respect to the Euclidean metric.

Let K ⊂ Rn and define the distance function from K

dK(x) := inf
y∈K

d(x, y).

If dK(x) = limk→∞ d(x, yk), we can assume that yk ∈ K ∩B(x, r) for some r > dK(x)

and for all k ∈ N. If K is closed then K ∩ B(x, r) is compact (by (H1) and (H2)),
and - possibly extracting a subsequence - we can assume that yk → y ∈ K. Hence
d(x, y) = dK(x) and dK(x) = miny∈K d(x, y).

The function dK : (Rn, d) → R is 1−Lipschitz and Theorem 2.2.1 implies that the
derivatives XjdK , j = 1, ..., m, exist almost everywhere. Moreover

|XdK(x)| ≤ 1 for a.e. x ∈ Rn. (2.6.26)

In order to reach equality in (2.6.26) for a.e. x ∈ Rn \ K we need the global
existence of geodesics and a chain rule to differentiate the distance function along
geodesics. Such tools are at hand in the following cases:

(C1) the vector fields X1, ..., Xm ∈ Liploc(Rn;Rn) satisfy the conditions (2.3.10),
(2.3.11) and (2.3.12);

(C2) the vector fields X1, ..., Xm are of Grushin type as in (1.9.99);
(C3) the vector fields X1, ..., Xm are smooth and span{X1(x), ..., Xm(x)} = Rn at

every x ∈ Rn.

All Carnot groups and many other C-C spaces induced by Hörmander vector fields
are in Case (C1). Case (C3) is essentially the Riemannian one. In all these cases we
are able to prove the following Theorem ([148]).

Theorem 2.6.1. Let (Rn, d) be the C-C space induced by a family of vector fields
X1, ..., Xm ∈ Liploc(Rn;Rn) that satisfy (C1), (C2) or (C3). Assume (H1) and (H2).
Let K ⊂ Rn be a closed set and let dK be the distance from K. Then

|XdK(x)| = 1 (2.6.27)
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for a.e. x ∈ Rn \K.

Proof. We shall deal in detail with Case (C1). By (H2) and Theorem 1.4.4 (i)
geodesics exist globally. We shall write f = dK and x̄ = (x1, ..., xm) ∈ Rm if x ∈ Rn.
The function f : (Rn, d) → [0, +∞) is 1−Lipschitz. By Theorem 2.3.3

lim
y→x

f(y)− f(x)− 〈Xf(x), ȳ − x̄)

d(x, y)
= 0 (2.6.28)

for a.e. x ∈ Rn, and moreover by Theorem 2.2.1

|Xf(x)| ≤ 1 (2.6.29)

for a.e. x ∈ Rn.
Let x ∈ Rn \ K be a point such that (2.6.28) and (2.6.29) hold. By (H1) and

(H2) there exists x0 ∈ K such that d(x, x0) = dK(x) := T > 0. Take a geodesic
γ ∈ Lip([0, T ];Rn) such that γ(0) = x and γ(T ) = x0. Notice that

dK(γ(t)) = d(γ(t), x0) = T − t

for all t ∈ [0, T ]. Since

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)), for a.e. t ∈ [0, T ]

with h = (h1, ..., hm) measurable coefficients such that |h(t)| ≤ 1 for a.e. t ∈ [0, T ],
from the special form of the vector fields (2.3.10) it follows that

γ̄(t) = γ̄(0) +

∫ t

0

h(s) ds for all t ∈ [0, T ],

where γ̄ = (γ1, ..., γm), and thus

|γ̄(t)− γ̄(0)| ≤ t for all t ∈ [0, T ] (2.6.30)

As t = d(γ(t), γ(0)), from (2.6.28) it follows

f(γ(t))− f(γ(0)) = 〈Xf(x), γ̄(t)− γ̄(0)〉+ o(t). (2.6.31)

On the other hand

f(γ(t))− f(γ(0)) = dK(γ(t))− dK(γ(0)) = (T − t)− T = −t, (2.6.32)

so that (2.6.32), (2.6.31) and (2.6.30) all together give

1 = |〈Xf(x), (γ̄(t)− γ̄(0))/t〉+ o(1)| ≤ |Xf(x)|+ o(1),

for all t ∈ (0, T ], and letting t ↓ 0 we find |Xf(x)| ≥ 1. This inequality and the
converse one (2.6.29) prove that |Xf(x)| = 1 for a.e. x ∈ Rn \K. The proof is ended
in Case (C1).

In Case (C2) the vector fields are of the form (2.3.10) outside a vector subspace
and Theorem 2.3.3 still applies on the complement of this subspace.



CHAPTER 3

Regular domains and trace on boundaries in C-C spaces

The first part of this chapter deals with regular domains in C-C spaces (general
references on the subject are [174], [44], [89], [92], [42], [43], [65], [66], [147]),
while the second part is devoted to trace theorems for sub-elliptic gradients (related
references are [60], [71], [25], [13], [146], [56]).

Section 1 is a survey of results concerning regular domains in metric spaces. We
first introduce John domains (see Definition 3.1.1, [112] and also [100] for general
references) and uniform domains (see Definition 3.1.10, [113], [136], [135], [169],
[174], [42]). In homogeneous spaces with geodesics the class of John domains equals
that of Boman domains (see Theorems 3.1.8 and 3.1.9, [32] and [89]) introduced in
[27]. This is of particular relevance because conditions involving chain of balls (as in
the definition of Boman domains) are a key technical tool in proving several theorems
in Functional Analysis such as global Sobolev-Poincaré inequalities, compactness the-
orems of Rellich-Kondrachov type, optimal potential estimates, relative isoperimetric
inequalities (see chapter 4, [109], [126], [74], [78], [89], [128], [100]). The definition
of uniform domain can be rephrased in the language of chain of balls, too. Indeed,
it implies the Harnack chain condition (see Definition 3.1.17 and Proposition 3.1.18)
which in the Euclidean space is relevant in the study of the non-tangential boundary
behavior of harmonic functions (see [110]). Similar results have also been established
in C-C spaces in [42] (see also [65] and [66]).

In section 2 we show that a smooth domain Ω ⊂ Rn with non characteristic
boundary with respect to a system of Hörmander vector fields X1, ..., Xm is a uniform
domain in the metric space (Rn, d), being d the C-C metric induced by X1, ..., Xm

(see Theorem 3.2.1). The results proved in section 3 are concerned with C-C spaces of
Grushin type: we introduce a class of admissible domains possibly with characteristic
boundary (see Definition 3.3.1) which are uniform (Theorem 3.3.3). In section 4 we
prove that a connected, bounded open set Ω ⊂ Rn with boundary of class C1,1 is
a uniform domain in the metric space (Rn, d), being d the metric associated with a
Carnot group structure of step 2 (Theorem 3.4.2). Finally, in section 5 we give a
sufficient condition for a connected, bounded open set of class C2 in a Carnot group
of step 3 to be a John domain (see Definition 3.5.2 and Theorem 3.5.5).

The second part of the chapter deals with trace theorems. In section 6 we prove
a trace theorem on non characteristic boundaries for sub-elliptic gradient associated
with a system of Hörmander vector fields (see Theorem 3.6.4). In section 7, within
the framework of the Grushin plane we prove a trace theorem for domains that have
“flat” boundary at characteristic points (see Theorem 3.7.5) and we show that this
result is sharp (see Proposition 3.7.6).
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1. Regular domains in metric spaces

We consider a metric space (M, d). If γ : [0, L] → M and 0 ≤ a ≤ b ≤ L
we shall denote by γ[a,b] the restricted function γ[a,b] : [0, b − a] → M defined by
γ[a,b](t) = γ(t + a). A domain Ω ⊂ M is a connected open set. The metric space
(M, d) will be said with geodesics if every couple of point x, y ∈ M can be connected
by a continuous rectifiable curve with length d(x, y).

Definition 3.1.1. Let (M, d) be a metric space. A bounded open set Ω ⊂ M is
a John domain if there exist x0 ∈ Ω and C > 0 such that for every x ∈ Ω there exists
a continuous rectifiable curve parametrized by arclength γ : [0, T ] → Ω, T ≥ 0, such
that γ(0) = x, γ(T ) = x0 and

dist(γ(t); ∂Ω) ≥ Ct. (3.1.1)

Definition 3.1.2. Let (M, d) be a metric space. A bounded open set Ω ⊂ M is
a weak John domain if there exist x0 ∈ Ω and 0 < C ≤ 1 such that for every x ∈ Ω
there exists a continuous curve γ : [0, 1] → Ω such that γ(0) = x, γ(1) = x0 and

dist(γ(t); ∂Ω) ≥ Cd(γ(t), x). (3.1.2)

Remark 3.1.3. If (M,d) is a metric space with geodesics every ball B(x0, r),
x0 ∈ M and r > 0, is a John domain with constant C = 1 in (3.1.1).

Definition 3.1.4. Let (M, d) be a metric space. A set E ⊂ M satisfies the
interior (exterior) corkscrew condition if there exist r0 > 0 and k ≥ 1 such that for
all 0 < r ≤ r0 and x ∈ ∂E there exists y ∈ E (y ∈ M \ E) such that

r

k
≤ dist(y; ∂E) and d(x, y) ≤ r.

A set E satisfies the corkscrew condition if it satisfies both the interior and the exterior
corkscrew condition. The constant k will be called the corkscrew constant of E .

Clearly, if Ω is a John domain then it satisfies the interior corkscrew condition.

Proposition 3.1.5. Let (M, d, µ) be a doubling metric space with arcwise con-
nected balls. If E ⊂ M satisfies the interior corkscrew condition then there exist
r0 > 0 and C > 0 such that for all x ∈ ∂E and 0 ≤ r ≤ r0

µ(E ∩B(x, r)) ≥ Cµ(B(x, r)).

Proof. Fix x ∈ ∂E and 0 < r ≤ r0. There exists y ∈ E such that d(x, y) ≤ r/4 and
dist(y; ∂E) ≥ r/(4k), k ≥ 1 being given by Definition 3.1.4, as well as r0 > 0. Since
balls are arcwise connected B(y, r/4k) ⊂ E and therefore B(y, r/(4k)) ⊂ E∩B(x, r).
Moreover, B(x, r) ⊂ B(y, 2r). By Proposition 1.6.3

µ(E ∩B(x, r)) ≥ µ(B(y, r/(4k))) ≥ Cµ(B(y, 2r)) ≥ Cµ(B(x, r)),

where C > 0 is a constant that does not depend on x. ¤
Theorem 3.1.6. Let (M, d) be a doubling metric space with geodesics. Then

Ω ⊂ M is a weak John domain if and only if it is a John domain.
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The proof of Theorem 3.1.6 can be found in [100, Proposition 9.6] and for the
Euclidean case in [136, Lemma 2.7].

Definition 3.1.7. An open set Ω ⊂ M is a Boman domain if there exists a
covering F of Ω with balls and there exist N ≥ 1, λ > 1 and ν ≥ 1 such that

(i) λB ⊂ Ω for all B ∈ F ;
(ii)

∑
B∈F χλB(x) ≤ N for all x ∈ Ω;

(iii) there exists B0 ∈ F such that for any B ∈ F there exist B1, ..., Bk such
that Bk = B, µ(Bi ∩Bi+1) ≥ 1/N max{µ(Bi), µ(Bi+1)} and B ⊂ νBi for all
i = 0, 1, ..., k.

Under additional hypotheses on the metric space the definition of John domain
is equivalent to that of Boman domain (see [32] and [89, section 6]). In the proof of
the following two theorems we shall essentially follow [89].

Theorem 3.1.8. Let (M, d, µ) be a doubling metric space. If Ω ⊂ M , Ω 6= M , is
a weak John domain then it is a Boman domain.

Proof. We shall denote by δ > 0 the doubling constant. By Whitney Covering
Theorem there exists a family B of disjoint balls such that for some α > 1 and
β ∈ (0, 1) with αβ < 1

(i) 4αB ⊂ Ω for all B ∈ B;
(ii) Ω =

⋃
B∈B αB;

(iii) r = βdist(x; ∂Ω) for all B = B(x, r) ∈ B.

Since M is doubling we can also assume that there exists N ≥ 1 such that

(iv)
∑

B∈B χ4αB(x) ≤ N for all x ∈ Ω.

We show that F = {2αB : B ∈ B} is a covering of Ω that satisfies the conditions
in Definition 3.1.7 with λ = 2. Let x0 ∈ Ω be the John center given in Definition 3.1.1
and let B0 ∈ F be a ball containing x0. If B = B(x, r) ∈ F we have to find a chain
of balls joining B to B0. By hypothesis there exists a continuous curve γ : [0, 1] → Ω
such that γ(0) = x, γ(1) = x0 and

dist(γ(t); ∂Ω) ≥ Cd(γ(t), x) (3.1.3)

for all t ∈ [0, 1] and for some C > 0 depending only on Ω. By compactness and by (ii)

there exist B1, ..., Bk = B ∈ F such that γ([0, 1]) ⊂ ⋃k
i=0 1/2Bi and 1/2Bi∩1/2Bi+1 6=

∅ for all i = 0, 1, ..., k − 1. Let ri := r(Bi) be the radius of Bi. By (iii)

ri+1

2αβ
= dist(xi+1; ∂Ω) ≥ dist(xi; ∂Ω)− d(xi, xi+1) ≥ ri

2αβ
− ri

2
− ri+1

2
,

and thus

ri+1

( 1

2αβ
+

1

2

)
≥ ri

( 1

2αβ
− 1

2

)
.

The argument is symmetric. Letting Λ = (1+αβ)/(1−αβ) with 0 < αβ < 1 we find
for any i = 0, 1, ..., k − 1

Λ−1ri+1 ≤ ri ≤ Λri+1. (3.1.4)

The constant Λ depends only on the covering. Since Bi ⊂ B(xi+1, d(xi, xi+1) + ri)
and by (3.1.4) d(xi, xi+1) + ri ≤ ri/2 + ri+1/2 + ri ≤ ri+1(1/2 + 3Λ/2) := Λ1ri+1 we
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get Bi ⊂ Λ1Bi+1 and analogously Bi+1 ⊂ Λ1Bi. As a consequence, there exists m ≥ 1
depending only on the covering and on the doubling constant such that

m−1µ(Bi+1) ≤ µ(Bi) ≤ mµ(Bi+1). (3.1.5)

We claim that

µ(Bi ∩Bi+1) ≥ 1

δ2m
max{µ(Bi), µ(Bi+1)}. (3.1.6)

Assume that ri ≤ ri+1 and let y ∈ 1/2Bi ∩ 1/2Bi+1. Then B(y, ri/2) ⊂ Bi ∩Bi+1 and
Bi ⊂ B(y, 2ri). Thus by the doubling property of µ

µ(Bi ∩Bi+1) ≥ µ(B(y, ri/2)) ≥ 1

δ2
µ(B(y, 2ri)) ≥ 1

δ2
µ(Bi).

By (3.1.5) the claim (3.1.6) is proved.
The open set Ω will be proved to be a Boman domain if we show that there exists

a constant ν ≥ 1 such that

B = B(x, r) ⊂ νBi for all i = 0, 1, ..., k.

We claim that there exists ν̄ ≥ 1 depending only on the covering and on the John
constant C in (3.1.3) such that

r ≤ ν̄ri for all i = 0, 1, ..., k. (3.1.7)

Fix i and let t ∈ [0, 1] be such that γ(t) ∈ Bi. Then by (iii)

r

2αβ
= dist(x; ∂Ω) ≤ d(x, xi) + dist(xi; ∂Ω)

and by the weak John condition (3.1.3)

d(x, xi) ≤ dist(x; Bi) + ri ≤ d(x, γ(t)) + ri ≤ 1

C
dist(γ(t); ∂Ω) + ri

≤ 1

C
(ri + dist(xi; ∂Ω)) + ri.

All together we find
r

2αβ
≤ (1 + 1/C)dist(xi; ∂Ω) + (1 + 1/C)ri ≤ (1 + 1/C)(1 + 1/(2αβ))ri

and (3.1.7) holds with ν̄ = (1 + 1/C)(1 + 2αβ).
Finally, if z ∈ B(x, r) then by (3.1.7), (3.1.3) and by (ii)

d(z, xi) ≤ d(z, x) + d(x, γ(t)) + d(γ(t), xi) ≤ r + 1/Cdist(γ(t); ∂Ω) + ri

≤ (1 + ν̄)ri + 1/C(ri + dist(xi; ∂Ω)) ≤ [(1 + ν̄) + 1/C(1 + 1/(2αβ))]ri.

This shows that B(x, r) ⊂ νBi with ν = [(1 + ν̄) + 1/C(1 + 1/(2αβ))]. ¤
Theorem 3.1.9. Let (M, d, µ) be a doubling metric space with geodesics. If Ω ⊂ M

is a Boman domain then it is a John domain.

Proof. By Proposition 3.1.6 it will be enough to show that Ω is a weak John
domain. There exists a covering F of Ω with balls such that for some λ > 1 and
ν ≥ 1

(i) λB ⊂ Ω for all B ∈ F ;
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(ii) there exists B0 ∈ F such that for all B ∈ F there exists a chain of balls
B1, ..., Bk = B ∈ F such that Bi ∩ Bi+1 6= ∅ and B ⊂ νBi for all i =
0, 1, ..., k − 1.

Conditions (i) and (ii) are the only properties of Boman domains used in the proof.
Let B0 = B(x0, r0). We have to show that there exists C > 0 such that any x ∈ Ω
can be joined to x0 by a curve satisfying (3.1.2). Let B ∈ F be a ball containing x
and let B1, ..., Bk = B ∈ F be a chain of balls satisfying (i) and (ii). If Bi = B(xi, ri)
we claim that

ri ≤ 1

λ− 1
dist(Bi; ∂Ω) for all i = 0, 1, ..., k. (3.1.8)

Fix ε > 0. There exist y ∈ Bi and z ∈ ∂Ω such that d(y, z) ≤ dist(Bi; ∂Ω) + ε
and there exists a geodesic γ̄ : [0, T ] → M such that γ̄(0) = y, γ̄(T ) = z and
length(γ̄) = d(y, z). Since λB ⊂ Ω there exists t ∈ [0, T ] such that d(γ̄(t), xi) = λri.
Now, since d(γ̄(t), xi) ≥ (λ− 1)ri + d(y, xi) we have

(λ− 1)ri ≤ d(γ̄(t), xi)− d(y, xi) ≤ d(γ̄(t), y),

and from d(γ̄(t), y) + d(γ̄(t), z) ≤ length(γ̄) = d(y, z) it follows that

(λ− 1)ri + dist(λBi; ∂Ω) ≤ d(γ̄(t), y) + d(γ̄(t), z) = d(y, z) ≤ dist(Bi; ∂Ω) + ε.

Since ε > 0 is arbitrary we get (3.1.8).
Let yi ∈ Bi ∩ Bi+1, i = 0, 1, ..., k − 1. Join by geodesics x to xk, xk to yk−1, yk−1

to xk−1,..., x1 to y0 and y0 to x0 and let γ : [0, T ] → Ω be the curve obtained joining
all such geodesics. Let t ∈ [0, T ] and assume that γ(t) ∈ Bi. Then, since B ⊂ νBi

and using (3.1.8)

d(γ(t), x) ≤ d(γ(t), xi) + d(xi, x) ≤ (1 + ν)ri

≤ 1 + ν

λ− 1
dist(Bi; ∂Ω) ≤ 1 + ν

λ− 1
dist(γ(t); ∂Ω),

and (3.1.2) holds with C = (λ− 1)/(1 + ν). ¤

We introduce now uniform domains.

Definition 3.1.10. Let (M, d) be a metric space. A (bounded) domain Ω ⊂ M
is a uniform domain if there exists ε > 0 such that for all x, y ∈ Ω there exists a
continuous rectifiable curve γ : [0, 1] → Ω such that γ(0) = x, γ(1) = y,

length(γ) ≤ 1

ε
d(x, y), (3.1.9)

and for all t ∈ [0, 1]

dist(γ(t); ∂Ω) ≥ ε min{length(γ[0,t]), length(γ[t,1])}. (3.1.10)

Definition 3.1.11. Let (M, d) be a metric space. A (bounded) domain Ω ⊂ M is
a weak uniform domain if there exists ε > 0 such that for every x, y ∈ Ω there exists
a continuous curve γ : [0, 1] → Ω that γ(0) = x, γ(1) = y,

diam(γ) ≤ 1

ε
d(x, y), (3.1.11)

and for all t ∈ [0, 1]

dist(γ(t); ∂Ω) ≥ ε min{diam(γ[0,t]), diam(γ[t,1])}. (3.1.12)
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Uniform and weak uniform domains correspond respectively to the domains de-
fined by “length cigars” and “diameter cigars” in [169]. If conditions (3.1.9) and
(3.1.10) hold for all x, y ∈ Ω such that d(x, y) ≤ δ for some δ > 0 then Ω is also
called (ε, δ)−domain. If Ω is a bounded (ε, δ)−domain then it is uniform. This is a
consequence of the following localization lemma (see [169, Theorem 4.1]).

Lemma 3.1.12. Let (M,d) be a metric space, Ω ⊂ M be a bounded open set and
0 < r < diam(Ω). If for any z ∈ ∂Ω and for all x, y ∈ Ω ∩ B(z, r) there exists
a continuous and rectifiable curve γ : [0, 1] → Ω joining x to y and such that hold
(3.1.9) and (3.1.10) for some ε > 0 not depending on z, then Ω is a uniform domain.

Recall that a metric space (M, d) endowed with a Borel measure µ is Ahlfors-
regular if there exist Q > 0 and α > 0 such that for all x ∈ M and r ≥ 0

α−1rQ ≤ µ(B(x, r)) ≤ αrQ. (3.1.13)

The following Theorem uses a “packing argument” introduced in [136]. It is stated
and proved for Ahlfors regular metric spaces but it holds for doubling spaces.

Theorem 3.1.13. Let (M,d, µ) be an Ahlfors regular metric space with geodesics.
If Ω ⊂ M is a weak uniform domain then it is a uniform domain.

Proof. There exists ε > 0 such that for all x, y ∈ Ω there exists a continuous curve
γ : [0, 1] → Ω such that γ(0) = x, γ(1) = y and (3.1.11) and (3.1.12) hold.

Let t̄ ∈ [0, 1] be such that diam(γ[0,t̄]) = diam(γ[t̄,1]) =: δ. We shall construct a
rectifiable curve κ : [0, 1] → Ω joining x to γ(t̄) such that

length(κ) ≤ 1

ε1

d(x, y), (3.1.14)

and for t ∈ [0, 1]
dist(κ(t); ∂Ω) ≥ ε1length(κ[0,t]), (3.1.15)

for some ε1 > 0 depending on ε, β and Q.
Let T = (1 + t̄)δ. The function ϕ : [0, t̄] → [0, T ] defined by ϕ(t) = (1 +

t)diam(γ[0,t]) is continuous and increasing. Define the reparameterization κ̄ : [0, T ] →
M by κ̄(s) = γ(ϕ−1(s)). Since d(γ(t), x) ≤ diam(γ[0,t]) ≤ ϕ(t) we have

d(κ̄(s), x) ≤ s for all s ∈ [0, T ]. (3.1.16)

Moreover, by (3.1.12)

dist(κ̄(s); ∂Ω) = dist(γ(ϕ−1(s); ∂Ω)) ≥ ε min{diam(γ[0,ϕ−1(s)]), diam(γ[ϕ−1(s),1])}
≥ εdiam(γ[0,ϕ−1(s)]) =

εs

1 + ϕ−1(s)
,

and thus
dist(κ̄(s); ∂Ω) ≥ εs

2
. (3.1.17)

Now define t0 = T , t1 = inf{t ∈ [0, t0] : d(κ̄(t), κ̄(t0)) ≤ εt0/4} and by induction
for any i ∈ N let ti+1 = inf{t ∈ [0, ti] : d(κ̄(t), κ̄(ti)) ≤ εti/4}. Let xi = κ̄(ti) and
notice that by (3.1.17) B(xi, εti/2) ⊂ Ω for all i ∈ N.

We use the “packing argument” of [136]. We claim that there exists k̄ ∈ N such
that

ti+k ≤ 1

2
ti for all k ≥ k̄ and for all i ∈ N. (3.1.18)



1. REGULAR DOMAINS IN METRIC SPACES 81

Assume that

tj >
1

2
ti for j = i + 1, ..., k. (3.1.19)

We have to find an upper bound for k independent from i. If i ≤ j < h ≤ i + k then
xh /∈ B(xj, εtj/4) and the balls Bj := B(xj, εtj/8), j = i + 1, ..., i + k, are disjoint.
Moreover, if λ = (1 + ε/8) then Bj ⊂ B(x, λti). Indeed, if z ∈ Bj then by (3.1.16)
and using tj ≤ ti

d(z, x) ≤ d(z, xj) + d(xj, x) ≤ εtj/8 + tj ≤ (1 + ε/8)ti.

Then

α(λti)
Q ≥ µ(B(x, λti)) ≥ µ

( k⋃
j=i+1

Bj

)
=

k∑
j=i+1

µ(Bj) ≥ 1

α

k∑
j=i+1

(εtj
4

)Q

≥ 1

α
k
(εti

8

)Q

,

and thus

k ≤ α2
(8λ

ε

)Q

This proves the claim (3.1.18).
Let κ1 : [0, L) → Ω be the rectifiable curve obtained joining by geodesics parame-

trized by arc length x0 to x1, x1 to x2,..., xi to xi+1 and so on. If L < +∞ then κ1

can be completed letting κ1(L) = x. For any i ∈ N fixed let τi ∈ [0, L) be such that
κ1(τi) = xi and let Li be the length of κ1 restricted to [τi, L). Then

Li =
+∞∑
j=i

d(xj, xj+1) =
ε

4

+∞∑
j=i

tj =
ε

4

k̄−1∑

k=0

+∞∑
j=0

ti+k+jk̄ ≤
ε

4

k̄−1∑

k=0

+∞∑
j=0

1

2j
ti+k ≤ εk̄ti

2
.

(3.1.20)
Now, since t0 = T = (1 + t̄)δ ≤ 2diam(γ[0,t̄]) ≤ 2diam(γ) and diam(γ) ≤ 1/εd(x, y)
by (3.1.11), when i = 0 we find

length(κ1) ≤ εk̄t0
2

≤ k̄d(x, y). (3.1.21)

Let κ : [0, L] → Ω be the continuous rectifiable curve parametrized by arc length
defined by κ(t) = κ1(L − t). By (3.1.21) κ satisfies (3.1.14). Moreover, if κ(t) ∈ Bj

then by (3.1.20)

length(κ[0,t]) ≤ Lj +
εtj
4
≤ ε

(1

4
+

k̄

2

)
tj

and by (3.1.17)

dist(κ(t); ∂Ω) ≥ dist(xj; ∂Ω)− d(xj, κ(t)) ≥ εtj
2
− εtj

4
=

εtj
4

,

so that

dist(κ(t); ∂Ω) ≥ ε1length(κ[0,t])

with

ε1 = min
{1

k̄
,

ε

4 + 2k̄

}
.

¤
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Remark 3.1.14. The following Proposition will be used in section 4 in Theorem
3.4.2. The curves constructed in this Theorem satisfy

d(γ(0), γ(t)) ' diam(γ[0,t]). (3.1.22)

Proposition 3.1.15. Let (M, d) be a doubling metric space with geodesics and let
Ω ⊂ M be an open set. Assume that there exists λ > 0 and r > 0 such that for any
z ∈ ∂Ω and for all x, y ∈ B(z, r) ∩ Ω there exist two John curves γx, γy : [0, 1] → Ω
starting respectively from x and y, with John constant λ, such that γx(1) = γy(1) and

max{diam(γx), diam(γy)} ≤ 1

λ
d(x, y).

Assume also that (3.1.22) holds. Then Ω is a uniform domain.

Proof. Let γ be the curve sum of γx and γy. First of all

diam(γ) ≤ diam(γx) + diam(γy) ≤ 2

λ
d(x, y).

Consider now a point γ(t) and assume that γ(t) = γx(t). Then

dist(γ(t); ∂Ω) = dist(γx(t); ∂Ω) ≥ λd(γx(t), x)

' λdiam
(
(γx)[0,t]

) ≥ λ min
{
diam

(
(γx)[0,t]

)
, diam

(
(γx)[t,1]

)}
.

If γ(t) is in γy the estimate is the same. The claim follows from Lemma 3.1.12 and
Theorem 3.1.13. ¤

Definition 3.1.16 (Harnack chain). Let (M,d) a metric space, let Ω ⊂ M be a
domain and let α ≥ 1. A relatively compact set K ⊂ Ω is α−non tangential in Ω if

1

α
dist(K; ∂Ω) ≤ diam(K) ≤ αdist(K; ∂Ω).

A sequence of balls B0, B1, ..., Bk ⊂ Ω is a α−Harnack chain of Ω if

(i) Bi ∩Bi−1 6= ∅ for all i = 1, ..., k;
(ii) every ball Bi is α−non tangential.

Definition 3.1.17. Let (M, d) be a metric space. A bounded domain Ω ⊂ M is
a Harnack domain if there exists α ≥ 1 such that for all η > 0 and for all x, y ∈ Ω
such that dist(x; ∂Ω) ≥ η, dist(y; ∂Ω) ≥ η and d(x, y) ≤ Cη for some C > 0 there
exists a α−Harnack chain B0, B1, ..., Bk ⊂ Ω such that x ∈ B0, y ∈ Bk and k depends
on C but not on η.

Proposition 3.1.18. Let (M,d) be a metric space and assume that there exists
0 < δ ≤ 2 such that diam(B(x, r)) ≥ δr for all x ∈ X and r ≥ 0. If Ω ⊂ M is a
uniform domain then it is a Harnack domain.

Proof. Let Ω be a uniform domain with constant ε > 0. Let η > 0 and take
x, y ∈ Ω such that dist(x; ∂Ω) ≥ η, dist(y; ∂Ω) ≥ η and d(x, y) ≤ Cη for some
constant C > 0. Let γ : [0, 1] → Ω be a continuous rectifiable curve such that
γ(0) = x, γ(1) = y , length(γ) ≤ d(x, y)/ε and (3.1.10) holds. Let t̄ ∈ (0, 1) be such
that length(γ[0,t̄]) = length(γ[t̄,1]). We shall construct a Harnack chain of balls joining
x to γ(t̄).
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Define B0 = B(x, dist(x; ∂Ω)/4). Clearly,

diam(B0) ≤ 1

2
dist(x; ∂Ω) ≤ dist(B0; ∂Ω),

and moreover

diam(B0) ≥ δ

4
dist(x; ∂Ω) ≥ δ

4
dist(B0; ∂Ω).

With α0 = max{1, 4/δ} = 4/δ the ball B0 is α0−non tangential in Ω.
Define

t1 = sup{t ∈ [0, t̄] : γ(t) ∈ B0}, x1 = γ(t1),

r1 =
1

2
dist(x1; ∂Ω), B1 = B(x1, r1).

By (3.1.10) dist(x1; ∂Ω) ≥ εlength(γ[0,t1]) and

length(γ[0,t1]) ≥ d(x, x1) ≥ 1

4
dist(x; ∂Ω) ≥ η

4
.

Then

r1 =
1

2
dist(x; ∂Ω) ≥ ε

2
length(γ[0,t1]) ≥ εη

8
. (3.1.23)

Since diam(B1) ≤ 2r1 = dist(x1; ∂Ω)

2dist(B1; ∂Ω) ≥ dist(x1; ∂Ω) ≥ diam(B1),

and since by hypothesis δr1 ≤ diam(B1)

dist(B1; ∂Ω) ≤ dist(x1; ∂Ω) = 2r1 ≤ 2

δ
diam(B1).

With α := max{α0, 2, δ/2} = α0 both B0 and B1 are α−non tangential.
By induction assume that xk−1 and Bk−1 have been already defined. Now, if

d(xk−1, γ(t̄)) < εη/8 we stop. Otherwise we define

tk = sup{t ∈ [0, t̄] : γ(t) ∈ Bk−1}, xk = γ(tk),

rk =
1

2
dist(xk; ∂Ω), Bk = B(xk, rk).

Exactly as above we have

2dist(Bk; ∂Ω) ≥ dist(xk; ∂Ω) ≥ diam(Bk),

and moreover

dist(Bk; ∂Ω) ≤ dist(xk; ∂Ω) = 2rk ≤ 2

δ
diam(Bk).

This shows that Bk is α−non tangential.
By (3.1.10), arguing as in (3.1.23)

dist(xk; ∂Ω) ≥ εlength(γ[0,tk]) ≥ εlength(γ[0,t1]) ≥ εd(x, x1) ≥ εη

4
,

and thus
rk ≥ εη

8
. (3.1.24)

Assume that d(x, y) ≤ Cη for some C > 0. We claim that that there exists k ∈ N
depending on C but not on η such that d(xk, γ(t̄)) < εη/8 so that B0, B1, ..., Bk cover
γ([0, t̄]).
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First of all by (3.1.9)

length(γ[0,t̄]) =
1

2
length(γ) ≤ 1

2ε
d(x, y) ≤ Cη

2ε
.

Moreover, for any i in the inductive definition using (3.1.24) we obtain

length(γ[ti,ti−1]) ≥ d(xi, xi−1) ≥ ri ≥ εη

8

where t0 = 0, so that

length(γ[tk,0]) =
k∑

i=1

length(γ[ti,ti−1]) ≥ kεη

8
.

The condition on k which proves the claim is

kεη

8
≥ Cη

2ε
⇔ k ≥ 4C

ε2
.

Thus k can be chosen independently from η.
¤

2. Non characteristic boundary

In this section we begin the study of regular domains in C-C spaces. We shall prove
that a bounded smooth domain without characteristic points is uniform with respect
to the C-C metric induced by a system of Hörmander vector fields X = (X1, ..., Xm).

If Ω ⊂ Rn is an open set with regular boundary, x ∈ ∂Ω and Φ = 0 is a local
equation for ∂Ω in a neighborhood of x, then the point x is non characteristic if there
exists j = 1, ..., m such that XjΦ(x) 6= 0. If every x ∈ ∂Ω is non characteristic then
Ω is said to be non characteristic.

Theorem 3.2.1. Let (Rn, d) be the C-C space associated with a family X =
(X1, ..., Xm) of Hörmander vector fields and let Ω ⊂ Rn be a (Euclidean) bounded
domain with boundary of class C∞. If Ω is non characteristic then it is a uniform
domain.

Before proving Theorem 3.2.1 we shall establish some Lemmata. First we recall
that a non characteristic surface can be made flat by a diffeomorphism and that a
resulting transversal vector field can be orthogonalized and the other ones can be
made lie on the surface.

Lemma 3.2.2. Let U ⊂ Rn be a neighborhood of 0 ∈ Rn and let Y ∈ C∞(U ;Rn)
be a vector field such that 〈Y (0), en〉 6= 0. Let xn = g(x1, . . . , xn−1) = g(x′) be a
function of class C∞ such that g(0) = 0 and ∇g(0) = 0. Possibly shrinking U , there
exists a diffeomorphism Φ ∈ C∞(U ;Rn) such that dΦ(x)Y (x) = en for all x ∈ U and
Φ(x′, g(x′)) = (x′, 0) for all (x′, g(x′)) ∈ U .

The proof of Lemma 3.2.2 can be essentially found in [85] where even less regu-
larity is required.
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Remark 3.2.3. Let X̃1, ..., X̃m ∈ C∞(Rn;Rn) satisfy the Hörmander condition

and induce the C-C metric d̃. Write x = (x′, xn) ∈ Rn−1 × R and assume the vector
fields are of the form

X̃j = bj(x)∂n +
n−1∑
i=1

aij(x)∂i, j = 1, ..., m− 1, X̃m = ∂n.

The new family of vector fields

Xj =
n−1∑
i=1

aij(x)∂i, j = 1, ..., m− 1, Xm = ∂n. (3.2.25)

still satisfies the Hörmander condition. Moreover, if d is the corresponding C-C metric
and K ⊂ Rn is a compact set, there exist c1 and c2 such that on K

c1d̃ ≤ d ≤ c2d̃ and c1|X̃u| ≤ |Xu| ≤ c2|X̃u| (3.2.26)

for all u ∈ C1. A proof of the equivalence between d and d̃ can be found in [85].
Actually, it can be proved that each one of the two equivalences in (3.2.26) implies
the other one (see [100, Theorem 11.11]).

The notations I, I, ||ξ||I with ξ ∈ Rn−1, ΦI,x′ , Yi, d(Yi), S1 and S2 have been
introduced in chapter 1, section 6, subsection 6.3.

Lemma 3.2.4. Let (Rn, d) be the C-C spaces induced by the Hörmander vector
fields X1, ..., Xm ∈ C∞(Rn,Rn) of the form (1.6.65). Let K ⊂ {x = (x′, xn) ∈ Rn−1×
R : xn = 0} be a bounded set. There exists a constant α ≥ 1 such that for all x′, y′ ∈ K
there exists a rectifiable curve parametrized by arclength curve γ : [0, t0] → Rn such
that:

(i) γ(0) = (x′, 0), γ(t0) = (y′, 0) and t0 ≤ αd((x′, 0), (y′, 0));
(ii) if γ = (γ1, ..., γn) then γn(t) ≥ 0 for all t ∈ [0, t0];

Proof. Let K ⊂ Ω0 for some bounded open set Ω0 ⊂ Rn. Let k̄ be the minimum
length of commutators that assures the Hörmander condition on Ω0.

We are in order to apply Theorem 1.6.10. Fix the constants 0 < a < b and
r0 > 0 as in Theorem 1.6.10. Possibly using a covering argument assume that
d((y′, 0), (x′, 0)) ≤ ar0. There exists a multi-index I = (i1, ..., in−1) ∈ I satisfying
(1.6.70) and there exists ξ ∈ Rn−1 such that y′ = ΦI,x′(ξ). Suppose for the sake of
simplicity that ξk ≥ 0 for all k = 1, ..., n− 1.

By Theorem 1.6.12 we can write

ΦI,x′(ξ) =
n−1∏

k=1

Nk∏

l=1

Sσlk
(dlkξ

1/d(Yik
)

k , τlkXjlk
)(x′),

with σlk ∈ {1, 2}, τlk ∈ {−1, 1}, dlk ≤ k̄, jlk ∈ {1, ..., m − 1} and Nk less than a
constant not depending on x′ and y′.

We show how to define the curve γ relatively to the factor Sσlk
(dlkξ

1/d(Yik
)

k , τlkXjlk
).

If, for instance, σlk = 1 then consider

exp(dlkξ
1/d(Yik

)

k (τlkXjlk
−Xm)) exp(dlkξ

1/d(Yik
)

k Xm)(x̄′)
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for some x̄′ ∈ Rn−1. Set t̄ = dlkξ
1/d(Yik

)

k and define γ : [0, 2t̄] → Rn by

γ(t) =

{
exp(tXm)(x̄′) if 0 ≤ t ≤ t̄
exp((t− t̄)(τlkXjlk

−Xm))(exp(t̄Xm)(x̄)) if t̄ ≤ t ≤ 2t̄

The curve γ obtained joining curves of the type just defined is rectifiable and is pa-
rametrized over an interval whose total length is bounded by C||ξ||I with C constant
not depending on x′, y′ ∈ K. By (1.6.73) claim (ii) is verified. Moreover, by Theorem
1.6.10

||ξ||I ≤ b

a
d((x′, 0), (y′, 0)),

and claim (i) is verified with α = Cb/a. ¤
Lemma 3.2.5. Let (Rn, d) be C-C spaces induced by the Hörmander vector fields

X1, ..., Xm ∈ C∞(Rn,Rn). Let Ω ⊂ Rn be an open set with C∞ boubdary. If x0 ∈ ∂Ω
is a non characteristic point then there exists a neighborhood U of x0 such that for
all x, y ∈ Ω ∩ U there exists a continuous rectifiable curve γ : [0, 1] → Ω such that
γ(0) = x, γ(1) = y and (3.1.9), (3.1.10) hold.

Proof. By Lemma 3.2.2 and Remark 3.2.3 we can assume without loss of generality
that x0 = 0, Ω = {x = (x′, xn) ∈ Rn : xn > 0} and X1, ..., Xm are of the form (1.6.65).

Let U be a bounded neighborhood of the origin, let x, y ∈ Ω∩U and assume that
xn ≤ yn. Define δ := d(x, y) and notice that δ ≥ yn − xn. If x̄ := (x′, xn + δ) and
ȳ := (y′, xn + δ) then d(x̄, ȳ) ≤ d(x̄, x) + d(x, y) + d(y, ȳ) ≤ 3δ. By Lemma 3.2.4
there exists a rectifiable curve parametrized by arclength γ̄ : [0, T̄ ] → Ω such that
γ̄(0) = (x̄), γ̄(T̄ ) = (ȳ), γ̄n(t) ≥ xn + δ for all t ∈ [0, T̄ ] and T̄ ≤ αd(x̄, ȳ) ≤ 3αδ. We
can also assume T̄ ≥ δ. Let T := δ + T̄ + (yn − xn) and define γ : [0, T ] → Ω by

γ(t) =





(x′, xn + t) if 0 ≤ t ≤ δ
γ̄(t− δ) if δ ≤ t ≤ δ + T̄
(y′, xn + δ − t) if δ + T̄ ≤ t ≤ δ + T̄ + (yn − xn).

Since T ≤ 2δ + T̄ ≤ (2 + 3α)δ = (2 + 3α)d(x, y) and γ is parametrized by arclength
then length(γ) ≤ T =≤ (2 + 3α)d(x, y) and condition (3.1.9) holds (possibly up to a
reparametrization of γ on [0, 1]).

We have to check condition (3.1.10). As length(γ̄) ≥ δ then

min{length(γ[0,t]), length(γ[t,T ])} =

{
length(γ[0,t]) if t ∈ [0, δ]
length(γ[t,T ]) if t ∈ [δ + T̄ , T ].

It will be enough to prove that for all t ∈ [0, δ + T̄ ]

dist(γ(t); ∂Ω) ≥ εlength(γ[0,t]) (3.2.27)

for some uniform constant ε > 0. If t ∈ [0, δ]

dist(γ(t); ∂Ω) = xn + t ≥ t = length(γ[0,t]).

If t ∈ [δ, δ + T̄ ] then
dist(γ(t); ∂Ω) = xn + δ ≥ δ,

whereas
length(γ[0,t]) ≤ δ + T̄ ≤ (1 + 3α)δ.

Therefore we get (3.2.27) with ε = 1/(1 + 3α). ¤
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Proof of Theorem 3.2.1. By Lemma 3.2.5 and Theorem 3.1.12 the thesis immedi-
ately follows.

3. John and uniform domains in Grushin space

Let (x, y) ∈ Rn−1 × R = Rn and consider the vector fields

X1 = ∂x1 , . . . , Xn−1 = ∂xn−1 , Xn = |x|α∂y, (3.3.28)

where α > 0. Let (Rn, d) the C-C space associated with such vector fields (see chapter
1 section 9).

Definition 3.3.1. Let Ω ⊂ Rn be a connected open set with Lipschitz boundary
such that ∂Ω is of class C1 in a neighborhood of every point (0, y) ∈ ∂Ω.

A point (0, y) ∈ ∂Ω will be said flat if there exist a neighborhood V of (0, y) and a
neighborhood U of the origin in Rn−1 such that ∂Ω∩V = {(x, ϕ(x)) : x ∈ U} for some
ϕ ∈ C1(U ;R) with ∇ϕ(0) = 0. A flat point (0, y) ∈ ∂Ω will be said α−admissible if
there exists a constant C > 0 such that

|∇ϕ(x)| ≤ C|x|α for all x ∈ U . (3.3.29)

Finally, Ω will be said α−admissible if flat points in ∂Ω are α−admissible or if Ω
has no flat points.

Remark 3.3.2. Let Ω = {(x, y) ∈ Rn : y > ϕ(x)} where ϕ ∈ C1(Rn−1) is a
function such that ϕ(0) = 0, |∇ϕ(x)| ≤ c|x|α for all x ∈ Rn−1 and for some c ≥ 0.
The surface ∂Ω ⊂ (Rn, d) is bilipschitz equivalent to (Rn−1, | · |). Indeed consider
Φ : (Rn−1, | · |) → (Rn, d) defined by Φ(x) = (x, ϕ(x)). If x, x̄ ∈ Rn−1 are such that
|x̄| ≤ |x| then

|ϕ(x)− ϕ(x̄)| ≤ c|x|α|x− x̄| ≤ 2c|x|α+1,

and by Proposition 1.9.1

|x− x̄| ≤ d(Φ(x), Φ(x̄)) = d((x, ϕ(x)), (x̄, ϕ(x̄)))

≤ |x− x̄|+ |ϕ(x)− ϕ(x̄)|
|x|α ≤ (1 + c)|x− x̄|.

Theorem 3.3.3. If Ω ⊂ Rn is a bounded α−admissible domain then it is a uniform
domain in (Rn, d).

Proof. By Theorem 3.1.12 the uniformity is a local property of the boundary.
If (x, y) ∈ ∂Ω and x 6= 0 then ∂Ω is Lipschitz in a neighborhood of (x, y) and the
uniform property in this neighborhood follows as for Euclidean Lipschitz domains
in Rn. We have to check that there exist connecting curves that satisfy conditions
(3.1.9) and (3.1.10) in a neighborhood of a point (0, y) ∈ ∂Ω. We may assume y = 0.
Let U ⊂ Rn−1 be a neighborhood of 0 and let ϕ ∈ C1(U) be a function such that
{(x, ϕ(x)) : x ∈ U} = ∂Ω ∩ V , being V ⊂ Rn a neighborhood of 0, ϕ(0) = 0 and

|∇ϕ(x)| ≤ k|x|α for all x ∈ U .

We can assume U = {x ∈ Rn−1 : |x| < r0} for some r0 > 0 and Ω ∩ V = {(x, y) ∈
Rn : x ∈ U , y > ϕ(x)}.

Let (x, y), (ξ, η) ∈ Ω with x, ξ ∈ U . Assume that |ξ| ≤ |x| and η ≤ y. We shall
distinguish two cases:
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(A) |x|α+1 ≥ |y − η|;
(B) |x|α+1 < |y − η|.
First, we discuss how to connect the points (x, η) and (x, y), y ≥ η, by a rectifiable

curve whose length is comparable with the distance between the points. In case (A)
take the curve

γ(t) = exp(tXn)(x, η) = (x, η + |x|αt), 0 ≤ t ≤ |y − η|
|x|α , (3.3.30)

whose length is (by Theorem 1.9.1)

length(γ) =
|y − η|
|x|α ≤ c d((x, y), (x, η)). (3.3.31)

In Case (B) the curve is constructed in the following way. We introduce a param-
eter β > 0 that will be fixed later. Let

T =
2

β

[
|x|α+1 +

β(α + 1)

2
|y − η|

]1/(α+1)

− 2|x|
β

, (3.3.32)

and define γ : [0, T ] → Rn by (v := x/|x|)

γ(t) = exp(t(Xn + β

n∑
i=1

Xi))(x, η)

=

(
x + βtv, η +

1

β(α + 1)
(|x + βtv|α+1 − |x|α+1)

)
,

(3.3.33)

if 0 ≤ t ≤ T/2 and

γ(t) = exp(t(Xn − β

n∑
i=1

Xi))(γ(T/2))

if T/2 < t ≤ T . It can be checked that γ(T ) = (x, y). The length of γ is estimated
by

length(γ) ≤ kT ≤ k̄|y − η|1/(α+1) ≤ ck̄d((x, y), (x, η)), (3.3.34)

where k̄ is a constant that depends only on α and β.
Let now (x, y), (ξ, η) ∈ Ω be such that |ξ| ≤ |x| ≤ r0/2 and y ≥ η, and write

d := d((x, y), (ξ, η)). Let λ > 0 be a constant that will be fixed later and fix δ > 0
such that

d((x, y), (x, y + δ)) = λd. (3.3.35)

The points (x, y) and (ξ, η) will be connected by a rectifiable curve γ piecewise
defined in the following way

(1) a path γ(1) which joins (x, y) to (x, y + δ);
(2) a path γ(2) which joins (x, y + δ) to (ξ, y + δ);
(3) a path γ(3) which joins (ξ, y + δ) to (ξ, η).

We begin with (1). In Case (A), that is |x|α+1 ≥ δ, take γ(1)(t) = (x, y+|x|αt) with
0 ≤ t < δ/|x|α. By (3.3.31) and (3.3.35) length(γ(1)) ≤ c d((x, y), (x, y + δ)) = cλd.

We claim that there exists a constant k1 > 0 such that the inequality

d(γ(t), ∂Ω) ≥ εd(γ(t), (x, y)), 0 ≤ t ≤ δ/|x|α (3.3.36)

holds as soon as ε ≤ k1.
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Since d(γ(t), (x, y)) ≤ t, we have to show that d(γ(t), ∂Ω) ≥ εt. This is true if and
only if B(γ(t), εt)∩∂Ω = ∅, and by (1.9.103) a sufficient condition is Box(γ(t), c2εt)∩
∂Ω = ∅, and this amounts to

ϕ(x + v) < y + |x|αt− c2εt(|x|+ c2εt)
α

for all t ∈ [0, δ/|x|α] and |vi| ≤ c2εt, i = 1, . . . , n− 1, and since y > ϕ(x) we find the
stronger condition

L := t|x|α ≥ c2εt(|x|+ c2εt)
α + ϕ(x + v)− ϕ(x) := R. (3.3.37)

By case (A) t ≤ δ/|x|α ≤ |x| and using (3.3.29) (we can assume x+v ∈ U and ε ≤ 1)

|ϕ(x + v)− ϕ(x)| ≤ k|v||x + v|α ≤ k|v|(|x|+ |v|)α ≤ kc2εt(|x|+ c2εt)
α

≤ kc2εt(1 + c2)
α|x|α.

Analogously (|x|+ c2εt)
α ≤ (1 + c2)

α|x|α. Thus

L = t|x|α ≥ εt|x|αc2(1 + c2)
α(1 + k) ≥ R

as soon as ε ≤ k1 := [c2(1 + c2)
α(1 + k)]−1.

In case (B) we choose γ(1) : [0, T ] → Rn of the form (3.3.33) for a suitable β > 0
with T as in (3.3.32). We claim that there exists a constant k2 > 0 such that if
ε ≤ β ≤ k2 then d(γ(1)(t), ∂Ω) ≥ εt for all 0 ≤ t ≤ T . It suffices to show that
Box(γ(1)(t), c2εt) ∩ ∂Ω = ∅ for 0 ≤ t ≤ T/2, that is

ϕ(x + βtv + w) < y +
1

β(α + 1)
(|x + βtv|α+1 − |x|α+1)− c2εt(|x + βtv|+ c2εt)

α,

for all 0 ≤ t ≤ T/2 and |wi| ≤ c2εt (v := x/|x|). Since y > ϕ(x) we find the stronger
condition

L : = ϕ(x + βtv + w)− ϕ(x) + c2εt(|x + βtv|+ c2εt)
α

≤ 1

β(α + 1)

(|x + βtv|α+1 − |x|α+1
)

:= R.
(3.3.38)

Now,

|ϕ(x + βtv + w)− ϕ(x)| ≤ k|βtv + w||x(1 + (βt + c2εt)/|x|)|α
≤ kt(β + c2ε)(|x|+ t(β + c2ε))

α,

and taking ε ≤ β

L ≤ kβt(1 + c2)(|x|+ βt(1 + c2))
α + c2βt(|x|+ βt(1 + c2))

α

≤ βt(k(1 + c2) + c2)(|x|+ βt(1 + c2))
α

≤ βtk̄1(|x|+ βt)α,

with k̄1 depending on c1, c2 and α.
On the other hand, by the mean value theorem

R ≥ 1

β(α + 1)

(|x + βtv|α+1 − |x + (β/2)tv|)α+1
)

≥ 1

β
|(β/2)tv||x + (β/2)tv|α

≥ tk̄2(|x|+ βt)α.
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Thus (3.3.38) holds as soon as β ≤ k2 := k̄2/k̄1.
The definition of γ(3) is similar to that of γ(1). The estimate of the distance

from the boundary is identical, while the estimate of the length follows from (3.3.35).
Indeed

d((ξ, η), (ξ, y + δ)) ≤ d((ξ, η), (x, y)) + d((x, y), (x, y + δ)) + d((x, y + δ), (ξ, y + δ))

= (2 + λ)d,

and (recall (3.3.34))

length(γ(3)) ≤ k̄c d((ξ, η), (ξ, y + δ)) ≤ k̄c(2 + λ)d.

The curve γ(2) is the horizontal line

γ(2)(t) :=

(
x +

ξ − x

|ξ − x|t, y + δ

)
, 0 ≤ t ≤ |ξ − x|.

Clearly, length(γ(2)) = |ξ − x| ≤ d.
The total length of γ can be now easily estimated

length(γ) = length(γ(1)) + length(γ(2)) + length(γ(3)) ≤ Ld

where L is a constant depending only on k and α. This is (3.1.9).
By the analysis of γ(1) and by (3.3.35)

d((x, y + δ), ∂Ω) ≥ min{k1, k2}d((x, y + δ), (x, y)) = min{k1, k2}λd = d,

if we choose λ = min{k1, k2}−1. On the other hand

d(γ(2)(t), ∂Ω) ≥ d((x, y + δ), ∂Ω) ≥ d((x, y), (ξ, η))

≥ L−1length(γ) ≥ L−1 min{d(γ(2)(t), (x, y)), d(γ(2)(t), (ξ, η))}.
This proves (3.1.10) relatively to γ(2) and the proof is ended. ¤

We shall now show that the condition of α−admissibility is sharp in the sense that
a domain of class C1 that is not α−admissible is not a John domain. We consider in
R2 the vector fields X1 = ∂x and X2 = |x|α∂y.

Remark 3.3.4. It can be easily seen that in the metric space we are dealing with
the Definition of John domain 3.1.1 could have been equivalently given requiring that
any x in the closure of Ω can be connected with x0 in such a way that (3.1.1) holds.

Proposition 3.3.5. Let Ω ⊂ R2 be a C1 domain, assume that 0 ∈ ∂Ω is a
characteristic point and that in a neighborhood of 0 we have Ω = {y > ϕ(x)} where
ϕ ∈ C1(−δ, δ) is a function such that ϕ(0) = 0, ϕ′(0) = 0 and ϕ(x) > c|x|β for all
x ∈ (−δ, δ), for some c > 0 and for some β < α + 1. Then Ω is not a John domain
in (R2, d).

Proof. In view of Remark 3.3.4 it will be enough to prove that for any ε > 0,
for any t0 > 0 and for any rectifiable continuous curve parametrized by arclength
γ : [0, t0] → R2 such that γ(0) = 0 there exists t ∈ [0, t0] such that dist(γ(t); ∂Ω) < εt.
Because of Lemma 1.9.3 this is implied by

Box(γ(t), c1εt) ∩ ∂Ω 6= ∅, (3.3.39)
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with c1 > 0. Consider a curve γ solution of
{

γ̇ = h1X1(γ) + h2X2(γ)

γ(0) = 0

with the condition h2
1 + h2

2 = 1 a.e. , that is

γ(t) = (γ1(t), γ2(t)) =

(∫ t

0

h1(s) ds,

∫ t

0

h2(s)
∣∣∣
∫ s

0

h1(τ)dτ
∣∣∣
α

ds

)
.

Relation (3.3.39) is implied by

ϕ(γ1(t) + c1εt) > γ2(t)

and thus by

L := c
(∣∣∣

∫ t

0

h1(s) ds
∣∣∣ + c1εt

)β

>

∫ t

0

h2(s)
∣∣∣
∫ s

0

h1(τ)dτ
∣∣∣
α

ds := R. (3.3.40)

But L ≥ c(c1εt)
β and since |h1|, |h2| ≤ 1

R ≤
∫ t

0

sα ds =
tα+1

α + 1
.

Inequality (3.3.40) holds if c(α + 1)(c1εt)
β > tα+1, which is true for all t > 0 small

enough since β < α + 1. ¤
Example 3.3.6. Carnot-Carathéodory balls need not be uniform domains. Con-

sider in R2 the Grushin vector fields X1 = ∂x and X2 = x∂y and let (R2, d) be the
induced C-C space. Let B = B(0, 1) be the C-C ball centered at the origin with
radius 1. The ball B is x− and y−symmetric, and using the geodesics equations
(1.9.104) it can be shown that

∂B ∩ {(x, y) ∈ R2 : x, y ≥ 0} =
{

(x(ϑ), y(ϑ)) =
(sin ϑ

ϑ
,
2ϑ− sin 2ϑ

4ϑ2

)
: 0 ≤ ϑ ≤ π

}
.

Since

(x′(π), y′(π)) =
(
− 1

π
,− 1

π2

)

we can put above and outside B a cone with axis in the direction (0, 1), vertex at
the “north pole” N = (0, 1/(2π)) and angular opening 2 arctan π. If 0 < arctan β <
π/2− arctan π then (x, 2/π + βx) ∈ B for all 0 < x ≤ x0 for some x0 > 0 depending
on β.

Consider the points P = (x, 2/π + βx) and Q = (−x, 2/π + βx) with 0 < x ≤ x0.
Then d(P, Q) = 2x. If γ : [0, T ] → B is any rectifiable curve such that γ(0) = P and
γ(T ) = Q

length(γ) ≥ d(P, N) + d(N,Q).

By Proposition 1.9.1 (with m = 1, k = 1, α = 1 and λ = β), as x2 < βx if x < β, we
have

d(P, N) = d(N, Q) ' x + (βx)1/2.

Thus d(P, N) = d(N, Q) ≥ Cx1/2 for some C > 0 and for all small x. Therefore we
find for all 0 < x ≤ x0

length(γ) ≥ 2Cx1/2 =
C

x1/2
d(P, Q).
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This shows that condition (3.1.9) can not hold.

4. Uniform domains in groups of step 2

In this section we study uniform domains in homogeneous groups of step 2. We
shall work in Rn endowed a left invariant metric induced by a system of vector fields
X = (X1, ..., Xm) which generates a stratified Lie algebra of step 2. In Rn = Rm×Rq

we denote x = (x′, x′′) ∈ Rm×Rq and by abuse of notation we shall write x′ = (x′, 0)
and x′′ = (0, x′′). We say that x′ are the variables of the first slice and that x′′ are
the variables of the second slice.

The vector fields can be assumed to be of the form

Xj = ∂j +
n∑

k=m+1

qjk∂k, j = 1, ..., m,

where qjk = qjk(x
′) are homogeneous polynomials of degree 1 in the variables x′.

Introduce the group law

x · y = x + y + Q(x, y),

=
(
x1 + y1, . . . , xm + ym, xm+1 + ym+1 + Qm+1(x, y), . . . , Qn(x, y)

)
,

(3.4.41)

where Q = (Q1, ..., Qn) with Q1 = ... = Qm = 0, and Qj = Qj(x
′, y′), j = m+1, ..., n,

are homogeneous polynomials of degree 2 that can be assumed to satisfy

|Qj(x
′, y′)| ≤ C|x′||y′|. (3.4.42)

We may assume that the vector fields X1, . . . , Xm are left invariant with respect to
the introduced law.

We denote by d the Carnot-Carathéodory distance induced on Rn by X1, ..., Xm

and by B(x, r) the open ball centered at x ∈ Rn with radius r ≥ 0. We also introduce
in Rn the following continuous homogeneous norm

‖x‖ = |x′|+ |x′′|1/2. (3.4.43)

By a standard argument it can be proved that

d(x, y) ' ‖y−1 · x‖. (3.4.44)

Letting Box(x, r) = {x · y ∈ Rn : ‖y‖ ≤ r} by (3.4.44) there exists c > 1 such that
for all x ∈ Rn and r ≥ 0

Box(x, c−1r) ⊂ B(x, r) ⊂ Box(x, cr).

Definition 3.4.1. Let S ⊂ Rn be a hypersurface of class C1 given in a neighbor-
hood U of x0 ∈ S by the local equation Φ = 0 where Φ ∈ C1(U). The point x0 is
characteristic if X1Φ(x0) = ... = XmΦ(x0) = 0.

We denote by ej the j−th coordinate versor and if x =
∑n

i=1 xiei ∈ Rn and
j ∈ {1, . . . , n} we write

x̂j =
∑

1≤i≤n,i6=j

xiei.

Theorem 3.4.2. Any connected, bounded open set Ω ⊂ Rn with boundary of class
C1,1 is a nta domain in the metric space (Rn, d).
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Proof. The proof will be split in several numbered small steps.
1. We claim that for all x0 ∈ ∂Ω there exists a neighborhood U of x0 such that

for all x, y ∈ U ∩ Ω there exist continuous curves γx and γy : [0, 1] → Ω satisfying
hypotheses of Proposition 3.1.15.

2. Let U be a neighborhood of x0 and let Φ ∈ C1,1(U) be a function such that
∂Ω ∩ U = {x ∈ U : Φ(x) = 0}. We shall distinguish two cases:

(C1) |X1Φ(x0)| = ... = |XmΦ(x0)| = 0 (x0 is a characteristic point of ∂Ω);
(C2) |X1Φ(x0)|+ ... + |XmΦ(x0)| > 0 (x0 is a non characteristic point of ∂Ω).

We notice that if x ∈ ∂Ω ∩ U then, possibly shrinking U , the translated surface
x−1 · (∂Ω ∩ U) can be expressed in parametric form by an equation of the type
yj = ϕ(ŷj) for ŷj belonging to a neighborhood of the origin in Rn−1 and ϕ of class
C1,1. If we are in Case 1 we have to choose j ∈ {m + 1, ..., n}, while if we are in Case
2 we can choose j ∈ {1, ..., m}.

3. Case 1. We consider an open set {y ∈ Rn : yj > ϕ(ŷj)} where j > m and
ϕ ∈ C1,1(Rn−1) is a function such that ϕ(0) = 0. Define

νi = −∂iϕ(0), for i = 1, ..., m, and ν = (ν1, ..., νm, 0, ..., 0).

Write also

ϕ(ŷj) = −
m∑

i=1

νiyi + ψ(ŷj)

where ψ can be written by the Taylor formula in the following form

ψ(ŷj) = ϕ(ŷj)−
m∑

i=1

∂iϕ(0)yj =
∑

i>m,i6=j

∂iϕ(0)yi + O(|ŷj|2),

and satisfies the growth estimate

|ψ(ŷj)| . ‖ŷj‖2. (3.4.45)

Here we used the homogeneous norm introduced in (3.4.43) and the fact that y belongs
to a bounded set.

Our construction will take place in two main steps. In the first step we define
“canonical” John curves starting from points near the boundary. In the second step
we join points near the boundary by curves satisfying the hypotheses of Lemma 3.1.15.

4. First step. Define

N1 =
ν1

|ν| , ..., Nm =
ν1

|ν| , and N = (N1, ..., Nm, 0, ..., 0),

and if ν = 0 simple set N = 0. For σ > 0 let t1 = σ|ν|. Fix x = xjej with xj ≥ 0 and
define the continuous curve γ : [0, 1] → Rn

γ(t) =

{
x · tN = tN + xjej, if 0 ≤ t ≤ t1,
x · (t1N) + (t− t1)ej = t1N + (t− t1 + xj)ej, if t1 ≤ t ≤ 1.

(3.4.46)

5. We claim that there exist σ, λ ∈ (0, 1) such that for all t ∈ [0, 1]

dist(γ(t); ∂Ω) ≥ λd(γ(t), x). (3.4.47)

If 0 ≤ t ≤ t1 then d(γ(t), x) ' ‖x−1 · γ(t)‖ = ‖tN‖ = t, and (3.4.47) is equivalent to

Box(γ(t), λt) ∩ {yj = ϕ(ŷj)} = ∅, (3.4.48)
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which is implied by

〈ν, y〉+ yj ≥ |ψ(ŷj)|, for all y ∈ Box(γ(t), λt). (3.4.49)

Points in Box(γ(t), λt) are of the form

γ(t) · h = (tN + xjej) · h = tN + xjej + h + Q (tN, h) (3.4.50)

with ‖h‖ ≤ λt (Q does not depend on the variables on the second slice) and thus we
have to check that

〈ν, tN + h〉+ xj + hj + Qj(tN, h) ≥
∣∣ψ( ̂(γ(t) · h)j

)∣∣
which is guaranteed by

t|ν|+ 〈ν, h〉+ xj ≥ |hj|+
∣∣Qj(tN, h)

∣∣ +
∣∣ψ( ̂(γ(t) · h)j

)∣∣.
Now, since |〈ν, h〉| ≤ λ|ν|t then t|ν| + 〈ν, h〉 & t|ν| as soon as λ < 1/2. Moreover
|hj| ≤ t2 and by (3.4.45)

∣∣ψ( ̂(γ(t) · h)j

)∣∣ .
∥∥ ̂(γ(t) · h)j

∥∥2
= ‖tN + ĥj + Q̂j(tN, h)‖2

. t2 + ‖h‖2 + ‖Q(tN, h)‖2 . t2.

Moreover |Qj(tN, h)| . λt2 . t2. Thus (3.4.48) is implied by

ε0(t|ν|+ xj) ≥ t2, (3.4.51)

where ε0 is a small but absolute constant. Since xj ≥ 0, (3.4.51) holds provided that
t ≤ σ|ν| and σ ≤ ε0. Our claim is proved if 0 ≤ t ≤ t1.

6. We study the case t ≥ t1. Notice that in this case

d(γ(t), x) ' ‖x−1 · γ(t)‖ ' t1 + (t− t1)
1/2 =: δ(t). (3.4.52)

Let a = (t−t1)
1/2 so that δ(t) = t1+a. We shall sometimes write δ instead of δ(t). We

claim that there exists 0 < λ < 1 such that the John property Box(γ(t), λδ(t))∩{yj =
ϕ(ŷj)} = ∅ holds for all t ≥ t1.

Points in Box(γ(t), λδ) are of the form

γ(t) · h = (t1N + (t− t1 + xj)ej) · h
= t1N + (t− t1 + xj)ej + h + Q(t1N, h),

(3.4.53)

with ‖h‖ ≤ λδ. Thus, the John property is ensured by

〈ν, t1N + h〉+ (t− t1) + xj + Qj(t1N, h) ≥
∣∣∣ψ

(
t1N + ĥj + Q̂j(t1N, h)

)∣∣∣ ,

which (write t− t1 = a2) is a consequence of the following stronger inequality

t1|ν|+ a2 + xj ≥ |ν|‖h‖+ |Qj(t1N, h)|+ |ψ(z)|, (3.4.54)

where z denotes the argument of ψ in the previous equation.
Now, |ν|‖h‖ . λ|ν|t1 + λ|ν|a and λ|ν|t1 can be absorbed in the left hand side, as

soon as λ ≤ 1
2
. We also note that

|Qj(t1N, h)| ≤ t1‖h‖ ≤ t1λδ ≤ t21 + λδ2

Moreover

‖z‖ . t1 + ‖h‖+ ‖Q̂j(t1N, h)‖ . t1 + λδ + (t1λδ)1/2 ' t1 + λδ,
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and by (3.4.45)

|ψ(z)| . ‖z‖2 . t21 + λδ2 + λt1δ . t21 + λa2 + λt1a

' t21 + λδ2 ' t21 + λa2.

Since the term λa2 can be absorbed in the left hand side and xj ≥ 0, then (3.4.54)
will follow if we prove that for all a ≥ 0

ε0

(
t1|ν|+ a2

) ≥ t21 + λ|ν|a
where ε0 > 0 is a small but absolute constant. Replacing t1 = σ|ν| we get

ε0

(
σ|ν|2 + a2

) ≥ σ2|ν|2 + λ|ν|a. (3.4.55)

now, since σ2|ν|2 + λ|ν|a ≤ (σ2 + λ
2
)|ν|2 + λ

2
a2 (3.4.55) holds for all a ≥ 0 provided

σ2 + 2λ2 < ε0σ and 2λ2 ≤ ε0.

7. Second step. We prove that, given x and y in the open set {zj > ϕ(ẑj)}
there exists a continuous curve connecting them and satisfying (3.1.9) and (3.1.10).
Without loss of generality we can assume that x = xjej with xj ≥ 0 and y = yjej + ŷj

with yj > ϕ(ŷj). In the first step the “canonical” John curve starting from x has
been defined in (3.4.46). The parameters ν, N and t1 = σ|ν| are defined as in the
first step and are relative to x. The constant σ does not depend on x.

8. Our next task is to write the curve starting from y. First we notice that, letting
Φ(ξ) = ξj − ϕ(ξ̂j), we have for i = 1, ...,m

XiΦ(ξ) = −∂iϕ(ξ̂j) +
∑

k>m

qik(ξ)∂kΦ(ξ),

and hence

νi = −∂iϕ(0) = XiΦ(0). (3.4.56)

Let now w = ŷj + ϕ(ŷj)ej. We look for the parameters νi, i = 1, . . . , m of the
curve starting from w−1 · y = (yj − ϕ(ŷj))ej relatively to the translated boundary
w−1 · {zj = ϕ(ẑj)}. Denote these parameters by ν̄1, ..., ν̄m. Then we find by left
invariance

ν̄i = (XiΦ)(ŷj + ϕ(ŷj)ej) = −∂iϕ(ŷj) +
∑

k>m

qik(y)
∂

∂ξk

(
ξj − ϕ(ξ̂j)

)∣∣
ξ̂j=ŷj ,ξj=ϕ(ŷj)

= −∂iϕ(ŷj) + qij(y
′)−

∑

k>m,k 6=j

qik(y)∂kϕ(ŷj).

(3.4.57)

Define

N̄ =
( ν̄1

|ν̄| , ...,
ν̄m

|ν̄| , 0, ..., 0
)
, and t̄1 = σ|ν̄|.

The “canonical” John curve γy starting from y can be defined (by left translation of
(3.4.46)) in the following way . If 0 ≤ t ≤ t̄1 let

γy(t) =
(
ŷj + ϕ(ŷj)ej

) · (tN̄ + (yj − ϕ(ŷj))ej

)

= ŷj + tN̄ + yjej + Q(y, tN̄),
(3.4.58)
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and if t ≥ t̄1 let

γy(t) =
(
ŷj + ϕ(ŷj)ej

) · (t̄1N̄ + (t− t̄1 + yj − ϕ(ŷj))ej

)

= ŷj + t̄1N̄ + (t− t̄1 + yj)ej + Q(y, t̄1N̄).
(3.4.59)

9. Denote by γx and γy the curves starting from x and y. The curves γx and
γy can not be expected to meet as Proposition 3.1.15 requires. Thus we enlarge the
curve γx by constructing a curvilinear cone around it. Define

δ(t) =

{
t if 0 ≤ t ≤ t1,
t1 + (t− t1)

1/2 if t ≥ t1,

and recall that δ(t) ' d(γx(t), x). For λ > 0 let U(λ) = {h ∈ Rn : ‖h‖ ≤ λ}, and if
h = (h′, h′′) ∈ U(λ) define ht = (δ(t)h′, δ(t)2h′′). As h ∈ U(λ) the family of curves

γh
x(t) = γx(t) · ht =

{
tN + xjej + ht + Q(tN, ht) if 0 ≤ t ≤ t1,

t1N + (t− t1 + xj)ej + ht + Q(t1N, ht) if t ≥ t1

forms a curvilinear cone with core γx. By the triangle inequality, if λ is small enough,
then for any h ∈ U(λ), the curve t 7→ γh

x(t) is a John curve starting from x. ¿From
now on we assume that λ has been fixed small enough in order to ensure this property.

10. Two cases must be distinguished:

(A) d(x, y) ≤ η|ν|;
(B) d(x, y) > η|ν|.

The parameter 0 < η < 1 will be fixed later. Note that if 0 is a characteristic point,
then Case A is empty.

11. Study of Case A. We claim that there exist η > 0 and M > 1 such that for
all x and y there exists h ∈ U(λ) such that γy(Md(x, y)) = γh

x(Md(x, y)). A correct
choice of 0 < η < 1 and M > 1 will show that the two curves meet in their first tract
(see condition (3.4.68)).

Without loss of generality we can assume |ν| ≤ |ν̄| (otherwise the roles of x and y
should be interchanged). If t ≤ t1 = σ|ν| then t ≤ t̄1 = σ|ν̄| and γy(t) = γh

x(t) reads

ŷj + tN̄ + yjej + Q(y, tN̄) = tN + xjej + ht + Q(tN, ht). (3.4.60)

We have to show that for any λ > 0 the solution h = (h′, h′′) of this equation belongs
to U(λ) if t = Md(x, y) and M is great enough.

As t ≤ t1 then δ(t) = t and ht = (th′, t2h′′). Projecting (3.4.60) along the first m
components we get the equation y′ + tN̄ = tN + h′t that is

th′ = y′ + t(N̄ −N). (3.4.61)

Replacing t = Md(x, y) we find that the solution h′ satisfies

|h′| ≤ |y′|
Md(x, y)

+ |N − N̄ |. (3.4.62)

First of all notice that d(x, y) ' ‖(−xjej) · (yjej + ŷj)‖ ≥ |y′|, which gives |y′| ≤
d(x, y). Moreover, using the inequality

∣∣∣ v

|v| −
w

|w|
∣∣∣ ≤ 2

|v − w|
|v| if v, w ∈ Rn \ {0},
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and the explicit form (3.4.56) and (3.4.57) of ν and ν̄ we get

|N − N̄ | ≤ 2
|ν − ν̄|
|ν|

≤ 2

|ν|
m∑

i=1

∣∣∣∂iϕ(0)− ∂iϕ(ŷj) + qij(y)−
∑

k>m, k 6=j

qik(y)∂kϕ(ŷj)
∣∣∣

. 1

|ν|
(|ŷj|+ |y′|) . d(x, y)

|ν| .

(3.4.63)

The last string of estimates follows from the boundedness and the Lipschitz continuity
of ∂iϕ and from

d(x, y) ' ‖(−xjej) · (ŷj + yjej)‖
= ‖ŷj + (yj − xj)ej + Q(−xjej, ŷj + yjej)‖
= ‖ŷj + (yj − xj)ej‖ ≥ ‖ŷj‖ & |ŷj|,

(3.4.64)

because y lies in a bounded set.
Putting (3.4.63) into (3.4.62) and using Case A we get

|h′| . 1

M
+

d(x, y)

|ν| ≤ 1

M
+ η. (3.4.65)

This shows that |h′| ≤ λ as soon as M is great enough and η is small enough.
We project now (3.4.60) along the components of the second slice obtaining

ŷ′′j + yjej + tQ(y, N̄) = xjej + h′′t + tQ(N, h′t).

Here h′′t = t2h′′ and h′t = th′ where h′ is the vector determined in (3.4.61) and satisfies
the estimate (3.4.65). The last equation has a unique solution h′′ which satisfies

|h′′| ≤ |ŷ′′j |+ |yj − xj|
t2

+
1

t
|Q(y, N̄)|+ |Q(N, h′)|.

Here we have to replace t = Md(x, y) but first we notice that by (3.4.64),

d(x, y) = ‖ŷj + (yj − xj)ej‖ ≥ |ŷ′′j |1/2 + |yj − xj|1/2. (3.4.66)

Moreover |Q(y, N̄)| . |y′| . d(x, y) and by (3.4.65)

|Q(N, h′)| . |h′| . 1

M
+ η,

Putting all these estimates together we find

|h′′| . 1

M2
+

1

M
+ η. (3.4.67)

Thus |h′′| ≤ λ as soon as M is great enough and η is small enough.
Our claim will be proved if we show that the choice of M and η is compatible

with the condition Md(x, y) ≤ t1 = σ|ν|. As we are in Case A then d(x, y) ≤ η|ν|
and we find the stronger condition

Mη ≤ σ (3.4.68)

which can be satisfied.
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12. In view of Proposition 3.1.15 we have to estimate the diameter of the curves
γh

x and γy. First of all by (3.4.46) we have diam(γx) = Md(x, y). Moreover, if
0 ≤ s, t ≤ Md(x, y) and ‖h‖ ≤ 1

d(γh
x(s), γh

x(t)) ≤ d(γh
x(s), γx(s)) + d(γx(s), γx(t)) + d(γx(t), γ

h
x(t))

. ‖hs‖+ diam(γx) + ‖ht‖ ≤ 3Md(x, y),

and thus diam(γh
x) . d(x, y).

13. Study of Case B. In this case the points x and y satisfy d(x, y) ≥ η|ν| where
η > 0 is from now on a fixed constant. Recall that t1 = σ|ν| and t̄1 = σ|ν̄|, and for
R > 0 let

tx = t1 + R2d(x, y)2 and ty = t̄1 + R2d(x, y)2.

As above let U(λ) = {h ∈ Rn : ‖h‖ ≤ λ} and write ht = (δ(t)h′, δ(t)2h′′) where now
δ(t) = t1 + (t− t1)

1/2 ' d(γ(t), x) for t ≥ t1.
14. We claim that there exists R > 0 such that for all x, y there exists h ∈ U(λ)

(λ is the parameter fixed at the end of 9.) such that γy(ty) = γh
x(tx) (the times tx

and ty depend on R).
This equation gives

ŷj + t̄1N̄ + (ty − t̄1 + yj)ej + Q(y, t̄1N̄) = t1N + (tx − t1 + xj)ej + htx + Q(t1N, htx).

Replacing t̄1 = σ|ν̄|, t1 = σ|ν|, ty − t̄1 = R2d(x, y)2 and tx − t1 = R2d(x, y)2 we find

ŷj + σν̄ + (R2d(x, y)2 + yj)ej + σ|ν̄|Q(y, N̄)

= σν + (R2d(x, y)2 + xj)ej + htx + σ|ν|Q(N, htx).
(3.4.69)

Projecting this equation along the coordinates of the first slice we get

y′ + σν̄ = σν + h′tx , (3.4.70)

and the solution h′tx satisfies

|h′tx | ≤ |y′|+ σ|ν|+ σ|ν̄|.
We use |y′| ≤ d(x, y) and σ|ν| ≤ σ/ηd(x, y) (this is Case B). By (3.4.57)

|ν̄i| ≤ |∂iϕ(ŷj)|+ |qij(y)|+
∑

k>m,k 6=j

|qik(y)∂kϕ(ŷj)|

. |∂iϕ(0)|+ |∂iϕ(0)− ∂iϕ(ŷj)|+ |y′|

. |ν|+ d(x, y) . d(x, y)

η
,

(3.4.71)

(ϕ has Lipschitz continuous and bounded derivatives) and ultimately we obtain for
some great but absolute constant C0

|h′tx | ≤ C0
d(x, y)

η
= C0d(x, y) (3.4.72)

(the parameter η has been fixed in 11. and can be considered from now on an absolute
constant).

Projecting (3.4.69) along the coordinates of the second slice we have

ŷ′′j + yjej + σ|ν̄|Q(y, N̄) = xjej + h′′tx + σ|ν|Q(N, htx).
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Thus

h′′tx = ŷ′′j + (yj − xj)ej + σ|ν̄|Q(y, N̄)− σ|ν|Q(N, h′tx),

where h′tx satisfies (3.4.72). Notice that by (3.4.66) |ŷ′′j | + |yj − xj| . d(x, y)2 and
moreover, taking into account (3.4.72) and Case B

σ|ν||Q(N, h′tx)| . |ν||h′tx | . d(x, y)2.

By (3.4.71)

σ|ν̄||Q(y′, N̄)| . |ν̄||y′| . d(x, y)2,

and hence |h′′tx | . d(x, y)2. Finally

‖h‖ =
‖htx‖
δ(tx)

=
|h′tx |+ |h′′tx|1/2

δ(tx)
. d(x, y)

δ(tx)
=

d(x, y)

t1 + (tx − t1)1/2
≤ 1

R
,

and ‖h‖ ≤ λ as soon as R ≥ C0/λ where C0 is a great but absolute constant. Our
claim is proved and the proof of the Theorem in the characteristic case is ended.

15. The estimates for diam(γh
x) and diam(γy) can be obtained as in 12.

16. Case 2. We now study the non characteristic case. Assume without loss of
generality that Ω = {y ∈ Rn : yj > ϕ(ŷj)} where j ∈ {1, ..., m} and ϕ ∈ C1,1(Rn−1)
is a function such that ϕ(0) = 0. Let νi = −∂iϕ(0) if i = 1, ..., m with i 6= j, and
νj = 1. Finally write ν = (ν1, ..., νm, 0, ..., 0).

17. First step. We construct John curves starting from near the boundary. The
function ψ defined by

ψ(ŷj) = ϕ(ŷj) +
∑

i=1,...,m,i6=j

νiyi (3.4.73)

satisfies

|ψ(ŷj)| =
∣∣∣ϕ(ŷj)−

∑

i=1,...,m,i6=j

∂iϕ(0)yi

∣∣∣

=
∣∣∣
∑
i>m

∂iϕ(0)yi + O(|ŷj|2)
∣∣∣ . ‖ŷj‖2,

(3.4.74)

because y belongs to a bounded set.
Fix a point x ∈ Ω of the form x = xjej with xj > 0. For t ≥ 0 define the curve

starting from x

γx(t) = x · tν = x ·
(
tej + t

∑

i=1,...m,i6=j

νiei

)
. (3.4.75)

Note first that d(γ(t), x) ' ‖tν‖ = t|ν| ' t.
18. We claim that there exist t0 > 0 and 0 < λ < 1 such that for all 0 ≤ t ≤ t0

dist(γ(t); ∂Ω) ≥ λt. (3.4.76)

The John condition (3.4.76) is equivalent to Box(γ(t), λt) ∩ ∂Ω = ∅.
Points in Box(γ(t), λt) are of the form

x · tν · h = xjej · (tν + h + tQ(ν, h′))

= xjej + tν + h + tQ(ν, h′) + Q(xjej, tν + h′) ≡ z,
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where h ∈ Rn and ‖h‖ ≤ λt. We have to check that (z is defined in the last equation)

xj + t + hj > ϕ(ẑj) = −
∑

i≤m,i 6=j

νi(tνi + hi) + ψ(ẑj),

by (3.4.73). Since |hk| < λt, k = 1, . . . , m, if λ > 0 is small enough, the last inequality
is ensured by

xj + (1− λ)t + t
∑

i≤m,i 6=j

(ν2
i − λ|νi|) ≥ |ψ(ẑj)|,

which is implied by

ε0(xj + t) ≥ |ψ(ẑj)|. (3.4.77)

The right hand side of (3.4.77) can be estimated by (3.4.74)

|ψ(ẑj)| . ‖ẑj‖2 =
∥∥tν̂j + ĥj + tQ(ν, h′) + Q(xjej, tν + h′)

∥∥2

. t2 + λt2 + ‖tQ(ν, h′)‖2 + ‖Q(xjej, tν + h′)‖2

. t2 + (t|ν|λt) + (xj|tν + h′|) . t2 + xjt,

where we used |ν| . 1. Then (3.4.77) is ensured by

ε0(xj + t) ≥ t2 + xjt,

where ε0 > 0 is a small but absolute constant. This inequality is trivially satisfied as
soon as t ≤ ε0.

19. Second step. We prove the uniform condition. Given two points x, y ∈ Ω we
have to connect them by curves γx and γy satisfying the hypotheses of Proposition
3.1.15. Assume that x = xjej with xj > 0 and write y = ŷj + yjej with yj > ϕ(ŷj).

We first notice that if d(x, y) < dist(x; ∂Ω) then x and y can be connected simply
by a geodesic. Therefore, without loss of generality we can assume that

d(x, y) ≥ dist(x; ∂Ω). (3.4.78)

20. We claim that there exists a constant C0 > 0 such that

xj ≤ C0d(x, y) (3.4.79)

for all x = xjej, y ∈ Ω satisfying (3.4.78) and lying in a bounded set (say the unit

Euclidean ball with center at the origin). Indeed, if ξ = ξ̂j + ϕ(ξ̂j)ej ∈ ∂Ω then

d(x, ξ) '
∥∥(−xjej) ·

(
ξ̂j + ϕ(ξ̂j)ej

)∥∥
' |ϕ(ξ̂j)− xj|+ |ξ̂′j|+

∣∣ξ′′ + Q
(− xjej, ξ̂j + ϕ(ξ̂j)ej

)∣∣1/2

= |ϕ(ξ̂j)− xj|+ |ξ̂′j|+
∣∣ξ′′ + Q

(− xjej, ξ̂
′
j

)∣∣1/2
.

We used here the bilinearity of Q and the property 0 = (−ej) · ej = −Q(ej, ej). In
order to prove (3.4.79) it will be enough to show that

xj ≤ C0

(
|ϕ(ξ̂j)− xj|+ |ξ̂′j|+

∣∣ξ′′ + Q
(− xjej, ξ̂

′
j

)∣∣1/2
)
. (3.4.80)
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By the Lipschitz continuity of ϕ we find

xj ≤ |xj − ϕ(ξ̂j)|+ |ϕ(ξ̂j)| . |xj − ϕ(ξ̂j)|+ |ξ̂j|
= |xj − ϕ(ξ̂j)|+ |ξ̂′j|+ |ξ′′|
. |xj − ϕ(ξ̂j)|+ |ξ̂′j|+ |ξ′′ + Q(−xjej, ξ̂

′
j)|+ |Q(−xjej, ξ̂

′
j)|

. |xj − ϕ(ξ̂j)|+ |ξ̂′j|+ |ξ′′ + Q(−xjej, ξ̂
′
j)|1/2 + xj|ξ̂′j|

. |xj − ϕ(ξ̂j)|+ |ξ̂′j|+ |ξ′′ + Q(−xjej, ξ̂
′
j)|1/2.

We used here the fact that all the involved vectors lie in a bounded set. Our claim
(3.4.79) is proved.

21. Our next step is to compute the “canonical” John curve starting from a generic
point y ∈ Ω. The point y and the boundary of Ω will be translated by a suitable vector
η ∈ Rn in such a way that η ·y lies in the half axis {αej : α > 0}. Using the equations
of the translated surface the correct vector of parameters ν̄ can be computed and the
curve starting from y will be defined as γy(t) = η−1 · (η · y) · (tν̄) = y · (tν̄) for t ≥ 0.

22. We claim that there exist % > 0 and C0 > 1 such that for all y ∈ Ω∩{|y| ≤ %}
there exists η ∈ Rn such that:

(i) η · ∂Ω contains the origin;
(ii) η · y belongs to {λej : λ > 0};
(iii) |η| ≤ C0|ŷj|.
We look for η = (η′, η′′). If η′′ is given, we can define η′ by the equation

η′ = −ŷ′j − ϕ(ŷ′j − η′′)ej (3.4.81)

and (i) is satisfied. Indeed the point z := ŷ′j − η′′ + ϕ(ŷ′j − η′′)ej ∈ ∂Ω and

η · z = η′ + η′′ + ŷ′j − η′′ + ϕ(ŷ′j − η′′)ej + Q(η′, ŷ′j + ϕ(ŷ′j − η′′)ej) = 0,

by (3.4.81).
We shall soon prove that the implicit equation

η′′ + y′′ + Q(−ŷ′j − ϕ(ŷ′j − η′′)ej, ŷ
′
j + yjej) = 0, (3.4.82)

has a solution η′′. This ensures that the vector η = (η′, η′′) satisfies (ii). Indeed

η · y =
(− ŷ′j + η′′ − ϕ(ŷ′j − η′′)ej

) · (ŷ′j + y′′ + yjej

)

= y′′ + η′′ +
(
yj − ϕ(ŷ′j − η′′)

)
ej + Q

(− ŷ′j − ϕ(ŷ′j − η′′)ej, ŷ
′
j + yjej

)
,

which belongs to the j−th axis if and only if (3.4.82) holds.
We prove the existence of the solution η′′. First notice that by the bilinearity of

Q

Q
(− ŷ′j − ϕ(ŷ′j − η′′)ej, y

′) = Q
(− ŷ′j − yjej +

(
yj − ϕ(ŷ′j − η′′)

)
ej, y

′)

= Q
((

yj − ϕ(ŷ′j − η′′)
)
ej, y

′)

=
(
yj − ϕ(ŷ′j − η′′)

)
Q(ej, y

′).

The map y′ 7→ Q(ej, y
′) is linear and does not depend on yj). Thus equation (3.4.82)

is equivalent to the equation

η′′ + y′′ +
(
yj − ϕ(ŷ′j − η′′)

)
Q(ej, ŷ

′
j) = 0. (3.4.83)
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We show that there exists % > 0 such that if y ∈ Ω and |y| ≤ % then (3.4.83) has a
solution η′′ satisfying

|η′′| ≤ 2|ŷj|. (3.4.84)

We use a fixed point argument. Letting F (η′′) = −y′′ − (
yj − ϕ(ŷ′j − η′′)

)
Q(ej, ŷ

′
j)

equation (3.4.83) becomes F (η′′) = η′′. Let D = {η ∈ Rn : |η| ≤ C0|ŷj|}. If we show
that for some C0 > 0 F (D) ⊆ D, then the continuous map F has a fixed point by
Brouwer theorem. Indeed

|F (η′′)| ≤ |y′′|+ |Q(ej, ŷ
′
j)|

∣∣(yj − ϕ(ŷ′j − η′′)
)|

≤ |ŷj|+ C|ŷ′j|
(|yj|+ |ŷ′j|+ |η′′|)

≤ |ŷj|(1 + 4C|y|) ≤ 2|ŷj|,
as soon as |y| ≤ % = 1/(4C) (here the constant C depends only on the surface).
Moreover by (3.4.81) and by (3.4.84)

|η′| = |ŷ′j|+ |ϕ(ŷ′j − η′′)| . |ŷ′j|+ |η′′| . |ŷj|.
This proves claim (iii).

23. We compute ν̄ by a left translation argument. Let Φ(y) = yj − ϕ(ŷj). The
parameters ν at the point y = 0 are given by νi = XiΦ(0), i = 1, ...,m. Then for any

point ξ = ξ̂j +ϕ(ξ̂j)ej belonging to the surface {Φ = 0} the parameters νi = νi(ξ) are
given by

νi(ξ) = (XiΦ)(ξ)

=





(
∂j +

∑

k>m

qjk(ξ
′)∂k

)
Φ(ξ) = 1−

∑

k>m

qjk(ξ
′)∂kϕ(ξ̂j) if i = j,

(
∂i +

∑

k>m

qik(ξ
′)∂k

)
Φ(ξ) = −∂iϕ(ξ̂)−

∑

k>m

qik(ξ
′)∂kϕ(ξ̂j) if i ≤ m, i 6= j.

Let η ∈ Rn be a vector relative to y as in the claims (i), (ii) and (iii) in 22. The
correct value of the parameters is given by the evaluation of the previous equation at
the point −η (this is because the point −η is taken to the origin by the left translation
τη). Define ν̄i = νi(−η). Set ν̄ = (ν̄1, ..., ν̄m, 0, ..., 0). We claim that

|ν − ν̄| . |ŷj| (3.4.85)

If i 6= j, by the Lipschitz continuity of ϕ and by claim (iii)

|ν̄i − νi| =
∣∣∣− ∂iϕ(−η̂j)−

n∑

k=m+1

qik(−η′)∂kϕ(−η̂j) + ∂iϕ(0)
∣∣∣

. |∂iϕ(0)− ∂iϕ(−η̂j)|+
n∑

k=m+1

∣∣qik(−η′)
∣∣∣∣∂kϕ(−η̂j)

∣∣

. |η̂j|+ |η′| ' |η| . |ŷj|.
The estimate of the j−th component of ν − ν̄ is even easier and we skip it.

24. Let γx be the curve starting from x = xjej defined in (3.4.75) and let γy be
the curve starting from y ∈ Ω defined for t ≥ 0 by

γy(t) = y · (tν̄) = ŷ′j + tν̄ + yjej + y′′ + Q(y′, tν̄),
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where ν̄ is the vector of parameters discussed above. We now construct a cone with
core γx. For λ > 0 let U(λ) = {h ∈ Rn : ‖h‖ ≤ λ} and for t ≥ 0 define ht = (th′, t2h′′).
Note that ht = t‖h‖ ' d(γx(t), γx(0))‖h‖. Finally let

γh
x(t) = xjej · (tν) · ht = xjej · (tν + ht + Q(tν, h′t))γx(t) · ht

= xjej + tν + ht + tQ(ν, h′t) + Q(xjej, tν + h′t).

25. We claim that there exist M > 0 and % > 0 such that for all x = xjej ∈ Ω
and for all y ∈ Ω such that |ŷj| ≤ % there exists h ∈ U(λ) such that γh

x(Md(x, y)) =
γy(Md(x, y)). Here λ is a parameter small enough to ensure that for all h ∈ U(λ) γh

x

is a John curve with constant λ.
Equality γy(t) = γh

x(t) reads

ŷ′j+tν̄ + yjej + y′′ + tQ(y′, ν̄) = xjej + tν + ht + tQ(ν, h′t) + xjQ(ej, tν + h′t).
(3.4.86)

Projecting this equation along the coordinates of the first slice we get

ŷ′j + tν̄ + yjej = xjej + tν + th′ (3.4.87)

and the solution h′ satisfies |h′| ≤ 1
t
{|ŷ′j|+ |yj−xj|+t|ν− ν̄|}. Replacing t = Md(x, y)

we find

|h′| ≤ |ŷ′j|+ |yj − xj|
Md(x, y)

+ |ν − ν̄|.
By the equivalence

d(x, y) ' ‖(−x) · y‖ ' |yj − xj|+ |ŷ′j|+
∣∣y′′ + Q(−xjej, ŷ

′
j)

∣∣1/2
, (3.4.88)

and by (3.4.85) we obtain for some absolute constant C0

|h′| ≤ C0

( 1

M
+ %

)
(3.4.89)

as soon as |ŷj| ≤ %.
We project now (3.4.86) along the coordinates of the second slice obtaining

y′′ + tQ(y′, ν̄) = h′′t + tQ(ν, h′t) + xjQ(ej, tν + h′t),

where h′t = th′ and h′ satisfies (3.4.89). We deduce that

|h′′t | ≤ |y′′|+ t|Q(y′, ν̄)|+ t|Q(ν, h′t)|+ xj|Q(ej, tν + h′t)|.
We estimate separately each term in the right hand side. By (3.4.88) and (3.4.79)

|y′′| ≤ |y′′ + Q(−xjej, ŷ
′
j)|+ |Q(−xjej, ŷ

′
j)| . d(x, y)2 + xj|ŷ′j| . d(x, y)2,

Moreover |Q(y′, ν̄)| . |y′| . d(x, y) and by (3.4.89)

|Q(ν, h′t)| . |h′t| . t
( 1

M
+ %

)
.

The vectors ν and ν̄ are bounded. Finally, again by (3.4.79) xj|Q(ej, tν + h′t)| .
td(x, y). Then

|h′′t | . d(x, y)2 + td(x, y) + t2
( 1

M
+ %

)
,
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and replacing t = Md(x, y) we finally get

|h′′| . 1

M2
+

1

M
+ %,

which shows that ‖h‖ ≤ λ if M is great and % is small enough.
¤

5. John domains in a group of step 3

In this section we study John domains in groups of step 3. In order to make
explicit computations we shall study the simplest Carnot group of step 3 whose Lie
algebra has the lowest dimension, which is 4.

Consider in R4 the vector fields

X1 = ∂1 − 1

2
x2∂3 −

{ 1

12
(x1x2 + αx2

2) +
1

2
x3

}
∂4,

X2 = ∂2 +
1

2
x1∂3 +

{ 1

12
(x2

1 + αx1x2)− α

2
x3

}
∂4,

X3 = ∂3 +
1

2
(x1 + αx2)∂4

X4 = ∂4,

where α ∈ R is a real parameter. The commutation relations are

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = αX4,

and all other commutators vanish. Thus, for any α ∈ R the vector fields X1, X2 are
generators of a Lie algebra of differential operators in R4 of step 3. It can be checked
that the following group law on R4 makes X1, X2, X3 and X4 left invariant.

x · y =
(
x1 + y1, x2 + y2, x3 + y3 +

1

2
(x1y2 − x2y1),

x4 + y4 +
1

12

{
(y1 + αy2)(x2y1 − x1y2) + (x1 + αx2)(x1y2 − x2y1)

}

+
1

2

{
(x1y3 − x3y1) + α(x2y3 − y2x3)

})
.

Notice that x−1 = −x. Introduce the abbreviations

q1(x1, x2, x3) = −
{ 1

12
(x1x2 + αx2

2) +
1

2
x3

}

q2(x1, x2, x3) =
{ 1

12
(x2

1 + αx1x2)− α

2
x3

}

q3(x1, x2) =
1

2
(x1 + αx2),

(3.5.90)

and

Q3(x1, x2, y1, y2) =
1

2
(x1y2 − x2y1)

Q4(x1, x2, x3, y1, y2, y3) =
1

12

{
(y1 + αy2)(x2y1 − x1y2) + (x1 + αx2)(x1y2 − x2y1)

}

+
1

2

{
(x1y3 − x3y1) + α(x2y3 − y2x3)

}
,
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in such a way that

x · y = (x1 + y1, x2 + y2, x3 + y3+Q3(x1, x2, y1, y2),

x4 + y4 + Q4(x1, x2, x3, y1, y2, y3)).

We denote by d the Carnot-Carathéodory distance induced on R4 by X1 and X2

and by B(x, r) the open ball centered at x ∈ R4 with radius r ≥ 0. Define also the
following homogeneous norm in R4

‖x‖ = |x1|+ |x2|+ |x3|1/2 + |x4|1/3.

By a standard argument it can be proved that

d(x, y) ' ‖y−1 · x‖. (3.5.91)

Define the Box
Box(x, r) = {x · y ∈ R4 : ‖y‖ ≤ r}. (3.5.92)

By (3.5.91) it follows that there exists c > 1 such that for all x ∈ Rn and r ≥ 0

Box(x, c−1r) ⊂ B(x, r) ⊂ Box(x, cr).

Let S ⊂ R4 be a 3−dimensional surface of class C1. If x0 ∈ S there exists a
neighborhood U of x0 in R4 and there exists Φ ∈ C1(U ;R) such that S ∩ U = {x ∈
U : Φ(x) = 0} and ∇Φ 6= 0 on S ∩U . A point x ∈ S ∩U is said to be characteristic if
and only if X1Φ(x) = X2Φ(x) = 0. From a geometric point of view this means that
X1 and X2 belong to the tangent spaces to S at x.

Definition 3.5.1. A characteristic point x ∈ S ∩U is of first type if X3Φ(x) 6= 0,
is of second type if X3Φ(x) = 0.

If x ∈ S ∩ U is a characteristic point of second type then X4Φ(x) = ∂4Φ(x) can
not be 0. Otherwise it would be X1Φ = · · · = X4Φ = 0 at x and this is impossible
because ∇Φ 6= 0 and X1, . . . , X4 are independent at each point.

We are interested in expressing S in parametric form in a neighborhood of x0 ∈ S
after a translation that takes x0 to the origin. Notice that x0 is a characteristic point
(of first, second type) of S if and only if 0 is a characteristic point (of first, second
type) of the translated surface x−1

0 · S. Indeed, Φ(x0 · x) = 0 is a local equation for
x−1

0 · S at 0 and since X1, X2, X3, X4 are left invariant

Xj(Φ(x0 · x))
∣∣∣
x=0

= XjΦ(x0), j = 1, ..., 4.

If x0 is a characteristic point of second type there is only one possible parametriza-
tion of S in a neighborhood of x0: the variable x4 must be given in terms of the
variables x1, x2, x3. Such a choice of parametrization will be also possible in a neigh-
borhood of x0. Let x ∈ S be a point near x0 and let now V ⊂ R4 be a neighborhood
of 0. There exist D ⊂ R3 open neighborhood of 0 ∈ R3 and ϕ ∈ C1(D;R) such that

(x−1 · S) ∩ V = {(y1, y2, y3, ϕ(y1, y2, y3)) ∈ R4 : (y1, y2, y3) ∈ D}.
Notice that ϕ(0) = 0. We say that ϕ is a local parametrization of S at x of second
type.

Definition 3.5.2. A connected, bounded open set Ω ⊂ R4 is admissible if

(i) Ω is of class C2;
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(ii) there exists k ≥ 0 such that for any x0 ∈ ∂Ω characteristic point of second
type there exists U ⊂ R4 open neighborhood of x0 such that if Φ = 0 is a
local equation for ∂Ω ∩ U then for all x ∈ ∂Ω ∩ U

|X2
1Φ(x)|+ |X2

2Φ(x)|+ |(X1X2 + X2X1)Φ(x)|
≤ k(|X1Φ(x)|1/2 + |X2Φ(x)|1/2 + |X3Φ(x)|). (3.5.93)

Remark 3.5.3. The needed flatness of ∂Ω at characteristic points of first type is
guaranteed by the assumption that ∂Ω is of class C2. Inequality (3.5.93) becomes
trivial as soon as we are away from the characteristic set of second type.

Remark 3.5.4. The meaning of (3.5.93) near a characteristic point of the second
type can be clarified representing the surface in parametric form as follows. Let Φ = 0
be a local equation for ∂Ω in a neighborhood of a characteristic point of second type
x0 ∈ ∂Ω. Take a point in ∂Ω belonging to this neighborhood and assume without loss
of generality it is the origin. Assume that (3.5.93) holds. Since ∂4Φ(0) = X4Φ(0) 6= 0,
by the implicit function Theorem there exist a neighborhood D of the origin in R3

and a function ϕ ∈ C2(D) such that ϕ(0) = 0 and (we write x = (x1, x2, x3))

Φ(x, ϕ(x)) = 0 for all x ∈ D. (3.5.94)

If we apply the vector fields X1, X2 and X3 to identity (3.5.94) and evaluate the
expressions thus obtained at x = 0 we obtain




∂1Φ(0) + ∂4Φ(0)∂1ϕ(0) = 0,

∂2Φ(0) + ∂4Φ(0)∂2ϕ(0) = 0,

∂3Φ(0) + ∂4Φ(0)∂3ϕ(0) = 0.

Since ∂4Φ(0) 6= 0 we get

|∂1ϕ(0)| = |∂1Φ(0)|
|∂4Φ(0)| , |∂2ϕ(0)| = |∂2Φ(0)|

|∂4Φ(0)| , |∂3ϕ(0)| = |∂3Φ(0)|
|∂4Φ(0)| .

Applying the second order operators X2
1 , X2

2 and X1X2 + X2X1 to the identity
(3.5.94) and evaluating the expressions thus obtained at x = 0 we get




∂2
1Φ + [2∂14Φ + ∂2

4Φ ∂1ϕ]∂1ϕ + ∂4Φ ∂2
1ϕ = 0,

∂2
2Φ + [2∂24Φ + ∂2

4Φ ∂2ϕ]∂2ϕ + ∂4Φ ∂2
2ϕ = 0,

2∂12Φ + [2∂24Φ + ∂2
4Φ ∂2ϕ]∂1ϕ + [2∂14Φ + ∂2

4Φ ∂1ϕ]∂2ϕ + 2∂4Φ ∂12ϕ = 0.

All square brackets are bounded functions and ∂4Φ is away from 0. Thus



|∂2
1ϕ(0)| . |∂2

1Φ(0)|+ |∂1ϕ(0)|,
|∂2

2ϕ(0)| . |∂2
2Φ(0)|+ |∂2ϕ(0)|,

|∂12ϕ(0)| . |∂12Φ(0)|+ |∂1ϕ(0)|+ |∂2ϕ(0)|.
The signs “.” mean that the estimates are uniform in a neighborhood of the charac-
teristic points x0 we are considering.

Now let x ∈ R4 and consider x → Φ(x). Applying X1, X2, X3, X2
1 , X2

2 and
X1X2 + X2X1 to Φ and evaluating at x = 0 we see that{

X1Φ(0) = ∂1Φ(0), X2Φ(0) = ∂2Φ(0), X3Φ(0) = ∂3Φ(0),

X2
1Φ(0) = ∂2

1Φ(0), X2
2Φ(0) = ∂2

2Φ(0), (X1X2 + X2X1)Φ(0) = 2∂12Φ(0).
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Using all these estimates, from (3.5.93) we deduce that the function ϕ which
parametrizes ∂Ω satisfies

|∂2
1ϕ(0)|+ |∂2

2ϕ(0)|+ |∂2
12ϕ(0)| ≤ k̄(|∂1ϕ(0)|1/2 + |∂2ϕ(0)|1/2 + |∂3ϕ(0)|), (3.5.95)

where now k̄ is a new constant that depends on k and that is uniform in a neighbor-
hood of the characteristic point of second type we are considering.

By Taylor formula with ϕ(0) = 0

ϕ(y) =∂1ϕ(0)y1 + ∂2ϕ(0)y2 + ∂3ϕ(0)y3

+
1

2
∂2

1ϕ(0)y2
1 +

1

2
∂2

2ϕ(0)y2
2 + ∂2

12ϕ(0)y1y2 + O(‖y‖3),

where ‖y‖ = |y1| + |y2| + |y3|1/2, and (3.5.93) implies (possibly with a new uniform
constant k̄)

|ϕ(y)− ∂1ϕ(0)y1 − ∂2ϕ(0)y2 − ∂3ϕ(0)y3| ≤
≤ k̄

(‖y‖3 + (|∂1ϕ(0)|1/2 + |∂2ϕ(0)|1/2 + |∂3ϕ(0)|)(y2
1 + y2

2)
)
.

(3.5.96)

If 0 ∈ ∂Ω is a characteristic point of second type, i.e. ∂1ϕ(0) = ∂2ϕ(0) = ∂3ϕ(0) = 0,
then (3.5.96) gives the growth condition |ϕ(y)| ≤ k̄‖y‖3. If this is not the case, then
a quadratic term (y2

1 + y2
2) is admitted, but its coefficient must disappear in a way

controlled by |∂1ϕ|1/2 + |∂2ϕ|1/2 + |∂3ϕ|. The constant k̄ should be uniform.

Theorem 3.5.5. If Ω ⊂ R4 is an admissible domain then it is a John domain in
(R4, d).

Proof. We shall construct “canonical” John curves starting from points near the
boundary ∂Ω. The proof will be split in several numbered small steps.

1. Fix a point x0 ∈ ∂Ω, let U ⊂ R4 be a neighborhood of x0 and let Φ ∈ C2(U ;R)
be a local equation for ∂Ω ∩ U . We shall distinguish three cases:

(C1) X1Φ(x0) = X2Φ(x0) = 0, and X3Φ(x0) 6= 0 (x0 is a characteristic point of
first type);

(C2) X1Φ(x0) = X2Φ(x0) = X3Φ(x0) = 0 (x0 is a characteristic point of second
type);

(C3) |X1Φ(x0)|+ |X2Φ(x0)| > 0 (x is a non characteristic point of ∂Ω);

2. Case 1. After a translation 0 ∈ ∂Ω can be assumed to be near x0. Thus,
in a neighborhood of 0 the surface ∂Ω admits a parametrization of first type, i.e.
there exists a function ϕ = ϕ(y1, y2, y4) of class C2 such that ϕ(0) = 0 and we have
∂Ω = {y3 = ϕ(y1, y2, y4)}. Define

ν1 = −∂1ϕ(0), ν2 = −∂2ϕ(0), ν = (ν1, ν2), N1 =
ν1

|ν| , N2 =
ν2

|ν| ,

and if ν = 0 simply set N1 = N2 = 0. Moreover let ψ(y) = ϕ(y) + ν1y1 + ν2y2. Then,
using a Taylor expansion for ϕ(y) we have

|ψ(y)| = |ϕ(y) + ν1y1 + ν2y2| . y2
1 + y2

2 + |y4|. (3.5.97)

Consider now a point x = (0, 0, x3, 0) ∈ Ω with 0 < x3 ≤ 1. We shall define a
continuous path γ : [0, 1] → Ω such that γ(0) = x and dist(γ(t); ∂Ω) ≥ λd(γ(t), x)
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for all t ∈ [0, 1] and for some λ > 0 depending only on Ω. The path will be made by
two pieces.

3. First piece. Let σ > 0 and define t1 = σ|ν|. For t ∈ [0, t1] we define

γ(t) = (0, 0, x3, 0) · (tN1, tN2, 0, 0).

Notice that d(γ(t), x) ' t.
4. We claim that there exist 0 < σ, λ < 1 absolute constants such that for all

t ≤ t1
Box(γ(t), λt) ⊂ Ω. (3.5.98)

Condition (3.5.98) is equivalent to the John property for γ in this first piece. The
first piece is trivial if ν = 0. Points in Box(γ(t), λt) are of the form

γ(t) · h = (0, 0, x3, 0) · (tN1, tN2, 0, 0) · (h1, h2, h3, h4)

= (0, 0, x3, 0) · (tN1 + h1, tN2 + h2, h3 + Q3(tN1, tN2, h1, h2),

, h4 + Q4(tN1, tN2, 0, h1, h2, h3))

=
(
tN1 + h1, tN2 + h2, x3 + h3 + Q3(tN1, tN2, h1, h2),

, h4 + Q4(tN1, tN2, 0, h1, h2, h3)

+ Q4

(
0, 0, x3, tN1 + h1, tN2 + h2, h3 + Q3(tN1, tN2, h1, h2)

))

with h = (h1, h2, h3, h4) and ‖h‖ ≤ λt.
Now, γ(t) · h ∈ Ω provided that (recall that ϕ(z) = −ν1z1 − ν2z2 + ψ(z))

x3+h3 + Q3(tN1, tN2, h1, h2) ≥ −ν1(tN1 + h1)− ν2(tN2 + h2)+

+ ψ
(
tN1 + h1, tN2 + h2, h4 + Q4(tN1, tN2, 0, h1, h2, h3)

+ Q4

(
0, 0, x3, tN1 + h1, tN2 + h2, h3 + Q3(tN1, tN2, h1, h2)

))
.

(3.5.99)

Since ν1N1 + ν2N2 = |ν| last inequality is guaranteed by

x3 + |ν|t ≥ |h1||ν1|+ |h2||ν2|+ |h3|+ |Q3(tN1, tN2, h1, h2)|+ |ψ(z)|,
where z = (z1, z2, z4) denotes the argument of ψ in (3.5.99). Note that |h1||ν1| +
|h2||ν2| ≤ λ|ν|t and this term can be absorbed in the left hand side if λ is small.
Moreover |h3| ≤ λt2 and |Q3(tN1, tN2, h1, h2)| . λt2. Then, in order to prove inclusion
(3.5.98) it will be enough to show that

ε0(x3 + |ν|t) ≥ λt2 + |ψ(z)|
for some ε0 > 0 small but absolute. We estimate z1, z2 and z4. Clearly, |z1| =
|tN1 + h1| . t and |z2| = |tN2 + h2| . t. Moreover,

|z4| =
∣∣h4 + Q4(tN1, tN2, 0, h1, h2, h3)

+ Q4

(
0, 0, x3, tN1 + h1, tN2 + h2, h3 + Q3(tN1, tN2, h1, h2)

)∣∣
. λt3 + x3t

because Q4(0, 0, x3, ξ1, ξ2, ξ3) = 1/2{(−x3ξ1) + α(−ξ2x3)}.
Thus by (3.5.97)

|ψ(z)| . z2
1 + z2

2 + |z4| . t2 + λt3 + x3t ' t2 + x3t,
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because λt3 . t2 (we assume t ≤ 1).
We finally have to prove the inequality

ε0(x3 + |ν|t) ≥ t2 + x3t, (3.5.100)

which holds if t ≤ σ|ν| with σ > 0 small depending only on Ω (we used x3t ≤ x3σν .
σ).

5. Second piece. From now up to the end of Case 1, t1 = σ|ν| will be fixed. For
t ≥ t1 define

γ(t) = (0, 0, x3, 0) · (t1N1, t1N2, t− t1, 0),

and note that d(γ(t), x) ' t1 + (t− t1)
1/2. Write b = (t− t1)

1/2 and δ(t) = t1 + b.
6. We claim that there exists a positive λ < 1 such that for all t1 ≤ t ≤ 1

Box(γ(t), λδ(t)) ⊂ Ω. (3.5.101)

Condition (3.5.101) is equivalent to the John property for γ in its second piece.
Points in Box(γ(t), λδ(t)) have the form

γ(t) · h = (0, 0, x3, 0) · (t1N1, t1N2, b
2, 0) · (h1, h1, h3, h4)

=
(
t1N1, t1N2, x3 + b2, Q4(0, 0, x3, t1N1, t1N2, b

2)
) · (h1, h2, h3, h4)

=
(
t1N1 + h1, t1N2 + h2, x3 + b2 + h3 + Q3(t1N1, t1N2, h1, h2),

, Q4(0, 0, x3, t1N1, t1N2, b
2) + h4 + Q4(t1N1, t1N2, x3 + b2, h1, h2, h3)

)
,

with h = (h1, h2, h3, h4) and ‖h‖ ≤ λδ(t). Now, γ(t) · h ∈ Ω provided that

x3+b2 + h3 + Q3(t1N1, t1N2, h1, h2) ≥ −ν1(t1N1 + h1)− ν2(t1N2 + h2)

+ ψ
(
t1N1 + h1, t1N2 + h2, Q4(0, 0, x3, t1N1, t1N2, b

2) + h4

+ Q4(t1N1, t1N2, x3 + b2, h1, h2, h3)
)
,

(3.5.102)

which is implied by

t1|ν|+ x3 + b2 ≥ |ν1||h1|+ |ν2||h2|+ |h3|+ |Q3(t1N1, t1N2, h1, h2)|+ |ψ(z)|, (3.5.103)

where z = (z1, z2, z4) is the argument of ψ in (3.5.102). In order to prove (3.5.103)
note that |ν1||h1|+ |ν2||h2| . λ|ν|δ(t) ' λ|ν|t1 + λ|ν|b. The term λ|ν|t1 can be put in
the left hand side. Moreover |h3| ≤ λδ2(t) . λt21 + λb2 and |Q3(t1N1, t1N2, h1, h2)| ≤
λt1δ(t) . λt21 + λb2. The term λb2 can also be absorbed in the left hand side.

Claim (3.5.101) will be proved if we show that for some uniform constant ε0 > 0
and for t1 ≤ t ≤ 1

ε0(t1|ν|+ x3 + b2) ≥ λ|ν|b + λt21 + |ψ(z)|. (3.5.104)

We estimate z1, z2 and z4. First of all |z1| = |t1N1 + h1| . t1 + λδ(t) . t1 + λb
and the same estimate holds for |z2|. Moreover, writing δ instead of δ(t)

|z4| =
∣∣Q4(0, 0, x3, t1N1, t1N2, b

2) + h4 + Q4(t1N1, t1N2, x3 + b2, h1, h2, h3)
∣∣

. x3t1 + λδ3 + λt21δ + λt1δ
2 + λ(x3 + b2)δ

' x3t1 + λ(t1 + b)3 + λt21(t1 + b) + λt1(t1 + b)2 + λ(x3 + b2)(t1 + b)

' x3t1 + λt31 + λb3 + λx3t1 + λx3b ' x3t1 + λt31 + λb3 + λx3b.
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Then by (3.5.97)

|ψ(z)| . |z1|2 + |z2|2 + |z4| ≤ t21 + λb2 + x3t1 + λt31 + λb3 + λx3b.

Thus (3.5.104) is implied by

ε0(t1|ν|+ x3 + b2) ≥ λ|ν|b + t21 + λb2 + x3t1 + λt31 + λb3 + λx3b

' λ|ν|b + t21 + λb2 + x3t1 + λb3 + λx3b.
(3.5.105)

Inequality (3.5.105) holds for b = 0. This has been proved in (3.5.100) with t = t1.
Taking a smaller constant in the left hand side of (3.5.100) we can assert that

(3.5.105) is guaranteed by

ε0(t1|ν|+ x3 + b2) ≥ λ|ν|b + λb2 + λb3 + λx3b. (3.5.106)

We can estimate the right hand side using |ν| ≤ 1 and b ≤ 1 getting

λ(|ν|b + b2 + b3 + x3b) ≤ λ(|ν|2 + b2 + x3).

Recalling now that t1 = σ|ν| inequality (3.5.106) is proved.

7. Case 2. Let x0 ∈ ∂Ω be a characteristic point of second type. After a
translation we can assume that 0 ∈ ∂Ω is near x0. Thus, in a neighborhood of 0
the surface ∂Ω admits a parametrization of second type, i.e. there exists a function
ϕ = ϕ(y1, y2, y3) of class C2 such that ϕ(0) = 0 and in a neighborhood of 0 we have
∂Ω = {y4 = ϕ(y1, y2, y3)}. Define

ν1 = −∂1ϕ(0), ν2 = −∂2ϕ(0), ν3 = −∂3ϕ(0), ν = (ν1, ν2),

N1 =
ν1

|ν| , N2 =
ν2

|ν| , N3 =
ν3

|ν3| = sgn(ν3).

If ν = 0 simply set N1 = N2 = 0. If ν3 = 0 set N3 = 0. Moreover let ψ(y) =
ϕ(y) + ν1y1 + ν2y2 + ν3y3. By (3.5.96) ψ satisfies the following growth condition

|ψ(y)| . ‖y‖3 + (|ν|1/2 + |ν3|)(y2
1 + y2

2). (3.5.107)

We shall now construct the John curve starting from x = x4e4. Without loss of
generality (the map z 7→ z + µe4, µ ∈ R is a left translation) assume that x = 0 ∈
∂Ω. We have to define a continuous path γ : [0, 1] → Ω such that γ(0) = 0 and
dist(γ(t); ∂Ω) ≥ λd(γ(t), 0) for all t ∈ [0, 1] and for some λ > 0 depending only on Ω.
We split the path in three pieces.

8. First piece. For σ > 0 let

t1 = σ min
{
|ν|1/2,

|ν|
|ν3|

}
, (3.5.108)

and if t ∈ [0, t1] define

γ(t) = (N1t, N2t, 0, 0).

Note that d(γ(t), 0) = t.
9. We claim that there exist positive constants σ, λ < 1 such that for all t ∈ [0, t1]

the following John property holds

Box(γ(t), λt) ⊂ Ω. (3.5.109)
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Points in Box(γ(t), λt) are of the form

γ(t) · h = (N1t, N2t, 0, 0) · (h1, h2, h3, h4)

= (N1t + h1, N2t + h2, h3 + Q3(N1t, N2t, h1, h2),

, h4 + Q4(N1t, N2t, 0, h1, h2, h3)),

with h = (h1, h2, h3, h4) and ‖h‖ ≤ λt. Now, γ(t) · h ∈ Ω if

h4 + Q4(N1t, N2t, 0, h1, h2, h3) >− ν1(N1t + h1)− ν2(N2t + h2)

− ν3(h3 + Q3(N1t, N2t, h1, h2))

+ ψ
(
N1t + h1, N2t + h2, h3 + Q3(N1t, N2t, h1, h2)

)
,

which is implied by

|ν|t ≥ |ν1||h1|+ |ν2||h2|+ |ν3||h3|+ |ν3||Q3(N1t, N2t, h1, h2)|
+

∣∣ψ(
N1t + h1, N2t + h2, h3 + Q3(N1t, N2t, h1, h2)

)∣∣
+ |h4|+ |Q4(N1t, N2t, 0, h1, h2, h3)|.

(3.5.110)

Recall that |ν1||h1| + |ν2||h2| ≤ λ|ν|t, |h3| ≤ λt2, |Q3(N1t, N2t, h1, h2)| ≤ λt2, |h4| ≤
λt3 and |Q4(N1t, N2t, 0, h1, h2, h3)| ≤ λt3. If z = (z1, z2, z3) is the argument of ψ in
(3.5.110) then we get

‖z‖ = ‖(N1t + h1, N2t + h2, h3 + Q3(N1t, N2t, h1, h2))‖ . t + λt ' t,

and by (3.5.107)

|ψ(z)| . ‖z‖3 + (|ν|1/2 + |ν3|)(z2
1 + z2

2) ≤ t3 + (|ν|1/2 + |ν3|)t2
We finally get the following inequality which is stronger than (3.5.110)

ε0|ν|t ≥ λ|ν|t + λ|ν3|t2 + t3 + (|ν|1/2 + |ν3|)t2,
where ε0 < 1 is an absolute constant. Dividing by t we have to show that for some
ε0 > 0

ε0|ν| ≥ t2 + (|ν|1/2 + |ν3|)t. (3.5.111)

(λ|ν| has been absorbed in the left hand side). It will be enough to determine all t
that solve the following two inequalities

t2 < ε0|ν| and t(|ν|1/2 + |ν3|) < ε0|ν|.
The first one gives t ≤ ε0|ν|1/2 and the second one is consequently solved by t|ν3| ≤
ε0|ν|. Claim (3.5.109) is proved if t1 is as in (3.5.108) for a small absolute constant
σ > 0.

10. Second piece. From now on t1 is fixed as in (3.5.108). For η > 0 let

t2 = η max{|ν|, |ν3|2}, (3.5.112)

and if t ∈ [t1, t1 + t2] define

γ(t) = (t1N1, t1N2, (t− t1)N3, 0).

Notice that

δ(t) := t1 + (t− t1)
1/2 ' d(γ(t), 0). (3.5.113)
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If ν3 = 0, then the third piece is trivial. In the sequel we shall sometimes write δ
instead of δ(t). Moreover, let b = (t− t1)

1/2.
11. We claim that there exist positive constants η, λ < 1 such that for all t ∈

[t1, t1 + t2] the following John property for γ holds

Box(γ(t), λδ(t)) ⊂ Ω. (3.5.114)

Points in Box(γ(t), λδ) are of the form

γ(t) · h = (t1N1, t1N2, (t− t1)N3, 0) · (h1, h2, h3, h4)

= (t1N1 + h1, t1N2 + h2, (t− t1)N3 + h3 + Q3(t1N1, t1N2, h1, h2),

, h4 + Q4(t1N1, t1N2, (t− t1)N3, h1, h2, h3),

with h = (h1, h2, h3, h4) and ‖h‖ ≤ λδ. Now, γ(t) · h ∈ Ω if

h4 + Q4(t1N1, t1N2, b
2,h1, h2, h3) ≥ −ν1(t1N1 + h1)− ν2(t1N2 + h2)

− ν3(b
2N3 + h3 + Q3(t1N1, t1N2, h1, h2))

+ ψ(t1N1 + h1, t1N2 + h2, b
2N3 + h3 + Q3(t1N1, t1N2, h1, h2)),

which is implied by

|ν|t1 + |ν3|b2 ≥ |h4|+ |Q4(t1N1, t1N2, t− t1, h1, h2, h3)|
+ |ν1||h1|+ |ν2||h2|+ |ν3||h3|+ |ν3|

∣∣Q3(t1N1, t1N2, h1, h2)
∣∣

+
∣∣ψ(t1N1 + h1, t1N2 + h2, b

2N3 + h3 + Q3(t1N1, t1N2, h1, h2))
∣∣.

(3.5.115)

We estimate now the right hand side: |h4| ≤ λδ3, |Q4(t1N1, t1N2, b
2, h1, h2, h3)| ≤

λδ3 + b2λδ ' λδ3, |ν1||h1|+ |ν2||h2| ≤ λ|ν|δ, |h3| ≤ λδ2 and |Q3(t1N1, t1N2, h1, h2)| ≤
λt1δ ≤ λδ2.

Let z = (z1, z2, z3) be the argument of ψ in (3.5.115). Then |z1| = |t1N1 + h1| .
t1 + λδ and analogously |z2| . t1 + λδ. Moreover, as b ≤ δ

‖(z1, z2, z3)‖ = ‖(t1N1 + h1, t1N2 + h2, b
2N3 + h3 + Q3(t1N1, t1N2, h1, h2)‖

' t1 + λδ + b + λδ + (t1λδ)1/2 ' t1 + λδ + b ' δ.

This furnishes

|ψ(z)| . δ3 + (|ν|1/2 + |ν3|)(t1 + λδ)2

. δ3 + |ν|1/2t21 + λ|ν|1/2δ2 + |ν3|t21 + λ|ν3|δ2,

and (3.5.115) is guaranteed by

|ν|t1 + |ν3|b2 ≥ λδ3 + λ|ν|δ + λ|ν3|δ2 + δ3 + |ν|1/2t21 + λ|ν|1/2δ2 + |ν3|t21 + λ|ν3|δ2.
(3.5.116)

Replacing δ = t1 + b we get

ε0(|ν|t1 + |ν3|b2) ≥ (t1 + b)3 + λ|ν|(t1 + b) + λ|ν3|(t1 + b)2 + |ν|1/2t21

+ λ|ν|1/2(t1 + b)2 + |ν3|t21,
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where ε0 is a small but absolute constant. Possibly changing ε0 it will be enough to
show that

ε0(|ν|t1 + |ν3|b2) ≥ t31 + b3 + λ|ν|t1 + λ|ν|b + λ|ν3|t21 + λ|ν3|b2

+ |ν|1/2t21 + λ|ν|1/2t21 + λ|ν|1/2b2 + |ν3|t21.
Now, λ|ν|t1 and λ|ν3|b2 can be absorbed in the left hand side, and λ|ν3|t21 + |ν3|t21 '
|ν3|t21. Then

ε0(|ν|t1 + |ν3|b2) ≥ t31 + b3 + λ|ν|b + |ν3|t21 + |ν|1/2t21 + λ|ν|1/2b2. (3.5.117)

Inequality (3.5.117) holds with b = 0 by (3.5.111) with t = t1. It will be enough
to show that

ε0(|ν|t1 + |ν3|b2) ≥ b3 + λ|ν|b + λ|ν|1/2b2. (3.5.118)

12. In order to prove (3.5.118) the following two cases must be distinguished:

(2A) |ν3| ≤ |ν|1/2;
(2B) |ν3| > |ν|1/2.

13. Case 2A. In this case t1 = σ|ν|1/2 and (3.5.118) becomes (with a smaller ε0)

ε0(|ν|3/2 + |ν3|b2) ≥ b3 + λ|ν|b + λ|ν|1/2b2.

By the trivial estimate |ν3|b2 ≥ 0 and letting λ = 1 in the right hand side we get the
stronger inequality

ε0|ν|3/2 ≥ b3 + |ν|b + |ν|1/2b2.

Setting b = |ν|1/2a (this can be done because in Case 2A it should be ν 6= 0) we
find ε0 ≥ a3 + a2 + a which holds for all 0 ≤ a < a0. Then (3.5.118) holds for all
0 ≤ b ≤ a0|ν|1/2 and consequently our claim (3.5.114) holds for all t ≤ t1 + a2

0|ν|.
14. Case 2B. Here t1 = σ|ν|/|ν3|. The term λ|ν|1/2b2 in the right hand side of

(3.5.118) is less than ε0|ν3|b2 and can be absorbed in the left hand side. Then we get
the inequality (with a possibly smaller ε0)

ε0

( |ν|2
|ν3| + |ν3|b2

)
≥ b3 + λ|ν|b

that is
ε0(|ν|2 + |ν3|2b2) ≥ b3|ν3|+ λ|ν||ν3|b.

Now, λ|ν||ν3|b ≤ λ
2
|ν|2 + λ

2
|ν3|2b2 and both these terms can be absorbed in the left

hand side if λ is suitable. Thus it suffices to solve

ε0(|ν|2 + |ν3|2b2) ≥ b3|ν3|.
Setting |ν| = 0 we find b ≤ ε0|ν3| which gives the correct choice t2 = ε2

0|ν3|2, as
declared in (3.5.112). Claim (3.5.114) is proved in Case 2B too.

15. Third piece. From now on t2 is fixed as in (3.5.112). If t ≥ t1 + t2 define

γ(t) = (t1N1, t1N2, t2N3, t− (t1 + t2)),

and notice that

δ(t) := t1 + t
1/2
2 + (t− (t1 + t2))

1/3 ' d(γ(t), 0).

As before we shall sometimes write δ instead of δ(t). Moreover, let a = (t−(t1+t2))
1/3.
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16. We claim that there exists λ < 1 such that the following John property for γ
holds for all t1 + t2 ≤ t ≤ 1

Box(γ(t), λδ(t)) ⊂ Ω. (3.5.119)

Points in Box(γ(t), λδ(t)) are of the form

γ(t) · h = (t1N1, t1N2, t2N3, a
3) · (h1, h2, h3, h4)

=
(
t1N1 + h1, t1N2 + h2, t2N3 + h3 + Q3(t1N1, t1N2, h1, h2),

a3 + h4 + Q4(t1N1, t1N2, t2N3, h1, h2, h3)
)
,

where h = (h1, h2, h3, h4) and ‖h‖ ≤ λδ. Now, γ(t) · h ∈ Ω if

a3 + h4 + Q4(t1N1, t1N2, t2N3, h1, h2, h3) ≥ −ν1(t1N1 + h1)− ν2(t1N2 + h2)

− ν3

(
t2N3 + h3 + Q3(t1N1, t1N2, h1, h2)

)

+
∣∣ψ(

t1N1 + h1, t1N2 + h2, t2N3 + h3 + Q3(t1N1, t1N2, h1, h2)
)∣∣.

As usual we find the stronger inequality

|ν|t1 + |ν3|t2 + a3 ≥ |h4|+ |Q4(t1N1, t1N2, t2N3, h1, h2, h3)|
+ |ν1||h1|+ |ν2||h2|+ |ν3||h3|+ |ν3|

∣∣Q3(t1N1, t1N2, h1, h2))
∣∣

+
∣∣ψ(t1N1 + h1, t1N2 + h2, t2N3 + h3 + Q3(t1N1, t1N2, h1, h2))

∣∣.
In the right hand side we can estimate |h4|, |Q4| ≤ λδ3, |ν1||h1| + |ν2||h2| ≤ λ|ν|δ,
|h3| ≤ λδ2 and |Q3(t1N1, t1N2, h1, h2)| ≤ λt1δ . λδ2.

Let z = (z1, z2, z3) be the argument of ψ. Then |z1| = |t1N1 + h1| ≤ t1 + λδ and
|z2| ≤ t1 + λδ. Moreover

‖z‖ = ‖(t1N1 + h1, t2N2 + h2, t2N3 + h3 + Q3(t1N1, t1N2, h1, h2))‖
≤ t1 + λδ + t

1/2
2 + λδ + (t1λδ)1/2 ' t1 + λδ + t

1/2
2 .

By (3.5.107)

|ψ(z)| ≤ ‖z‖3 + (|ν|1/2 + |ν3|)(z2
1 + z2

2)

≤ (t1 + t
1/2
2 + λδ)3 + (|ν|1/2 + |ν3|)(t1 + λδ)2

' t31 + t
3/2
2 + λδ3 + t21|ν|1/2 + t21|ν3|+ λ|ν|1/2δ2 + λ|ν3|δ2.

Ultimately we have to show that

ε0(t1|ν|+ t2|ν3|+ a3) ≥ λδ3 + λ|ν|δ + λ|ν3|δ2 + t31 + t
3/2
2

+ t21|ν|1/2 + t21|ν3|+ λ|ν|1/2δ2.

Notice that |ν|1/2δ2 ≤ 1
2
(|ν|δ + δ3) and thus the term λ|ν|1/2δ2 in the right hand side

can be deleted. Now, writing δ = t1 + t
1/2
2 + a we get

ε0(t1|ν|+ t2|ν3|+ a3) ≥ λt31 + λt
3/2
2 + λa3 + λ|ν|t1 + λ|ν|t1/2

2 + λ|ν|a + λ|ν3|t21
+ λ|ν3|t2 + λ|ν3|a2 + t31 + t

3/2
2 + t21|ν|1/2 + t21|ν3|,

,
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and letting absorbe λ|ν|t1, λ|ν3|t2 and λa3 by the left hand side we find the stronger
inequality

ε0(t1|ν|+ t2|ν3|+ a3) ≥ t31 + t
3/2
2 + λ|ν|t1/2

2 + λ|ν|a
+ λ|ν3|a2 + t21|ν|1/2 + t21|ν3|.

Such inequality holds if a = 0 (let b2 = t2 in (3.5.117)). Thus it will be enough to
prove that for a small but absolute constant ε0

ε0(t1|ν|+ t2|ν3|+ a3) ≥ λ|ν|a + λ|ν3|a2, (3.5.120)

for all a ≥ 0.

We distinguish Case 2A and Case 2B.

17. Case 2A. In this case |ν3| ≤ |ν|1/2, t1 = σ|ν|1/2 and t2 = η|ν|. Using t2|ν3| ≥ 0
in the left hand side of (3.5.120), replacing t1 = σ|ν|1/2 and using also |ν3| ≤ |ν|1/2 in
the right hand side we get the stronger inequality

ε0(|ν|3/2 + a3) ≥ λ(|ν|a + |ν|1/2a2)

which holds because 3 and 3/2 are Hölder conjugate exponents.

18. Case 2B. Here |ν3| > |ν|1/2, t1 = σ|ν|/|ν3| and t2 = η|ν3|2. in the left hand
side of (3.5.120) we use t1|ν| ≥ 0 and put t2 = η|ν3|2. In the right hand side we
estimate |ν| ≤ |ν2

3 |. Thus we find the stronger inequality

ε0(|ν3|3 + a3) ≥ λ|ν3|2a + λ|ν3|a2,

which holds for all a ≥ 0.

19. Case 3. This is the non characteristic case and can be analyzed as in Theorem
3.4.2.

¤

Example 3.5.6. Using Theorem 3.5.5 we construct an example of John domain
Ω ⊂ R4 with respect to the metric structure of the group of step 3 considered in
section 5. Let g ∈ C2(0, 1) ∩ C([0, 1]) be a function such that

g(t) =

{
1− t1/4 if 0 ≤ t ≤ 1/4,

(1− t)1/4 if 3/4 ≤ t ≤ 1.

Such a function can be chosen with the additional property g′(t) > 0 for all t ∈ (0, 1).
Let

N(x1, x2, x3) = (x2
1 + x2

2)
6 + x6

3,

and define the open set

Ω = {x ∈ R4 : |x4| < g(N(x1, x2, x3))}. (3.5.121)

We notice that if N(x1, x2, x3) ≥ 3/4 then ∂Ω has equation (x2
1 + x2

2)
6 + x6

3 + x4
4 = 1.

If N(x1, x2, x3) ≤ 1/4 then ∂Ω has equation |x4|+ [(x2
1 + x2

2)
6 + x6

3]
1/4 = 1. Therefore

the boundary ∂Ω is globally of class C1 and is of class C2 where N(x1, x2, x3) 6= 0.
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We show that the points (0, 0, 0,±1) ∈ ∂Ω are the only characteristic points of
second type of ∂Ω. Indeed, let Φ(x1, x2, x3, x4) = g(N(x))− x4 and compute

X1Φ(x) = g′(N(x))X1N(x)− q1(x)

X2Φ(x) = g′(N(x))X2N(x)− q2(x)

X3Φ(x) = g′(N(x))X3N(x)− q3(x),

where q1, q2 and q3 are defined in (3.5.90). We have x1q1(x) + x2q2(x) = −x3q3(x)
and

X1N(x) = 12x1(x
2
1 + x2

2)
6 − 3x2x3

X2N(x) = 12x2(x
2
1 + x2

2)
6 + 3x1x3,

and thus x1X1N(x) + x2X2N(x) = 12(x2
1 + x2

2)
6. Then

x1X1Φ + x2X2Φ = g′(N(x))12(x2
1 + x2

2)
6 + x3q3 = 0,

but

x3X3Φ = g′(N(x))6x6
3 − x3q3(x) = 0,

and summing up the last two equations we finally get

g′(N(x))
(
12(x2

1 + x2
2)

6 + 6x6
3

)
= 0,

which implies x1 = x2 = x3 = 0, as g′(N(x)) 6= 0.
In order to apply Theorem 3.5.5 we have to check that, letting Φ(x) = N(x)1/4−x4,

there exists a constant k > 0 such that

|X2
1Φ|+ |X2

2Φ|+ |(X1X2 + X2X1)Φ| ≤ k(|X1Φ|1/2 + |X2Φ|1/2 + |X3Φ|)
for all x ∈ ∂Ω such that 0 < N(x) ≤ 1/4. We note that away from the origin
the function Φ is smooth and moreover it is homogeneous of degree 3 with respect
to the dilations (x1, x2, x3, x4) → (λx1, λx2, λ

2x3, λ
3x4). Then the derivatives X1Φ

and X2Φ are homogeneous of degree 2 and their square roots |X1Φ|1/2 and |X2Φ|1/2

are homogeneous of degree 1. Analogously, X2
1Φ, X2

2Φ, X3Φ and (X1X2 + X2X1)Φ,
being derivatives of degree 2, are homogeneous of degree 1. Then the function H =
H(x1, x2, x3) defined by

H =
|X2

1Φ|+ |X2
2Φ|+ |(X1X2 + X2X1)Φ|

|X1Φ|1/2 + |X2Φ|1/2 + |X3Φ|
is homogeneous of degree 0. We showed above that |X1Φ(x)|1/2 + |X2Φ(x)|1/2 +
|X3Φ(x)| > 0 for all N(x) > 0, and thus by the 0−homogeneity

sup
0<N(x)≤1/4

H(x) = max
N(x)=1/4

H(x) = k < +∞.

6. Trace theorem for Hörmander vector fields

In this section we prove the trace theorem for Hörmander vector fields. We begin
with some Lemmata.
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Lemma 3.6.1. Let Ω ⊂ Rn be an open set with C∞ boundary. Let K ⊂ ∂Ω be a
compact set of non characteristic points with respect to the vector fields X1, ..., Xm ∈
C∞(Rn,Rn) satisfying the Hörmander condition. If µ = Hn−1 ∂Ω, then there exist
r0 > 0, 0 < m1 < m2 such that

m1
|B(x, r)|

r
≤ µ(B(x, r)) ≤ m2

|B(x, r)|
r

(3.6.122)

for all x ∈ K and for all 0 < r < r0.

Proof. In view of Lemma 3.2.2 and Remark 3.2.3 X1, ..., Xm can be assumed to
be of the form (3.2.25) and K ⊂ ∂Ω ⊂ {(x, t) ∈ Rn−1 × R : t = 0}. The Lemma
follows from (ii) and (iii) in Theorem 1.6.10. ¤

Next, we recall Hardy inequality.

Proposition 3.6.2. Let 0 < r ≤ +∞. If 1 < p < ∞ and if f ∈ Lp(0, r) then
∫ r

0

(1

t

∫ t

0

|f(x)| dx
)p

dt ≤
( p

p− 1

)p
∫ r

0

|f(x)|p dx. (3.6.123)

Finally, we need the following formula for integration of “radial functions”.

Lemma 3.6.3. Let d : Rn → [0,∞) be a Lipschitz function such that |{x ∈ Rn :
d(x) < λ}| = σλQ for some Q > 0, σ > 0, for all λ > 0, and |∇d(x)| 6= 0 for a.e.
x ∈ Rn. Then ∫

{d(x)<r}
ϕ(d(x)) dx = σQ

∫ r

0

ϕ(λ)λQ−1 dλ (3.6.124)

for all measurable functions ϕ ≥ 0, r > 0.

Proof. For ε > 0 let gε(x) = χ{|∇d|>ε}(x) and by the coarea formula write
∫

{d(x)<λ}
gε(x)ϕ(d(x)) dx =

∫ λ

0

ϕ(r)

∫

{d(x)=r}

gε(x)

|∇d(x)|dH
n−1(x) dr.

Since Hn−1({d(x) = r} ∩ {∇d(x) = 0}) = 0 for a.e. r > 0, by monotone convergence
we get ∫

{d(x)<λ}
ϕ(d(x)) dx =

∫ λ

0

ϕ(r)

∫

{d(x)=r}

1

|∇d(x)|dH
n−1(x) dr,

for all λ > 0. Choosing ϕ = 1 we find

σλQ = |{x ∈ Rn : d(x) < λ}| =
∫ λ

0

∫

{d(x)=r}

1

|∇d(x)|dH
n−1(x) dr,

and taking the derivative we obtain for a.e. λ > 0

σQλQ−1 =

∫

{d(x)=λ}

1

|∇d(x)|dH
n−1(x),

which gives the proof. ¤

We are now ready to prove the main theorem of this section. In the next theorem
X = (X1, ..., Xm) is a system of Hörmander vector fields of the form 3.2.25 and d is
the induced C-C metric on Rn. We shall write (x, t) ∈ Rn−1 × R and for the sake of
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simplicity we contract the notation writing x = (x, 0). Let µ = Hn−1 {t = 0} be the
Lebesgue measure on Rn−1.

Theorem 3.6.4. Let 1 < p < ∞, s = 1− 1
p

and let U ⊂ Rn−1 be a bounded open

set. If λ > 0 and t0 > 0 there exist C > 0 and δ0 > 0, such that
∫

U×U∩{d(x,y)<δ0}

|u(x, 0)− u(y, 0)|p dxdy

d(x, y)psµ(B(x, d(x, y)))
≤ C

∫

Uλ×(0,t0)

|Xu(x, t)|p dxdt (3.6.125)

for all u ∈ C1(Uλ × (0, t0))∩C(Uλ × [0, t0)), where Uλ = {y ∈ Rn−1 : dist(y,U) < λ}.
Proof. Let U ⊂ Ω0 for some bounded open set Ω0 ⊂ Rn and let k ∈ N be the

minimal length of the commutators which ensures the Hörmander condition on Ω0.
Fix r0 > 0 and 0 < a < b by Theorem 1.6.10. Define

N(p, δ0;U) =

∫

U×U∩{d(x,y)<δ0}

|u(x, 0)− u(y, 0)|p
d(x, y)psµ(B(x, d(x, y)))

dxdy.

Let I be the set of the multi-indices I defined in chapter 1, section 6, subsection 6.3
and write

N(p, δ0;U) =

∫

U

dx

∫

U∩{d(x,y)<δ0}

|u(x, 0)− u(y, 0)|p
d(x, y)psµ(B(x, d(x, y)))

dy

≤
∑
I∈I

∫

U

dx

∫

U∩AI(x)∩{d(x,y)<δ0}

|u(x, 0)− u(y, 0)|p dy

d(x, y)psµ(B(x, d(x, y)))

=
∑
I∈I

∫

U

fI(x) dx,

(3.6.126)

where fI is defined by the last equality and we introduced the annulus

AI(x) :=
{

y ∈ Rn−1 : |λI(x)|(2d(x, y)/a)d(I)

≥ 1

2
max
J∈I

|λJ(x)|(2d(x, y)/a)d(J)
}

.

Fix δ0 ≤ ar0/2. By Theorem 1.6.10 the map y = ΦI,x(h) is one-to-one on the
set {h ∈ Rn−1 : ||h||I < (2b/a)d(x, ȳ)} where ȳ ∈ AI(x) is such that d(x, ȳ) =
min{δ0, maxy∈AI(x) d(x, y)} (the condition d(x, ȳ) ≤ δ0 amounts to 2d(x, ȳ)/a < r0

and ensures that Theorem 1.6.10 can be applied), and moreover ΦI,x({h ∈ Rn−1 :
||h||I < (2b/a)d(x, ȳ)}) ⊃ B(x, 2d(x, ȳ)) ⊃ AI(x). By the same theorem statement
(iii)

B(x, 2d(x, y)) ⊂ ΦI,x

({h ∈ Rn−1 : ||h||I < (2b/a)d(x, y)})

⊂ B(x, 2d(x, y)/a)

for all y ∈ AI(x) and d(x, y) < δ0, i.e. 2d(x, y)/a < r0. Thus

||h||I <
2b

a
d(x, ΦI,x(h)) ≤ 2b

a
δ0 ≤ br0. (3.6.127)
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Set HI,δ0(x) = Φ−1
I,x(U ∩ AI(x) ∩ {d(x, y) < δ0}). Thus, by the first inequality of

(3.6.127),

fI(x) ≤ C

∫

HI,δ0
(x)

|u(x, 0)− u(ΦI,x(h), 0)|p |JhΦI,x(h)|
||h||ps

I µ(B(x,C||h||I)) dh. (3.6.128)

Note that (1.6.72) furnishes the estimate µ(B(x,C||h||I)) ≥ C|λI(x)|||h||d(I). Letting
η = 2bδ0/a and recalling that |JhΦI,x(h)| ' |λI(x)| from (3.6.126) and (3.6.128) we
get

N(p; δ0;U) ≤ C
∑
I∈I

∫

U
dx

∫

{||h||I<η}

|u(x, 0)− u(ΦI,x(h), 0)|p
||h||ps+d(I)

I

dh

= C
∑
I∈I

∫

{||h||I<η}

dh

||h||ps+d(I)
I

∫

U

|u(x, 0)− u(ΦI,x(h), 0)|p dx.
(3.6.129)

If I = (i1, ..., in−1) and ||h||I < η set z0(x) = x and define zl(x) =
∏κ

j=1 expT (hjYij)(x)

for κ = 1, ..., n− 1, in such a way that zn−1(x) = ΦI,x(h). Thus, fixed a constant λ′,
0 < λ′ < λ

∫

U
|u(x, 0)− u(ΦI,x(h), 0)|p dx

≤ C

n−1∑
κ=1

∫

U
|u(zκ−1(x), 0)− u(zκ(x), 0)|p dx

≤ C

n−1∑
κ=1

∫

U

∣∣∣u
( l−1∏

j=1

expT (hjYij)(x), 0
)

− u
(

expT (hlYil)
l−1∏
j=1

expT (hjYij)(x), 0
)∣∣∣

p

dx

≤ C

n−1∑
κ=1

∫

Uλ′
|u(ξ, 0)− u(expT (hκYiκ)(ξ), 0)|p dξ,

(3.6.130)

where in each integral we performed the change of variable ξ = zκ−1(x) which has
Jacobian greater than a positive constant. Moreover, ξ ∈ Uλ′ if δ0 is small enough.
Then, we have to estimate a finite number of integrals of the form

∫

Uλ′
|u(x, 0)− u(expT (t(h)Y )(x), 0)|p dx,

with d(Y ) ≤ k and |t(h)|1/d(Y ) ≤ ||h||I . By Lemma 1.6.12 we can write expT (tY ) =∏p
i=1 Sσi

(qi|t|1/d(Y ), τiXji
) with σi ∈ {1, 2}, τi ∈ {−1, 1}, 1 ≤ qi ≤ k, p less than an

absolute constant and S1, S2 as in (1.6.73). With triangle inequalities and changes of
variable quite similar to the ones in (3.6.130) we are led to the estimate of integrals
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of one of the two types∫

Uλ′
|u(exp(q|t(h)|1/d(Y )T )(x), 0)− u(x, 0)|pdx or

∫

Uλ′
|u(exp(q|t(h)|1/d(Y )(τXj + T ))(x), 0)− u(x, 0)|pdx,

(3.6.131)

with j = 1, ..., m−1, 1 ≤ q ≤ k and |t(h)|1/d(Y ) ≤ ||h||I . If we consider, for instance, an
integral of the second type with τ = 1 the computation in (3.6.129) can be concluded
in the following way (recall that ps + d(I) = p− 1 + d(I)):∫

{||h||I<η}

dh

||h||ps+d(I)
I

∫

Uλ′
|u(exp(q|t(h)|1/d(Y )(Xj + T )(x, 0)))− u(x, 0)|p dx

≤ C

∫

{||h||I<η}

dh

||h||ps+d(I)
I

∫

Uλ′

( k||h||I∫

0

|Xu(exp(t(Xj + T ))(x, 0)| dt
)p

dx

≤ C

∫

{||h||I<η}

dh

||h||ps+d(I)
I

( k||h||I∫

0

( ∫

Uλ′

|Xu(exp(t(Xj + T ))(x, 0)|pdx
) 1

p
dt

)p

= C

kη∫

0

dr

rp

( r∫

0

( ∫

Uλ′

|Xu(exp(t(Xj + T ))(x, 0)|p dx
) 1

p
dt

)p

≤ C

kη∫

0

∫

Uλ′
|Xu(exp(t(Xj + T ))(x, 0))|p dx dt.

We used the Minkowski inequality, formula (3.6.124) and Hardy inequality (3.6.123).
Finally, write exp(t(Xj + T ))(x, 0) = Θ(x, t) and perform the change of variable

(ξ, τ) = Θ(x, t). Since Θ(x, 0) = (x, 0) then

∂Θ(x, t)

∂x∂t

∣∣∣
t=0

=

(
In−1 Xj(x, 0)

0 1

)

and thus Θ is a change of variable on the rectangle Uλ′ × (0, %0), where %0 is suitably
small. Choosing δ0 small we obtain kη ≤ %0 and Θ(x, t) ∈ Uλ × (0, t0) for all (x, t) ∈
Uλ′ × (0, kη). Then∫

Uλ′×(0,kη)

|Xu(Θ(x, t))|p dxdt ≤ C

∫

Uλ×(0,t0)

|Xu(ξ, τ)|p dξdτ.

Integrals of the first type in (3.6.131) can be treated in the same way and the
proof of the Theorem is concluded. ¤

Corollary 3.6.5. Let X1, ..., Xm ∈ C∞(Rn;Rn) satisfy the Hörmander condition
and let Ω ⊂ Rn be a bounded open set with ∂Ω of class C∞ and non characteristic.
Let 1 < p < ∞ and s = 1− 1

p
. There exist constants C, δ0 > 0 such that

∫

∂Ω×∂Ω∩{d(x,y)<δ0}

|u(x)− u(y)|p dµ(x)dµ(y)

d(x, y)psµ(B(x, d(x, y)))
≤ C

∫

Ω

|Xu(x)|p dx
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for all u ∈ C1(Ω) ∩ C(Ω), where µ = Hn−1 ∂Ω.

Proof. The proof follows from Theorem 3.6.4 using a standard covering argument,
Lemma 3.2.2 and Remark 3.2.3. ¤

Example 3.6.6 (Trace on subgroups of Hn). Consider the Heisenberg group Hn,
n ≥ 1. The homogeneous norm ‖z, t‖ = (|z|4 + t2)1/4 is equivalent to the C-C metric
d (see Proposition 1.7.4). The integer Q = 2n + 2 is the “dimension” of Hn and
|B((z, t), r)| = crQ for some c > 0 and for all (z, t) ∈ Hn and r ≥ 0.

Consider the half space Ω = {(x, y, t) ∈ Hn : xj > 0} for some j = 1, ..., n
with boundary ∂Ω = {(x, y, t) ∈ Hn : xj = 0}. Actually, the hyperplane ∂Ω is
a subgroup of Hn and all its points are non characteristic. If µ = H2n ∂Ω then
µ(B((z, t), r)) = mrQ−1 for some m > 0 and for all (z, t) ∈ ∂Ω. Using the technique
developed in this section it can be proved that there exists a constant C > 0 such
that (1 < p < ∞ and s = 1− 1

p
)

∫

∂Ω×∂Ω

|u(z, t)− u(ζ, τ)|p dµ(z, t)dµ(ζ, τ)

||(ζ, τ)−1 · (z, t)||ps+Q−1
≤ C

∫

Ω

|∇Hu(z, t)|p dzdt

for all u ∈ C1(Ω) ∩ C(Ω), where ∇H is the Heisenberg gradient.

7. Trace theorem in the Grushin space

7.1. Trace theorem. In this section we focus our attention on the Grushin plane
where we prove that the trace estimate holds for domains which are sufficiently “flat”
at characteristic points.

Let d be the C-C metric induced on R2 by the vector fields

X1 = ∂x and X2 = |x|α∂y, α > 0.

If (x, y) ∈ R2 and r ≥ 0 let B((x, y), r) = {(ξ, η) ∈ R2 : d((x, y), (ξ, η)) < r}.
Moreover, define the “box”

Box((x, y), r) = [x− r, x + r]× [y − r(|x|+ r)α, y + r(|x|+ r)α].

Such boxes are equivalent to C-C balls as shown in chapter 1 section 9. We recall the
main results concerning them (see [77]).

Lemma 3.7.1. There exist constants 0 < c1 < c2 such that for all (x, y) ∈ R2 and
r ≥ 0

Box((x, y), c1r) ⊂ B((x, y), r) ⊂ Box((x, y), c2r). (3.7.132)

Lemma 3.7.2. Let λ > 0. For all (x, y), (ξ, η) ∈ R2 with |x| ≥ |ξ|

d((x, y), (ξ, η)) ' |x− ξ|+ |y − η|
|x|α if |x|α+1 ≥ λ|y − η|, (3.7.133)

d((x, y), (ξ, η)) ' |x− ξ|+ |y − η| 1
α+1 if |x|α+1 < λ|y − η|, (3.7.134)

where the equivalence constants depend on λ.

Definition 3.7.3. Let Ω ⊂ R2 be an open set with ∂Ω of class C1. A point
(0, y0) ∈ ∂Ω is said to be α−admissible, α > 0, if one of the following two conditions
holds:
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(i) (Non characteristic case). There exist δ > 0 and ψ ∈ C1(y0 − δ, y0 + δ) such
that ψ(y0) = 0 and

∂Ω ∩ (−δ, δ)× (y0 − δ, y0 + δ) = {(ψ(y), y) : |y − y0|, |ψ(y)| < δ}.
(ii) (Characteristic case). There exist δ > 0 and c > 0 such that

∂Ω ∩ (−δ, δ)× (y0 − δ, y0 + δ) = {(x, ϕ(x)) ∈ R2 : |x| < δ},
where ϕ ∈ C1(−δ, δ) and |ϕ′(x)| ≤ c|x|α for all x ∈ (−δ, δ).

Finally, Ω is said to be α−admissible if all the points of ∂Ω ∩ {x = 0} are α−admis-
sible.

Let Ω ⊂ R2 be an open set of class C1 and let ν(x, y) be the unit normal to ∂Ω
at (x, y) ∈ ∂Ω. Consider the modulus of the “projected” normal

|Xν(x, y)| =
(
〈X1(x, y), ν(x, y)〉2 + 〈X2(x, y), ν(x, y)〉2

) 1
2

=
(
ν1(x, y)2 + |x|2αν2(x, y)2

) 1
2
,

and define the measure µ = |Xν|H1 ∂Ω. The measure µ is the one that appears in
the left hand side of the trace estimates.

In the sequel we shall use the equivalence
∫

I

|ξ|αdξ ' |I|max
ξ∈I

|ξ|α (3.7.135)

for any interval I ⊂ R, where the equivalence constants depend only on α > 0.

Lemma 3.7.4. Let Ω ⊂ R2 be a bounded open set with ∂Ω of class C1 and suppose
it is α−admissible. Then there exist 0 < m1 < m2 and r0 > 0 such that

m1
|B((x, y), r)|

r
≤ µ(B(x, y), r) ≤ m2

|B((x, y), r)|
r

(3.7.136)

for all (x, y) ∈ ∂Ω and for all 0 < r < r0,

Proof. Since away from the set {x = 0} we are essentially in a Euclidean situa-
tion it suffices to prove (3.7.136) for (x, y) ∈ ∂Ω belonging to a neighborhood of an
α−admissible point.

Suppose first that (0, 0) ∈ ∂Ω is an α−admissible point of type (i) (non characteris-
tic). In a neighborhood of the origin ∂Ω is the graph of a function ψ ∈ C1(−δ, δ) in the
variable y. If δ > 0 and r > 0 are small, then the graph of ψ meets ∂Box((ψ(y), y), r)
on its horizontal edges. This is ensured by |ψ(y)− ψ(y − r(|ψ(y)|+ r)α)| < r, which
holds true provided y and r are small enough. Now

µ(Box((ψ(y), y), r)) '
∫ y+r(|ψ(y)|+r)α

y−r(|ψ(y)|+r)α

dη

= 2r(|ψ(y)|+ r)α =
|Box((ψ(y), y), r)|

2r
,

and (1.9.103) gives the proof of the required estimate.
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Suppose now that (0, 0) ∈ ∂Ω is an α−admissible point of type (ii). Let ϕ ∈
C1(−δ, δ) be the function whose graph represents ∂Ω and such that |ϕ′(x)| ≤ c|x|α
for all |x| < δ and for some c ≥ 0. Then, if y = ϕ(x) and |x| ≤ δ/2

ν(x, y) =
(ϕ′(x),−1)√

1 + ϕ′(x)2
, and |Xν(x, y)| =

√
|x|2α + ϕ′(x)2

√
1 + ϕ′(x)2

' |x|α.

By Lemma 1.9.3 µ(Box((x, y), c1r)) ≤ µ(B((x, y), r)) ≤ µ(Box((x, y), c2r)), and, sup-
posing for instance 0 ≤ x ≤ δ/2 and 0 < r < δ/(2c2)

µ(Box((x, y), c2r)) =

∫

Box((x,y),c2r)∩∂Ω

|Xν|dH1 ≤ C

∫ x+c2r

x−c2r

|ξ|α dξ

≤ 2Cc2r(x + c2r)
α ' |Box((x, y), c2r)|

r
.

The estimate from above in (3.7.136) follows by Lemma 1.9.3. In order to prove the
opposite inequality assume without loss of generality that the constant c relative to
ϕ is greater than 1 and that x ≥ 0. Introduce the new box

Box((x, y), c1r) :=
[
x− c1

c
r, x +

c1

c
r
]

× [y − c1r(x + c1r)
α, y + c1r(x + c1r)

α]

⊂ Box((x, y), c1r).

Since |ϕ(x + c1
c
r)− ϕ(x)| ≤ c1r(x + c1r)

α, the graph of ϕ meets ∂Box((x, y), c1r) on
its left and right vertical edges. Thus

µ(B((x, y)), r)) ≥ µ(Box((x, y), c1r) =

∫

Box((x,y),c1r)∩∂Ω

|Xν|dH1

≥ C

∫ x+
c1
c

r

x− c1
c

r

|ξ|α dξ ' C
c1

c
r(x +

c1

c
r)α

' |Box((x, y), c1r)|
r

,

which is the required estimate. We also used (3.7.135). ¤

Theorem 3.7.5. Let X1 = ∂x and X2 = |x|α∂y, α > 0. Let 1 < p < ∞ and
s = 1− 1

p
. If Ω ⊂ R2 is a bounded open set of class C1 which is α−admissible, then

there exist C > 0 and δ0 > 0 such that
∫

∂Ω×∂Ω∩{d(z,ζ)<δ0}

|u(z)− u(ζ)|p dµ(z)dµ(ζ)

d(z, ζ)psµ(B(z, d(z, ζ)))
≤ C

∫

Ω

|Xu(x, y)|p dxdy

for all u ∈ C1(Ω) ∩ C(Ω).

Proof. Since away from the set {x = 0} we are essentially in the Euclidean case,
it suffices to prove the estimate in a neighborhood of an α−admissible point which
may assumed to be the origin. Denote by U the intersection of ∂Ω with a small fixed
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neighborhood of (0, 0). Recalling that, by Lemma 3.7.4, d(z, ζ)psµ(B(z, d(z, ζ))) '
d(z, ζ)ps−1|B(z, d(z, ζ))|, we have to prove that

N(p;U) :=

∫

U×U

|u(z)− u(ζ)|p
d(z, ζ)ps−1|B(z, d(z, ζ))|dµ(z)dµ(ζ)

≤ C

∫

Ω

|Xu(x, y)|p dxdy.

The α−admissible point can be of type (i) or of type (ii).
Type (i). We may assume that U = {(ψ(y), y) : |y| < δ} for some δ > 0 and

ψ ∈ C1(−δ, δ) with ψ(0) = 0, and that Ω lies in the region {x > ψ(y)}. Write
z = (ψ(y), y) and ζ = (ψ(η), η), and notice that, by the doubling property of the
Lebesgue measure, which follows from Lemma 1.9.3, |B(z, d(z, ζ))| ' |B(ζ, d(z, ζ))|.
Thus the kernel is essentially symmetric and the integration can be performed without
loss of generality on the set {|ψ(η)| < |ψ(y)|}

N(p;U) '
∫

{|y|<δ, |η|<δ, |ψ(η)|<|ψ(y)|}

|u(z)− u(ζ)|p
d(z, ζ)ps−1|B(z, d(z, ζ))|dydη

=

∫

A

|u(z)− u(ζ)|pdydη

d(z, ζ)ps−1|B(z, d(z, ζ))| +

∫

B

|u(z)− u(ζ)|pdydη

d(z, ζ)ps−1|B(z, d(z, ζ))|
:= IA + IB,

where we let

A = {(y, η) : |y| < δ, |η| < δ, |ψ(η)| < |ψ(y)|, |ψ(y)|α+1 ≥ |y − η|},
B = {(y, η) : |y| < δ, |η| < δ, |ψ(η)| < |ψ(y)|, |ψ(y)|α+1 < |y − η|}.

We begin with the estimate of IA. If (y, η) ∈ A then

d(z, ζ) ' |ψ(y)− ψ(η)|+ |y − η|
|ψ(y)|α

=
|y − η|
|ψ(y)|α

(
1 + |ψ(y)|α |ψ(y)− ψ(η)|

|y − η|
)
' |y − η|
|ψ(y)|α

and
|B(z, d(z, ζ))| ' d(z, ζ)2

(|ψ(y)|+ d(z, ζ)
)α ' d(z, ζ)2|ψ(y)|α.

Without loss of generality assume y > η. Let η = y − h and write (recall that
1 + ps = p)

IA '
∫

A

|u(ψ(y), y)− u(ψ(η), η)|p
|y − η|p |ψ(y)|pα−αdydη

≤
2δ∫

0

dh

|h|p
∫

{|ψ(y)|α+1>|h|, |y|<δ}

|u(ψ(y), y)− u(ψ(y − h), y − h)|p|ψ(y)|pα−αdy.

We shall connect the points (ψ(y), y) and (ψ(y − h), y − h) by the curves

γ1(t) := exp(t(X1 − bX2))(ψ(y), y)

=
(
ψ(y) + t, y − b

∫ t

0

|ψ(y) + τ |αdτ
)

:= Ψ1(t, y),
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where b = min{1, 1/L}, L := sup|y|<δ |ψ′(y)|, and

γ2(t) : = exp(tX1)(ψ(y − h), y − h)

= (ψ(y − h) + t, y − h) := Ψ2(t, y − h).

In order to reach the height y − h, the curve γ1 needs a time t1 such that

∫ t1

0

|ψ(y) + τ |αdτ =
|h|
b

. (3.7.137)

By (3.7.135) the left hand side is greater than Ct1|ψ(y)|α and then t1 ≤ C|h|/|ψ(y)|α.
The time t2 such that γ2(t2) = γ1(t1) can also be estimated by |h|/|ψ(y)|α. Indeed

t2 = |ψ(y) + t1 − ψ(y − h)| ≤ L|h|+ t1 ≤ C
|h|

|ψ(y)|α .

The choice of the parameter b guarantees that γ1(t) ∈ Ω for all |y| < δ and
0 < t ≤ t1. In fact this happens if and only if

ψ
(
y − b

∫ t

0

|ψ(y) + τ |αdτ
)

< ψ(y) + t. (3.7.138)

This last inequality is a consequence of the following

∣∣∣ψ
(
y − b

∫ t

0

|ψ(y) + τ |αdτ
)
− ψ(y)

∣∣∣ ≤ Lb

∫ t

0

|ψ(y) + τ |αdτ < t.

Since Ψ1(t1, y) = Ψ2(t2, y − h) then |u(ψ(y), y)− u(ψ(y − h), y − h)| is less than

|u(ψ(y), y)− u(Ψ1(t1, y))|+ |u(ψ(y − h), y − h))− u(Ψ2(t2, y − h))|

≤ C
( ∫ t1

0

|Xu(Ψ1(t, y))|dt +

∫ t2

0

|Xu(Ψ2(t, y − h))|dt
)
,

and we find

IA ≤ C

[ 2δ∫

0

dh

|h|p
∫

(−δ,δ)∩{|ψ(y)|α+1≥|h|}

|ψ(y)|pα−α
( t1∫

0

|Xu(Ψ1(t, y))|dt
)p

dy

+

2δ∫

0

dh

|h|p
∫

(−δ,δ)∩{|ψ(y)|α+1≥|h|}

|ψ(y)|pα−α
( t2∫

0

|Xu(Ψ2(t, y − h))|dt
)p

dy

]

:= C[I
(1)
A + I

(2)
A ].

We shall estimate I
(1)
A and I

(2)
A by the same technique and we begin with I

(1)
A . Letting

in the inner integral τ = |ψ(y)|αt, recalling that t1 ≤ C|h|/ |ψ(y)|α and using the
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Minkowski inequality we find

I
(1)
A ≤

2δ∫

0

dh

|h|p
∫

(−δ,δ)∩{|ψ(y)|α+1≥|h|}

dy

|ψ(y)|α
( C|h|∫

0

|Xu(Ψ1(τ/|ψ(y)|α, y))|dτ
)p

≤
2δ∫

0

(dh

|h|

C|h|∫

0

( ∫

(−δ,δ)∩{|ψ(y)|α+1≥|h|}

|Xu(Ψ1(τ/|ψ(y)|α, y))|pdy

|ψ(y)|α
) 1

p
dτ

)p

.

Since {|ψ(y)|α+1 ≥ |h|} ⊂ {C|ψ(y)|α+1 ≥ τ} the last integral is estimated by an in-

tegral of the form
∫ 2δ

0

(
1
|h|

∫ C|h|
0

|f(τ)|dτ
)p

dh with f not depending on h. So we can

apply the Hardy inequality to get

I
(1)
A ≤ C

∫ 2δ

0

∫

(−δ,δ)∩{C|ψ(y)|α+1≥τ}

|Xu(Ψ1(τ/|ψ(y)|α, y))|p
|ψ(y)|α dy dτ

≤ C

∫ δ

−δ

∫ Cδ

0

|Xu(Ψ1(t, y))|pdt dy.

We let τ/|ψ(y)|α = t and we used τ/|ψ(y)|α ≤ C|ψ(y)| ≤ C|y| ≤ Cδ. The Jacobian
matrix of Ψ1 is

∂Ψ1(y, t)

∂y∂t
=

(
1 ψ′(y)

−b|ψ(y) + t|α 1− b(|ψ(y) + t|α − |ψ(y)|α)ψ′(y)

)
.

By the same argument used in the proof of (3.7.138) we can see that if δ > 0 is small,
then Ψ1((0, Cδ)× (−δ, δ)) ⊂ Ω. Moreover |JΨ1(t, y)| = |1+ bψ′(y)|ψ(y)|α| ' 1. Then

I
(1)
A ≤ C

∫

Ω

|Xu(x, y)|pdxdy.

We estimate now I
(2)
A . Note first that if δ > 0 is small and (y, η) ∈ A, we have

|ψ(y)| ≤ 2|ψ(η)|. (3.7.139)

Indeed L|ψ(y)|α+1 ≥ L|y − η| ≥ |ψ(y) − ψ(η)| ≥ |ψ(y)| − |ψ(η)|, and thus |ψ(η)| ≥
|ψ(y)| − L|ψ(y)|α+1 ≥ 1/2|ψ(y)| if δ > 0 is small. Taking (3.7.139) into account
with η = y − h, recalling that t2 ≤ C|h|/|ψ(y)|α ≤ C|h|/|ψ(y − h)|α and letting

τ = |ψ(y − h)|αt in the inner integral we find that I
(2)
A is smaller than

2δ∫

0

dh

|h|p
∫

(−δ,δ)∩{C|ψ(y−h)|α+1≥|h|}

dy

|ψ(y − h)|α
( C|h|∫

0

∣∣∣Xu
(
Ψ2

( τ

|ψ(y − h)|α , y − h
))∣∣∣dτ

)p

≤
2δ∫

0

(dh

|h|

C|h|∫

0

( ∫

(−δ,δ)∩{C|ψ(y−h)|α+1≥|h|}

|Xu(Ψ2(
τ

|ψ(y−h)|α , y − h))|p
|ψ(y − h)|α dy

)1/p

dτ
)p

≤
2δ∫

0

(dh

|h|

C|h|∫

0

( ∫

(−3δ,δ)∩{C|ψ(y)|α+1≥|h|}

|Xu(Ψ2(τ/|ψ(y)|α, y))|p
|ψ(y)|α dy

)1/p

dτ
)p

.
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Since {C|ψ(y)|α+1 ≥ |h|} ⊂ {C|ψ(y)|α+1 ≥ τ}, we can apply the Hardy inequality to
get

I
(2)
A ≤ C

∫ 2δ

0

∫

(−3δ,δ)∩{C|ψ(y)|α+1≥τ}

|Xu(Ψ2(τ/|ψ(y)|α, y))|p
|ψ(y)|α dy dτ

≤ C

∫ δ

−3δ

∫ Cδ

0

|Xu(Ψ2(t, y))|pdt dy.

Since |JΨ2(t, y)| = 1 the estimate for I
(2)
A follows.

We now turn to the estimate of IB. Writing again z = (ψ(y), y) and ζ = (ψ(η), η),
if (y, η) ∈ B then

d(z, ζ) ' |ψ(y)− ψ(η)|+ |y − η|1/(α+1) ' |y − η|1/(α+1)

because ψ ∈ C1 and |y − η| ≤ 2δ. Moreover starting from the inequality |ψ(y)| ≤
|y − η|1/(α+1) which defines B, we find

|B(z, d(z, ζ))| ' d(z, ζ)2(|ψ(y)|+ d(z, ζ))α

' |y − η|2/(α+1)(|ψ(y)|+ |y − η|1/(α+1))α

' |y − η|(α+2)/(α+1).

Assume η < y, let η = y − h and write

IB '
∫

B

|u(ψ(y), y)− u(ψ(η), η)|p
|y − η|1+ ps

α+1

dydη

≤ C

2δ∫

0

dh

|h|1+ ps
α+1

∫

{|ψ(y)|α+1<|h|, |y|<δ}

|u(ψ(y), y)− u(ψ(y − h), y − h)|pdy.

The points (ψ(y), y) and (ψ(y−h), y−h) can be connected by the curves γ1(t) :=
exp(t(X1−bX2))(ψ(y), y) = Ψ1(t, y) and γ2(t) := exp(tX1)(ψ(y−h), y−h) = Ψ2(t, y−
h). In order to reach the height y−h, the curve γ1 needs a time t1 such that (3.7.137)
holds. By (3.7.135)

∫ t1

0

|ψ(y) + τ |αdτ ' t1 max
τ∈[ψ(y),ψ(y)+t1]

|τ |α ≥ t1

(t1
2

)α

.

This yields t1 ≤ C|h|1/(α+1). The time t2 such that γ2(t2) = γ1(t1) can also be
estimated by |h|1/(α+1). By the triangle inequality we get

IB ≤ C
[ ∫ 2δ

0

dh

|h|1+ ps
α+1

∫ δ

−δ

( ∫ t1

0

|Xu(Ψ1(t, y))|dt
)p

dy

+

∫ 2δ

0

dh

|h|1+ ps
α+1

∫ δ

−δ

( ∫ t2

0

|Xu(Ψ2(t, y + h))|dt
)p

dy
]

:= C[I
(1)
B + I

(2)
B ].
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Now, by the Minkowski inequality

I
(1)
B ≤

∫ 2δ

0

dh

|h|1+ ps
α+1

( ∫ C|h|1/(α+1)

0

( ∫ δ

−δ

|Xu(Ψ1(t, y))|pdy
)1/p

dt
)p

≤ C

∫ (2δ)1/(α+1)

0

dr

rp

( ∫ Cr

0

( ∫ δ

−δ

|Xu(Ψ1(t, y))|pdy
)1/p

dt
)p

≤
∫

(0,(2δ)1/(α+1))×(−δ,δ)

|Xu(Ψ1(t, y))|pdtdy.

We used s = 1− 1/p, the change of variable r = h1/(α+1) and the Hardy inequality.

The estimate of I
(2)
B is analogous to the one of I

(2)
A . This ends the trace estimates

for α−admissible points of type (i).
Type (ii). Write U = {(x, ϕ(x)) ∈ ∂Ω : |x| < δ} for some ϕ ∈ C1(−δ, δ) such

that |ϕ′(x)| ≤ c|x|α for some c ≥ 0 and for all x ∈ (−δ, δ). Write z = (x, ϕ(x)),
ζ = (y, ϕ(y)), and observe that

N(p;U) '
∫

|x|<δ, |y|<δ

|u(z)− u(ζ)|p |xy|α
d(z, ζ)ps−1|B(z, d(z, ζ))| dxdy.

Since the integrand is symmetric up to equivalence constants, the integration may
take place on the set {|x| < |y| < δ}. Since |ϕ′(y)| ≤ c|y|α we have |ϕ(y) − ϕ(x)| ≤
c|y − x| |y|α ≤ 2c|y|α+1. Then on the mentioned set the C-C metric behaves as

d(z, ζ) ' |y − x|+ |ϕ(y)− ϕ(x)|
|y|α ' |y − x|.

By Lemma 1.9.3

|B(z, d(z, ζ)| ' |y − x|2(|x|+ |y − x|)α ' |y − x|2 |y|α,

and, since ps− 1 = p− 2, we get

N(p;U) '
∫

{|x|<|y|<δ}

|u(x, ϕ(x))− u(y, ϕ(y))|p |x|α
|y − x|p dxdy.

By symmetry it suffices to consider the integration on A1 := {0 < x < y < δ} and
A2 := {x > 0, −δ < y < −x}. Set h = y − x and write

IA1 =

∫

{0<x<y<δ}

|u(x, ϕ(x))− u(y, ϕ(y))|p |x|α
|y − x|p dxdy

≤
∫ δ

0

dh

|h|p
∫ δ

0

|u(x, ϕ(x))− u(x + h, ϕ(x + h))|p |x|α dx.

We shall connect the points (x, ϕ(x)) and (x + h, ϕ(x) + h) by the paths

γ1(t) := exp(t(bX1 + X2))(x, ϕ(x))

=
(
x + bt, ϕ(x) +

∫ t

0

|x + bτ |αdτ
)

:= Φ1(x, t),

for 0 ≤ t ≤ t1 := |h|/b (here b ∈ (0, 1) is a fixed number such that 2α+1cb < 1), and

γ2(t) : = exp(t(X2))(x + h, ϕ(x + h))

= (x + h, ϕ(x + h) + (x + h)αt) := Φ2(x + h, t).
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If t = t1, γ1 reaches the height ϕ(x) +
∫ |h|/b

0
(x + bτ)αdτ . Thus the curve γ2 needs the

time t2 = 1
(x+h)α |ϕ(x)− ϕ(x + h) +

∫ |h|/b

0
(x + bτ)αdτ | to reach the same height. The

hypothesis on ϕ and (3.7.135) give the estimate t2 ≤ C|h|.
The choice of b ensures that γ1(t) ∈ Ω for all t ∈ (0, t1]. In fact this amounts to

ϕ(x + bt) < ϕ(x) +

∫ t

0

|x + bτ |αdτ.

In view of |ϕ(x + bt)− ϕ(x)| ≤ cbt(x + bt)α and
∫ t

0
(x + bτ)αdτ ≥ ∫ t/2

0
(x + bτ)αdτ ≥

t/2(x + bt/2)α the inequality is implied by cb(x + bt)α < 1/2(x + bt/2)α which holds
true if 2α+1cb < 1.

By the triangle inequality

IA1 ≤ C
[ ∫ δ

0

dh

|h|p
∫ δ

0

( ∫ C|h|

0

|Xu(Φ1(x, t))| dt
)p

|x|αdx+

+

∫ δ

0

dh

|h|p
∫ δ

0

( ∫ C|h|

0

|Xu(Φ2(x + h, t))| dt
)p

|x|αdx
]

:= C[I
(1)
A1

+ I
(2)
A1

].

Now, by Minkowski and Hardy

I
(1)
A1
≤

∫ δ

0

( 1

|h|
∫ C|h|

0

( ∫ δ

0

|Xu(Φ1(x, t))|p|x|αdx
)1/p

dt
)p

dh

≤ C

∫

(0,δ)×(0,δ)

|Xu(Φ1(x, t))|p|x|αdxdt ≤ C

∫

Ω

|Xu(x, y)|p dxdy.

The last inequality follows from the fact that if δ > 0 is small then Φ1 is one-to-one,
Φ1((0, δ)× (0, δ)) ⊂ Ω and

∂Φ1(x, t)

∂t∂x
=

(
1 b

ϕ′(x) + 1
b
[(x + bt)α − xα] (x + bt)α

)
.

Thus |JΦ1(x, t)| = |xα − bϕ′(x)| ≥ |x|α − b|ϕ′(x)| ≥ (1− bc)|x|α ≥ (1− 2−(α+1))|x|α,

and the estimate for I
(1)
A1

follows.
Analogously, recalling that t2 ≤ C|h| and |x| ≤ |x + h|

I
(2)
A1
≤

∫ δ

0

(1

h

∫ C|h|

0

( ∫ δ

0

|Xu(Φ2(x + h, t))|p|x + h|αdx
)1/p

dt
)p

dh

≤
∫ δ

0

( 1

|h|
∫ C|h|

0

( ∫ 2δ

0

|Xu(Φ2(x, t))|p|x|αdx
)1/p

dt
)p

dh

≤ C

∫

(0,2δ)×(0,δ)

|Xu(Φ2(x, t))|p|x|αdxdt.

Since |JΦ2(x, t)| = |x|α, the change of variable (ξ, τ) = Φ2(x, t) ends the estimate for

I
(2)
A1

.
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The integral on the set A2 = {0 < x < δ,−δ < y < −x} can be treated in the
same way of IA1 , letting y = x + h and using the curves

γ1(t) = exp(t(−bX1 + X2))(x, ϕ(x)),

γ2(t) = exp(tX2)(x + h, ϕ(x + h)).

¤

7.2. Analysis of a counterexample. The hypothesis of α−admissibility for
the domain Ω in Theorem 3.7.5 is necessary. More precisely, there exist domains of
class C1 that are not α−admissible for which the trace estimate (3.7.5) fails.

Let α > 0, fix β ∈ (0, α + 1) and consider the domain

Ω = {(x, y) ∈ R2 : |x|β < y < 1}.
Except that at the points (±1, 1) the boundary ∂Ω is of class C1. These points are not
important, problems stem from the boundary point (0, 0) which is not α−admissible.

We shall consider the case p = 2. As usual write z = (x, y) and ζ = (ξ, η).

Proposition 3.7.6. Let α > 0 and β ∈ (0, α + 1). There exists γ > 0 such that
the function u(x, y) = y−γ satisfies

I :=

∫

Ω

|Xu|2 dxdy < +∞

and

N :=

∫

∂Ω×∂Ω

|u(z)− u(ζ)|2
d(z, ζ)µ(B(z, d(z, ζ)))

dµ(z)dµ(ζ) = +∞.

Proof. We compute first I. Indeed

I = γ2

∫ 1

0

y−2γ−2
( ∫ y1/β

−y1/β

|x|2α dx
)
dy =

2γ2

2α + 1

∫ 1

0

y−2γ−2+(2α+1)/β dy,

and

I < +∞ ⇔ −2γ − 2 + (2α + 1)/β > −1 ⇔ γ <
2α + 1− β

2β
. (3.7.140)

Now we shall estimate N but first some remarks on d(z, ζ) and µ(B(z, d(z, ζ)))
are in order. Let z = (x, xβ) ∈ ∂Ω with 0 < x < 1 and let r > 0. Assume that

r ≥ xβ/(α+1). (3.7.141)

From (3.7.141) it follows that xβ ≤ rα+1 ≤ r(x + r)α and thus xβ − r(x + r)α ≤ 0.
This means that

Box(z, r) ∩ {y ≤ 0} 6= ∅, (3.7.142)

i.e. the box Box(z, r) meets the lower half plane.
Analogously, since β < α + 1 we find x ≤ xβ/(α+1) ≤ r and thus x − r ≤ 0. This

means that

Box(z, r) ∩ {x ≤ 0} 6= ∅, (3.7.143)

i.e. the box Box(z, r) meets the left half plane.
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We now claim that, for r and x sufficiently small the right part {(t, tβ) : 0 < t < 1}
of the boundary of Ω meets ∂Box(z, r) at its upper horizontal edge. This is equivalent
to show that (x + r)β ≥ xβ + r(x + r)α, which holds because

(x + r)β − xβ ≥ Cr(x + r)β−1 ≥ r(x + r)α

for x, r ≤ σ0, where σ0 is a suitable constant (we have used β < α + 1). We also note
that the x-coordinate of the intersection point {(t, tβ) : 0 < t < 1} ∩ ∂Box(z, r) is
(xβ + r(x + r)α)1/β. Then from (3.7.142) and (3.7.143)

µ(Box(z, r)) ' µ(Box(z, r) ∩ {(ξ, η) : ξ ≥ 0})

'
∫ (xβ+r(x+r)α)1/β

0

|ξ|β−1 dξ ' xβ + r(x + r)α.

Since r ≤ x + r ≤ 2r then x + r ' r and µ(Box(z, r)) ' xβ + rα+1. But rα+1 ≤
xβ + rα+1 ≤ 2rα+1 and this proves that if (3.7.141) holds then

µ(Box(z, r)) ' rα+1. (3.7.144)

We shall now briefly discuss d(z, ζ) where z = (x, xβ) and ζ = (ξ, ξβ). Assume
that 0 < x < ξ and that

ξα+1 ≤ ξβ − xβ. (3.7.145)

From (3.7.134)

d(z, ζ) ' (ξ − x) + (ξβ − xβ)1/(α+1),

and using the equivalence ξβ − xβ ' (ξ − x)ξβ−1 we get

d(z, ζ) ' (ξ − x)1/(α+1)
(
(ξ − x)α/(α+1) + ξ(β−1)/(α+1)

)

' (ξ − x)1/(α+1)ξ(β−1)/(α+1).
(3.7.146)

In the last equivalence we used again β < α + 1.
Recalling (3.7.141) and (3.7.145) we define

D = {(z, ζ) ∈ ∂Ω× ∂Ω : 0 < x < ξ < σ0, ξα+1 ≤ ξβ − xβ,

σ0 ≥ d(z, ζ) ≥ xβ/(α+1)}.
Then, by (3.7.144) and Lemma 1.9.3

N ≥
∫

D

|u(z)− u(ζ)|2
d(z, ζ)µ(B(z, d(z, ζ)))

dµdµ '
∫

D

|u(z)− u(ζ)|2
d(z, ζ)α+2

dµdµ := M.

By (3.7.146) there is a positive constant k > 0 such that

d(z, ζ) ≥
((ξ − x)ξβ−1

k

)1/(α+1)

and thus {(z, ζ) ∈ ∂Ω×∂Ω : 0 < x < ξ < σ0, ξα+1 ≤ ξβ−xβ, (ξ−x)ξβ−1 ≥ kxβ} ⊂ D.
Then, letting

E = {(x, ξ) : 0 < x < ξ < σ0, ξα+1 ≤ ξβ − xβ, (ξ − x)ξβ−1 ≥ kxβ}.



132 3. REGULAR DOMAINS AND TRACE ON BOUNDARIES IN C-C SPACES

we have

M '
∫

E

|x−βγ − ξ−βγ|2|xξ|β−1

(
(ξ − x)1/(α+1)ξ(β−1)/(α+1)

)α+2 dxdξ

'
∫

E

(ξβγ − xβγ)2

x2βγ−β+1ξϕ(α,β,γ)(ξ − x)(α+2)/(α+1)
dxdξ,

where ϕ(α, β, γ) = 2βγ − β + 1 + (α + 2)(β − 1)/(α + 1).
In order to separate the integration variables we perform in the last integral the

change of variable x = ξt. The integration domain E changes in the following way.
The relation 0 < x < ξ < σ0 gives 0 < t < 1, the relation (ξ − x)ξβ−1 ≥ kxβ gives
(1 − t) ≥ ktβ, and finally the relation ξα+1 ≤ ξβ − xβ gives tβ ≤ 1 + ξα−β+1 which
is implied by the first one. This shows that in the new integral we may integrate on
the square {(t, ξ) : 0 < t, ξ < δ} where δ > 0 is a small but positive constant. Thus
we find

M ≥
∫ δ

0

dξ

ξϕ(α,β,γ)−β+(α+2)/(α+1)

∫ δ

0

(1− tβγ)2

t2βγ−β+1(1− t)(α+2)/(α+1)
dt.

If ψ(α, β, γ) := ϕ(α, β, γ) − β + (α + 2)/(α + 1) ≥ 1 then M = +∞, which implies
N = +∞. Now, ψ(α, β, γ) = 2βγ−2β+β(α+2)/(α+1)+1, and hence ψ(α, β, γ) ≥ 1
if and only if γ ≥ α/(2α + 2). Finally

γ ≥ α

2(α + 1)
⇒ N = +∞. (3.7.147)

Notice that if β ∈ (0, α + 1) then

α

2(α + 1)
<

2α + 1− β

2β
,

and therefore we can choose

γ ∈
[ α

2(α + 1)
,
2α + 1− β

2β

)
.

The interval becomes empty when β = α + 1, i.e. exactly when the domain Ω
becomes α−admissible. With such a choice I < +∞ by (3.7.140) and N = +∞ by
(3.7.147). ¤



CHAPTER 4

Anisotropic Sobolev spaces
and functions with bounded X−variation

1. Anisotropic Sobolev spaces

The theory of Sobolev spaces associated with vector fields has been deeply devel-
oped in the last years and it is not possible here to give an exhaustive account of the
existing literature. We just mention the papers and books [26], [47], [67], [77], [75],
[81], [89], [172]. For the theory of Sobolev spaces in metric spaces we refer to [91],
[99] and [100]. More references can be found in the paper [100].

1.1. Introduction. Let X = (X1, ..., Xm) be a family of locally Lipschitz con-
tinuous vector fields and let Ω ⊂ Rn be an open set. We introduce an anisotropic
Sobolev space associated with X. If 1 ≤ p ≤ +∞ define

W1,p
X (Ω) =

{
u ∈ Lp(Ω) : there exists Xju ∈ Lp(Ω) for j = 1, ..., m,

in distributional sense
}
.

(4.1.1)

We shall write H1
X(Ω) := W1,2

X (Ω). If u ∈ W1,p
X (Ω) we shall denote by

Xu = (X1u, ..., Xmu)

the weak X−gradient of u. The natural norm on W1,p
X (Ω) is

||u||W1,p
X (Ω) = ||u||Lp(Ω) +

m∑
j=1

||Xju||Lp(Ω). (4.1.2)

It is easy to show that the normed space in this way obtained is complete.

Proposition 4.1.1. Endowed with the norm (4.1.2) W1,p
X (Ω), 1 ≤ p ≤ +∞, is a

Banach space and H1
X(Ω) is a Hilbert space with the natural inner product.

We can also define a space H1,p
X (Ω) as the closure of W1,p

X (Ω)∩C∞(Ω) in the norm

(4.1.2). As in the classical theory of Sobolev spaces W1,p
X (Ω) and H1,p

X (Ω) turn out
to be equal. The following theorem of Meyers-Serrin type was proved in [81], [51]
and [89] (see also [100, Theorem 11.9]) but in the case of vector fields of class C1 its
proof had been already given in [86].

Theorem 4.1.2. Let X = (X1, ..., Xm) be a system of locally Lipschitz vector
fields and let Ω ⊂ Rn be an open set. If u ∈ W1,p

X (Ω), 1 ≤ p < +∞, then there exists

(uh)h∈N ⊂ W1,p
X (Ω) ∩ C∞(Ω) such that

lim
h→∞

||uh − u||W1,p
X (Ω) = 0.

If u has compact support in Ω Theorem 4.1.2 can be proved by a Friedrichs
regularization technique. The general case follows by a partition of unity.
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1.2. Poincaré inequalities. One of the crucial tools in the theory of Sobolev
spaces is the Poincaré inequality for balls. In the setting of C-C spaces the Poincaré
inequality was first proved in [77] for a special class of vector fields and then in [109]
for Hörmander vector fields. A simple proof in Carnot groups was given in [171]
and a proof that implies all the known results has been recently given in [122]. The
Poincaré inequality is also central in the theory of Sobolev spaces in abstract metric
spaces [100].

Theorem 4.1.3. Let X = (X1, ..., Xm) be a system of Hörmander or of Grushin’s
type (1.9.99) vector fields on Rn. If K ⊂ Rn is a compact set there exist C > 0,
r0 > 0 and λ ≥ 1 such that

∫

B

|u− uB| dx ≤ rC

∫

λB

|Xu| dx (4.1.3)

for all u ∈ C1
0(Rn) and for all B = B(x, r) with x ∈ K and 0 ≤ r ≤ r0, where

λB = B(x, λr).

Proof. Since it is particularly elegant we give the proof for Carnot groups of [171].
Let a structure of Carnot group induced by X = (X1, ..., Xm) be given on Rn. The
group product of x, y ∈ Rn will be denoted by x · y and Q ≥ n will stand for the
homogeneous dimension of the group so that by (1.7.7) |B(x, r)| = krQ for all x ∈ Rn

and r ≥ 0 with k = |B(0, 1)|.
Fix B = B(x0, r) with x0 ∈ Rn and r > 0 and let u ∈ C1

0(Rn). Notice that
∫

B

|u(x)− uB| dx =

∫

B

∣∣∣
∫

B

(u(x)− u(y))dy
∣∣∣ dx ≤

∫

B

∫

B

|u(x)− u(y)| dxdy.

We perform in the inner integral the change of variable z = y−1 ·x, which has Jacobian
identically 1, getting
∫

B

|u(x)− uB| dx ≤
∫

B

∫

y−1·B
|u(y · z)− u(y)| dzdy ≤

∫

B

∫

B(0,2r)

|u(y · z)− u(y)| dzdy.

Indeed, if y ∈ B then y−1 · B ⊂ B(0, 2r) because by Proposition 1.7.3 for all z ∈ B
we have d(y−1 · z, 0) = d(z, y) ≤ d(z, x0) + d(x0, y) ≤ 2r.

Let now z ∈ B(0, 2r) be fixed, let δ = d(0, z) and take a geodesic γ : [0, δ] → Rn

such that γ(0) = 0 and γ(δ) = z with δ ≤ 2r. For some h ∈ L∞(0, δ)m

γ̇(t) =
m∑

j=1

hj(t)Xj(γ(t)) and |h(t)| ≤ 1 for a.e. t ∈ [0, δ].

Then

u(y · z)− u(y) =

∫ δ

0

d

dt
u(y · γ(t)) dt =

∫ δ

0

〈Du(y · γ(t)),
d

dt
(y · γ(t))〉 dt

=

∫ δ

0

〈Du(y · γ(t)),
m∑

j=1

hj(t)Xj(y · γ(t))〉 dt

=

∫ δ

0

〈Xu(y · γ(t)), h(t)〉 dt.
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We used the left invariance of X1, ..., Xm. As ||h||∞ ≤ 1 we obtain
∫

B

|u(x)− uB| dx ≤
∫

B

∫

B(0,2r)

∫ δ

0

|Xu(y · γ(t))| dtdzdy

≤
∫ δ

0

∫

B(0,2r)

∫

B

|Xu(y · γ(t))| dydzdt.

The curve γ depends on z. Since γ(t) ∈ B(0, 2r) for all t ∈ [0, δ], if y ∈ B then
y · γ(t) ∈ 3B = B(x0, 3r). Indeed

d(y · γ(t), x0) ≤ d(y · γ(t), y) + d(y, x0) = d(γ(t), 0) + d(y, x0) ≤ 3r.

Thus we finally get
∫

B

|u(x)− uB| dx ≤ 1

|B(0, r)|
∫ δ

0

∫

B(0,2r)

∫

3B

|Xu(y)| dydzdt

≤ 2r
|B(0, 2r)|
|B(0, r)|

∫

3B

|Xu(y)| dy = r2Q+1

∫

3B

|Xu(y)| dy.

¤
Remark 4.1.4. The constant λ in λB in the rhs of (4.1.3) can be chosen λ = 1

because Carnot-Carathéodory balls are John domains (see Theorem 4.1.7 below).

Remark 4.1.5. The Poincaré inequality (4.1.3) holds for more general systems of
vector fields than the ones mentioned in the statement of Theorem 4.1.3. A proof of
(4.1.3) is known when C-C balls can be represented by “almost exponential maps”
(see [122]).

Fix a compact set K ⊂ Rn and r0 > 0. Let Q be the homogeneous dimension of
(Rn, d) relatively to K defined as in Definitions 1.6.2 and 1.6.4 for balls B(x, r) with
x ∈ K and 0 ≤ r ≤ r0. Such Q is well defined because the C-C spaces we are dealing
with are doubling metric spaces, at least locally (see Remark 1.6.8 for the Hörmander
case). If 1 ≤ p < Q define the conjugate exponent

p∗ =
pQ

Q− p
. (4.1.4)

The Poincaré inequality (4.1.3) can be improved to the following Sobolev-Poincaré
inequality for balls (see [127], [78], [74], [89], [100]).

Theorem 4.1.6. Let X = (X1, ..., Xm) be a system of Hörmander or of Grushin’s
type (1.9.99) vector fields on Rn. If K ⊂ Rn is a compact set there exist C > 0 and
r0 > 0 such that if 1 ≤ p < Q

(∫

B

|u− uB|p∗ dx
)1/p∗

≤ rC
(∫

B

|Xu|p dx
)p

(4.1.5)

for all u ∈ C1
0(Rn) and for all B = B(x, r) with x ∈ K and 0 ≤ r ≤ r0, where

λB = B(x, λr).

Let (Rn, d) be a C-C space associated with X1, ..., Xm ∈ Liploc(Rn,Rn) and assume
that there exists δ > 0 such that for all x ∈ Rn and r ≥ 0

|B(x, 2r)| ≤ δ|B(x, r)| (4.1.6)
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and let Q ≥ n be the homogeneous dimension introduced in Definition 1.6.4. Recall
the definition of John domain 3.1.1. The following Sobolev-Poincaré inequality has
been proved in the setting of C-C spaces in [78] and [89] but the result holds for
Sobolev spaces defined in abstract metric spaces that support a Poincaré inequality
for balls and have the doubling property (see [100]).

Theorem 4.1.7. Let (Rn, d, | · |) be C-C space associated with X = (X1, ..., Xm),
with the doubling property (4.1.6) and with homogeneous dimension Q. Assume that
the Poincaré inequality (4.1.3) holds. If 1 ≤ p < Q and Ω ⊂ Rn is a John domain
(with small diameter) then there exists C > 0 such that

(∫

Ω

|u− uΩ|p∗ dx
)1/p∗

≤ Cdiam(Ω)
(∫

Ω

|Xu|p dx
)1/p

(4.1.7)

for all u ∈ C1
0(Rn), where uΩ is the mean of u over Ω.

From the study of John and uniform domains in C-C spaces contained in chapter
3 the following corollary immediately follows.

Corollary 4.1.8. Consider the following cases:

(i) (Rn, d) is a Carnot group of step 2 with homogeneous dimension Q ≥ n,
X = (X1, ..., Xm) is a system of generators of the Lie algebra of the group
and Ω ⊂ Rn is a connected, bounded open set of class C1,1.

(ii) (R4, d) is the Carnot group of step 3 introduced in chapter 3 section 5 with
homogeneous dimension Q = 7, X = (X1, X2) are the generators of the Lie
algebra of the group and Ω ⊂ R4 is a connected, bounded open set which is
admissible according to Definition 3.5.2.

(iii) (Rn, d) is the Grushin space induced by X1 = ∂x1 , ..., Xn−1 = ∂xn−1 , Xn =
|x|α∂y where (x, y) ∈ Rn−1 × R and α > 0, Ω ⊂ Rn is a connected, bounded
open set with Lipschitz boundary which is α−admissible according to Defini-
tion 3.3.1 and Q = n + α.

(iv) (Rn, d) is the C-C spaces induced by a system X = (X1, ..., Xm) of Hörmander
vector fields, Ω ⊂ Rn is a connected, bounded open set of class C∞ with
small diameter and without characteristic points on its boundary and Q is
the homogeneous dimension relative to Ω.

In cases (i), (ii), (iii) and (iv) the Sobolev-Poincaré inequality (4.1.7) holds for 1 ≤
p < Q.

Example 4.1.9. Consider the Heisenberg group Hn ≡ R2n+1. We write (x, y, t) =
(z, t) ∈ R2n × R = Hn. Recall that Q = 2n + 2 is the homogeneous dimension of
the group. We give a counterexample to the Sobolev-Poincaré inequality (4.1.3) and
at the same time we formulate a problem related to the regularity of the integration
domain Ω.

Let Ω = {(z, t) ∈ Hn : |z|β < t < 1} where β ≥ 1 is a real parameter. The domain
∂Ω is not smooth when |z| = t = 1 but this is not important because we are interested
in the characteristic point (0, 0). If β ≥ 2 then Ω is of class C2 in a neighborhood
of 0 ∈ ∂Ω and by Corollary 4.1.8 it supports the Sobolev-Poincaré inequality (4.1.7)
(for functions with support in a neighborhood of the origin).
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We consider the case 1 ≤ β < 2. Let u(z, t) = t−γ. In view of a possible
counterexample to (4.1.7) we look for an exponent γ > 0 such that∫

Ω

|∇Hu|p dzdt < +∞ but

∫

Ω

|u|q dzdt = +∞, (4.1.8)

where 1 ≤ p < Q, for some q ≥ 1 which should be less than p∗ = pQ/(Q − p). We
have∫

Ω

|∇Hu|p dzdt '
∫ 1

0

t−p(γ+1)

∫

|z|<t1/β

|z|p dz dt

'
∫ 1

0

t−p(γ+1)+(Q−2+p)/β dt < +∞ ⇔ γ <
Q− (2− β)− p(β − 1)

βp
.

On the other hand∫

Ω

|u|q dzdt '
∫ 1

0

t−qγ+(Q−2)/β dt = +∞ ⇔ γ ≥ Q− (2− β)

βq
.

An exponent γ ensuring (4.1.8) can be found if the following condition holds

Q− (2− β)

βq
<

Q− (2− β)− p(β − 1)

βp
, (4.1.9)

which also gives

q >
p(Q− (2− β))

Q− (2− β)− p(β − 1)
. (4.1.10)

If β = 2 (4.1.10) becomes q > p∗ which is exactly what one should expect. If β = 1
(4.1.10) becomes q > p.

If β < 2 we can find q < p∗ such that (4.1.9) holds and an exponent γ > 0 ensuring
(4.1.8) does exist. If (4.1.10) does not hold the counterexample does not work. This
analysis suggests the following problem. Let 1 ≤ β < 2 and let Ω = {(z, t) ∈ Hn :
|z|β < t < 1}. If

q =
p(Q− (2− β))

Q− (2− β)− p(β − 1)

then the following Sobolev-Poincaré inequality holds
( ∫

Ω

|u− uΩ|q dzdt
)1/q

≤ C
( ∫

Ω

|∇Hu|p dzdt
)p

. (4.1.11)

In the Euclidean case similar Poincaré inequalities in Hölder domains have been
proved in [162] and [101].

1.3. Potential estimate and Morrey inequality. The Poincaré inequality
(4.1.3) implies the following estimate of potential type.

Theorem 4.1.10. Let X = (X1, ..., Xm) be a system of Hörmander or of Grushin’s
type (1.9.99) vector fields on Rn. Let B ⊂ Rn be a ball in the C-C metric d with (small)
radius r > 0. There exists C > 0 such that

|u(x)− uB| ≤ Cr

∫

B

|Xu(y)| d(x, y)

|B(x, d(x, y))| dy (4.1.12)

for all x ∈ B and u ∈ C1
0(Rn).
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The potential estimate (4.1.12) holds in much more general situations than the
ones stated in Theorem 4.1.10 (see [100]). In the case of Hörmander vector fields
formula (4.1.12) was first proved using the structure theorem for C-C balls of [151]
and the estimates for the Green function of the corresponding sub-elliptic Laplacians
of [157] (see [50], [78], [41] and see also [74]). But it became soon clear that (4.1.12)
can also be directly obtained from the Poincaré inequality (4.1.3) (see [79] and [85]).
Actually, the Poincaré inequality itself can be proved by (4.1.12) using the doubling
property of C-C balls and so it is equivalent to the potential estimate. That integra-
tion in the right hand side of (4.1.12) may take place on the ball B and not only on
a larger ball τB with τ > 1 has been recently shown in [128] (at least in the cases
considered here).

Let X = (X1, ..., Xm) be a system of Hörmander or Grushin type vector fields.
Fix a compact set K ⊂ Rn and r0 > 0. Let Q be the homogeneous dimension of
(Rn, d) relatively to K defined as in Definitions 1.6.2 and 1.6.4 for balls B(x, r) with
x ∈ K and 0 ≤ r ≤ r0. The following Theorem is proved in [127] (see also [141] for a
Morrey inequality involving non smooth vector fields). We shall give the proof since
a weak form of the Morrey inequality has been used in chapter 2.

Theorem 4.1.11. Let K, r0 and Q be fixed as above and let p > Q. There exists
a constant C > 0 such that for all B = B(x0, r) with x0 ∈ K and 0 ≤ r ≤ r0 and for
all u ∈ W1,p

X (B)

|u(x)− u(y)| ≤ Cr
(∫

B

|Xu(z)|p dz
)1/p

(4.1.13)

for a.e. x, y ∈ B.

Proof. Without loss of generality assume that u ∈ C1
0(Rn). Notice that |u(x) −

u(y)| ≤ |u(x)− uB|+ |uB − u(y)| and thus it will be enough to estimate |u(x)− uB|
using Theorem 4.1.10. By Hölder inequality

|u(x)− uB| ≤ C

∫

B

|Xu(z)| d(x, z)

|B(x, d(x, z))| dz

≤ C
( ∫

B

|Xu(z)|p dz
)1/p( ∫

B

d(x, z)p′

|B(x, d(x, z))|p′ dz
)1/p′

.

Now, the integration domain B = B(x0, r) in the last integral can be replaced by
B(x, 2r) and letting Ak = {z ∈ Rn : 2−kr ≤ d(x, z) ≤ 2−k+1r}

∫

B(x,2r)

d(x, z)p′

|B(x, d(x, z))|p′ dz =
+∞∑

k=0

∫

Ak

d(x, z)p′

|B(x, d(x, z))|p′ dz

≤
+∞∑

k=0

rp′

2p′(k−1)

|B(x, 2−k+1r)|
|B(x, 2−kr)|p′ .

By the doubling property |B(x, 2−k+1r)| ≤ C|B(x, 2−kr)| and by Proposition 1.6.3
|B(x, 2−kr)| ≥ C2−kQ|B(x, r)| where C is a positive constant not depending on x.
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Thus
∫

B

d(x, z)p′

|B(x, d(x, z))|p′ dz ≤ Crp′
+∞∑

k=0

|B(x, 2−kr)|1−p′

2p′(k−1)

≤ Crp′|B(x, r)|1−p′
+∞∑

k=0

1

2k(p′−Q(p′−1))
.

Notice that p′ −Q(p′ − 1) > 0 if and only if p > Q and thus the last sum converges.
We finally find

|u(x)− uB| ≤ Cr
(∫

B

|Xu(z)|p dz
)1/p

,

and the claim is proved. ¤
1.4. Compactness. We end this section on Sobolev spaces stating a Compact-

ness Theorem which is very useful in applications. Let X = (X1, ..., Xm) be a system
of vector fields of Hörmander or Grushin type and consider the C-C space (Rn, d).
Let Ω ⊂ Rn be a bounded open set and let Q ≥ n be the homogeneous dimension of Ω
according to Definitions 1.6.2 and 1.6.4. If 1 ≤ p < Q we denote by p∗ = pQ/(Q− p)
the Sobolev conjugate exponent.

Theorem 4.1.12. Let Ω be a John domain in the metric space (Rn, d) with small
diameter. Then:

(i) if 1 ≤ p < Q and 1 ≤ q < p∗ the embedding W1,p
X (Ω) ↪→ Lq(Ω) is compact;

(ii) if p ≥ Q and q ≥ 1 the embedding W1,p
X (Ω) ↪→ Lq(Ω) is compact.

The assumption “with small diameter” can be omitted if (Rn, d) is a Carnot group
or a C-C space of Grushin type. A proof of Theorem 4.1.12 can be found in [89] or
in [100] where an argument is used that works on general metric spaces with the
doubling property and with the Poincaré inequality (see also [115]). Other related
references are [54], [81], [125], [133], [156].

Using our study of John domains in chapter 3 we immediately get the following
Corollary.

Corollary 4.1.13. Let (Rn, d), X, Ω and Q be as in Corollary 4.1.8 case (i),
(ii), (iii) or (iv). Then the embedding W1,p

X (Ω) ↪→ Lq(Ω) is compact for all 1 ≤ p < Q

and 1 ≤ q < p∗. Moreover, the embedding W1,p
X (Ω) ↪→ Lp(Ω) is compact for all p ≥ 1.

2. Functions with bounded X−variation

In this section we introduce the space of functions with bounded variation with
respect to a family of vector fields and study some of their basic properties.

Such functions have been introduced in [89] where an existence theorem of surfaces
with minimal X−perimeter is proved and then in [80] in connection with relaxation
of functionals depending on vector fields (see also [26]). The theory of BVX functions
has been subsequently used in the study of rectifiability in the Heisenberg group
(see [82]) and in the study of Γ−convergence properties of families of functionals
involving degenerate energies (see [148] and [149]). Functions with bounded variation
in settings different from the Euclidean or Riemannian one have been also introduced
in Euclidean spaces with suitable weights [14] and in Finsler spaces [22].
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The definition of BVX we are going to introduce turns out to be equivalent to a
definition of BVfunction in a general metric spaces endowed with a doubling measure
and supporting a Poincaré inequality for balls (see [138] and [7]). We shall briefly
discuss the issue in Remark 4.2.7 below.

2.1. Introduction. Given Y ∈ Liploc(Rn;Rn) we shall denote by Y ∗ the operator
formally adjoint to Y in L2(Rn), that is the operator which for all ϕ, ψ ∈ C∞

0 (Rn)
satisfies ∫

Rn

ψY ϕdx =

∫

Rn

ϕY ∗ψ dx.

More explicitly,

if Y ϕ(x) =
n∑

i=1

ai(x)∂iϕ(x) then Y ∗ψ(x) = −
n∑

i=1

∂i(ai(x)ψ(x)).

If X = (X1, . . . , Xm) is a family of locally Lipschitz vector fields and ϕ ∈ C1(Rn;Rm)
is a m−vector valued function, the X−divergence of ϕ is

divX(ϕ) = −
m∑

j=1

X∗
j ϕj.

Definition 4.2.1. Let Ω ⊂ Rn be an open set. The space BVX(Ω) of the
functions with bounded X−variation is the set of all u ∈ L1(Ω) such that there
exists a m−vector valued Radon measure µ = (µ1, ..., µm) on Ω such that for all
ϕ ∈ C1

0(Ω;Rm) ∫

Ω

u divX(ϕ) dx = −
∫

Ω

〈ϕ, dµ〉
where 〈ϕ, dµ〉 =

∑m
j=1 ϕj dµj. By BVX,loc(Ω) we denote the set of the functions

belonging to BVX(U) for any U b Ω.

Next we introduce the X−variation of a function. For any open set Ω ⊂ Rn

introduce the test functions

F (Ω;Rm) := {ϕ ∈ C1
0(Ω;Rm) : |ϕ(x)| ≤ 1 for all x ∈ Ω}.

The X−variation in Ω of a function u ∈ L1
loc(Ω) is

|Xu|(Ω) = sup
ϕ∈F (Ω;Rm)

∫

Ω

u divX(ϕ) dx. (4.2.14)

By means of Riesz duality Theorem the following Proposition can be easily proved
(see [8, Proposition 3.6]).

Proposition 4.2.2. Let u ∈ L1(Ω). Then u ∈ BVX(Ω) if and only if |Xu|(Ω) <
+∞. Moreover, |Xu|(Ω) = |µ|(Ω), where µ is the vector valued Radon measure in
Definition 4.2.1.

By Proposition 4.2.2 it follows that if u ∈ W1,1
X (Ω) then u ∈ BVX(Ω) and

|Xu|(Ω) =

∫

Ω

|Xu(x)| dx.

As in the Euclidean case a simple but important property of BVX is the lower
semicontinuity of the variation with respect to the L1

loc convergence.
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Proposition 4.2.3. Let u, uk ∈ L1(Ω), k ∈ N, be such that uk → u in L1
loc(Ω),

then
lim inf

k→∞
|Xuk|(Ω) ≥ |Xu|(Ω).

Proof. If ϕ ∈ F (Ω;Rm)∫

Ω

u divX(ϕ) dx = lim
k→∞

∫

Ω

uk divX(ϕ) dx ≤ lim inf
k→∞

|Xuk|(Ω),

and taking the sup the claim follows. ¤

We now going to define the space of functions with bounded variation with respect
to a symmetric, non negative matrix. This space has been introduced in [80] and
used in [149] in connection with the study of Γ−convergence of functionals with
degenerate energies (see also [23] for some general motivations in the case when the
matrix is positive definite).

Let A(x) be a symmetric, non negative n×n matrix defined for x ∈ Ω. Let Vx ⊂ Rn

be the range of A(x), i.e. Vx = {A(x)ξ : ξ ∈ Rn}, and denote by Lx : Vx → Vx the
linear map associated with A(x), i.e. Lx(ξ) = A(x)ξ for all x ∈ Ω and ξ ∈ Vx. The
map Lx is invertible and it can be easily checked that

|v|x := 〈v, L−1
x v〉1/2, v ∈ Vx

is a norm on Vx. Let

FA(Ω) = {ψ ∈ Lip0(Ω;Rn) : ψ(x) ∈ Vx and |ψ(x)|x ≤ 1 for all x ∈ Ω}, (4.2.15)

and define

|Du|A(Ω) = sup
ϕ∈FA(Ω)

∫

Ω

u div(ψ) dx, (4.2.16)

and
BVA(Ω) =

{
u ∈ L1(Ω) : |Du|A(Ω) < +∞}

. (4.2.17)

If A(x) = C(x)T C(x) for all x ∈ Ω for some m×n−matrix C with locally Lipschitz
continuous entries (see [167, Theorems 5.2.2 and 5.2.3] for a sufficient condition that
ensures this factorization) let X = (X1, ..., Xm) be the system of vector fields such
that Xji = Cji. An interesting relation between the spaces BVX(Ω) and BVA(Ω) is
given by the following result (see [80, Proposition 2.1.7 and Remark 2.1.8]).

Proposition 4.2.4. Let A and X be as above. Then BVX(Ω) = BVA(Ω) and for
any u ∈ BVX(Ω) we have |Du|(Ω) = |Xu|(Ω).

Remark 4.2.5. If A(x) = C(x)T C(x) definition (4.2.16) can be equivalently given
as

|Du|A(Ω) = sup
{ ∫

Ω

u div(CT ψ) dx : ψ = (ψ1, ..., ψm) is such that

CT ψ ∈ Lip0(Ω;Rn), |ψ| ≤ 1
}

.

Moreover, if A is positive definite on Ω, i.e. there exists a constant λ > 0 such that

〈A(x)ξ, ξ〉 ≥ λ|ξ|2 for all x ∈ Ω and ξ ∈ Rn,

then BVA(Ω) = BV(Ω) (see [81]).



142 4. SOBOLEV SPACES AND FUNCTIONS WITH BOUNDED X−VARIATION

2.2. Approximation theorem. The linear space BVX(Ω) is a Banach space
endowed with the norm ||u||BVX(Ω) = ||u||L1(Ω) + |Xu|(Ω). Anyway, smooth functions
are dense in BVX(Ω) only in the following weak sense (see [12] for the classical result).

Theorem 4.2.6. Let X = (X1, ..., Xm) be a system of locally Lipschitz vector
fields and let Ω ⊂ Rn be an open set. If u ∈ BVX(Ω) then there exists a sequence
(uh)h∈N ⊂ C∞(Ω) ∩ BVX(Ω) such that

lim
h→∞

||uh − u||L1(Ω) = 0 and lim
h→∞

∫

Ω

|Xuh| dx = |Xu|(Ω).

The proof of Theorem (4.2.6) uses standard Fridrichs regularization (see [80, The-
orem 2.2.2] and [89, Theorem 1.14]).

Remark 4.2.7. In view of Theorem 4.2.6 and Proposition 4.2.3 the total variation
|Xu|(Ω) of a function u ∈ L1

loc(Ω) could have also been defined as

|Xu|(Ω) = inf
{

lim inf
h→∞

∫

Ω

|Xuh| dx : (uh)h∈N ⊂ C1(Ω), uh → u in L1
loc(Ω)

}
.

(4.2.18)
Till now no metric structure on Rn was needed. Assume that X1, ..., Xm induce on

Rn a C-C metric d which is continuous in the Euclidean topology. If u ∈ Liploc(Ω, d)
then by Theorem 2.2.1 the weak derivatives X1u, ..., Xmu exist almost everywhere and
belong to L∞loc(Ω). In (4.2.18) we could also have required uh ∈ Liploc(Ω, d) instead
of uh ∈ C1(Ω). Indeed, by Proposition 1.1.4 we have C1(Ω) ⊂ Liploc(Ω, d). Notice
the if u ∈ Liploc(Ω) then |Xu| is a minimum upper gradient of u in (Ω, d) (see [100,
Theorem 11.7]).

If we have a metric space endowed with a Borel measure and such that locally
Lipschitz functions have minimum upper gradient then the total variation of a locally
integrable function u can be defined by the relaxation argument in (4.2.18) taking
sequences of locally Lipschitz functions converging to u and considering the integral
of their minimum upper gradients (see [138]).

2.3. Compactness and Sobolev-Poincaré inequality. Thanks to Theorem
4.2.6 many properties of anisotropic Sobolev spaces with p = 1 remain true for
BVX(Ω) functions. Let X = (X1, ..., Xm) be a system of Hörmander or Grushin
type vector fields on Rn and let (Rn, d) be the associated C-C space. Let Ω ⊂ Rn

be a bounded open set and let Q ≥ n be the homogeneous dimension of the space
relatively to balls with center in Ω and small radius as in Definitions 1.6.3 and 1.6.4.

Theorem 4.2.8. Let X, Ω and Q be as above. If Ω is a John domain (with small
diameter) then:

(i) There exists C > 0 such that
(∫

Ω

|u− uΩ|
Q

Q−1 dx
)Q−1

Q ≤ C
diam(Ω)

|Ω| |Xu|(Ω) (4.2.19)

for all u ∈ BVX(Ω).
(ii) The embedding BVX(Ω) ↪→ Lq(Ω) is compact for any 1 ≤ q < Q/(Q− 1).

For the proof of Theorem 4.2.8 see [89] (but see also [73]). The Poincaré inequality
4.2.19 is the main tool to get isoperimetric inequalities in C-C spaces.
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Theorem 4.2.9. Let X, Ω and Q be as above. If Ω is a John domain there exists
C > 0 such that for all measurable set E ⊂ Rn

min{|E ∩ Ω|, |(Rn \ E) ∩ Ω|}Q−1
Q ≤ C

diam(Ω)

|Ω|1/Q
|XχE|X(Ω). (4.2.20)





CHAPTER 5

Measures of surface type in C-C spaces

In this chapter we study several surface measures that can be defined in C-C
spaces: the perimeter measure, the Minkowski content and the Hausdorff measures
defined with the C-C metric. Sets of finite X−perimeter, which are the natural
generalization to the context of C-C spaces of the sets with finite perimeter introduced
by Caccioppoli [35] and De Giorgi [58] and [59], have been introduced in [89] and [80]
(see also [26]). The definition of X−perimeter does not require any metric structure
but when this structure is available the definition turns out to be a special case of a
general definition of sets with finite perimeter in metric spaces (see [138] and [7]). In
Theorem 5.2.1 we prove that if an open set has regular boundary then its perimeter
equals the Minkowski content of the boundary. This result has been proved in [148].
Finally, in section 3 the interplay with the Hausdorff measures will be discussed. In
the special case of the Heisenberg group perimeter also equals spherical Hausdorff
measure of codimension 1 (see [82]).

1. Sets of finite X−perimeter

1.1. Introduction. We begin with some preliminary notation. Given a system
X = (X1, ..., Xm) of locally Lipschitz vector fields in Rn we write for j = 1, ..., m

Xj(x) =
n∑

i=1

cji(x)∂i, and C =




c11 . . . c1n
...

. . .
...

cm1 . . . cmn


 . (5.1.1)

The adjoint operators X∗
j , the divergence divX and F (Ω;Rm) with Ω ⊂ Rn open set

have been introduced in chapter 4 section 2.

Definition 5.1.1. The total X−variation (or X−perimeter) of a measurable set
E ⊂ Rn in an open set Ω ⊂ Rn is

|∂E|X(Ω) = sup
ϕ∈F (Ω;Rm)

∫

E

divX(ϕ) dx.

The set E is of finite X−perimeter (or a X−Caccioppoli set) in Ω if |∂E|X(Ω) < +∞.
The set E is of locally finite X−perimeter in Ω if |∂E|X(U) < +∞ for any open set
U b Ω.

Remark 5.1.2. Let X1, ..., Xm ∈ Liploc(Rn;Rn), and let E ⊂ Rn be a X−Cac-
cioppoli set in Ω. If ∂E is the topological boundary of E it can be easily checked that
|∂E|X(Ω \ ∂E) = 0 and that |∂E|X = |∂(Rn \ E)|X .

When E is an open set with Lipschitz boundary its X− perimeter has the following
integral representation.

145
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Theorem 5.1.3. Let E ⊂ Rn be a bounded open set with Lipschitz boundary and
let Ω ⊂ Rn be an open set. Then

|∂E|X(Ω) =

∫

∂E∩Ω

|Cn|dHn−1, (5.1.2)

where n(x) is the Euclidean normal to ∂E at x and C is the matrix (5.1.1).

Proof. First notice that

divX(ϕ) = −
m∑

j=1

X∗
j ϕj =

m∑
j=1

n∑
i=1

∂i(cjiϕj) =
n∑

i=1

∂i

( m∑
j=1

cjiϕj

)
,

and then by the divergence Theorem
∫

E

divX(ϕ) dx =

∫

E

n∑
i=1

∂i

( m∑
j=1

cjiϕj

)
dx =

∫

∂E

n∑
i=1

ni

m∑
j=1

cjiϕj dHn−1

=

∫

∂E

〈ϕ,Cn〉 dHn−1.

Thus

|∂E|X(Ω) = sup
ϕ∈F (Ω;Rm)

∫

∂E

〈ϕ,Cn〉 dHn−1 ≤
∫

∂E∩Ω

|Cn| dHn−1.

We have to prove the converse inequality. The set

H = {x ∈ ∂E ∩ Ω : n(x) exists and Cn(x) 6= 0}
is Hn−1−measurable and since ∂E is Lipschitz Cn is a Hn−1−measurable function
on H. Fix ε > 0. By Lusin Theorem there exists a compact set K ⊂ H such that
Hn−1(H \ K) ≤ ε and Cn is continuous on K. By Tietze-Urysohn Theorem there
exists ψ ∈ C0(Ω) such that

ψ(x) =
Cn(x)

|Cn(x)| for all x ∈ K, and |ψ(x)| ≤ 1 for all x ∈ Ω.

Finally, by Friedrichs regularization there exists ϕ ∈ C1
0(Ω;Rm) such that ||ϕ||∞ ≤ 1

and ||ϕ− ψ||∞ ≤ ε. Thus

|∂E|X(Ω) ≥
∫

∂E

〈ϕ,Cn〉 dHn−1 =

∫

∂E

〈ϕ− ψ, Cn〉 dHn−1 +

∫

∂E

〈ψ, Cn〉 dHn−1.

But ∫

∂E

〈ϕ− ψ,Cn〉 dHn−1 ≥ −εHn−1(∂E) max
x∈∂E

‖C(x)‖,
where ‖C‖ = max|n|≤1 |Cn|, and

∫

∂E

〈ψ, Cn〉 dHn−1 =

∫

K

〈ψ, Cn〉 dHn−1 +

∫

H\K
〈ψ,Cn〉 dHn−1

=

∫

H

|Cn| dHn−1 −
∫

H\K
|Cn| dHn−1 +

∫

H\K
〈ψ, Cn〉 dHn−1,

where ∫

H\K
|Cn| dHn−1 ≤ Hn−1(H \K) max

x∈∂E
‖C(x)‖ ≤ ε max

x∈∂E
‖C(x)‖
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and analogously ∫

H\K
〈ψ, Cn〉 dHn−1 ≥ −ε max

x∈∂E
‖C(x)‖.

Putting together all the estimates we eventually find

|∂E|X(Ω) ≥
∫

∂E∩Ω

|Cn| dHn−1 − ε max
x∈∂E

‖C(x)‖(2 +Hn−1(∂E)),

and since ε > 0 is arbitrary the claim follows. ¤

If χE ∈ L1(Ω) then E is of finite X−perimeter if and only if χE ∈ BVX(Ω)
and moreover |∂E|X(Ω) = |XχE|(Ω). If E is measurable then it is of locally finite
X−perimeter in Ω if and only if χE ∈ BVX,loc(Ω).

If E ⊂ Ω is a set of locally finite X−perimeter the distributional derivative
µ = XχE is a m−vector valued Radon measure (Definition 4.2.1) and |µ|(U) =
|XχE|(U) = |∂E|X(U) for any open set U b Ω (Proposition 4.2.2). By the Polar de-
composition Theorem (see [8, Corollary 1.29]) there exists a |µ|−measurable function
νE : Ω → Rm such that µ = νE|µ| and |νE| = 1 |µ|−almost everywhere. We shall
write |µ| = |∂E|X .

Theorem 5.1.4. Let E ⊂ Ω be a set with locally finite X−perimeter. The follow-
ing generalized Gauss-Green formula holds

∫

Ω

divX(ϕ) dx = −
∫

Ω

〈ϕ, νE〉 d|∂E|X ,

for all ϕ ∈ C1
0(Ω;Rm).

The vector νE will be called X−generalized inner normal of E.

Consider now a Carnot group (Rn, ·, δλ, d) with canonical generating vector fields
X = (X1, ..., Xm). If h ∈ Rn we denote by τh : Rn → Rn the left translation
τh(x) = h · x. The integer Q ≥ n is the homogeneous dimension of the group
defined in (1.7.87). The following proposition describes the invariance properties of
the perimeter in Carnot groups.

Proposition 5.1.5. If E ⊂ Rn is a measurable set then for any Borel set B ⊂ Rn,
for all h ∈ Rn and λ > 0:

(i) |∂τh(E)|X(τh(B)) = |∂E|X(B);
(ii) |∂δλ(E)|X(δλ(B)) = λQ−1|∂E|X(B).

Proof. We shall prove (ii). First notice that, if ψ ∈ C1(Rn), then

Xj(ψ ◦ δλ)(x) = λ(Xjψ)(δλ(x)), (5.1.3)

for j = 1, ..., m and λ > 0. Indeed, recall that δλ(x) = (λα1x1, ..., λ
αnxn) where

α1 = ... = αm = 1 and αm+1, ..., αn are integers greater or equal than 2. The vector
fields are of the form Xj(x) = ∂j +

∑n
i=m+1 aij(x)∂i, where aij(δλ(x)) = λαi−1aij(x)
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(see (1.7.84)). Thus

Xj(ψ ◦ δλ)(x) = ∂j(ψ ◦ δλ)(x) +
n∑

i=m+1

aij(x)∂i(ψ ◦ δλ)(x)

= λ
[
∂jψ(δλ(x)) +

n∑
i=m+1

λαi−1aij(x)∂iψ(δλ(x))
]

= λ(Xjψ)(δλ(x)).

Without loss of generality we can assume that B = Ω is an open set. Take ϕ ∈
F (δλ(Ω);Rm). Since the determinant of the Jacobian of δλ(x) is λQ and X∗

j = −Xj,
we can write∫

δλ(E∩Ω)

divX(ϕ) dx = λQ

∫

E∩Ω

divX(ϕ)(δλ(x)) dx

= λQ

∫

E∩Ω

m∑
j=1

(Xjϕj)(δλ(x)) dx = λQ−1

∫

E∩Ω

m∑
j=1

Xj(ϕj ◦ δλ) dx.

Since ϕ ◦ δλ ∈ F (Ω;Rm) it immediately follows that

|∂δλ(E)|X(δλ(Ω)) ≤ λQ−1|∂E|X(A).

The converse inequality can be proved in the same way. ¤

1.2. Coarea formula. In this section we study the coarea formula for vector
fields which has been proved in [89], [80] and [148]. A similar coarea formula in the
setting of metric spaces has been recently proved also in [138]. In the coarea formula
a solid integral is expressed as a superposition of surface integrals and the integration
measure is the perimeter of the boundary of the level sets of a Lipschitz function.
The problem of replacing the perimeter with Hausdorff measures has been recently
studied in [130] and [131].

Theorem 5.1.6. Let X1, ..., Xm ∈ Liploc(Rn;Rn) and let Ω ⊂ Rn be an open set.
If f ∈ BVX(Ω) then

|Xf |(Ω) =

∫ +∞

−∞
|∂Et|X(Ω) dt, (5.1.4)

where Et = {x ∈ Ω : f(x) > t}.
Moreover, if X1, ..., Xm induce on Rn a continuous metric d and f ∈ Lip(Ω, d)

and u ∈ L1(Ω), then
∫

Ω

u |Xf | dx =

∫ +∞

−∞

( ∫

{x∈Ω:f(x)=t}
u d|∂Et|X

)
dt. (5.1.5)

Proof. We begin with the proof of (5.1.4). First notice that the function

t → |∂Et|X(Ω) = sup
ϕ∈F (Ω;Rm)

∫

Et

divX(ϕ) dx

is measurable being (countable) supremum of measurable functions. Indeed C1
0(Ω;Rm)

is separable.
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Without loss of generality assume that f ≥ 0. Then by Fubini-Tonelli Theorem

|Xf |(Ω) = sup
ϕ∈F (Ω;Rm)

∫

Ω

f divX(ϕ) dx

= sup
ϕ∈F (Ω;Rm)

∫ +∞

0

∫

Et

divX(ϕ) dx dt

≤
∫ +∞

0

sup
ϕ∈F (Ω;Rm)

∫

Et

divX(ϕ) dx dt =

∫ +∞

0

|∂Et|X(Ω) dt.

In order to prove the converse inequality

|Xf |(Ω) ≥
∫ +∞

−∞
|∂Et|X(Ω) dt (5.1.6)

we begin with the case f ∈ BVX(Ω) ∩ C1(Ω). The function

m(t) =

∫

Ω\Et

|Xf | dx

is differentiable almost everywhere because it is non decreasing. For h > 0 let

ηh(s) =





1 if s ≥ t + h
s−t
h

if t < s < t + h
0 if s ≤ t,

and notice that

m(t + h)−m(t)

h
=

1

h

∫

Et\Et+h

|Xf | dx =

∫

Ω

|X(ηh ◦ f)| dx.

Since ηh ◦ f → χEt in L1(Ω) as h ↓ 0, by Proposition 4.2.3

m′(t) ≥ lim inf
h↓0

∫

Ω

|X(ηh ◦ f)| dx ≥ |∂Et|X(Ω).

This result holds for almost every t ∈ R and integrating
∫

Ω

|Xf | dx =

∫ +∞

−∞
m′(t) dt ≥

∫ +∞

−∞
|∂Et|(Ω) dt.

This proves 5.1.6 if f ∈ BVX(Ω) ∩ C1(Ω).
Let now f ∈ BVX(Ω). By Theorem 4.2.6 there exists a sequence (fk)k∈N ∈

BVX(Ω) ∩ C1(Ω) such that fk → f in L1(Ω) and

lim
k→∞

∫

Ω

|Xfk| dx = |Xf |(Ω).

Let Ek
t = {x ∈ Ω : fk(x) > t} and notice that

lim
k→∞

∫

Ω

∫ +∞

−∞
|χEk

t
(x)− χEt(x)| dt dx = lim

k→∞

∫

Ω

|fk(x)− f(x)| dx = 0,

and thus |χEk
t
(x)−χEt(x)| → 0 in L1(Ω) for almost every t ∈ R. Again by Proposition

4.2.3

lim inf
k→∞

|∂Ek
t |X(Ω) ≥ |∂Et|(Ω),
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and finally, by Fatou Lemma

|Xf |(Ω) = lim
k→∞

∫

Ω

|Xfk| dx = lim
k→∞

∫ +∞

−∞
|∂Ek

t |X(Ω) dt

≥
∫ +∞

−∞
lim inf

k→∞
|∂Ek

t |X(Ω) dt ≥
∫ +∞

−∞
|∂Et|X(Ω) dt.

This ends the proof of (5.1.4)
The next step is to prove that (5.1.4) holds for any Borel set B ⊂ Ω. Note first

that (5.1.4) holds when Ω is replaced by a closed set F ⊂ Ω. Indeed, the function
t → |∂Et|X(F ) = |∂Et|X(Ω)− |∂Et|X(Ω \ F ) is measurable and

|Xf |(F ) = |Xf |(Ω)− |Xf |(Ω \ F )

=

∫ +∞

−∞
|∂Et|X(Ω) dt−

∫ +∞

−∞
|∂Et|X(Ω \ F ) dt =

∫ +∞

−∞
|∂Et|X(F ) dt.

Let B ⊂ Ω be a Borel set. Since |Xf | is a finite Radon measure on Ω, by [63,
Theorem 2.2.2] there exist a decreasing sequence of open sets Ak ⊂ Ω, k ∈ N, and an
increasing sequence of closed sets Fk ⊂ Ω such that Fk ⊂ B ⊂ Ak for all k ∈ N and

sup
k∈N

|Xf |(Fk) = |Xf |(B) = inf
k∈N

|Xf |(Ak).

Define F =
⋃∞

k=1 Fk and A =
⋂+∞

k=1 Ak. The functions t → |∂Et|X(F ), |∂Et|X(A)
are measurable, being upper and lower envelopes of a countable family of measurable
functions. Moreover, by monotone convergence

|Xf |(A) = lim
k→∞

|Xf |(Ak) = lim
k→∞

∫ +∞

−∞
|∂Et|X(Ak) dt

=

∫ +∞

−∞
lim
k→∞

|∂Et|X(Ak) dt =

∫ +∞

−∞
|∂Et|X(A) dt,

and analogously (5.1.4) holds for F . Since |Xf |(F ) = |Xf |(B) = |Xf |(A), it follows
that ∫ +∞

−∞
|∂Et|X(A \ F ) dt = 0,

and |∂Et|X(A \ F ) = 0 and a fortiori |∂Et|X(A \ B) = 0 for a.e. t ∈ R. Hence,
t → |∂Et|X(B) = |∂Et|X(A)− |∂Et|X(A \B) is measurable. Finally

|Xf |(B) = inf
k∈N

∫ +∞

−∞
|∂Et|X(Ak)dt

≥
∫ +∞

−∞
inf
k∈N

|∂Et|X(Ak)dt ≥
∫ +∞

−∞
|∂Et|X(B)dt,

and

|Xf |(B) = sup
k∈N

∫ +∞

−∞
|∂Et|X(Fk)dt

≤
∫ +∞

−∞
sup
k∈N

|∂Et|X(Fk)dt ≤
∫ +∞

−∞
|∂Et|X(B)dt.

This ends the proof of (5.1.4) for Borel sets.
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We notice that if f locally belongs to W1,1
X then the measure |Xf | is absolutely

continuous with respect to the Lebesgue measure and (5.1.4) holds for any measurable
set.

We prove (5.1.5). If f ∈ Lip(Ω, d) then by Theorem 2.2.1 |Xf | ∈ L∞(Ω) and
f locally belongs to W1,1

X . Let u ∈ L1(Ω) be a non negative function and write
u =

∑∞
k=1 1/kχAk

with Ak ⊂ Ω measurable with finite measure (see [61, Theorem
1.1.7]). By the monotone convergence theorem

∫

Ω

u |Xf | dx =
∞∑

k=1

1

k

∫

Ω

χAk
|Xf | dx =

∞∑

k=1

1

k
|Xf |(Ak)

=
∞∑

k=1

1

k

∫ +∞

−∞
|∂Et|X(Ak)dt =

∞∑

k=1

1

k

∫ +∞

−∞

∫

Ω

χAk
d|∂Et|X dt

=

∫ +∞

−∞

∫

Ω

u d|∂Et|X dt.

In the general case write u = u+ − u− and apply the argument to u+ and u−.
Since f ∈ Lip(Rn, d) and d is continuous with respect to the Euclidean topology, then
f is continuous. It follows that ∂{x ∈ Ω : f(x) > t} ⊂ {x ∈ Ω : f(x) = t}. Thus by
Remark 5.1.2 the support of the measure |∂Et|X is contained in {x ∈ Ω : f(x) = t}.

¤
The Hypotheses (H1) and (H2), and the Cases (C1), (C2) and (C3) have been

introduced in chapter 2 section 6.

Corollary 5.1.7. Let (Rn, d) be the C-C space induced by a family of vector
fields X1, ..., Xm ∈ Liploc(Rn;Rn) that satisfy (C1), (C2) or (C3). Assume (H1) and
(H2). If u ∈ L1(Rn) then

∫

Rn

u(x) dx =

∫ +∞

0

( ∫

∂B(0,r)

u(x) dµr

)
dr, (5.1.7)

where ∂B(0, r) = {x ∈ Rn : d(x, 0) = r} and µr = |∂B(0, r)|X .

Proof. By Theorem 2.6.1 we have |Xd(x, 0)| = 1 for a.e. x ∈ Rn and by Remark
5.1.2 we can apply formula (5.1.5).

¤

Corollary 5.1.8. Let (Rn, ·, δλ, d) be a Carnot group with canonical generating
vector fields X1, ..., Xm ∈ C∞(Rn;Rn) and homogeneous dimension Q. If u ∈ L1(Rn)
then ∫

Rn

u(x) dx =

∫ +∞

0

( ∫

∂B(0,1)

u(δr(x))rQ−1dµ
)
dr, (5.1.8)

where µ = |B(0, 1)|X .

Remark 5.1.9. Formula (5.1.8) gives an explicit representation of the (unique)
surface measure whose existence for Carnot groups was proved in [67, Proposition
1.15].
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2. Minkowski content

In this section we prove that the perimeter of a X−Caccioppoli set is equal to
the Minkowski content of its boundary. This result has been established in [148].
Let (Rn, d) be a C-C space associated with the vector fields X1, ..., Xm. The metric
d will be assumed to be continuous. Let K ⊂ Rn be a closed set and define dK(x) =
miny∈K d(x, y). If r > 0, the r−tubular neighborhood of K is

Ir(K) = {x ∈ Rn : dK(x) < r}.
The upper and lower Minkowski content of K in an open set Ω ⊂ Rn are respectively

M+(K)(Ω) := lim sup
r↓0

|Ir(K) ∩ Ω|
2r

,

M−(K)(Ω) := lim inf
r↓0

|Ir(K) ∩ Ω|
2r

.

If M+(K)(Ω) = M−(K)(Ω) this common value will be called the Minkowski content
of K in Ω and denoted by M(K)(Ω).

We shall prove that if K = ∂E with E ⊂ Rn bounded open set with C2 boundary
the Minkowski content of ∂E equals the perimeter of E. Our proof will work in the
following three cases:

(i) X1, ..., Xm ∈ C∞(Rn;Rn).
(ii) X1, ..., Xm ∈ Liploc(Rn;Rn) ∩ L∞(Rn).
(iii) X1, ..., Xm ∈ Liploc(Rn;Rn) and there exists a bounded open set Ω0 ⊂ Rn

such that E b Ω0 and

(1 + sup
x∈Ω0

‖A(x)‖)diam(E) < min
x∈E,y∈∂Ω0

|x− y|, (5.2.9)

where A = CT is the matrix of the vector fields (according to (1.1.1) and
(5.1.1)).

The key property ensured by (i), (ii) and (iii) is d(k) ≤ d for all k ∈ N, being d(k)

the Riemmanian distances approximating d which have been constructed in chapter
1 section 2 (see Theorem 1.2.1 for case (iii), Remark 1.2.3 for case (ii) and Remark
1.2.2 for case (i)).

Theorem 5.2.1. Assume (i), (ii) or (iii). Let Ω ⊂ Rn be an open set and let
E ⊂ Rn be a bounded open set with C2 boundary and such that Hn−1(∂E ∩ ∂Ω) = 0.
Then M(∂E)(Ω) exists and

M(∂E)(Ω) = |∂E|X(Ω). (5.2.10)

Proof. The proof will be written for case (iii). We prove separately that

M−(∂E)(Ω) ≥ |∂E|X(Ω), (5.2.11)

M+(∂E)(Ω) ≤ |∂E|X(Ω). (5.2.12)

The former inequality follows from the lower semicontinuity of the perimeter. The
latter one requires the Riemannian approximation.

Define the signed distance

%(x) =

{
d∂E(x) if x ∈ E
−d∂E(x) if x ∈ Rn \ E,
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and if ε > 0 let for x ∈ Rn

ϕε(x) =





1
2ε

%(x) + 1
2

if |%(x)| < ε
1 if %(x) ≥ ε
0 if %(x) ≤ −ε.

The function % : (Rn, d) → [0, +∞) is 1−Lipschitz and by Theorem 2.2.1 (d is con-
tinuous) |X%(x)| ≤ 1 for a.e. x ∈ Rn. Then

|Xϕε|(Ω) =
1

2ε

∫

Ω∩{|%|<ε}
|X%| dx

≤ 1

2ε
|{x ∈ Ω : |%(x)| < ε}| = |Iε(∂E) ∩ Ω|

2ε
.

As ϕε → χE in L1(Ω), by Proposition 4.2.3

|∂E|X(Ω) ≤ lim inf
ε↓0

|Xϕε|(Ω) ≤ M−(∂E)(Ω).

This proves (5.2.11).
We turn to (5.2.12). Let X(k), k ∈ N, be the family of m + n vector fields defined

in (1.2.15) which generates a metric d(k) of Riemannian type. Let Ck be the matrix
of the coefficients of X(k) as in (5.1.1). By (5.2.9) and Theorem 1.2.1

d(x, y) = sup
k∈N

d(k)(x, y) (5.2.13)

for all x, y belonging to a neighborhood of E. We notice here that only the inequality
d(x, y) ≥ d(k)(x, y) will be needed. Such an inequality holds in cases (i) and (ii) by
Remarks 1.2.2 and 1.2.3.

Let d
(k)
∂E(x) = miny∈∂E d(k)(x, y) and define

%k(x) =

{
d

(k)
∂E(x) if x ∈ E

−d
(k)
∂E(x) if x ∈ Rn \ E.

Since ∂E is of class C2 the function %k is of class C1 in a neighborhood of ∂E. This is a
classical result in Riemannian Geometry. Moreover, by Theorem 2.6.1 |X(k)%k(x)| = 1
in this neighborhood.

Now define the upper and lower Minkowski contents

M+
k (∂E)(Ω) := lim sup

r↓0

|{x ∈ Ω : |%k(x)| < r}
2r

,

M−
k (∂E)(Ω) := lim inf

r↓0
|{x ∈ Ω : |%k(x)| < r}

2r
.

By (5.2.13) |%k| ≤ |%| and thus {x ∈ Ω : |%(x)| < r} ⊂ {x ∈ Ω : |%k(x)| < r}. It
follows that

M+(∂E)(Ω) ≤ M+
k (∂E)(Ω). (5.2.14)

We shall soon prove that

M+
k (∂E)(Ω) = M−

k (∂E)(Ω) = |∂E|k(Ω). (5.2.15)

Here and in the sequel we write |∂E|k(Ω) := |∂E|X(k)(Ω).
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By Proposition 5.1.3

lim
k→∞

|∂E|k(Ω) = lim
k→∞

∫

Ω∩∂E

|Ckn| dHn−1

=

∫

Ω∩∂E

|Cn| dHn−1 = |∂E|X(Ω).

(5.2.16)

In fact, Ck(x) → C(x) for all x ∈ Rn, C being the matrix of the vector fields X1, ..., Xm

as in (5.1.1). Thus, by (5.2.14) and (5.2.15)

M+(∂E)(Ω) ≤ lim
k→∞

M+
k (∂E)(Ω) = lim

k→∞
|∂E|k(Ω) = |∂E|X(Ω).

This completes the proof of the Theorem if we prove (5.2.15).
Now k is fixed. Let Es = {x ∈ Rn : %k(x) > s}. Since |X(k)%k| = 1 in a

neighborhood of ∂E by the Coarea formula (5.1.5)

|{x ∈ Ω : |%k(x)| < t}|
2t

=
1

2t

∫

{|%k|<t}∩Ω

|X(k)%k| dx =
1

2t

∫ +t

−t

|∂Es|k(Ω) ds.

If we show that

lim
t→0

|∂Et|k(Ω) = |∂E|k(Ω) (5.2.17)

then (5.2.15) is proved.
We consider first the case Ω = Rn and t > 0. By Theorem 5.1.4
∫

Et\E
divX(k)(X(k)%k) dx =

∫

Rn

〈X(k)%k, νEt〉 d|∂Et|k −
∫

Rn

〈X(k)%k, νE〉d|∂E|k,

and by (5.1.2)

νE =
CknE

|CknE| =
X(k)%k

|X(k)%k| ,

where nE(x) = ∇%k(x)
|∇%k(x)| is the Euclidean normal to ∂E at x. An analogous represen-

tation formula holds for νEt . Thus, since |X(k)%k| = 1 in a neighborhood of ∂E
∫

Et\E
divX(k)(X(k)%k) dx =

∫

Rn

〈X(k)%k,
X(k)%k

|X(k)%k| 〉 d|∂Et|k −
∫

Rn

〈X(k)%k,
X(k)%k

|X(k)%k|〉 d|∂E|k
= |∂Et|k(Rn)− |∂E|k(Rn).

Since divX(k)(X(k)%k) ∈ L1 in a neighborhood of ∂E, the first term converges to zero
when t ↓ 0, and we deduce that |∂Et|k(Rn) → |∂E|k(Rn) as t ↓ 0. Then (5.2.17) is
proved and this concludes the proof if Ω = Rn.

We finally consider an arbitrary open set Ω ⊂ Rn. Since χEt → χE both in L1(Ω)
and in L1(Rn \ Ω), by Proposition 4.2.3

|∂E|k(Ω) ≤ lim inf
t↓0

|∂Et|k(Ω),

|∂E|k(Rn \ Ω) ≤ lim inf
t↓0

|∂Et|k(Rn \ Ω).
(5.2.18)

From

|∂Et|k(Ω) ≤ |∂Et|k(Ω) = |∂Et|k(Rn)− |∂Et|k(Rn \ Ω),
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using the second inequality (5.2.18) and the convergence in Rn established above we
find

lim sup
t↓0

|∂Et|k(Ω) ≤ |∂E|k(Rn)− lim inf
t↓0

|∂Et|k(Rn \ Ω)

≤ |∂E|k(Rn)− |∂E|k(Rn \ Ω)

≤ |∂E|k(Ω) + |∂E|k(∂Ω)

≤ |∂E|k(Ω) +

∫

∂E∩∂Ω

|CknE| dHn−1 = |∂E|k(Ω).

Here we used Hn−1(∂E ∩ ∂Ω) = 0. Together with the first inequality in (5.2.18) this
proves that |∂Et|k(Ω) → |∂E|k(Ω) as t ↓ 0. The case t → 0− is quite similar and the
theorem is completely proved. ¤

Remark 5.2.2. The approximation technique used in the proof of Theorem 5.2.1
is “Riemannian” only from the metric point of view. The metric d(k) is Riemannian
but the measure of the k−tubular neighborhood of ∂E and the surface area of ∂E
have been computed respectively by Lebesgue measure and perimeter instead of using
the Riemannian volume and area. The reason is that these latter diverge.

The Riemannian quadratic form inducing on Rn the metric d(k) is given by gk(x) =
(Ck(x)T Ck(x))−1 and if E ⊂ Rn is a bounded open set with regular boundary, the
Riemannian volume and area of ∂E are respectively

Volk(E) =

∫

E

√
det gk(x) dx =

∫

E

1√
det(Ck(x)T Ck(x))

dx,

Areak(∂E) =

∫

∂E

〈g−1
k n(x), n(x)〉1/2

√
det gk(x) dHn−1

=

∫

∂E

|Ckn(x)|√
det(Ck(x)T Ck(x))

dHn−1,

where n(x) is the Euclidean normal to ∂E at x.
Consider, for instance, in R3 the Heisenberg vector fields X = ∂x + 2y∂t and

Y = ∂y−2x∂t. It can be easily checked that det(CT
k Ck) = 1/k2(1+1/k2)[4(x2 +y2)+

1 + 1/k2] and
lim
k→∞

Volk(E) = lim
k→∞

Areak(∂E) = +∞.

Remark 5.2.3. The proof of Theorem 5.2.1 shows that Mk(∂E)(Rn) = |∂E|k(Rn)
for all k ∈ N and that

lim
k→∞

Mk(∂E)(Rn) = |∂E|X(Rn)

for any family of vector fields X = (X1, ..., Xm).

3. Hausdorff measures, regular surfaces and rectifiability

In this section we study the relationship between perimeter and Hausdorff mea-
sures defined with the C-C metric. Only few results concerning this problem are
known, and mainly in the setting of Carnot groups [83] and in particular in the
Heisenberg group [82]. One of the problems is the lack of a geometric covering the-
orem: even in the Heisenberg group a covering theorem of Besicovitch type does not
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seem to hold (see the counterexamples constructed in [158] and [120]). Anyway, the
asymptotic doubling formula for perimeters in metric spaces proved in [7] makes pos-
sible the spherical differentiation which yields the exact relation between perimeter
and spherical Hausdorff measures.

3.1. Hausdorff measures. Let (Rn, d) be a Carnot group with homogeneous
dimension Q ≥ n. Using the left invariant metric d the following Hausdorff measures
can be defined in Rn (see [63, 2.10] and [133, chapter 4]). For any 0 ≤ s ≤ Q, δ > 0
and for any A ⊂ Rn let

Hs
d,δ(A) = inf

{
γ(s)

+∞∑
j=1

(diam(Ej))
s : A ⊂

+∞⋃
j=1

Ej, diam(Ej) ≤ δ
}

,

Ss
d,δ(A) = inf

{
γ(s)

+∞∑
j=1

(diam(Bj))
s : A ⊂

+∞⋃
j=1

Bj, diam(Bj) ≤ δ, Bj closed balls
}

,

and then define

Hs
d(A) = sup

δ>0
Hs

d,δ(A), and Ss
d(A) = sup

δ>0
Ss

d,δ(A).

Here, diam(E) is the diameter of E ⊂ Rn in the metric d and γ(s) is a suitable
normalization constant. The measure Ss

d is usually called s−dimensional spherical
Hausdorff measure. Since a set E ⊂ Rn is contained in a closed ball B with radius
diam(E) and since diam(B) is twice the radius of B (this is true in all Carnot groups)
it easily follows that Hs

d(A) ≤ Ss
d(A) ≤ 2sHs

d(A).
Let X = (X1, ..., Xm) be a system of generators of the Lie algebra of the group

and if E ⊂ Rn is a measurable set denote by |∂E|X(Rn) its X−perimeter in Rn. Sets
having the corkscrew property have been defined in Definition 3.1.4.

Proposition 5.3.1. Let E ⊂ Rn be an open set with the corkscrew property.
There exists C > 0 depending on the homogeneous dimension Q and on the corkscrew
constant such that HQ−1

d (∂E) ≤ C|∂E|X(Rn).

Proof. By Proposition 3.1.5 there exists C > 0 such that for all x ∈ ∂E and
0 < r ≤ r0

|B(x, r)| ≤ C min{|B(x, r) ∩ E|, |B(x, r) ∩ (Rn \ E)|}. (5.3.19)

Fix 0 < r ≤ r0/5. By Vitali covering Theorem there exists a disjoint sequence
of balls {Bi = B(xi, r) : i ∈ N} with xi ∈ ∂E such that the enlarged family {5Bi}
covers ∂E. By compactness there exists N ∈ N (depending on r) such that

∂E ⊂
N⋃

i=1

B(xi, 5r).

Thus by (5.3.19)

HQ−1
d,10r(∂E) ≤ γ(Q− 1)

N∑
i=1

diam(B(xi, 5r))
Q−1 ≤ C

r

N∑
i=1

|B(xi, r)|

≤ C

r

N∑
i=1

|B(xi, r)|1/Q min{|B(xi, r) ∩ E|, |B(xi, r) ∩ (Rn \ E)|}(Q−1)/Q.
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By the isoperimetric inequality (4.2.20) with Ω = B(xi, r) (which is a John domain)

1

r
|B(xi, r)|1/Q min{|B(xi, r) ∩ E|, |B(xi, r) ∩ (Rn \ E)|}(Q−1)/Q ≤ C|∂E|X(B(xi, r)),

and hence, since the balls are disjoint

HQ−1
d,10r(∂E) ≤ C

N∑
i=1

|∂E|X(B(xi, r)) ≤ C|∂E|X(Rn).

The claim follows letting r ↓ 0. ¤
Remark 5.3.2. The proof of Proposition 5.3.1 works in any C-C space provided

that the relative isoperimetric inequality for balls holds.

3.2. Regular surfaces. We introduce regular surfaces in Carnot groups. The
implicit function Theorem stated in this subsection actually holds for vector fields of
“Carnot type” (see [83]).

Definition 5.3.3. Let Ω ⊂ Rn be an open set. A function f : Ω → R is said
to belong to C1

X(Ω) if it is continuous in Ω and the derivatives X1f, ..., Xmf exist in
distributional sense and are continuous functions.

Definition 5.3.4. A set S ⊂ Rn is a X−regular hypersurface if for all x ∈ S
there exist an open neighborhood U of x and f ∈ C1

X(U) such that

(i) |Xf(x)| 6= 0;
(ii) S ∩ U = {y ∈ U : f(y) = 0}.

Remark 5.3.5. If S ⊂ Rn is a C1 hypersurface then it is X−regular if and only
if it does not contain points which are characteristic with respect to the vector fields
X. On the other hand, there are X−regular hypersurfaces that are not of class C1

and not even locally Lipschitz in the Euclidean sense (see [82, Remarks 5.9 and 6.6]).

The implicit function theorem we are going to state has been proved in [83] and
in [82] for the special case of the Heisenberg group. We refer to these papers for the
proof.

Let Ω ⊂ Rn be a fixed open set such that 0 ∈ Ω and let f ∈ C1
X(Ω) be such that

f(0) = 0. Define

E = {x ∈ Ω : f(x) < 0}, S = {x ∈ Ω : f(x) = 0}.
If S is a X−regular hypersurface we can without loss of generality assume that
X1f(0) > 0.

Theorem 5.3.6 (Implicit Function Theorem). There exists an open neighborhood
U of 0 in Rn such that E is of finite X−perimeter in U , ∂E ∩ U = S ∩ U and

νE(x) = − Xf(x)

|Xf(x)| for all x ∈ S ∩ U ,

where νE is the generalized inner unit normal given by Theorem 5.1.4. Moreover, there
exist an open neighborhood V ⊂ Rn−1 of 0 and a continuous function Φ : V → Rn such
that S∩U = {Φ(ξ) ∈ U : ξ ∈ V} and the X−perimeter has the integral representation

|∂E|X(U) =

∫

V

|Xf(Φ(ξ))|
X1f(Φ(ξ))

dξ.
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Remark 5.3.7. The function Φ is continuous. The problem of determining what
kind of additional regularity Φ could have seems to be an open problem even in the
Heisenberg group (see [82]).

3.3. Rectifiability in the Heisenberg groups. In the Heisenberg group the
link between perimeter and spherical Heusdorff measures has been investigated in [82].
Consider Hn ≡ R2n+1 endowed with the algebraic and metric Heisenberg structure.
In this subsection we shall denote by X the system of the Heisenberg vector fields
(1.8.91), by x · y the product (1.8.89), by δλ the dilations (1.8.90) and by Q = 2n + 2
the homogeneous dimension.

If E ⊂ Rn, x ∈ Rn and r > 0 define

Er,x = {y ∈ Rn : x · δr(y) ∈ E} = δ1/r(x
−1 · E)}.

The projection π : Rn → R2n is defined by π(x1, ..., x2n+1) = (x1, ..., x2n). If v ∈ R2n

let

S+(v) = {x ∈ Rn : 〈π(x), v〉 ≥ 0}
S−(v) = {x ∈ Rn : 〈π(x), v〉 ≤ 0}. (5.3.20)

It can be checked that for any v ∈ R2n

T (v) = S+(v) ∩ S−(v) = {x ∈ Rn : 〈π(x), v〉 = 0}
is a subgroup of Hn.

Definition 5.3.8. Let E ⊂ Rn be a X−Caccioppoli set. A point x ∈ Rn is said
to belong to the reduced boundary of E, x ∈ ∂∗E, if

(i) |∂E|X(B(x, r)) > 0 for all r > 0;
(ii) if νE ∈ R2n denotes the generalized inward normal given in Theorem 5.1.4

then

νE(x) = lim
r↓0

∫

B(x,r)

νE d|∂E|X ,

and moreover |νE(x)| = 1.

The following blow up theorem for sets of finite perimeter in the Heisenberg group
at points of the reduced boundary has been proved in [81] along the way of De Giorgi
classical result. Actually, in [81] homogeneous cylinders have been used instead of
C-C balls, but these can be used as well.

Theorem 5.3.9. If E is a X-Caccioppoli set, x ∈ ∂∗E and νE ∈ R2n is the gener-
alized inward normal, then the characteristic function of Er,x converges in L1

loc(R2n+1)
as r ↓ 0 to the characteristic function of S+(νE(x)). In addition, for all R > 0

lim
r↓0
|∂Er,x|X(B(0, R)) = |∂S+(νE(x))|X(B(0, R)) = cR2n+1, (5.3.21)

where c > 0 is a geometric constant.

Definition 5.3.10. A set K ⊂ Rn is X-rectifiable if there exists a sequence of
X-regular hypersurfaces (Si)i∈N such that

HQ−1
d

(
K \

⋃

i∈N
Si

)
= 0. (5.3.22)
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Theorem 5.3.11. If E ⊂ Rn is a X-Caccioppoli set then

(i) ∂∗E is X-rectifiable, that is ∂∗E = N ∪⋃∞
i=1 Ki, where HQ−1

d (N) = 0 and Ki

is a compact subset of a X-regular hypersurface Si;
(ii) |∂E|X = SQ−1

d ∂∗E with a suitable choice of γ(Q− 1).

Balogh has recently proved in [17] that if E is an open set of class C1 and C(∂E)

denotes the set of characteristic points of ∂E then HQ−1
d (C(∂E)) = 0. Since points

in ∂E \ C(∂E) are in the reduced boundary then from Theorem 5.3.11 the following
Corollary immediately follows

Corollary 5.3.12. If E ⊂ R2n+1 is an open set of class C1 then |∂E|X(R2n+1) =

SQ−1
d (∂E).

The main technical problem in the proof of Theorem 5.3.11 given in [82] is proving
that the measure |∂E|X has support in ∂∗E. In order to establish such property the
following result, which has been established within the theory of perimeters in metric
spaces in [7], plays a crucial role. We shall state it in the context of the Heisenberg
group.

Theorem 5.3.13. Let E ⊂ R2n+1 be a X-Caccioppoli set. There exist τ > 0 and
k > 0 such that for |∂E|X−a.e. x ∈ R2n+1

τ < lim inf
r↓0

|∂E|X(B(x, r))

rQ−1
≤ lim sup

r↓0

|∂E|X(B(x, r))

rQ−1
< +∞

and

lim inf
r↓0

min
{ |B(x, r) ∩ E|

|B(x, r)| ,
|B(x, r) ∩ (R2n+1 \ E)|

|B(x, r)|
}
≥ k.





CHAPTER 6

An application to a phase transitions model

1. Introduction

In this chapter we apply several results obtained in the previous chapters to the
study of a problem of the Calculus of Variations connected to phase transitions mod-
els. Consider the family of functionals

Qε(u) = ε

∫

Ω

q(x,Du) dx +
1

ε

∫

Ω

W (u) dx, ε > 0, (6.1.1)

where Ω is a smooth, bounded open set of Rn, u : Ω → R, and W : R→ [0, +∞) is a
double-well potential that supports two phases of the model (i.e. W has two isolated
global minimum points). For the sake of simplicity we assume here W (u) = u2(1−u)2

but W can be more general (see section 3). The integral perturbation with integrand
function q : Ω × Rn → [0, +∞) is a term that penalizes the formation of interfaces
in the model and it may degenerate in the sense that q could vanish on big parts of
Ω× Rn.

Functionals of type (6.1.1) have arisen in a variety of applications as, for instance,
in the study of stable configurations in the context of Van der Waals-Cahn-Hilliard
theory of phase transitions (see [36], [96]). This model can be described by a fluid
under isothermal conditions which is confined in a bounded container Ω and whose
Gibbs free energy per unit volume is a prescribed non convex function W of the
density function u. The space of admissible smooth densities is the class

A =
{

u : Ω → [0, 1] : u ∈ C1(Ω),

∫

Ω

u dx = V
}

,

where 0 < V < |Ω| is the given total mass of the fluid in Ω.
In the classic isotropic model to every density u one can associate the energy

Eε(u) = εQε(u) where

q(x, ξ) = |ξ|2 for all x ∈ Ω and ξ ∈ Rn, (6.1.2)

and ε > 0 is a small parameter (see [96] for a physical motivation and also [2] for
a simple nice introduction to the subject). The problem of determining the stable
configurations is the study of the variational problem inf{Eε(u) : u ∈ A} and the
mathematical problem is then to study the asymptotic behaviour as ε ↓ 0 of the
solutions uε of these problems or equivalently, as the sets of the solutions agree, the
ones of the rescaled problems

inf{Qε(u) : u ∈ A}. (Pε)

A relevant variational convergence which turned out to be very useful to this goal
is the Γ−convergence introduced by De Giorgi (see [53] for an introduction to this
topic). More precisely, the functional Qε : A → [0, +∞] can be extended, with a slight

161
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abuse of notation, to a functional Qε : L1(Ω) → [0, +∞] defined +∞ outside A, and
now the variational problem is the characterization of Q = Γ(L1(Ω))− limε↓0 Qε.

In the isotropic scalar case, i.e. when q is as in (6.1.2), this variational problem
was studied by Gurtin ([96]) in some particular situations, who also proposed sev-
eral conjectures (see also [97]). Following a Gurtin’s conjecture and using previous
Γ−convergence arguments contained in [140] Modica proved in [139] that

Q(u) =

{
2α|∂E|(Ω) if u = χE ∈ BV(Ω), |E ∩ Ω| = V
+∞ otherwise

(6.1.3)

where |∂E|(Ω) is the perimeter of E in Ω, BV(Ω) is the classical space of functions
with bounded variation in Ω and

α =

∫ 1

0

√
W (s) ds. (6.1.4)

Moreover, Modica also proved the existence of a sequence (uεh
)h∈N of solutions

of the relaxed problems (Pεh
) strongly converging in L1(Ω) as εh ↓ 0 to a function

u0 = χE solution of the geometric problem

inf{2αHn−1(∂∗E ∩ Ω) : χE ∈ BV(Ω), |E ∩ Ω| = V }. (6.1.5)

Here ∂∗E is the (Euclidean) essential boundary of E. In particular, this result yields
a “selection criterion” singling out a solution u0 among the infinite collection of the
ones of the imperturbated real physical problem

min
{ ∫

Ω

W (u) dx : u ∈ L1(Ω),

∫

Ω

u dx = V
}

(6.1.6)

(see [96] for a discussion of the physical meaning of this problem).
These results were generalized by Bouchitté ([29]) and Owen-Sternberg ([152]) to

anisotropic functionals Qε allowing the function q to be very general but always as-
suming at least a coercivity property which, in the case when q is a positive quadratic
form, i.e.

q(x, ξ) = 〈A(x)ξ, ξ〉 x ∈ Ω and ξ ∈ Rn, (6.1.7)

with A(x) symmetric n × n matrix, amounts to the existence of a constant λ0 > 0
such that

〈A(x)ξ, ξ〉 ≥ λ0|ξ|2 for all x ∈ Ω and ξ ∈ Rn. (6.1.8)

Under this hypothesis Bouchitté proved in [29] that there exists a limit solution
u0 = χE which solves the following geometric problem

inf
{

2α

∫

Ω∩∂∗E
〈A(x)νE(x), νE(x)〉1/2dHn−1 : χE ∈ BV(Ω), |E ∩ Ω| = V

}
(6.1.9)

where νE denotes the generalized outward normal to E (see [8]) and α is the constant
(6.1.4).

The isotropic vector valued-case, i.e. if u : Ω → Rp and q : Ω × Rpn → [0, +∞)
is as in (6.1.2), was studied by Sternberg ([166]), by Kohn and Sternberg ([118]),
by Baldo [16] and by Fonseca and Tartar ([69]). The anisotropic vector-valued case
was also studied by Barroso and Fonseca ([19]). Moreover, other variations of the
functionals Qε in (6.1.1) have been studied by Alberti and Bellettini ([3] and [4]),
Alberti, Bouchitté and Seppecher ([5]) and Fonseca and Mantegazza ([68]). Finally,
Baldi and Franchi have recently proved in [15] a Γ−convergence result for the family
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of functionals (Qε)ε in the special case when q(x, ξ) = |ξ|2ω(x)1−2/n and ω is a strong
A∞−weight on Rn.

In this chapter we prove Γ−convergence results in the case when q : Ω × Rn →
[0, +∞) is a non negative quadratic form, i.e. q is as in (6.1.7) but the matrix A(x)
is only non negative definite on Ω; in particular (6.1.8) may fail. More precisely,
suppose that there exists a m × n matrix C(x) = [cji(x)] with Lipschitz continuous
entries on Rn such that

A(x) = C(x)T C(x) for all x ∈ Ω, (6.1.10)

where CT denotes the transposed matrix of C. Clearly, according to (5.1.1) the
rows of the matrix C defines a family of vector fields which, after a Riemmanian
approximation, will be the key tool in our proofs. In chapter 4 section 2 the space
BVA(Ω) has been defined for any non negative definite matrix A (see (4.2.17)). In a
natural way the A−perimeter measure in Ω of a measurable set E ⊂ Rn is

|∂E|A(Ω) = |DχE|A(Ω). (6.1.11)

Now, let Q : L1(Ω) → [0, +∞] be the functional

Q(u) =

{
2α|∂E|A(Ω) if u = χE ∈ BVA(Ω), |E ∩ Ω| = V
+∞ otherwise,

(6.1.12)

where α is the constant (6.1.4).
Then, if Qε are the functionals (6.1.1) with q of the form (6.1.7) with A satisfying

(6.1.10) we prove that

Q = Γ(L1(Ω))− lim
ε↓0

Qε (6.1.13)

for every bounded open set Ω ⊂ Rn with boundary of class C2 (see Theorem 6.3.3
and Remark 6.3.4).

Under the weak assumption (6.1.10) only, the result (6.1.13) does not provide a
meaningful selection criterion to single out preferred solutions among the ones of the
limit geometric problem

inf{2α|∂E|A(Ω) : E ⊂ Rn, |E ∩ Ω| = V } (6.1.14)

because a minimizing sequence (uεh
)h∈N of the problems (Pεh

) need not be relatively
compact in L1(Ω) if A vanishes on big parts of Ω.

Under the hypotheses

(1) X is a family of Hörmander or Grushin’s type vector fields, and
(2) Ω is a bounded open set of class C2 and a John domain in the C-C space

(Rn, d) induced by the vector fields X (see Definition 3.1.1 in chapter 3)

we prove that the relaxed problem of (Pε) has a solution uε in the anisotropic Sobolev
space H1

X(Ω), (see (6.3.46) and Theorem 6.4.3). Moreover, a sequence of solutions
(uεh

)h∈N is relatively compact in L1(Ω), and using the Γ−convergence result (6.1.13)
we show that, up to a subsequence, it strongly converges in L1(Ω) to a solution
u0 = χE of problem (6.1.14) (see Theorem 6.5.2).

In section 5 several examples will be given in which all previous hypotheses are
satisfied.
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2. Preliminary results

First of all we recall the definition of Γ−convergence. We refer to [53] for a general
introduction to the subject.

Definition 6.2.1. Let (M,d) be a metric space, and let F, Fh : M → [−∞, +∞],
h ∈ N. F is said to be the Γ−limit of the sequence (Fh)h∈N, and we shall write
F = Γ(M)− limh→∞ Fh, if the following conditions hold

if x ∈ M and xh → x then F (x) ≤ lim inf
h→∞

Fh(xh), (6.2.15)

∀x ∈ M ∃(xh)h∈N such that xh → x and F (x) ≥ lim sup
h→∞

Fh(xh). (6.2.16)

The proof of the following “Reduction Lemma” can be found in [140].

Lemma 6.2.2. Let (M,d) be a metric space, F, Fh : M → [−∞, +∞], h ∈ N,
D ⊂ M and x ∈ M . Suppose that:

(i) for every y ∈ D there exists a sequence (yh)h∈N ⊂ M such that yh → y in M
and lim sup

h→∞
Fh(yh) ≤ F (y);

(ii) there exists (xh)h∈N ⊂ D such that xh → x and lim sup
h→∞

F (xh) ≤ F (x).

Then there exists (x̄h)h∈N ⊂ M such that lim sup
h→∞

Fh(x̄h) ≤ F (x).

Next, we state an approximation theorem for BVX functions, or better for sets
of finite X−perimeter, which is necessary in order to bypass the following technical
difficulty. In the Euclidean setting one of the main tools in the approximation of a
set of finite perimeter in Ω by means of sets with regular boundary in Rn (not only
in Ω) is the property of a function u ∈ BV(Ω)∩L∞(Ω) to be extendible to a function
ũ ∈ BV(Rn) ∩ L∞(Rn) with |Dũ|(∂Ω) = 0, if Ω has Lipschitz boundary (see [139,
Lemma 1] and [166, Lemma 1]). It is not known if such a property does hold for
BVX(Ω) functions. Nevertheless, the following Proposition can be proved (see [149]).
X = (X1, ..., Xm) is a given system of locally Lipschitz vector fields.

Proposition 6.2.3. Let Ω ⊂ Rn be a bounded open set with C2 boundary, and
let E ⊂ Ω be a measurable set such that |∂E|X(Ω) < +∞ and 0 < |E| < |Ω|. Then
there exists a sequence (Eh)h∈N of open sets of Rn such that

(i) Eh is bounded and ∂Eh is of class C∞ for all h ∈ N;
(ii) Eh → E in L1(Ω);
(iii) |∂Eh|X(Ω) → |∂E|X(Ω);
(iv) Hn−1(∂Eh ∩ ∂Ω) = 0 for all h ∈ N;
(v) |Eh ∩ Ω| = |E| for all h ∈ N.

Since we are working in a bounded region the vector fields may be assumed globally
bounded and Lipschitz continuous. Precisely, we assume that there exists L > 0 such
that

|Xj(x)| ≤ L and |Xj(x)−Xj(y)| ≤ L|x− y| (6.2.17)

for all x, y ∈ Rn and j = 1, ..., m.
Let σ > 0 and consider the family of vector fields Xσ,η = (Xη

1 , ..., Xη
m, σ∂1, ..., σ∂n)

where Xη
j = Jη ∗ Xj and and (Jη)η>0 is a family of mollifiers. Under assumptions
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(6.2.17) we proved in chapter 1 section 2 that for any σ > 0 there exists ησ > 0 such
that

m∑
j=1

〈Xj(x), ξ〉2 ≤ σ2|ξ|2 +
m∑

j=1

〈Xησ

j (x), ξ〉2 (6.2.18)

for all x ∈ Rn and for all ξ ∈ Rn. We shall write

Xσ = Xσ,ησ . (6.2.19)

The coefficients of the vector fields Xσ are of class C∞ and if dσ is the C-C metric
induced by them then the C-C space (Rn, dσ) is a complete Riemannian manifold (see
chapter 1 section 2 and Theorem 1.4.2).

3. The results of Γ−convergence

This section deals with the Γ−convergence results. First, we introduce the func-
tionals involved. Let W ∈ C2(R) be a function with two “wells” of equal depth

W (0) = W (1) = 0, W (s) > 0 if s 6= 0, 1, W ′′(0) > 0, W ′′(1) > 0. (6.3.20)

Let X be a given system of locally Lipschitz continuous vector fields in Rn. Fix
a bounded open set Ω ⊂ Rn and for ε > 0 define the functionals Fε, F : L1(Ω) →
[0, +∞]

Fε(u) =





∫

Ω

(
ε|Xu|2 +

1

ε
W (u)

)
dx if u ∈ H1

X(Ω)

+∞ if u ∈ L1(Ω) \ H1
X(Ω),

and

F (u) =

{
2α||∂E||X(Ω) if u = χE ∈ BVX(Ω)
+∞ otherwise

where α =
∫ 1

0

√
W (s) ds.

Let 0 < V < |Ω|, introduce the set of admissible functions

AV =
{

u ∈ L1(Ω) :

∫

Ω

u dx = V, u ≥ 0 a.e. in Ω
}

, (6.3.21)

and let IV be the indicator function of AV , i.e. the function which takes the value 0
on AV and +∞ outside. Finally, define

Gε = Fε + IV and G = F + IV . (6.3.22)

Let (εh)h∈N be a sequence of real numbers such that εh ↓ 0 and let Gh = Gεh
, Fh = Fεh

.

Theorem 6.3.1. Suppose that X1, ..., Xm ∈ Liploc(Rn;Rn), let W ∈ C2(R) be as
in (6.3.20) and let Ω ⊂ Rn be a bounded open set with C2 boundary. Then

G = Γ(L1(Ω))− lim
h→∞

Gh,

i.e. by definition

∀u ∈ L1(Ω) and ∀(uh) ⊂ L1(Ω) if uh → u in L1(Ω) then G(u) ≤ lim inf
h→∞

Gh(uh),

(6.3.23)
∀u ∈ L1(Ω)∃(uh) ⊂ L1(Ω) such that uh → u in L1(Ω) and G(u) ≥ lim sup

h→∞
Gh(uh).

(6.3.24)
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Proof of Theorem 6.3.1. We divide the proof in two steps.

Step 1. Assume that X1, ..., Xm ∈ C∞(Rn;Rn), and that the system X induces
on Rn a finite C-C metric d which is continuous in the Euclidean topology. We also
assume the following eikonal equation:

(Ek) Let K ⊂ Rn be a closed set. If dK(x) := infy∈K d(x, y) then XdK(x) =
(X1dK(x), ..., XmdK(x)) ∈ Rm exists and |XdK(x)| = 1 for a.e. x ∈ Rn \K.

Under such hypotheses we shall prove the thesis. We begin with (6.3.23). Let uh → u
in L1(Ω) and assume without loss of generality that lim inf

h→∞
Gh(uh) < +∞. Possibly

extracting a subsequence we can also assume that uh(x) → u(x) for a.e. x ∈ Ω. By
Fatou Lemma∫

Ω

W (u(x)) dx ≤ lim inf
h→∞

∫

Ω

W (uh(x)) dx ≤ lim inf
h→∞

εhGh(uh) = 0.

We deduce that u(x) ∈ {0, 1} for a.e. x ∈ Ω and we can write u = χE where
E := {x ∈ Ω : u(x) = 1}. Moreover u = χE ∈ AV .

Define the increasing function ϕ ∈ C1(R) by ϕ(t) =

∫ t

0

√
W (s) ds and put w(x) =

ϕ(u(x)) and wh(x) = ϕ(uh(x)). By the coarea formula (5.1.4)

|Xw|(Ω) =

∫ +∞

−∞
|∂{x ∈ Ω : ϕ(u(x)) > t}|X(Ω) dt

=

∫ 1

0

|∂{x ∈ Ω : u(x) > s}|X(Ω)ϕ′(s) ds

= |∂E|X(Ω)

∫ 1

0

√
W (s) ds =

1

2
G(u).

We can assume that 0 ≤ uh(x) ≤ 1 and from
∫

Ω

|wh(x)− w(x)| dx ≤ sup
t∈[0,1]

|ϕ′(t)|
∫

Ω

|uh(x)− u(x)| dx

we deduce that wh → w in L1(Ω). By Proposition 4.2.3

G(u) = 2|Xw|(Ω) ≤ 2 lim inf
h→∞

∫

Ω

|Xwh(x)| dx

≤ 2 lim inf
h→∞

∫

Ω

|Xuh(x)||ϕ′(uh(x))| dx

≤ lim inf
h→∞

∫

Ω

(
εh|Xuh(x)|2 +

1

εh

W (uh(x))
)

dx

≤ lim inf
h→∞

Gh(uh),

and (6.3.23) follws.
We now turn to the upper bound estimate (6.3.24). By Proposition 6.2.3 and by

Lemma 6.2.2 we can reduce to prove (6.3.24) for u = χE, E ⊂ Rn bounded open set
with C∞ boundary such that |E ∩ Ω| = V and Hn−1(∂Ω ∩ ∂E) = 0.
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Define % : Rn → [0, +∞)

%(x) =





min
y∈∂E

d(x, y) x ∈ E

− min
y∈∂E

d(x, y) x ∈ Rn \ E,

and write χ0(t) = χ(0,+∞)(t). Then u(x) = χ0(%(x)) for all x ∈ Rn. Let χ : R → R
be the maximal solution of the Cauchy problem

{
χ′(t) =

√
W (χ(t))

χ(0) = 1
2
.

It is easy to see that, as W (0) = W (1) = 0, χ is a strictly increasing C2 function such
that limt→+∞ χ(t) = 1 and limt→−∞ χ(t) = 0. Moreover there exist t̄ ∈ R, c1, c2 > 0
such that (see [166, (1.21)])

1− χ(t) ≤ c1e
−c2t, for all t ≥ t̄. (6.3.25)

Fix ε > 0 and write tε = ϑε log 1/ε where ϑ ≥ 3 is a constant that will be
determined later. Define the function Λε : R→ R in the following way

Λε(t) =





χ(t) if 0 ≤ t < tε
ε

pε(t) if tε
ε
≤ t < 2tε

ε
1 if t ≥ 2tε

ε
1− Λε(−t) if t < 0.

where pε : R → R is the uniquely determined polynomial of degree 3 for which
Λε ∈ C1,1(R)∩C∞(R\{±tε/ε,±2tε/ε}) (see [24] for the construction of pε) satisfying

||pε − 1||L∞(tε/ε,2tε/ε) = O(ε2ϑ−1) and ||p′ε||L∞(tε/ε,2tε/ε) = O(ε2ϑ). (6.3.26)

Now define χε(t) = Λε(t/ε) for t ∈ R and vε(x) = χε(%(x)). It is easy to see that
vε ∈ H1,∞

X (Ω) and Xvε(x) = χ′ε(%(x))X%(x) a.e. It can be easily checked that (see for
instance [148, Theorem 9])

lim
ε↓0

∫

Ω

|vε − u|dx = 0, (6.3.27)

lim sup
ε↓0

Fε(vε) ≤ F (u) = G(u). (6.3.28)

The functions vε will be now perturbated so as to satisfy the integral constraint
without disturbing inequality (6.3.28). Let us begin to show that if δε =

∫
Ω

vε dx−V ,
then δε = O(ε) (see also [166, Theorem 1]). Notice that

δε =

∫

Ω

(vε − u) dx

=

∫

{x∈Ω:0<%(x)<tε}
(χ(%(x)/ε)− 1) dx +

∫

{x∈Ω:tε≤%(x)≤2tε}
(pε(%(x)/ε)− 1) dx

+

∫

{x∈Ω:−tε<%(x)<0}
(1− χ(−%(x)/ε)) dx +

∫

{x∈Ω:−2tε≤%(x)≤tε}
(1− pε(−%(x)/ε)) dx.

Because of (6.3.26) if ϑ ≥ 1 the second and fourth integrals are O(ε).
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We estimate the first one. By hypothesis (Ek) |X%| = 1 a.e. on Rn and using the
coarea formula (5.1.4) we get for t ≥ 0

V +(t) := |{x ∈ Ω : 0 < %(x) ≤ t}| =
∫ t

0

|∂Es|X(Ω) ds,

where Es := {x ∈ Rn : %(x) > s}. By the coarea formula (5.1.5) and integrating by
parts

∫

{x∈Ω:0<%(x)<tε}
(1− χ(%(x)/ε)) dx =

∫ tε

0

(1− χ(s/ε))||∂Es||X(Ω) ds

= V +(tε)(1− χ(ϑ log(1/ε))) +
1

ε

∫ tε

0

χ′(s/ε)V +(s)ds.

By Theorem 5.2.1 (see also [11]) V +(t) = Lt + tδ+(t), where L = |∂E|X(Ω) and
δ+ : [0, +∞) → R is a function such that

lim
ε↓0

sup
s∈[0,tε]

|δ+(s)| = 0.

By (6.3.25) it follows that V +(tε)(1− χ(ϑ log(1/ε))) = O(ε) if ϑc2 ≥ 1. Moreover∣∣∣∣
1

ε

∫ tε

0

χ′(s/ε)V +(s) ds

∣∣∣∣ ≤
1

ε

∫ tε

0

√
W (χ(s/ε))V +(s) ds

≤ (L + sup
s∈[0,tε]

|δ+(s)|)1
ε

∫ tε

0

s
√

W (χ(s/ε)) ds

≤ ε(L + sup
s∈[0,tε]

|δ+(s)|)
∫ +∞

0

s
√

W (χ(s)) ds,

and the integral in the last expression is bounded because of (6.3.25). In conclusion
if we choose ϑ ≥ max{3, 1/c2} this ends the proof of δε = O(ε).

Consider now the family of functions uε = (1 + ηε)vε with ηε = −δε/
∫

Ω
vεdx. Of

course, uε ∈ H1,∞
X (Ω) and uε ∈ AV since 1+ ηε > 0 and

∫
Ω

uεdx = V . If we show that

lim sup
ε↓0

Gε(uε) ≤ lim sup
ε↓0

Fε(vε), (6.3.29)

statement (6.3.24) will be proved.
Notice that

G(uε) =

∫

{x∈Ω:|%(x)|≤2tε}

(
ε(1 + ηε)

2|Xvε|2 +
1

ε
W (vε + ηεvε)

)
dx

+
1

ε
W (1 + ηε)|{x ∈ Ω : %(x) > 2tε}|

≤ ε

∫

Ω

|Xvε|2 dx +
ηε(2 + ηε)

ε

∫

{x∈Ω:|%(x)|≤2tε}
|Λ′ε(%/ε)|2 dx

+
1

ε

∫

{x∈Ω:|%(x)|≤2tε}
W (vε + ηεvε) dx +

1

ε
W (1 + ηε)|{x ∈ Ω : %(x) > 2tε}|.

By (6.3.20) and by Taylor’s formula

1

ε
W (1 + ηε)|{x ∈ Ω : %(x) > 2tε}| ≤ |Ω|

2ε
W ′′(ξε)η

2
ε
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for some ξε ∈ (1− ηε, 1 + ηε) and hence this term is O(ε). Moreover, since∫

{x∈Ω:|%(x)|≤2tε}
|Λ′ε(%/ε)|2 dx ≤ sup |χ′|2|{x ∈ Ω : |%(x)| ≤ tε}|

+ ||p′ε||2L∞(tε/ε,2tε/ε)|{x ∈ Ω : tε < |%(x)| ≤ 2tε}|,
and by (6.3.26) we get

lim
ε↓0

ηε(2 + ηε)

ε

∫

{x∈Ω:|%(x)|≤2tε}
|Λ′ε(%/ε)|2 dx = 0.

In order to prove (6.3.29) it suffices to show that

lim
ε↓0

1

ε

∫

{x∈Ω:|%(x)|<2tε}
(W (uε)−W (vε)) dx = 0.

Indeed, by the Mean Value Theorem there exists τ > 0 such that

1

ε

∫

{x∈Ω:|%(x)|<2tε}
|W (uε)−W (vε)| dx ≤ |ηε|

ε
|{x ∈ Ω : |%(x)| < 2tε}| sup

s∈[0,1+τ ]

|W ′(s)|,

and the last quantity approaches to zero as ε ↓ 0.

Step 2. We prove the thesis under the only assumption X1, ..., Xm ∈ Liploc(Rn;Rn).
Indeed X = (X1, ..., Xm) may be assumed to satisfy (6.2.17). For σ > 0 let Xσ be
the family of vector fields defined in (6.2.19), i.e.

Xσ = (Xησ

1 , ..., Xησ
m , σ∂1, ..., σ∂n) ≡ (Xσ

1 , ..., Xσ
m+n).

Now, Xσ
j ∈ C∞(Rn;Rn) for all j = 1, ..., m + n, these vector fields are bounded on

Rn and by (6.2.18)

m∑
j=1

〈Xj(x), ξ〉2 ≤
m+n∑
j=1

〈Xσ
j (x), ξ〉2 for all x, ξ ∈ Rn. (6.3.30)

The C-C distance dσ induced on Rn by Xσ is a Riemannian metric and since the
vector fields are bounded (Rn, dσ) is a complete metric space. We notice that by
Theorem 2.6.1 the family Xσ satisfies the eikonal hypothesis (Ek).

Therefore the first step of the proof does apply to the functionals Gσ
ε : L1(Ω) →

[0, +∞]

Gσ
ε (u) =





ε

∫

Ω

|Xσu|2 dx +
1

ε

∫

Ω

W (u) dx if u ∈ H1
Xσ

(Ω) ∩ AV

+∞ otherwise.
(6.3.31)

Precisely, for all σ > 0
Γ(L1(Ω))− lim

ε↓0
Gσ

ε = Gσ, (6.3.32)

where Gσ : L1(Ω) → [0, +∞] is the functional

Gσ(u) =

{
2α|∂E|Xσ(Ω) if u = χE ∈ BVXσ(Ω) ∩ AV

+∞ otherwise.
(6.3.33)

By the vector fields’ form

H1
Xσ

(Ω) = H1(Ω) ⊂ H1
X(Ω), for all σ > 0,
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and then by (6.3.30)

Gε(u) ≤ Gσ
ε (x), for all u ∈ L1(Ω) and for all ε, σ > 0. (6.3.34)

Let G′, G′′ : L1(Ω) → [0, +∞] be respectively the lower and upper Γ−limits of
(Gε)ε>0 (see [53, chapter 4]), i.e. if u ∈ L1(Ω)

G′(u) = Γ(L1(Ω))− lim inf
ε↓0

Gε(u),

G′′(u) = Γ(L1(Ω))− lim sup
ε↓0

Gε(u).

Then, from [53, Proposition 6.7], (6.3.34) and (6.3.32)

G′(u) ≤ G′′(u) ≤ Gσ(u) for all u ∈ L1(Ω) and for all σ > 0. (6.3.35)

We claim that

G(u) ≤ G′(u) for all u ∈ L1(Ω). (6.3.36)

Indeed, by [53, Proposition 8.1] we have to prove that for every u ∈ L1(Ω), for every
sequence (uh)h∈N ⊂ L1(Ω) strongly converging to u in L1(Ω) and for every sequence
(εh)h∈N of real numbers such that εh ↓ 0

G(u) ≤ lim inf
h→∞

Gεh
(uh),

and this can be done exactly as in the first step of the proof where only the coarea
formula (5.1.4) is involved.

Define

D = {χE : E ⊂ Rn bounded open set, ∂E ∈ C∞, |E ∩ Ω| = V,Hn−1(∂E ∩ ∂Ω) = 0},
and notice that D ⊂ BVXσ(Ω) for all σ > 0. If u = χE ∈ D then from (5.1.2)

Gσ(u) = 2α|∂E|Xσ(Ω) = 2α

∫

∂E∩Ω

|Cσn| dHn−1, (6.3.37)

where Cσ(x) is the (m + n)× n matrix of the coefficients of the vector fields Xσ
j ’s as

in (5.1.1), and n is the Euclidean normal to ∂E.
In particular, from (6.3.37) we get for all u = χE ∈ D

lim
σ↓0

Gσ(u) = 2α

∫

∂E∩Ω

|Cn| dHn−1 = G(u), (6.3.38)

being C(x) the matrix of the coefficients of the vector fields Xj’s. On the other hand,
from (6.3.36), (6.3.35) and (6.3.38)

G(u) ≤ G′(u) ≤ G′′(u) ≤ G(u) for all u ∈ D,

whence

G(u) = Γ(L1(Ω))− lim
ε↓0

Gε(u) for all u ∈ D. (6.3.39)

Applying (6.3.36), (6.3.39), Proposition 6.2.3 and Lemma 6.2.2 we finally find

G = Γ(L1(Ω))− lim
ε↓0

Gε.

¤
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The last result in this section deals with the Γ−convergence of functionals defined
with degenerate quadratic forms. Let A(x) be a symmetric, semidefinite positive
matrix and consider the functionals Q,Qε : L1(Ω) → [0, +∞] defined as

Qε(u) =





ε

∫

Ω

〈ADu, Du〉 dx +
1

ε

∫

Ω

W (u) dx if u ∈ C1(Ω) ∩ AV

+∞ otherwise,
(6.3.40)

and

Q(u) =

{
2α|∂E|A(Ω) if u = χE ∈ BVA(Ω) ∩ AV

+∞ otherwise,
(6.3.41)

where V , AV , W and α are as in Theorem 6.3.1.
The following Lemma gives a sufficient condition for the factorization property

(6.1.10). Its proof can be found in [167, Theorem 5.2.3].

Lemma 6.3.2. Let A(x) be a symmetric, non negative n× n−matrix with entries
of class C2(Rn) and assume there exists Λ0 > 0 such that

|〈∂
2A

∂x2
i

(x)ξ, ξ〉| ≤ Λ0|ξ|2 for all x, ξ ∈ Rn and i = 1, ..., n. (6.3.42)

Then there exists a symmetric n× n−matrix C(x) with Lipschitz continuous entries
such that A(x) = C(x)T C(x) for all x ∈ Rn.

Theorem 6.3.3. Let Ω ⊂ Rn be a bounded open set with C2 boundary and let
A(x) be a symmetric, positive semidefinite n× n−matrix , i.e. 〈A(x)ξ, ξ〉 ≥ 0 for all
x, ξ ∈ Rn. Suppose that A has C2 entries and satisfies (6.3.42). Moreover, assume
that there exist C ≥ 1, u0 > 0 and p ≥ 1 such that

C−1|u|p ≤ W (u) ≤ C|u|p for all |u| ≥ u0. (6.3.43)

Then

Q = Γ(L1(Ω))− lim
ε↓0

Qε. (6.3.44)

Remark 6.3.4. When the matrix A is positive definite on Ω, i.e. there exists
λ0 > 0 such that 〈A(x)ξ, ξ〉 ≥ λ0|ξ|2 for all x ∈ Ω and ξ ∈ Rn Theorem 6.3.3 is well
known under the only hypothesis of continuity of the matrix entries (see [29] and
[23]).

Proof of Theorem 6.3.3.By Lemma 6.3.2 there exists a n×n matrix C(x) with Lip-
schitz continuous entries such that A(x) = C(x)T C(x) for all x ∈ Rn. Let X1, ..., Xn

be the family of vector fields whose coefficients are the rows of the matrix C(x) as in
(5.1.1). By Propostion 4.2.4 we can write the functionals Qε and Q as follows

Qε(u) =





ε

∫

Ω

|Xu|2 dx +
1

ε

∫

Ω

W (u) dx if u ∈ C1(Ω) ∩ AV

+∞ otherwise,

and

Q(u) =

{
2α|∂E|X(Ω) if u = χE ∈ BVX(Ω) ∩ AV

+∞ otherwise.



172 6. AN APPLICATION TO A PHASE TRANSITIONS MODEL

By a general Γ−convergence result (see [53, Proposition 6.11]) (6.3.44) holds if
and only if

Q = Γ(L1(Ω))− lim
ε↓0

sc−(L1(Ω))Qε, (6.3.45)

where sc−(L1(Ω))Qε : L1(Ω) → [0, +∞] is the relaxed functional of Qε with respect
to the topology of L1(Ω).

Recalling Theorem 6.3.1 we only have to prove that for every ε > 0

sc−(L1(Ω))Qε(u) = Gε(u) =





ε

∫

Ω

|Xu|2 dx +
1

ε

∫

Ω

W (u) dx if u ∈ H1
X(Ω) ∩ AV

+∞ otherwise.

(6.3.46)
The inequality sc−(L1(Ω))Qε(u) ≥ Gε(u) follows at once by a well known charac-

terization of the relaxed functional (see, for instance, [53, Proposition 3.6]) and by
the lower semicontinuity of Gε with respect to the topology of L1(Ω). We claim that

sc−(L1(Ω))Qε(u) ≤ Gε(u) for all u ∈ L1(Ω). (6.3.47)

If Gε(u) = +∞ there is nothing to prove. Let u ∈ H1
X(Ω) ∩ AV be such that

Gε(u) < +∞. The growth condition (6.3.43) implies u ∈ Lp(Ω). Since u ∈ H1
X(Ω) by

Theorem 4.1.2 there exists a sequence (vh)h∈N ⊂ C1(Ω) ∩ H1
X(Ω) such that vh → u

in H1
X(Ω). Moreover, as u ∈ Lp(Ω) and the technique of approximation by con-

volution is involved, it is not restrictive to assume that vh → u in Lp(Ω). Let
ch =

∫
Ω

u dx/
∫

Ω
vh dx and define uh = chvh. Then uh ∈ H1

X(Ω) ∩ AV , uh → u in
H1

X(Ω) and
uh → u in Lp(Ω). (6.3.48)

By (6.3.43), (6.3.48) and Carathéodory continuity Theorem (see [53, Example 1.22])

lim
h→∞

∫

Ω

W (uh) dx =

∫

Ω

W (u) dx.

Eventually

sc−(L1(Ω))Qε(u) ≤ lim inf
h→∞

(
ε

∫

Ω

|Xuh|2 dx +
1

ε

∫

Ω

W (uh) dx
)

≤ ε

∫

Ω

|Xu|2 dx +
1

ε

∫

Ω

W (u) dx = Gε(u).

This proves (6.3.47). As a consequence, (6.3.46) and (6.3.45) do hold. ¤

4. Convergence of minima and minimizers

In this section we study existence and asymptotic behavior of minima and mini-
mizers of the functionals Gε and Qε defined in (6.3.22) and (6.3.40). To this purpose
we recall the following fundamental variational property of Γ−convergence (see [53,
Corollary 7.20]).

Theorem 6.4.1. Let (M, %) be a metric space and let F, Fh : M → [0, +∞] be
such that F = Γ(M) − limh→∞ Fh. Let (εh)h∈N be a sequence of real numbers such
that εh ↓ 0, and let (uh)h∈N ⊂ M be a relatively compact sequence of εh−minimizers,
i.e. Fh(uh) ≤ infM Fh + εh for all h ∈ N. Then

(i) min
u∈M

F (u) = lim
h→∞

inf
u∈M

Fh(u);
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(ii) every cluster point u ∈ M of (uh)h∈N is a minimum of F , i.e. F (u) = min
v∈M

F (v).

In order to apply Theorem 6.4.1 a fundamental tool will be the compact em-
bedding of H1,p

X (Ω) in Lp(Ω) which has been discussed in chapter 4. Here we shall
proceed somehow axiomatically. An open set Ω ⊂ Rn will be said to support the
H1,p

X (Ω)−compact embedding, 1 ≤ p ≤ +∞, if

(C)p the embedding H1,p
X (Ω) ↪→ Lp(Ω) is compact.

In the Euclidean case the compact embedding is known to imply a Poincaré in-
equality. Following the same proof an analogous result for vector fields can be ob-
tained. Anyway, we notice that assumptions ensuring (C)p) usually also ensure the
Poincaré inequality.

Proposition 6.4.2. Let X = (X1, ..., Xm) be a family of Lipschitz vector fields
on Rn that connect the space. Let Ω ⊂ Rn be a connected bounded open set. If (C)p

holds for 1 ≤ p < +∞ then there exists C > 0 such that∫

Ω

|u− uΩ|p dx ≤ C

∫

Ω

|Xu|p dx (6.4.49)

for all u ∈ H1,p
X (Ω), where uΩ :=

∫

Ω

u dx.

Let Gε be as in (6.3.22). The first result of this section is the existence of minima
for the functionals Gε and the compactness of the family of such minima.

Theorem 6.4.3. Let X = (X1, ..., Xm) be a family of Lipschitz vector fields on
Rn that connect the space, let Ω ⊂ Rn be a connected, bounded open set such that the
compact embedding (C)2 holds, and finally let W : R → R be a function satisfying
(6.3.43) for some p > 2. Then for all ε > 0 there exists uε ∈ AV such that

Gε(uε) = min
u∈L1(Ω)

Gε(u). (6.4.50)

If, in addition, Ω supports the compact embedding (C)1, then the family {uε : ε > 0}
is relatively compact in L1(Ω).

Let G be the functional defined in (6.3.22). Choosing M = L1(Ω), Fh = Gεh
and

F = G in Theorem 6.4.1 and taking into account Theorem 6.3.1 and Theorem 6.4.3
we get the following Corollary.

Corollary 6.4.4. Let X, Ω and W be as in Theorem 6.4.3. Moreover, assume
that Ω is of class C2 and W satisfies (6.3.20). Let (εh)h∈N be a sequence of real
numbers such that εh ↓ 0. Then:

(i) there exists min
u∈L1(Ω)

G(u) = lim
h→∞

min
u∈L1(Ω)

Gεh
(u);

(ii) if (uh)h∈N is a sequence of minimizers of (Gεh
)h∈N (Gεh

(uh) = minu∈L1(Ω) Gεh
(u))

then there exist a subsequence (uhj
)j∈N and a function u0 = χE ∈ BVX(Ω)

such that uhj
→ u0 in L1(Ω) and G(u0) = minu∈L1(Ω) G(u).

Proof of Theorem 6.4.1.The proof can be essentially carried out as in [139] and
we shall only sketch the main steps.

The existence of uε ∈ AV such that (6.4.50) holds can be proved by the direct
method of Calculus of Variations. To this aim we have to check that Gε : L1(Ω) →
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[0, +∞] is lower semicontinuous and coercive (see, for instance, [53, Theorem 1.15]).
The lower semicontinuity and the coercivity follow as in the classic case by the com-
pact embedding (C)2, by the Poincaré inequality (6.4.49) and by Fatou Lemma.

Let us prove that the family of minima {uε : ε > 0} is relatively compact in L1(Ω).

Define ϕ ∈ C1(R) by ϕ(t) =
∫ t

0

√
W (s) ds, and let vε(x) := ϕ(uε(x)) ∈ H1

X(Ω). By
(6.3.43) and arguing as in [139, Proposition 3, proof] we get the existence of two
positive constants c3, c4 such that∫

Ω

vε dx ≤ c3|Ω|+ c4Gε(uε) for all ε ∈ (0, 1),

and moreover∫

Ω

|Xvε| dx =

∫

Ω

ϕ′(uε)|Xuε| dx ≤ 1

2

∫

Ω

(
ε|Xuε|2 +

1

ε
W (uε)

)
dx =

1

2
Gε(uε).

If we show that Gε(uε) ≤ C < +∞ for all ε > 0 and for some C > 0, then the set
{vε : ε > 0} is bounded in H1,1

X (Ω) und hence relatively compact in L1(Ω) by the
compact embedding (C)1. The function

wε(x) =





1 if x1 ≤ δε − ε
1
2

+ 1
2ε

(x1 − δε) if δε − ε < x1 < δε + ε
0 if x1 ≥ δε + ε

belongs to H1
X(Ω) for all ε > 0 and for all δε ∈ R. Since 0 < V < |Ω|, δε ∈ R can be

chosen in such a way that wε ∈ AV . If x ∈ (δε − ε, δε + ε)× Rn−1 ∩ Ω then

|Xwε(x)|2 =
m∑

j=1

(Xjwε(x))2 =
1

4ε2

m∑
j=1

(cj1(x))2 ≤ C/ε2

Moreover W (wε) ≤ supt∈[0,1] W (t) and thus

Gε(wε) =

∫

Ω∩{δε−ε<x1<δε+ε}

(
ε|Xwε|2 +

1

ε
W (wε)

)
dx

≤ C

ε
|Ω ∩ {δε − ε < x1 < δε + ε}| ≤ C < +∞.

This proves that Gε(uε) ≤ C < +∞ for all ε > 0.
Since the set {vε ∈ L1(Ω) : ε > 0} is relatively compact there exist v ∈ L1(Ω) and

εh ↓ 0 such that vεh
→ v in L1(Ω). The function ϕ is strictly increasing and thus

there exists ψ = ϕ−1 ∈ C1(R). Define u(x) := ψ(v(x)) and notice that uεh
= ψ(vεh

).
Arguing as in [139] we finally get uεh

→ u in L1(Ω). ¤

Let V and AV be as in (6.3.21) and let Qε be the functionals defined in (6.3.40).
The second result of this section deals with the compactness of Qε’s minimizers.

Theorem 6.4.5. Let Ω be a connected, bounded open set, let A(x) be a symmetric
matrix of functions on Rn and let Y = (Y1, ..., Yr) be a family of Lipschitz continuous
vector fields on Rn that connect the space. Assume that:

(i) A(x) has entries of class C2(Rn) and satisfies (6.3.42);
(ii) 〈A(x)ξ, ξ〉 ≥ ∑r

j=1〈Yj(x), ξ〉2 for all x, ξ ∈ Rn;

(iii) the compact embeddings (C)1 and (C)2 hold with X ≡ Y relatively to Ω;
(iv) the function W in the functional Qε satisfies (6.3.20) and (6.3.43).
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Let (εh)h∈N be a sequence of real numbers such that εh ↓ 0. Then every sequence
(uh)h∈N of εh−minimizers of Qε (i.e. Qεh

(uh) ≤ infu∈AV
Qεh

(u) + εh) is relatively
compact in L1(Ω).

Let Q be the functional defined in (6.3.41). Choosing M = L1(Ω), Fh = Qεh
and

F = Q from Theorem 6.4.1 and Theorem 6.4.5 we get the following Corollary.

Corollary 6.4.6. Let Ω, A and Y be as in Theorem 6.4.5. Assume that Ω has
C2 boundary and that W satisfies (6.3.20) and (6.3.43). Let (εh)h∈N be a sequence of
real numbers such that εh ↓ 0. Then:

(i) there exists min
u∈L1(Ω)

Q(u) = lim
h→∞

inf
u∈L1(Ω)

Qεh
(u);

(ii) if (uh)h∈N is a sequence of εh−minimizers of (Qεh
)h∈N then there exist a

subsequence (uhj
)j∈N and a function u0 = χE ∈ BVA(Ω) such that uhj

→ u0

in L1(Ω) and Q(u0) = minu∈L1(Ω) Q(u).

Proof of Theorem 6.4.5.By assumption (i) Lemma 6.3.2 can be applied and arguing
as in the proof of Theorem 6.3.3 we conclude that

Qε(u) =





∫

Ω

(
ε|Xu|2 +

1

ε
W (u)

)
dx if u ∈ C1(Ω) ∩ AV

+∞ otherwise,

for a suitable family X = (X1, ..., Xn) of Lipschitz continuous vector fields. Moreover,
for every ε > 0 and for all u ∈ L1(Ω)

sc−(L1(Ω))Qε(u) = Gε(u),

being sc−(L1(Ω))Qε the relaxed functional of Qε with respect to the L1(Ω) topology
and Gε the functional defined in (6.3.22).

On the other hand by assumptions (ii) X can be assumed to satisfy (Xc), and
by (iii) (C)1 and (C)2 can be assumed to hold relatively to X and Ω. Theorem 6.4.3
can be applied. As pointed out in the first part of the proof of Theorem 6.4.3 Gε is
coercive with respect to the L1(Ω) topology and from a well-known result of relaxation
theory (see, for instance, [53, Theorem 3.8]) there exists

min
u∈L1(Ω)

Gεh
(u) = inf

u∈L1(Ω)
Qεh

(u).

The thesis follows. ¤

5. Examples

The compact embedding (C)p is known to hold when Ω is a John domain in the
metric space (Rn, d), being d the C-C metric induced by the vector fields (see Theorem
4.1.12 in chapter 4). A particular case of Corollary 4.1.13 is the following result.

Corollary 6.5.1. Let (Rn, d) be the C-C space induced by the vector fields X
and let Ω ⊂ Rn be a bounded open set. Assume we are in one of the cases (i), (ii),
(iii) or (iv) in Corollary 4.1.8. Then the embedding W1,p

X (Ω) ↪→ Lp(Ω) is compact for
all 1 ≤ p < +∞.

From Corollary 6.5.1, Theorem 6.4.5 and Corollary 6.4.6 we get the following
result. Let Qε, Q be as in (6.3.40) and (6.3.41) and let W be a function which
satisfies (6.3.20) and (6.3.43).
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Theorem 6.5.2. Let Y ≡ X, (Rn, d) and Ω connected, bounded open set of class
C2 be one of the cases (i), (ii), (iii) or (iv) in Corollary 4.1.8. Let A(x) be a matrix
of functions on Rn. Assume that:

(i) A(x) = CT (x)C(x) for all x ∈ Ω where C(x) is a m×n matrix with Lipschitz
continuous entries on Rn;

(ii) 〈A(x)ξ, ξ〉 ≥ ∑r
j=1〈Yj(x), ξ〉2 for all x, ξ ∈ Rn;

Then, if (uh)h∈N is a sequence of εh−minimizers of Qεh
(Qεh

(uh) ≤ infu∈AV
Qεh

(u)+εh

with εh ↓ 0) then there exists a subsequence (uhj
)j∈N and a function u0 = χE ∈ BVA(Ω)

such that uhj
→ u0 in L1(Ω) and Q(u0) = minu∈L1(Ω) Q(u).
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Poincaré type. Math. Z. 226 (1997), no. 1, 147–154.
[42] L.Capogna, N.Garofalo, Boundary behavior of nonnegative solutions of subelliptic equations in
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