Teoria delle funzioni 2

Esame del 22 giugno 2012

Domanda 1 Sia $K \subset \mathbb{R}^n$ un insieme chiuso e dati $x_0, x_1 \in K$ supponiamo che esista una curva Lipschitz $\gamma : [0,1] \to K$ tale che $\gamma(0) = x_0$ e $\gamma(1) = x_1$. Provare che esiste una curva Lipschitz contenuta in K che ha lunghezza minima e che congiunge i punti x_0 e x_1 .

Domanda 2 Illustrare in modo coinciso i fatti che si ritengono più significativi sulla teoria degli insiemi di perimetro (localmente) finito in \mathbb{R}^n . (max. 1 facciata).

Domanda 3 Sia μ una misura di Borel su \mathbb{R} con queste proprietà: i) $\mu(B+x) = \mu(B)$ per ogni insieme $B \subset \mathbb{R}$ di Borel e per ogni $x \in \mathbb{R}$; ii) $\mu([0,1]) = 1$.

Sia poi $(\varphi_{\varepsilon})_{\varepsilon>0}$ un nucleo di regolarizzazione standard su \mathbb{R} e per ogni $\varepsilon>0$ definiamo la funzione $f_{\varepsilon}:\mathbb{R}\to\mathbb{R}$ e la misura μ_{ε} nel seguente modo:

$$f_{\varepsilon}(x) = \int_{\mathbb{R}} \varphi_{\varepsilon}(x - y) d\mu(y), \quad x \in \mathbb{R},$$
$$\mu_{\varepsilon}(B) = \int_{B} f_{\varepsilon}(x) dx, \quad B \subset \mathbb{R} \text{ di Borel.}$$

- i) Provare che $\mu_{\varepsilon} = \mu$ per ogni $\varepsilon > 0$.
- ii) Provare che esiste $f \in L^1_{loc}(\mathbb{R})$ tale che $\mu = f\mathcal{L}^1$.
- iii) Provare che $\mu = \mathcal{L}^1$.