Theory of functions 2

Exercise 1 For any $t \geq 0$ and for any $A \subset \mathbb{R}^{n}$ define the spherical Hausdorff measure of A of dimension t as

$$
\mathcal{S}^{t}(A)=\sup _{\delta>0} \inf \left\{\sum_{j=1}^{\infty} \alpha(t)\left(\frac{\operatorname{diam}\left(B_{j}\right)}{2}\right)^{t}: B_{j} \subset \mathbb{R}^{n} \text { balls, } A \subset \bigcup_{j=1}^{\infty} B_{j}, \operatorname{diam}\left(B_{j}\right)<\delta\right\} .
$$

Prove that $\mathcal{S}^{t}(A)=0$ if and only if $\mathcal{H}^{t}(A)=0$

Exercise 2 Let $\alpha(n)$ be the Lebesgue measure of the unit ball in $\mathbb{R}^{n}, n \geq 1$. Using the splitting $\mathbb{R}^{n}=\mathbb{R}^{2} \times \mathbb{R}^{n-2}$ along with Fubini-Tonelli theorem and polar coordinates in \mathbb{R}^{2}, prove that

$$
\alpha(n)=2 \pi \alpha(n-2) \int_{0}^{1} r\left(1-r^{2}\right)^{(n-2) / 2} d r .
$$

By induction, compute an explicit formula for $\alpha(2 n)$ and $\alpha(2 n+1)$.

Exercise 3 Let $0<\lambda<1 / 2$ be a fixed parameter, and for $x \in[0,1]$ define $T_{1}(x)=\lambda x$, $T_{2}(x)=1-\lambda+\lambda x$. Let $T: \mathcal{P}([0,1]) \rightarrow \mathcal{P}([0,1])$ be the mapping $T(E)=T_{1}(E) \cup T_{2}(E)$. By induction, define $E_{0}=[0,1]$ and $E_{n+1}=T\left(E_{n}\right)$, for any $n \in \mathbb{N}$. Compute the Hausdorff dimension and measure of the set

$$
K=\bigcap_{n=0}^{\infty} E_{n} .
$$

Exercise 4 Let $0 \leq \delta<1$ be a number. Construct a function $\varphi:[0,1] \rightarrow \mathbb{R}$ such that: 1) φ is strictly increasing; 2) $|\varphi(t)-\varphi(s)| \leq|t-s|$ for all $t, s \in[0,1] ; 3)$ There holds

$$
\mathcal{L}^{1}\left(\left\{t \in[0,1]: \text { there exists } \varphi^{\prime}(t) \text { and } \varphi^{\prime}(t)=0\right\}\right) \geq \delta .
$$

