Theory of functions 2

Exercise 1 Let $K \subset \mathbb{R}^{n}$ be a closed set, let $x_{0}, x_{1} \in K$ and assume there is a Lipschitz curve $\gamma:[0,1] \rightarrow K$ such that $\gamma(0)=x_{0}$ and $\gamma(1)=x_{1}$. Prove that there exists a Lipschitz curve contained in K having minimal length and joining x_{0} to x_{1}.

Exercise 2 Let $A \subset \mathbb{R}^{n}$ be a bounded open set with Lipschitz boundary, let $B \subset \partial A$ be a Borel set and let

$$
\mathcal{A}=\left\{E \subset A: E \text { with finite perimeter in } A \text { and } T\left(\chi_{E}\right)=\chi_{B}\right\},
$$

where $T: B V(A) \rightarrow L^{1}\left(\partial A ; \mathcal{H}^{n-1}\right)$ is the trace operator. Assuming that there is $E \in \mathcal{A}$ with $\|\partial E\|(A)<\infty$, prove that the minimum

$$
\min \{\|\partial E\|(A): E \in \mathcal{A}\}
$$

is attained.

Exercise 3 Let $E \subset \mathbb{R}^{n}$ be a set of finite perimeter.

1) For some orthogonal mapping $T \in O(n)$ let $F=T(E)$. Show that $\|\partial F\|\left(\mathbb{R}^{n}\right)=$ $\|\partial E\|\left(\mathbb{R}^{n}\right)$.
2) For any $\lambda>0$ let $E_{\lambda}=\left\{\lambda x \in \mathbb{R}^{n}: x \in E\right\}$. Prove that $\left\|\partial E_{\lambda}\right\|\left(\mathbb{R}^{n}\right)=\lambda^{n-1}\|\partial E\|\left(\mathbb{R}^{n}\right)$.

Exercise 4 Let $E \subset \mathbb{R}^{n}$ be a set with locally finite perimeter and denote by ν_{E} its measure theoretic inner normal. Assume that there exists a unit vector $\mathrm{v} \in \mathbb{S}^{n-1}$ such that $\nu_{E}(x)=\mathrm{v}$ for $\|\partial E\|$-a.e. $x \in \mathbb{R}^{n}$. Characterize the set E.

