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Introduction

Analysis in metric spaces is an important field of today’s research, in particular it appears
to be fruitful in the so called CC-spaces, Carnot-Carathéodory spaces, or Carnot groups.
The prototype of these spaces is the Heisenberg group H", that is the manifold C* x R
endowed with the group product

(2,8) - (¢, 7) = (2 + (t+ 7+ 25(2,()),

where 2, € C", t,7 € R, and (,) = 2:(; + - + 2,C,.
After having defined the left translation by p as L,(¢) = p - ¢, it is introduced the
following basis of left invariant vector fields:

0 0 0 0 0
X = — 1 9%i— Vi —2 9y~ T —
I o, T Yar T gy, T e
for j = 1,...,n and where (z1,...,Zn,Y1,...,Yn,t) = (2,t). Then, the following notion
of H-perimeter for a Lebesgue-measurable set £ C H" in an open set A is considered:

P(E,A) =sup { / divg ¢dL"! 1 ¢ € CHAR™), ||¢]|, < 1},
B

where divy ¢ = 37 (X;0; + Yjdni;).

A major problem in this area is finding, studying and discussing the regularity of H-
perimeter minimizing sets. This challenging research program takes place in the context
of Calculus of Variations, Geometric Measure Theory and PDEs.

The most natural tools one can develop to understand the properties of minimal
surfaces are area formulas and variation formulas: in particular minimizing sets will have
vanishing first variation of its area functional and nonnegative second variation.

Various examples of variation formulas have been recently computed, for different
kinds of sets. However, they all need some regularity to make sense: this is unsatisfactory
if we are dealing, for example, with regularity theory.

R. Monti, along with D. Vittone, worked to obtain a first variation formula holding
under the sharp, natural hypothesis of finiteness of H-perimeter: no other regularity
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assumptions are made. Actually, in such a family there are extremely non-regular sets;
even sets with fractal boundaries. This first variation formula is obtained using a flow of
contact diffeomorphisms, a special family of diffeomorphisms preserving the finiteness of
H-perimeter. The vector fields generating these flows have the form

Vy = 4T + S V)X, — (X0)Y;, &€ C™,

j=1
for a C'"*° function 9. The formula is deduced from the following:

Theorem 0.1. Let A C H. be an open set, and let E C H" be a set with finite H-perimeter
in A. Let ¥ : [=6,0] x A = H", § =0(¥, A), be the flow generated by ¢» € C°(A). Then

P(U,(E), U,(A)) — P(E,A) +s /A (4(n+ )Ty + Qw(uE))dME‘

< CP(E,A)s?

In the inequality above, 2, is a suitably defined quadratic form, vg is the horizontal
normal to OF and ug is the perimeter measure. In fact, all these objects are proved to
exist in our minimal hypothesis.

The goal of this work is to understand whether a generalization of Theorem 0.1 is
possible, and, in this case, to provide it: this would in particular give a general second
variation formula for the H-perimeter of sets with no regularity assumptions. Actually,
in the thesis we show that such a result hold; it is the following

Theorem 0.2. Let E be a set with finite H-perimeter in an open set A C H", with
horizontal normal vg. Let W : [=§,0] x A € H", 6 = 0(¢, A), be the contact flow generated
by v € CX(A). Let dy(vp) = Zy(vg) + 4(n+ 1)T%. Then there exists C = C(¢, A)
such that

’P(WS<E)7\IIS(A>> — P(E,A) —l—s/Aﬂdj(yE)dME
_ 32/A <¢7w(l/E) - (ész(VE))Q + 32((n + 1)T¢)2 + diV(JVwV¢)>d#E‘ < CP(E,A)s".

In the above formula, ., is another quadratic form. Theorem 0.2 is the new and original
contribution of my work.

The thesis is divided in two chapters. In Chapter 1, we first introduce Heisenberg
groups and H-perimeter, and illustrate some of the most important related known facts.
Then, we discuss area formulas for sets with some regularity, and we deduce standard first
and second variation formulas for the H-perimeter of these sets. Examples of minimizers
are provided too. A particular focus is on the issues of these formulas, concerning mainly
their lack of sense in absence of regularity assumption. The main reference is [12].
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Chapter 2 is devoted to contact diffeomorphisms and variation formulas by means of
these deformations. In particular, Theorem 0.2 is proved in its full generality. This chap-
ter is organized as follows. In the first part, we introduce contact diffeomorphisms, and
prove the properties and characterizations that are needed to build variation formulas.
The notion of contact maps is not new: it was introduced in [11] for different purposes.
However, along this part of the thesis contact diffeomorphisms are described in a simple
way adapted to best suit our setting. After that, we proceed to prove Theorem 0.2. The
proof goes in the following way: we prove such a theorem first assuming C'*° regularity
OF N A, then, we drop this regularity assumption using the fact that the "relevant" part
of the boundary of a set with locally finite H-perimeter is H -rectifiable: a fundamental
property, introduced in [9], analogous, in Euclidean setting, to standard rectifiability. The
proof proceeds by approximation, and is based on the techniques used by R. Monti and
D. Vittone to prove Theorem 0.1.

Theorem 0.2 could have several applications, that can be object of future works. For
example second variation formulas were the main tool used in [3] to give a positive answer
to the Bernstein problem (the problem of understanding whether minimal global graphs
must have affine parametrizations) assuming C? regularity of the parametrization of an
important class of sets, the sets with intrinsic Lipshitz boundary, described also in this
thesis, Chapter 1. However, those variation formulas cannot allow to extend deeply that
result, because of the already remarked lack of meaning when regularity assumptions are
dropped. Theorem 0.2 could then be used, for example, to the study of the Bernstein
problem in the most general setting.

In general, many results about minimal sets in H" are proved to hold only under
regularity assumptions or other hypothesises made to ensure integrability of variation
formulas, for example, about the structure of a particular subset of the boundary of a set
called characteristic locus; the robust integrability of these new variation formulas do not
need such requests, and could then be useful to generalize results of this type.

Acknowledgements: I am deeply grateful to my advisor R. Monti for having intro-
duced me to this exciting field of Mathematical Analysis and for having followed me along
these months with great competence and extreme patience. I thank also D. Vittone who
let me consult his personal notes fundamental to prove Theorem 0.2 in the general case.

I thank my family and my friends, always on my side, and finally, a special "grazie di
tutto!" goes to Elisa.






Chapter 1

Heisenberg groups and H-perimeter

1.1 Heisenberg groups

We define the Heisenberg group of dimension 2n+ 1 as the manifold H* = C" x R endowed
with the group product

o HP x H® — H™
(Zl,tl) . (Zz,tg) = (2’1 + 29,11 + 1o+ 2§<Z,72>),

where 21,20 € C", t1,t, € R and (21, %) is the standard scalar product in R*"; by & we
mean the imaginary part. It is straightforward to see that (H",-) is a non-commutative
Lie group, where the identity element is (0,0) and the inverse element of (z,t) is (—z,t).
We will always identify C* with R?", and then H" with R?>"*!. The group product is
defined accordingly.

Let p = (z,t) € H". We define the left translation by p as the mapping

L,: H" — H"
L,(q) =p-q.

The differential map of L,,, that we denote by JL,, is given by an upper triangular matrix
with 1 along the principal diagonal. In particular, its determinant is 1.

We show that the Lebesgue measure is the Haar measure of the Heisenberg group. We
denote by |E| the Lebesgue measure of £ C H".

Proposition 1.1. Let E C H", p € H". Then
|E| = |LPE‘7

that is, Lebesque measure is the Haar measure of H™.



10 CHAPTER 1. HEISENBERG GROUPS AND H-PERIMETER

Proof. Let, for any q € E, ¢* = L,q. By change of variable formula,

|LpE|:/ dqp:/detJLpdq:/dq:|E|.
LyE B B

P

Define now, for A > 0 the mapping
6>\ H® — H”
Sx(z,t) = (A2, \?).

We have that §, is an automorphism of H" with inverse d,-1, that ; = id, and, for
A1, Ag > 0,
5>\1 (5>\2 (27 t)) = 5>\1+>\2 <Z7 t)'

It means that {J)},>o form a 1-parameter family of automorphisms of H". Such auto-
morphisms are called dilations, and Lie groups endowed with a family of automorphisms
of this type are called homogeneous Lie groups. It is evident that det JJy = A9, with

Q =2n+2.

Such important number is called homogeneous dimension of H", and we get, mimicking
the proof of Proposition 1.1, that

0, E| = A\9|E)|.

1.1.1 Lie algebra on H"

We describe the natural Lie algebra of left invariant vector fields on H". We always identify
a smooth vector field V' on an open set A C H" both with a vector valued function in
C1(A,H") and a linear differential operator.

Definition 1.1. A vector field V' on H" is left invariant if
V(foly) =(Vf)oLy
for any p € H" and f € C>(H").

It is clear that left invariant vector fields form a Lie algebra on H": the Heisenberg
Lie algebra b,. In order to find a basis for h,, we prove the following characterization:

Proposition 1.2 (Characterization of left invariant vector fields). Let V' be a vector field
on H". The following are equivalent:

(i) V is left invariant.
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(it) V(p- Q) Ly(q)V(q) for any p,q € H".

(iii) V(p) = JL,(0)V(0) for any p € H".
Proof. We show that (i) is equivalent to (ii). Let f € C°(H"), p,q € H". We have that

(V(foLp))(a) = (V(f o Lp)(q), V(g)) = (Vf(Lp(q))J Ly(q), V(2)),

where by Vf(L,(q))JL,(q) we mean the standard product between a row vector and a
matrix. On the other hand,

Vifoly(q)=(VIip-0),V(p-q))
By the above equalities, we deduce that (i) holds if and only if

(Vf(Lp(a)JLp(q). V(a)) = (Vf(p- ), V(p-q))- (1.1)
Clearly condition (i7) implies (1.1), and thus (¢). Conversely, assume (1.1) holds. Since
it holds for any f € C*°(H"), choose f = EQ”H ;4;, for h; real constants and where by
¢; we mean the j-th component of ¢. Thus, lettlng h = (hi,...,hans1), We get
(h, JLp(q),V(q)) = (h, V(Lp(q)))

for any h € R*"*1 which implies (ii).
Condition (i2) follows by condition (iz) simply choosing ¢ = 0.
Assume now (7i7). Since it holds for any p € H", it holds also for p - ¢, that is:
Vi(p-q) = JLy4V(0).

By associativity of the group product we have L,., = L, o L,, and thus, differentiating
both sides of this equality, we obtain on the other hand

JL,.4(0) = JL,(q)JL,(0).
We obtain then
Vi(p-q) = JLy(q)(JLe(0)V(0)).

By condition (7i7), the above equality is precisely condition (iz), and the proof is complete.
]

We build a system of generators for the Lie algebra b, on H". Let (z,t) = (z1,...,Zn, Y1, - -

H". Then, we define, for j =1,...,n

0 J 8
0 0 0
Yi(p) i= JL,(0)=— = — — 22,—
J(p) J p(O) ay] ayj 'rj 8t
0 0
T(p) i= TL(0)5 = 1

These vector fields are left invariant by condition (4i7) of Proposition (1.1), and they are
linearly independent for any p € H"; thus, they span b,,.

Un,t) €
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Horizontal distribution. We define the horizontal distribution at a point p € H" as

H, = span{X;(p),Y;(p), i =1,...,n}.

A vector in H, for some p € H" are called horizontal vector. A vector field V' such that
V(p) € H, for any p is called horizontal vector field. The horizontal distribution, in fact,
suffices to generate the Lie algebra b,: indeed, denoting with [-,-] the Lie brackets, or
commutator, we have

X, Y] = —4T (1.2)

on H", for j = 1,...,n. All other commutators among { X, ..., X,,Y1,...,Y,, T} vanish
identically. Since it suffices just one commutator among the vector fields of the horizontal
distribution to generate the whole of h,,, the horizontal distribution is said to be bracket
generating of step 2. We write

Lie{X1,..., Xn, Y1,...., Y, } = b,.

Lie groups enojoying such a property are called Carnot groups. In particular, H" is a
Carnot group with 2n generators.

1.1.2 Metrics on the Heisenberg group

We want to construct a metric on H" by means, in a sense, only of the horizontal distri-
bution. We start with the following definition:

Definition 1.2 (Horizontal curve). A Lipschitz curve v : R D [a,b] — H™ is a horizontal

curve if
n

Y(t) =3 hi(t) X 4 hngs(1)Y;

J=1

a.e. in [a,b] for suitable functions h; € L*[0,1], j=1,...,2n.
We introduce the following notation for flows: let V' be a vector field on H", we let

R x H" 5 (s,p) — exp(sV)(p) € H"

be the flow of the vector field V' at time s starting from p € H”. One can readily check
that, for j =1,...,n,

exp(sX;)(p) = (1, ..., Tj + S, Tny Y1y - -+, Yno T+ 2y;5)
exp(sY;)(p) = (z1, ..., Tny Y1y -, Y + S, oo Un, t — 2255).
Clearly, the line flows starting from a point p € H" of horizontal vector fields are horizontal

curves. The key step to provide our metric is the fact that we can join any couple of points
with a horizontal curve, namely
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Proposition 1.3. For any p,q € H" there exists a horizontal curve v : [a,b] — H" such
that v(a) = p and v(b) = q.

Proof. We find such a + by composition of line flows of horizontal vector fields: notice
that, for j=1,...,nand s e R
exp(—sY;) exp(—sX;) exp(sY;) exp(sX;)(z1, ..., Tn, Y1, - -+, Yn, t)
=1y Ty Y1y - s Yyt — 417)

and

exp(sY) exp(sX;) exp(—sY) exp(—=sX;) (@1, .- T, Y1, - Y, 1)
:(1'1, e Ty Yty Yny U 4t2);
thus, we are able to find a horizontal curve joining any couple of point with the same first
2n coordinates.
Since we can also join any couple of point p,¢q with just the j-th component differing,
simply by exp(sX;)(p) if j € {1,...,n}, or exp(sYa,—;)(p), if j € {n+1,...,2n}, we are
done. 0

We can clearly deal, without loss of generality, only with horizontal curves defined
on [0, 1], up to a new parametrization. The following definition of Carnot-Carathéodory
distance is thus well-posed:

Definition 1.3 (Carnot-Carathéodory distance). For any couple of points p,q € H", we
define their Carnot-Carathéodory distance d(p, q) as

i) =i {200 = [,

where the infimum is taken over any horizontal curve «y : [0,1] — H" such that v(0) = p
and y(1) = q.

We omit the proof that the above defined function d is actually a distance. The Carnot-
Carathéodory distance satisfies the following property: for any p,q,w € H", A > 0, there
hold

(i) d(w-p,w-q)=d(p,q),
(43) d(0x(p),dx(q)) = Md(p,q).

The above equalities are respectively consequences of the left invariance of the horizontal
distribution and of the elementary identity

Xj(fodr) = AX;f)odx,  Yj(fodxn)=AY;f)odn (1.3)
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holding for any f € C*°(H"),A > 0,7 =1,...,n. In light of (i) and (i), the distance d is
said to be left-invariant and 1-homogeneous.
We introduce now the following homogeneous "box norm". Let p = (z,t) € H", we
define
Ipll, = max{], ]2}, (1.4)

Such function satisfies

(@) 18x(p) 1% = Alplls

.. b b b
(i) 1Ip - allo < 1Pl + llallo

and it is actually a norm on H". We define consequently the function

p:H" x H" — [0, 00) (1.5)

— b
p(p,q) = |lp~" - qllL.,

that is a distance on H". It is clear that also such distance is left invariant and 1-
homogeneous. We now show that the distances d and p are equivalent.

Proposition 1.4. There exists an absolute constant C' such that

C~Yd(p,q) < p(p,q) < Cd(p,q) (1.6)

for any p,q € H".

Proof. By left invariance and homogeneity of the distance functions involved, we claim
that there exists C' such that (1.6) holds for p = 0 and any ¢ € Bee(0,1) := {q : d(0,q) =
1}. Indeed, once proved such a claim, if d(0,q) = XA > 0, letting ¢ € Bee(0,1) such that
0r(G) = q, by 1-homogeneity we have

CTAd(0,01(9)) < Ap(0,0x(9)) < CAd(0,6,(q)),

and then, if p, ¢ are arbitrary in H", by applying the chain of inequalities to (p-0, p-(p~*-q)),
and by left invariance of the metrics, we are done.
Let

M :=sup{p(0,q) : ¢ € Bcc(0,1)}, m :=inf{p(0,q) : ¢ € Bec(0,1)}.

We have that 0 < m, M < +o00, by compactness of Boo(0,1) and the fact that d(0, -) and
p(0,-) are continuous and strictly positive functions in H™ \ {0}.

Let finally C' = max{M, 1/m}, and notice that our claim is true for such a choice of
C. O

For a more comprehensive introduction to Heisenberg groups in the more general
setting of stratified Lie groups, see [5].



1.2. H-PERIMETER 15

1.2 H-perimeter

We introduce a notion of perimeter in Heisenberg groups analogous to the standard Eu-
clidean perimeter (see [8]) but taking into account the particular structure of H" and its
Lie algebra of left invariant vector fields.

Let V be a smooth horizontal vector field on A C H", A open. We express it using
the basis {X1,..., X,,,Y1,...,Y,, T}

v

3 (65X + InisY5),

1

<

for suitable functions ¢; € C*(A), i = 1,...,2n. We define its horizontal divergence as
follows:

divy V=" (X6 + Yidny)-
j=1

We are identifying a horizontal vector field V' with a vector valued functions ¢ € C*(A, R?").
Notice that, for p € H", letting ||-|| the norm on H, that makes X3, ..., X,,
Y1, ..., Y, orthonormal, we have

V)l = lo@);

where we denote by |-| the standard norm on R?".
The following definition is the starting point of the whole theory of minimal surfaces
in H", and has been introduced in [9].

Definition 1.4 (H-perimeter). Let A C H" be open, and let E C H" be Lebesgue mea-
surable. Then the H-perimter of E in A is

P(E,A) = sup { / divg ¢dp : ¢ € CH(A,R*™), ||8], < 1},
E

where by ||¢]|, we mean the standard sup-norm of ¢:

9]l = sup|o(p)].
peEA

We say that E has finite H-perimeter in A if P(E, A) < co. We say that E has locally
finite H-perimeter in A if P(E,A") < co for any open set A’ € A.

By left invariance of the horizontal distribution, and by equalities (1.3), one proves
the following elementary properties of the H-perimeter, with £ and A as in the above
definition, p € H", A > 0:

(i) P(L,E,L,A) = P(E, A)
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(ii) P(6xE,00A) = \¢"1P(E, A).
It is fundamental the following result:
Proposition 1.5 (Gauss-Green formula). Let E C H" be a set with locally finite H-

perimeter in A C H™ open. Then there exists a positive Radon measure ug on A and a
pur measurable function vg: A — R*" such that

/E divirddp =~ [ (6.ve)due (1.7)

A
for all € CH(A,R*™).
Proof. Consider the following linear functional T : C} (A, R**) — R:

T(9) :/EdiVHqﬁdp.

Since E has locally finite perimeter in A, for any open set A’ € A we have
T(¢) < 9]l P(E, A") (1.8)

for any ¢ € C}(A’,R*"). By density, T can be extended to a bounded linear operator on
C.(A',R*™) satisfying again (1.8). We finally deduce our result by Riesz’ representation
theorem (see e.g. [8]). O

With reference to the above result, we give the following

Definition 1.5. The measure pg is called H-perimeter measure, or perimeter measure,
and the function vg is called measure theoretic inner horizontal normal of E, or horizontal
normal.

We finally show that the perimeter measure pug(A) coincides with the H-perimeter of
E in A:

Proposition 1.6. Let E and A as before. Then for any open set A’ € A we have
pp(A'Yy = P(E,A).

Proof. Let A € A be open. By definition of H-perimeter, the inequality P(E, A") <
pe(A’) follows. We prove the reverse inequality by a standard approximation argument.
By Lusin’s theorem, we find a compact set K C A’ such that ugp(A’\ K) < € and vg
is continuous on K. By Urysohn’s lemma, we find a function ¢ € C.(A'R?*") such that
Y =vg on K and ¢, < 1. By mollification, there exists ¢ € C°(A’,R**) such that
|l — ]|, <eand ||¢|l,, < 1. Then we have, with this choice of ¢ and by (1.7)

P(EA) > / divg ¢dp = —/ (p,vp)dup > (1 —e)up(A’) — 2,
E

/

and by arbitrariness of € we conclude.
O

More explicit expressions for the horizontal normal and the perimeter measure will
appear later.
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1.3 Area Formulas

In this section we derive formulas for computing the H-perimeter of sets with some reg-
ularity. Our starting point is the area formula for sets with Lipschitz boundary.

1.3.1 Sets with Lipschitz Boundary

Let E C H" be a set with Lipschitz boundary. By Rademacher’s Theorem, the Euclidean
outer normal N to OF is defined 72" almost everywhere, where we denote by 72" the
2n-dimensional standard Hausdorff measure. But then also the vector field

Ny = <<X1,N>,...,(XmN>,<3/1,N>,...,<Yn,N>>.

is defined at ##*"-a.e. point of OF.
We have the following

Proposition 1.7. Let E C H" be a set with Lipschitz boundary, and N be its standard
Fuclidean outer normal. Let A C H" be open. Then

P(E,A) = / |Ny|ds#*", (1.9)
dENA
where Ny is defined above and |Ny| is its standard Euclidean norm.

Proof. We recall that, given ¢ € C}(A,R*"), then divy ¢ = divV, where V = Y7_, ¢, X;+
®n4;Yj. By standard divergence theorem and Cauchy-Schwarz inequality

/divH gbdzdt:/div\/dzdt:/ (V, N)dzdt
E E

oF

:/<9 i:¢j<Xj7N>+¢n+j<Y}>N>d<%ﬂ2n

E j=1

< [ D I¢lINglda™

OF j=1

thus, taking the supremum on ¢ with [|¢|| . < 1 we obtain that P(E, A) < [, |Ng|ds".

In order to obtain the reverse inequality, we approximate Ng/|Ny| by a C!(A,R*")
function with infinity norm less or equal than one. Let ¢ > 0. By Lusin’s theorem applied
to the measure | Ng|ds#?", we find a compact set K C OF N A such that

(/1 |Ahﬂdjf%1<iﬂ
(DENANK

and Np is continuous and different from zero on K. By Urysohn’s lemma, there exists
Y € C.(A,R*™) equal to Ny /|Ny| on K such that [|¢]| , < 1. Mollification then yields a
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function ¢ € C}H(A,R?") with ||¢]| . < 1and ||¢—1|,, < e. Then, for such a test function
¢, again by divergence theorem we have

P(E, A) > / divid = [ 3 050X, N) + by (V;, N)dA
E

OF k=1
> (1- e)/ Nygldoa™ — ¢
OENA

and we conclude by arbitrariness of e. O

Remark. The integral in formula 1.9 makes sense even if in place of 0E N A we have
a "surface' S which is not the boundary of a set. In this case, we prefer to call such
expression Areay(S).

Formula (1.9) allows us to write an explicit formula for the perimeter measure pp and
for the horizontal inner normal vg for sets F with Lipshitz boundary. Indeed, let £ C H"”

be a set with Lipschitz boundary, and ¢ € C!(H",R*"); then, by standard divergence
theorem and by Gauss-Green’s formula (1.7), we have that

/8E<¢, NH>djiﬂ2n = /EdIVH ¢d2dt = —/n<¢, VE>d/LE,

and so we get that

pg = |Ny|A#*"OE (1.10)
and
Ny
Vg = ———. 1.11

Our next task will be to exploit formula (1.9) to get area formulas for two important type
of sets. The simplest sets we deal with are the so called t-epigraphs:

Definition 1.6. Let D C R*" be open and let f: D — R be a function. Then we call the
set

E;={(z,t) e H*" : t > f(2),2 € D} (1.12)
the t-epigraph of f, and its boundary
gr(f) ={(z,t) e H*" : t = f(2),z € D}
the t-graph of f.

Then the area formula for sets with Lipschitz boundary we have just proved specializes
as follows:
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Proposition 1.8 (Area formula for ¢-graphs). Let D and f, Ef as in Definition 1.6. Let
also f be Lipschitz. Then

P(E;, D x R) = / V£(2) +22]d, (1.13)
D

where 2t = (z,y)* = (—y, ).

Proof. Since 0E;N(D xR) = gr(f), we can write its Euclidean outer normal N as follows:

N = (Vf7_1>2’
V1+I[VS
and thus, since
O, f — 2y; Oy, [+ 2x;
<N7Xj>:7]27 <N7}G>:y7]27
V14V V1+ V]
we get that
i
N, — |V f+ 22|

VI+IVIP

Formula (1.9) and standard area formula for graphs finally yield the thesis:

P(E;,D x R) :/

\NH]de%”Q”:/|sz+2zL|dz.
gr(f) D

The following sets are more subtle: we introduce intrinsic graphs.

1.3.1.1 Intrinsic graphs and intrinsic Lipschitz functions

In order to introduce intrinsic graphs and intrinsic Lipschitz functions, we define C}
functions and C}; regular hypersurfaces. Such notions will be fundamental also in the last
part of the thesis, when we will deal with H-rectifiability.

Definition 1.7 (C}; functions and horizontal gradient). Let A C H" be an open set. A
function f: A — R is of class C}(A) if

(i) feC(A),

(ii) the derivatives X1 f, ..., Xof, Yif,... Yo f exist in distributional sense and are rep-
resented by continuous function defined on A.

We define the horizontal gradient of a C}(A) function f as the vector valued function
Vauf e C(AR™) such that

Vuf=Xf . Xaf,Yaf, Yo f).
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Let now, for p € R,

Bee(p,r) ={q € H" : d(p,q) < r},

where d is the Carnot-Carathéodory distance in H"- The following is the natural adapta-
tion to our setting of the classical definition of smooth hypersurface:

Definition 1.8 (H-regular hypersurfaces). A set S C H" is a H-regular hypersurface if
for any p € S there exist r > 0 and a function f € C}(B(p,r)) such that

(i) SN B(p,r) ={q € B(p,r) : f(q) = 0},

(ii) [Vufl #0.

We can begin now to describe intrinsic graphs by a special but clearer case, that we
later generalize. Consider S C H" a C};- hypersurface such that S = {f = 0} with
f € CY and |Vgf| # 0. Assume that X;f > 0 locally, this is always possible up to a
rotation. Then S is locally a graph along X7; this is the idea lying behind the definition
of intrinsic graphs. Recall that the line flow of X; starting from a point (z,¢) € H", that
we denote

s+ exp(sXy),s € R,

is given by
exp(sXi)(z,t) = (2 + sey, t + 2y15),

where e; = (1,0,...,0) € R*™, 2z = (z,y) = (x1,...,Tn, Y1, ..., Yn) € R*™". We choose as
domain of initial points
W ={(zt) e H" : z; = 0};

we identify W with R?" and we will then give a point w € W coordinates w = (za, ..., T, Y1, . . .

We can now give the following

Definition 1.9 (Intrinsic graphs along X;). Let D C W, and let ¢: D — R be a function.
The set

Ey = {exp(sXi)(w) e H" : s > ¢(w),w € D}
is called intrinsic epigraph of ¢ along X,. The set
Gr(¢) = {exp(¢p(w)X1)(w) € H" : w € D},
is the intrinsic graph of ¢ along X;.

In order to provide an area formula for intrinsic graphs, we introduce the following
nonlinear gradient:

>ynat)'
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Definition 1.10. Let ¢ € Lip,.(D), where D C W is open, then the intrinsic gradient
of ¢ is the vector valued mapping

Voo = (Xag, ..., Xn, B, Yad,. .., Vno),
where B¢ is the Burger’s operator, defined as follows:

9¢ 9¢
Ph = 1 _ 4p—L
B ¢ 8y1 1 ot

By classic theorems on Lipschitz functions we have that V®¢ € L (D, R?*"~1).

loc
We can now state an area formula for intrinsic graphs. We define, for D C W,

exp(RX4)(D) = {exp(sX;) e H" : w € D, s € R},

the cylinder over D along X;. Since w — exp(sX;)(w) is a diffeomorphism, with inverse
w — exp(—sX7)(w), it is open; thus if D is open in W then exp(RX;)(D) is open in H",
and then it makes sense to consider P(Ey, exp(RX;)(D)). We have the following:

Proposition 1.9. Let ¢: D — R be Lipschitz, where D C W is open. Then

P(E,, exp(RX;)( / V14| Veoldw (1.14)

Proof. We work out the proof only in the case n = 1. The boundary of Ey, that is Gr(¢),
is parametrized by the function ®: D — R?

D(y,t) = exp(d(y, ) X)(0,y,1) = (¢, y,t + 2y9),

and thus we can compute the outer Euclidean normal
N - —<¢y /\ (I)t)/|¢)y /\ (1)t|
A direct computation shows that
0

P, NPy = (1+ 23/@)% + (209 — ¢y) Cbt
and thus . .y 5
|<I> |’ |<I> A Dy |D, A Dy

Then, by formula (1.7) and standard area formula we get

(N, X) =

P(E,, exp(RX;)(D)) = / | Ny |dA?

dE4Nexp(DX1)(D)

1 Bo)?
:/ 4 B A ldydt
o\ [0, A0 [0, A D,

_ / J1+ (BPo)2dydt.
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We now introduce an equivalent point of view for intrinsic graphs, that will allow us
to generalize Definition (1.9) to intrinsic graphs along any direction; we will then define
and briefly discuss intrinsic Lipschitz functions. We first give the following

Definition 1.11 (Vertical plane). For any v € R*", we call the set
H,={(z,t) e H" : (v,2) > 0,t € R}

the vertical half-space through 0 € H" with inner normal v. The boundary of H,, the set
OH, ={(z,t) e H" : (v,2) = 0,t € R},

is called vertical plane orthogonal to v passing through 0 € H™.

Notice that W = 0H,, and for w € W

exp(d(w)Xy)(w) = w - (p(w)es),

where by "-" we mean the group product on H"™. Thus, the intrinsic graph of ¢ along X;
can be equivalently defined as follows:

Gr(9) = {w - ((w)er) € H' : w € D},

nn

and it makes sense to write

D -R = exp(RX;)(D).
These observations suggest the following

Definition 1.12 (Intrinsic graphs). Let v € R* with |v| = 1. Let D C H,, and ¢: D —
R be a function. Then the intrinsic graph of ¢ is

Gr(¢) ={p-¢(p)(v,0) e H" : p € D}.

It is known by classic theory that standard graphs of Lipschitz functions are char-
acterized by the so-called cone condition (see for example [2]). The notion of intrinsic
Lipschitz function exploits this fact replacing standard graph with intrinsic graph and
standard cones with a new notion of intrinsic cones, that we are now going to define.

Let v € R* with |v| = 1, and identify it with (v,0) € H". For any p € H", let
v(p) = (p,v)v € H". We define v*(p) to be the unique point such that:

p=v(p) - v(p).
Definition 1.13 (Intrinsic cones). The (intrinsic) cone with verter 0 € H", axis v € R*",
lv| =1, and aperture o € (0, 00) is the set

C(0,v,0) = {p e H": [ @I < ol ),

where ||-||°. is the box norm defined in (1.4).
The (intrinsic) cone with vertex p € H", axis v and aperture « is the set

C(p7 v, Oé) =p- C(Ov v, a)‘
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We are ready to define intrinsic Lipschitz functions:

Definition 1.14 (Intrinsic Lipschitz functions). Let D C 0H, with v as above. Let L > 0.
A function ¢: D — R is called intrinsic Lipschitz of constant L if for any p € Gr(¢) there
holds

Gr(¢p)nC(p,v,1/L) =0,

where Gr(¢) and C(p,v,1/1) are defined respectively in Definition 1.12 and Definition
1.15.

To end this section, we state a theorem which extends the area formula (1.14) to
intrinsic graphs of intrinsic Lipschitz functions, that we call intrinsic Lipschitz graphs.
We need the following;:

Definition 1.15. Let D C W = R*" be an open set and let ¢ € C(D) be a continuous
function.

1. We say that B®p € L32(D) in the sense of distributions if there exists a function

loc

Y € LSS, such that for any test function 8 € C1(D) there holds

loc
06 06
Opdw = — | ¢— — 20°— dw.
/wa /L)¢ay1 ¢8t v

2. We say that V®¢ € L2 (D, R*1) in the sense of distributions if X1¢,...,X,0,

loc

Bo, Yoo, ..., Ya¢ belong to L32.(D) in the sense of distributions.

We have the following fundamental theorem; it is the final result of many contributions,
see [4] and [6]

Theorem 1.1. Let v = ey, D C 0H, be an open set and ¢: D — R be a continuous
function. Then ¢ is intrinsic Lipschitz in any D' € D if and only if V¢¢ € L (D, R*1)
in the sense of distributions. Moreover, in this case, for any D' @ D, we have

P(E¢,D’~R):/ V14 [Veo| dw.
D/

1.4 Minimality and Variation Formulas

We derive and discuss first and second variation formulas for the H-perimeter of t-graphs
and intrinsic graphs. Examples of minimizers are provided too.

To avoid ambiguity, we clear up some terminology: let A C H" be open, we say that
E is a H-perimeter minimizer (or simply a minimizer) in A if, for any F© C H" such
that EAF € A, we have P(E, A) < P(F,A). We call instead H-minimal in A any set
E such that the first variation of P(E, A) is 0. The precise meaning of this property will
thus depend on the functional and on the kind of variations we are using, and we will
point this out case by case. Of course if E is a minimizer it is also H-minimal, while the
converse is in general false, as we will see later in this section.
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1.4.1 Variation Formulas for t-graphs

Let D C R*, f: D — R be a Lipschitz function. Suppose that its t-epigraph, defined as
in (1.12) is a H-perimeter minimizer in the cylinder A = D x R. We define moreover

S(f)={z€D:Vf(z)+2z" =0}

The set X(f) is called the characteristic set of f, and, geometrically, it is the set of z such
that the point p = (z, f(2)) € OF belongs to X(JF), where

Y(0E) = {p € OF : T,0E = H,}.

First Variation. Let f and A be as above, that is, E = L, the t-epigraph of f, is a
minimizer in A. By (1.13), we have that

P(E,A):/D|Vf(z)+22L|dz:/D )\Vf+22L|dz.

\Z(f
By minimality of E, if ¢ € C}(D), then

/ IV f+ 2% S/|Vf+eV¢+22L|dz
D\X(f) D

:/ IVf+eVe+ 22+ |dz
D\X(f)

T / Voldz,
=(f)

for all e € R, and we call the above last quantity

szf@):/ IVf+eVo+ 2 dz + |e] | [Volde. (1.15)
D\X(f) 2(f)

Looking at the second summand of .@7;(e), we notice that in order to differentiate o7} (e)
in e = 0, for all ¢ € C}(D), we need the measure of X(f) to be 0. A condition ensuring
this is the C? regularity of f:

Proposition 1.10. In the same setting as above, let f € C?(D). Then its 2-dimensional
Lebesgue measure L2(X(f)) = 0.

Proof. A point z = (x,y) belongs to X(f) if and only the system of equations
d(2) = Vf(2) +22 =0

is satisfied.
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We claim that, for each zy € X(f), there exists a neighbourhood V' of zy in X(f)
contained in the graph of a C'! function, and thus, ¥(f) has measure 0.

By implicit function theorem, it suffices to show that there exists a non-vanishing
directional derivative of some component ®; of ® in 2.

We have that

|8y1<1)1(20)| + |6$1<Dn+1(20)| - |fx1y1 (ZO) - 2| + |f$1y1(20) + 2| 7é 0.

Hence, either 0, ®1(zp) or 0y, Pri1(20) is different from 0.
The C? regularity of f is used to ensure, by Schwarz, that fu,,, = fyiz,-

]
We assume hereafter f € C?. Then, differentiating 27, (e), we get

Vf+eVe+2:+5V
A (€) :/ < / 0 T ¢>dz; (1.16)

D\X(f) |Vf + eV(b + 2z ’

that, computed in € = 0, yields
Vf+ 225, Vo)

w’oz/ < ’ dz, ¢ € CHD). 1.17
7(0) s VS + 220 (D) (1.17)

This is a first variation formula for P(E; A); by minimality we have <7{(0) = 0 for all
¢ € C1(D). We stress the important fact that the formula actually makes sense for all
¢ € C1(D), even with support intersecting (). However, if we let ¢ € C1(D \ 3(f))
integration by parts yields

WAZECER VW
/D\zm dw(IVf n 2»;)‘”2 =0, ¢e€CHD\X(f)),

that, by the Fundamental Lemma of Calculus of Variations, is equivalent to the H-minimal
surface equation for f, that is

92 1
div(%) —0, zeD\X()) (1.18)
Then a t-epigraph Ey is H-minimal if f solves (1.18). Notice that this PDE makes (classic)
sense only if f belongs at least to C2.

After the derivation of a second variation formula for the perimeter of t-epigraphs, we
will clear up the relation between the H- minimal surface equation and the property of
being a minimizer.
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Second Variation. In this paragraph we work out the easiest example of second vari-
ation formula for the perimeter functional. We will get it deriving twice expression (1.15)
for o7(€). Recall that f € C?. Diffentiating (1.16) gives

) (Vf+eVo+2:4,V6) Vol
Jyf (6 - / o 3 1 <5
D\SK(f) IVf+ep+ 224 IVf+ed+ 224
that, computed in € = 0, becomes
<Vf + 22+ V¢>2 Vo[
Moz/ — : dz: ¢ C{(D\X(f). (1.19

The above expression is the second variation formula for t-epigraphs. Notice that, unlike
first variation formula (1.17), (1.19) is not defined if supp(¢) N X(f) # 0, since the
integral may diverge: this second variation formula will give us information only outside
the characteristic locus. We will see that this problem will be by-passed introducing
variations by flows of contact diffeomorphisms, studied in the next chapter.

Anyway, minimality of E implies

2{(0) 20, ¢€C(D\Z(])).

It becomes thus interesting studying the sign of the second variation formula; for example
if f is such that (1.18) holds, but with &{'(0) < 0 for some ¢ € C}(D \ X(f)), then Ej
would not be a minimizer, although being a H-minimal set.

In general, H-minimal sets for which the second variation formula is negative for some
test function are called unstable. Minimal sets for which this phenomenon does not occur
are said to be stable.

In the case of t-graph, we have the following

Proposition 1.11. Let f € C?(D). Then the second variation formula (1.19) is strictly
positive for all ¢ € CX(D). In particular, H-minimal t-graphs are stable.

Proof. Cauchy-Schwarz inequality gives

(Vf+2:4,V9)

S S Vo), (1.20)

and this is an equality if and only if Vf + 22+ and V¢ are proportional, that is, if and
only if there exists A # 0 such that

VF 420 = AV,

or

V(f =) = =227 = (2y, —2u).
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with z = (z1,...,2,), ¥ = (¥1,-..,Yn). But this is would imply that the 1-differential
form 2ydx — 2xdy is closed, but it is not. Then (1.20) is a strict inequality, and thus the
argument of (1.19) is strictly positive. O

The good behaviour of the area functional for ¢-graphs is in fact an instance of the
convexity of the integrand

L,: R™>v v+ 227 €R;

this allows to prove that indeed a H-minimal epigraph is actually a minimizer: let Ey-
be a H-minimal epigraph, that is, let f* be a solution of (1.18). Let E; be another ¢-
epigraph. Both f and f* are assumed to belong to C*(D), with D € R**. Let A = D xR.
Assume that f = f* on dD. Then

P(E;, A) — P(E;., A) = /D o AT LT
VL.(Vf),(Vf—=Vf*))d
z/mm< (V) (VF = V))dz

B [ V() 22t )
=" /D\zm dw(\Vf*(Z) n 2zL|><f )z
— 0,

where the inequality is due to convexity.

1.4.2 Variation formulas for intrinsic graphs

Recalling definions of Subsection 1.3.1.1, let W = {(z,t) : 21 = 0}, D C W be open
and ¢: D — R be an intrinsic Lipschitz function such that E, is a minimizing intrinsic
epigraph along X;. We have by formula (1.14) that

o (¢) := P(Ey, D -R) :/D\/l + | V99| dw.

Hereafter in this paragraph, we denote by f, the partial derivative of a function f in the
variable x.

Notice the following important phenomenon: let ¢ be as above and ¥ smooth; then
formally we have

B (¢ + ) = B(9) + BY(¢) — 4(dwr + ¥6y), (1.21)

and the strict intrinsic Lipschitz regularity of ¢ doesn’t ensure that ¢, is (in distributional
sense represented by) a LS. function. This would cause the divergence to oo of &7 (¢ + 1))
even for a small smooth . This is one of the motivations for building a more precise kind
of variations.

However, this phenomenon is prevented assuming the (standard) Lipschitz regularity
for ¢.
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First Variation. Let thus ¢ € Lip(D): by minimality of £, we have

=0, ¥ eCHD) (1.22)

e=0

d
iﬂ((ﬁ + €y))

We compute the left hand side of (1.22).
By (1.21), we have

VD (4 ) — (X2<¢+ ), Xl + €p),
BY () + B (1)) — Ae(¢u)):, (1.23)
Yo(¢p+€), ..., V(o + (—:1/1)),

where B?(e)) = eh, — 4€®yp1),. The derivative with respect to € of (1.23) is

d
(Vo + ) = (Xath, . Xty — Sy — A(@0)e, Ytb, .. Vo)),

and so

d
%W@ﬂL ) =

/ (V6 4+ €0), (Ko Kb,y = Sty = A(0)e Vo Vo)) (12)
D V1+ V96 + Vebey? ’

that, computed in € = 0 gives the following first variation formula for (Lipschitz) intrinsic
graphs, that we impose to be equal to 0 by the minimality of Ey:

/ (V20 (Xaw o Xty = 4(00)0 Yo, Vo)) Y € CHD)
D | C |

V1+[vegl®

If we assume also the C? regularity of ¢, we can integrate by parts with no boundary
contribution the above expression and obtain the following minimal surface equation for
intrinsic graphs:

) ) B¢ n X0 Yo
— = | —7——=+)> X;| —— | +YV;| —L——]=0. (1.25
(5 %JW % (m) (W> o

In H', formula (1.25) specializes as follows:

B? (8% ) =0,
1+ |Bg|”
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that is
é é ® @ B¢¢B¢ B¢¢>
B (B ¢)\/1+ ’B ¢’ - B ?b\/m B¢<B¢¢) _
L+ B/’ (LBl

solved if and only if
B*(B%¢) = 0. (1.26)

Notice that affine functions of the form ¢(y,t) = yk + ¢ for constants k,c € R trivially
solve (1.26), that is, they are H-minimal intrinsic graphs in H!.

Second Variation. We start computing a second variation formula deriving expression
(1.24). We obtain, for ¢ € C}(D)

2

— A (p+ ) =
/ ( (VO + ), (Kot .., Xuth, b, — Bty — A(G0), Yo, .., Ydh))

B 3/2

’ (1+1ve (o +en)P)
e Gas L CL (0
V14 (Ve (g4 ep)
<V¢¢+Ve¢(e¢),(O,...,0,—8wwt,0,...,0)>>
+ dw
V14 Vot (g 4 ep)f

that, computed in € = 0, gives the second variation formula for intrinsic graphs:

— (P + e) _
[ ( ((990), (Xaw, ..., Xoh, oy — 4o0)0, Yoo, Vo))
o 3/2
D (1+1veaP)

(1 + V¢¢)2‘(X2¢a s aanv ¢y - 4(¢w)t> Y?¢7 te ,an)

(1 R |V¢¢|2>3/2
BPp(—84y) )
+ (1 L |V¢¢|2>3/2 dw.

‘ 2

+
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In H', the above formula assumes the form

d
$%(¢ + €v) B

[ SEP = A0+ (L (BN = U + B0
> (1+ (Bo)2)2
[ G o0+ U+ BB,
> (1+ (Beg)) |

Exploiting again the C? regularity of ¢, we can integrate by parts with no boundary
contribution and obtain, by minimality of Ey, the following condition:

(b, — 4(¢))? 50 B
/D (14 (B2¢)2)3/2 4y ot ((1 + (B?¢)2)1/2

)dw >0 € CHD). (1.27)

We immediately see that solutions to the minimal surface equation (1.26) of the affine
form ¢(y,t) = yk+c satisfy the above condition (1.27); in fact, they are H-perimeter min-
imizing. To prove this claim it is enough to proceed by a standard calibration argument
after noticing that the horizontal inner unit normal to 0Es = Gr(¢)

B®
v <\/1+18¢¢)2’_\/1+(2¢¢)2> - <\/1irk2’_\/1]i’f2>

is constant and in particular divergence free.

We can then ask whether, as in the case of t-graphs, every solution to (1.26) actually
parametrizes a minimizer, and, in particular, whether H-minimal intrinsic graphs (1.14)
are always stable or not. We show that the answer is negative.

Consider indeed the intrinsic epigraph Ey whose boundary is parametrized by the

function
yt

W =R? t =

eR

One can check that B?(B?¢) = 0, i.e., F; is a H-minimal set. However, it is proved in
[3] that affine functions are the only C? entire functions (that is, defined on the whole
R?) parametrizing intrinsic H-minimizing epigraph in H'. In particular, E, is unstable.
The problem of understanding whether entire parametrizations of perimeter minimizing
set must have an affine form is known in literature as the Bernstein problem.



Chapter 2

Variations by contact
diffeomorphisms

Along the discussion of variation formulas for intrinsic graphs (see Section 1.4.2), we got
the first clue that standard variations (of “4-€1) type”) are not suitable variations to use in
H" to obtain general results: regularity assumptions were necessary to control convergence
of area functionals. The reason is the following: in general, finiteness of H-perimeter is
not preserved under diffeomorphisms.

We build here an explicit example of such a phenomen.

Example. Let p; denote the i-th coordinate of a point p in H". Let, for j € N

S;i={qeH" : |(q1,)| <rjq =1/},

where 1
rj=-— a>0.
J

Consider thus the following set S in H!; it is a pile of circles with centres on the t-axis:

S = U Sj.
j=1

We compute the H-area of S in H' making use of (1.9); let N7 be the Euclidean normal
to S;; we have that N7 = (0,0,1), so that |N};| = 2¢/2? + y2. Thus, by area formula

Areay(S) =Y Areay(S;) =Y [ N4 =Y ] (/ 2rd%1>dr
j=1 j=175; j=1J0 [(z,y)|=r

4 =
=—mT)y r.
372

Let now ¥: H" — H" be the rotation that maps the t-axis on the z-axis; it is of course
a diffeomorphism, of the simplest kind.

31
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Letting N% be the Euclidean outer normal to ¥(S;), we have N¥i = (1,0,0) and
then |Np/| = v/2. Thus

AreaH(\I/(S)> = iAreaH(\If(Sj)) _ \/5/0717 ordr = \/57727“]2

It suffices then to choose 1/3 < a < 1/2 in the definition of r; to have Areay(S) < oo
and Areay (\I/(S)) = +o00.

2.1 Contact diffeomorphisms

The suitable class of diffemorphisms preserving the finiteness of H-perimeter are contact
diffeomorphisms. They have been introduced in [11] for different purposes.

Definition 2.1 (Contact diffemorphisms). Let A C H™ be an open set, let
U: A — U(A) C H

be a C* diffeomorphism. Then ¥ is a contact diffeomorphism if, for any p € A, the
differential
JU . TpA — T@(m‘l’(z‘l)

1s such that
JU(Hy) = Hu). (2.1)

Notice that, actually, the linear diffeomorphism used in the example above is not a
contact one.

We show now that contact diffemorphisms fulfil our requirement: they deform sets
with finite H-perimeter into sets still with finite H-perimeter:

Proposition 2.1. Let E C H" be a Lebesque measurable set, A C H"™ be open, such that
P(E,A) < o0,
Let U: A — U(A) be a contact diffeomorphism with compact support in A. Then
P(U(E),¥(A)) < occ.

Proof. Let ¢ € CL(U(A),R*"), with ||¢||,, < 1. Then, by the change of variables p = ¥(q),

/W o = / (divr(6))(¥(g))|det. T (q)|da.

E
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We can suppose that A is bounded. Write ¢ = (¢po U)o U~ and let p = ¢ o U. Thus,
there holds

(divy ¢)oW = (ZX] pjol! +Yj(pn+jox1r1))ox1/ =3 (Vp, JUT' X)) +(Vp, JUY)),
7j=1

j=1

and thus, since ¥~! is a contact diffemorphism, there exist smooth functions f;, j €
{1,...,2n}, such that

(divey ¢) o UldetJU| = 3 f;X;0; + fursYin;.
Write, for arbitrary K; € R,

[iXip; = Kij(f[ij> — (X3 fi)pjs

J

. JntiPn : '
Furid¥ips = Kuss¥i (722D ) < (Vifuidonsss G= 1o
n+j

Now, for K large enough

2n N2

Z (f]p]> <1,

j=1 Kj

and notice that K; can be chosen not depending on p since ||p||,, < 1. Thus, we can

find K = K(¥, A) such that the function ¢ € C!(A, R?") defined by the components
Yv; = fip;/ K satisifies ||p||, < 1. Finally, we have

‘/ (diva( ))o\I/|detJ\I/|dq <K‘/d1vH1/qu‘ ’ Z (X350 + (i/jfn+j)pn+j)dq‘

gK‘/divadq‘JrO,
E

where C' = C(¥, A) and K = K(V, A). We have used again the fact that ||p||, < 1. By
taking the supremum on ¢ and recalling that P(E, A) < 400, we conclude. O

In order to get general variation formulas, we want to deform our sets under a flow
{WU}ser of contact diffeomorphisms. Then, we need to know the structure of vector fields
generating such contact flows.

Before to proceed with a structure result for these contact vector fields, we define the
following differential 1-form:

00 = dt + QZI‘de] — yjdflfj.

J=1
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Such form will be useful because of the following characterization: it is the unique differ-
ential 1-form in H" such that

(2.2)

We are ready to characterize contact vector fields:

Theorem 2.1 (Characterization of contact vector fields). Let V' be a vector field defined
on A C H". The following are equivalent:

(i) Vis a contact vector field, that is, it generates a flow of contact diffeomorphisms.
(i) The following holds:

V. X;l(p) € H, and [VYjl(p) e Hy, peA j=1...n

(1ii) There exists 1p € C*(A) such that
V=V =T+ (Yi)X; — (X;0)Y; (2.3)
=1

Proof. We prove first that (i) = (i).

Let {W,}ser be the flow generated by V. Then, by definition of contact diffeomor-
phism, J(V),X;(p) € Hy, (), with p € A. Hereafter in the proof we will omit dependency
on p. But then, by the property (2.2) of 6., we have that

V0,(X;) = 0.(JU,X;) =0, s€R, (2.4)

where, by V*6. we mean the pull-back of 6. by V,. Hence, differentiating (2.4) with
respect to s, we obtain

0 _, P
0= 2 W0.(X,) = 0. 5-(JU(X)), sER, (25)
Now, recalling the definition of the Lie derivative Ly U of a vector field U along a vector
field W,

0
—JU X
0s J

and so, computing (2.5) in s = 0,

s=0

0.([V, X;]) = 0.

But this means, again by (2.2), that [V, X] is horizontal. A completely analogous argu-
ment for Y; completes the proof of (ii).



2.1. CONTACT DIFFEOMORPHISMS 35

Assume now (i7). We claim that (i) holds. We have at s =0

0

S V(X)) = 0.([V, X;]) = 0.
5=0
We also have for any s € R
0
—U0.(X;) =
as s ( ]) O
Indeed, by the property of flows,
\I/;—JQC(XJ') = QC(J\I/5+5(Xj))
= 0c(J (V50 U,)(X;))
=0.(JVUsJU, X))
= \IJE(J1/’SXJ)
= UIU5(X;),
and so
Os ° §—0 ) S\ 6—0 )
* 8 *
— Wﬁ(as‘l’s&c(Xj) s:0> 0.

This means that 6.(JV,X,) is constant in s, but since ¥y = id and 6.(X;) = 0, we
conclude that
0.(JU,X;) =0 seR,

that is, JW,X; is horizontal. Repeating these computations with Y; in place of X, proves

(4).
We show now that (i7) is equivalent to (ii7), completing the proof. Recall that, with
f scalar valued function, U, W vector fields,

(U W] = f[UW] — (W)U. (2.6)

Write V' of our statement as follows

V = Zquj +’Uj§/j —f- ZT,

j=1
for suitable smooth functions u;,v;, T, j = 1,...,n. Then, recalling that the only non-
vanishing commutators among X;,Y;,T are [X;,Y;] = —4T, and making use of (2.6), we

get that the T-component of [V, Xj] is

[V, Xjlr = 4v; — Xz (2.7)
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and the T-component of [V,Y]] is
V,Y))r = 4u; + Y;z. (2.8)

Now, (ii) holds if and only if (2.7) and (2.8) vanish. Thus, defining ¢ := z/4, we are
done.
[l

Finally, we prove the following important property of contact diffeomorphisms: they
are (locally) Lipschitz in the Carnot-Carathéodory metric of Heisenberg groups. We call
such functions H -Lipschitz. Namely

Proposition 2.2. Let d be the Carnot-Carathéodory metric on H" of Definition 1.3. Let
A C H™ be open, and let V: A — W(A) be a contact diffeomorphism. Then, for each
subset K € A there exists L > 0 such that

d(¥(p), ¥(q)) < Lx d(p,q)
for every p,q € K.

Proof. Fix K @ A, and let p,q € K. Let v € C*([0, 1], K) with v(0) = p and (1) = ¢ be
a horizontal curve, that is, there exist functions h;, j = 1,...,2n, such that

=Y hiXj+ hnyjY.

j=1

Let € > 0. We can assume, by definition of d, that

Liy) = / h < d(p.g) + e, (2.9)

where h is the R?"-valued function with components h;.
Consider now 4 := W o . We have 7(0) = ¥(p) and (1) = ¥(q). We claim that 7 is
a horizontal curve. Indeed,

F=JUy=JUY hiX;+ hny,Y;
j=1
=Y hiJUX; + hyyj JVY
=1

=1k

<

NE

(hjfjk + hn+jf(n+j)k)Xk + (hjfj(n+k) + hn+jf(n+j)(n+k))yk’
1

<

for suitable regular functions f;; with 4,7 = 1,...,2n; we have used the definition of
contact diffeomorphisms (see (2.1)) in the final equality.
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Let now h be the R?"-valued function whose k-th component is

he =Y (hjfjk + thrjf(j—i-n)lc);

J=1

in this way 4 = 27, hy X, + l~1n+kYk.
Since there exists C'x > 0 such that

sup |fij(x)] < Ok < o0,
zeKi,je{l,....2n}

we deduce that there exists L = Lg such that
k| < Lglhl.

This implies that

AT (p), W(g) < L(3) = / Bl < Li / B = LiL(7) < Licd(p. q) + Lice.

where we used (2.9) in the final inequality. We conclude by arbitrariness of e. O

2.2 Variation formulas: the smooth case

We obtain variation formulas folr the H-perimeter in an open set A of a set £ C H" by
a Taylor formula for P(V(E), Ws(A)), where {U }cr is a contact flow. We compute its
first and second term in order to get first and second variation term, respectively.

We need a Taylor expansion, up to the second order, of the Jacobian determinant

JYV:R—=R
s FU(p) = /det(JU,) 5 0 JU,|on(p),

where {U} g is any flow of diffecomorphisms in H" and p € E N A.
We prove here such a Taylor formula up to the first order; the second order will follow
easily from this proof and it is postponed to Subsection 2.2.2, where it will be needed.

Lemma 2.1. Let E C H" and A C H" be an open set such that OE N A is a smooth
hypersurface. Let p € OE N A. Let {U}ser be a flow of diffemorphisms in A , generated
by the vector field V. Then

Uy (p) = F0,(p)(divV(¥y(p) = (JV N, No)(W,)(p) ) (2.10)

where Ns(U4(p)) is the standard Euclidean normal to W,(OENA) at Vs(p) and JV is the
Jacobian matriz of V.
In particular,

FV(p) =1+ s(divV — (JVN,N))(p) + O(s*) (2.11)
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Proof. Let

F:R* > D — R
be a C' function such that 9F N A = {F(z) € R*™' : z € D}. Consequently, ¥ (0E N
A) ={V,(F(z)),z € D}. Fix on 0EN A a frame of tangent fields Uy, ..., Us,. For s € R,
JU Uy, ..., JU Uy, is a tangent frame to W (OFNA). For s € R, g = Wy(p) € U, (OENA)
the symmetric square matrix ¢°(¢) be defined by

95(q) = (JUUi(p), JUUj(p)),

where i, j € {1,...,2n}, and where by (-, -) we mean the standard scalar product in R***1.
We also let g = g¢°.
We claim that:

FU(F(z)) = y/det eWLED) - pser (2.12)

det g(F'(x))

By the standard area formula, we have

AU (DE N A)) = /D Jdet g*(F())dz

on the other hand, by the change of variable formula, and again the area formula

APWOENA) = [ v (pan /D S0 (F(2))ydet gy (F () do,

AENA
and thus

/D\/detQS(\I’s( dx—/ IV (F(x))\/det g(F(x))dx. (2.13)

Repeating the above arguments for arbitrary subsets of W (OF N A), we get that in fact
(2.13) holds for arbitrary subsets of D, and this implies the validity of (2.12) pointwise
in D, for any s € R, proving our claim.

Next, we compute the derivative of s \/det 95;(Ws(F(x))), for fixed x € D. We can
assume, for p = F(z) € OFE N A fixed, that {JV,Uy(q), ..., JVUs,(p)} is an orthogonal
family. This implies that g;,.(p) = (JYUk(p), JYUk(p)) for k = 1,...,2n, while all other
entries vanish. At the point p, we have

) o |2 59k _ det Vdetg* & 590
—/det g5 = — g, = ( ) Os as . (2.14)
Os 0s kl;ll e 2\/detg Z 119 Gik 192:1 ek

where,

2 0ia0) = SATELD), JEL D) = 200 (o) Uip), JE.Ui ()

2<J(V o \Ijs>Uk(p>7 J\IlsUk(p»
2JV IV Uy(p), JU,Ux(p)).
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Thus, since {JUU;(p), ..., JUUs,(p), No(¥4(p))} is an orthogonal basis of R*" ™ we get

2n 0

n (VU JU.U,
Z 8sgkk — <Z < k(p)7 . k(p)> + <JVN5,N5> o <JVN3,NS>>
=t Jkk P | JVU(p)| (2.15)

=2(divV = (JVN,, N.) ) (W (p)).

Formula (2.10) follows from (2.12), (2.14) and (2.15). Taylor formula (2.11) is straight-
forward. ]

2.2.1 First variation formula

Before to proceed with the derivation of first variation formula, we define the following
real quadratic form. Let ¢ € C*(H"), p € H".

gw’ H — R
v o= Zy(v Zu u; X; Y + ujw (Y Y0 — X;X00) — ww,Y; X,

2%

where 1 and its derivatives are evaluated at p. We identify a horizontal vector field
v = Y5 v; X 4 vny;Y; with the vector (vi, ..., Un, Upi1, ..o, V) € R?”,

We are ready to state and prove the following important theorem; we postpone its a
discussion at the end of the proof:

Theorem 2.2. Let A C H"™ be an open set, and let E C H"™ be a smooth hypersurface
with finite H-perimeter in A, and let vg be horizontal normal. Let W : [—6,0] x A — H",
d = 6(V, A), be the contact flow generated by v € C*°(A). Then there exists a constant
C = C(¢,A) such that

P(V,(FE),V,(A)) — P(E,A) + s/A (4(n + )Ty + o%(uE))dgE‘
< CP(E,A)s?

(2.16)

for any s € [0, 4].

Proof. We introduce first some notation. Let Ey = U (FE), and A; = U (A). Let also N
be the Euclidean unit normal to 0E N A, N, be the Euclidean unit normal to 0F, N A,.
Define then
K=
J

o=

1/2
(X5, NP+ (%, M)

M= L=

1/2
(X, N,)? +<Y3,N5>2) .

1

.
Il
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Thus, by formula (1.9) (notice that Es N Ay is a smooth hypersurface), we have
P(E,, A,) = / K, dA™".
OEsNA,

By the change of variables formula,
/ Ko d*" = KoV, ZV.d".
OEsNAs OENA

We will get (2.16) from the Taylor expansion (in s) of Ko W, and #V,.

In the sequel we will often write Ny in place of Ny(U;) and, consequently, K in place
of K4(¥). We will omit dependency on p € 0F N A.

We compute the derivative of K with respect to s, and we start by computing the
derivative of Ny with respect to s, that we indicate with N!. Fix a frame of vector fields

Vi,..., Vs, tangent to OF N A. Thus, (J‘IlsVl, ey J\IISVQR) are tangent to 0F, N A, and
S0

(JUVi,N)=0 i=1,...,n.

Differentiating the above identity yields with respect to s yields
(JVyJU Vi, Ngy + (JUV;, N.) =0, i=1...,2n, (2.17)

where V, is the contact field generating the flow WU, taking thus the form (2.3). On the
other hand, differentiating with respect s the identity |N,|* = 1, we get

<N;’NS> =0,

that is, V] is tangent to 0 N As.
We deduce that, letting V) be the derivative of N] at s =0,

2n 2n
Ng =D Vi, Ng) = = > (JVyVi, N)Vi
i=1 =1
2n ) (2.18)
=—> (Vi, (JVy) NV,
=1
= ((JVy)*N,N)N — (JVy)"N,

where the second equality is due to (2.17) computed in s = 0. By the property of flows,
one can prove that (2.18) holds for all s € R, that is

N, = (JVyNs, Ng) N, — JV,; Ns. (2.19)
Let W be a smooth vector field in H", and define

FW(S) = <W7 Ns)(qjs)
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Then
Fyy(s) = (JWVy, No) + (W, N),

that, by (2.19) and the definition of the adjoint map, becomes

Fly(s) = (JWVy — JVyW, N + (JVyN,, No) (W, N,)

= ([Viy, W], N} + (JVy Ny, N (W, N,). (2.20)

We are ready to compute the derivative of K, o W,. By definition of contact diffeomor-
phism, K (p) # 0 if and only if K (W¥s(p)) # 0. Thus, assuming K (p) # 0, we get

dK, oW,

ds ZX N F, + (Y5, No) Fy, (s), (2.21)

SJ 1
that is, by (2.20) with W = X, and W =Y},

dK,o WU,

o = ATV N 3 (0 NV X (8 Nl il NG), (22

evaluated at V.
Notice that there exists C; = C (1), A) such that

’szo\IJS

< C1Kg; 2.2
ds =~ Ol S ( 3)

this is due to the characterization (i7) in Theorem 2.1 of contact vector fields: since
(X;, Ns) and (Y}, N;) are horizontal, the second summand of the right hand side of (2.22)
is homogeneous of degree 1 in (Xi,...X,,Y1,...,Y,).

Thus we can interchange integral and derivative in s:

a
ds Josna

Kso\psqusd%%:/ d (Koo W, 70, )doa™.
oEnA ds

Computing (2.22) in s = 0, and by (2.11), we get the following Taylor expansion for
K ,oW,:

1 n
KoV, U, = K + s(Kdiv Vo 22 2N, [V, X1+ Ny, [V, Y], N}) +O(s), (2.24)
i+

where we set Nx, = (X, N), and Ny, = (Y}, N) and where the function © is O(s?), for s
tending to 0.

Now, by definition, there exists Cy = Cy(¢), A) such that ©(s*) < Cys? for s € [—4, ).
However, we claim that we can find a constant C' such that,

0(s%) < OKs* +0(s?)
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In order to show this, we use the following fact. There exists a constant C3 = C3(¢, A)

such that

d*K o0 U,
ds?

Inequality (2.25) can be checked directly by expression (2.43) below, or can be deduced

by a homogeneity argument. Thus, by Taylor formula with Lagrange remainder, (2.25)

and (2.23), we have, evaluating K at Uy,

< G5 K. (2.25)

L&
2 ds?
where 0 <3< sand s <35 <s.

Hence, formula (2.24) reads

O(s?) =

s :gsz < CKss? = C((

s 5:5382> < COKs*+ 0(33),

K,oU, 7, = K (1—|—s(d1va—|— Zij Ny, Vi, X+ Ny, [Vie, ;). >>+0(52)). (2.26)

Routine computations give

>Nk, [V, X+ Ny, [V, Vi, N) = =2, (Nx,, ..., Ny,), (2.27)

j=1

where we used the form (2.3) of Vj,. Hence, by formula (1.11) for the horizontal normal
vg, and since 2y, is a quadratic form, we obtain

Z NX V. , + Ny [Vw,Y]] N> = —Qw(l/E). (228)
Now, using (1.2) div V,;, is computed as follows:

div Vy, = —ATv + i X;Yip — VX0 = —4(n + 1)T. (2.29)

=1
Hence, integrating (2.26), by (2.28), (2.29), and recalling (see formula (1.10)) that
pp = KA OFE,

we obtain formula (2.16).

Remarks:

(7) Formula (2.16) immediately yields the first variation of the area functional:

— _/A <4(n + )Ty + Qw(VE)>dﬂEa



2.2. VARIATION FORMULAS: THE SMOOTH CASE 43

(iid)

(iid)

and that, in particular, a (smooth, by now) H-perimeter minimizing set F in A
satisfies the necessary condition

/ (4(n )Ty 4+ Qw(uE)>duE — 0 forallh € C(A).
A

However, formula (2.16) is something more. It gives the exact estimate of how
the first variation approximates the difference |P(V (E), Vs(A)) — P(E, A)|, that is
O(s?), and it shows that it is controlled also by P(E, A).

Notice that the objects appearing in formula 2.16 make sense also in the minimal
hypothesis of just finiteness of the H-perimeter of F in A. Indeed, recall from
Proposition (1.5) that the horizontal normal vg and the perimeter measure g do
exist assuming only finiteness of H-perimeter.

The integral in (2.16) (locally) converges for any ¢. Formula (2.28) in the proof
says that

: S X, N Vi X+ (Y, N[V Vi), V),

2y(vp) = (S0 (X, N2 (Y, N2

hence, by the characterization (i) in Theorem 2.1, the numerator and the denomi-
nator in the above right-hand side quantity have the same order, and integrability
of 2 (vg) follows.

2.2.2 Second variation formula

We introduce some definitions and notation, in order to deal more easily with second
derivatives of contact fields. .

Let M (Rm, L(R™ R™) be the space of functions from R™ to L(R™ R"), the space of
linear mappings from R™ — R”™. Let also (z1,...,2,) be the usual coordinates on R™.
We define the following operator, that generalizes the role of the Hessian matrix to any
dimension n > 1:

Definition 2.2 (Hessian operator). We call (generalized) Hessian operator

A C*(R™,R") x C(R™,R") — M(R™, L(R™,R"))
(VW) > (EV)W,

where (V)W , computed at the point z in R™, is the n X m matrixz with components

(((%”V)W)(z)) v 2V,

= k
i o1 0707
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When n = 1 Definition 2.2 gives the standard Hessian matrix. It is clear by Schwarz’s
theorem on second derivatives that 2 enjoys the following property:

(ZVIWU = (VU)W

Notation. In the sequel we will omit parentheses: VWU represents the vector
valued function obtained letting the matrix (V)W act on the vector U. Moreover, we
wll always have n = m.

The Hessian 7 satisfies the following index-free Leibniz formula. Let V, W € C?*(R", R");
elementary computations show that

J((JV)W) = VW + JVIW, (2.30)

where by JV JW we mean the standard product of matrices.
As a first application of 77, we complete Lemma 2.11 with the second order term in
the Taylor expansion of the Jacobian, involving indeed 57

Lemma 2.2. Let E C H", A C H" an open set such that 0ENA is a smooth hypersurface,
and let N be its standard Euclidean normal. Let {U}scr be a flow of diffemorphisms in
A, generated by the vector field V. Then

U, =1+ s(divVy, — (JV,N,N))
2
+ 52(( div Vy — (JV,N, N))2 + div(JV, V)
(2.31)
— AV, VN, N) — 2(JV,N, N)? + yJVwNE)
+0(s”),

where the functions are evaluated at a point p € OE N A.

Proof. We derive (2.10) with respect to s. We have, omitting dependency on p, that

aas(div V) (W) = div (i(v o W,)) = div(JVV)(T,). (2.32)

Moreover, by standard Leibniz formula for scalar products and by (2.30), and by formula,
(2.18) for the derivative of the normal, we get

d
—(JV Ny, No) = (J(JVypViy) Ny, No) + ((JVy + JV;;)NL, N)

ds (2.33)
= (HV,VyNy, Ny) + 2(JVy,N,, N,)? — | TV N[,

Composition with W, was implicit in the above computation. By (2.32) and (2.33), and
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by formula (2.10) for the first derivative of the Jacobian, we obtain

g;(/q,s) _ (i(/\lfs)((divV(\I/s) — (JVN,, NJ)(,))

F U (@ V)(0) — (VN N ()

2.34
= ((divV)(T,) — (JVN, N)(T))’ (2:34)
+ 70, (div(JVV)(T,) = (AVVN,, N,)
— 2(JVN,, N2 + [JV*N, ) ().
The second order term in (2.31) follows from (2.34).
O

Second variation formula will display the following v-related quadratic forms. For
p € H", we define

egqpi Hp — R
v=> uiXj+w;Vj = Zy(v),
j=1

where

S XY X, Vit — Yoo X, Xt — Xo XYY + kaijw)

k=1

+ 4¢XmT¢>

Ry(v) = > Uﬂ%‘((
ij=1
+ugwy ((Z X (X, X0t — YY) Vi — Ya(X, Xath — Vi) X
k
— X(Xit) = Vi) (X, — Y)Y + Yi(Xewo = Vi) (X, — YD) X
— (XX - m)sz)
— W;wWy ((Z YkXti}ka — Xp XY Yph — YijXﬂﬂXkTﬂ + XijXﬂﬂYk?ﬁ)
k

- 42/JYinT2/1> )
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and
yﬁ,i Hp — R
0= uX s o 2(0) = 3 (L~ + wii X))

Jj=1 j=1 i=1

n

(X XY + winXiv,b)Q).

i=1
Finally, we define .7, as follows:

Sy Hy = R (2.35)
v — %w('l)) + WQp(’U).
In the above expressions, ¥ and its derivatives are computed at p. As usual, we identify
a vector (Vy, ..., Un, Upyt,---,V2,) € R* with the horizontal vector 25 0; X+ Uy Y
We can state and prove the following second variation formula for the H-perimeter;

we postpone again comments and remarks at the end of the proof.
For a smooth hypersurface OF, we let

Ay (vg) = 2y(ve) +4(n + 1)Ty. (2.36)
This is the integrand function of the first variation formula (2.16),

Theorem 2.3. Let A C H" be an open set, and let E C H' be a smooth hypersurface with
finite H-perimeter in A, and let vg be its horizontal normal. Let W : [—§,0] x A — H",
0 =08(V,A), be the contact flow generated by 1 € C*°(H"™). Then there ezists a constant
C = C(¢, A) such that, for s € [—6,6], we have

’p(qjsw),xps(/x)) —P(E,A) + s /A Ay(vp)dp

- 82/A (%ﬁ(VE) - (ﬂ@(l@)f + 32((n + 1)T¢)2 + diV(JVwVw)>duE‘ < CP(E, A)s",
(2.37)

The quantity div(JV,V,) can be made explicit as follows:

Aiv(IVaVy) = 3 (S 2GY X5 — 2 X0¥iY50)
) J

—4(n + 2)XpY;Tep + 4(n + 2)Yin¢Tw> +16(n + 1)((T9)* + ¢T%0).
(2.38)
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Proof. Recall from the proof of Theorem 2.2 the notation Ey = VU (FE), Ay = Ws(A), the
definition of K, , K and N,, and the area formula

P(E,, A,) = KsoV, #U da™".
O0ENA

We compute the Taylor series up to the second order of K o0 W, ZV,.
We start by formula (2.21), that holds assuming K (p) # 0,p € 0E N A:

dK,; oW, 1 &
s j=1
where, for a vector field W, Fy (s) = (W, Ns)(Vs). Dependency on Wy will be often
omitted.
Differentiating the right-hand side of (2.39), we get

T o (X NI () + (Y N Fy () .
n ;S(F;((s)? ()2 + (X N Fll(s) + (V. N FL(s)).

We compute Fyj(s), for any vector field W in H". We found out in (2.20) that
Fyy (s) = ([Vi, W], N) + (JVi Ny, NoJ(W, No). (2.41)
Thus, we first compute the derivative of ([Vi,, W], N;), evaluated at Wy. We have

CZS[V% W] = (J[va W])va

evaluated ad W(p).
The derivative of Ns(Wy) was already found in (2.19):

N! = (JVyNy, NN, — JVEN.

Hence, we get by Leibniz rule and the above formulas

Vi W1 N = (Vi WV, ) + ([Vy, W1, (JVyNo, NN, = JVN,)

ds
= (J [V, W]V — TV [Vig, W], Ng) + (J Vi N, No)([Vip, W1, Ng).
Notice now that

TV, WV = JVy [V, W] = [Viy, [Viy, W],
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and thus
(Vs W1 M) = (Vi Ve WI]LN.) + TVNa, N[V W], )

We already computed the derivative of (JV,, Ny, N;) in (2.33):

d *
£<JV¢NS, N,) = (HVyVyNy, Ny) + 2(JVyN,, Ny)? — | TV N[

Hence, recalling (2.41), we obtain

FI(s) = jsqu,, W1, N) + ;SUWNS, NLYFx(s) + (JVi, N2 Fl(s)
= ([Vis [Vis, W), N ) + (JVieN, No) [V, W1, N,
+ ((AVy VN, No) + 2(J VN, No)* = [TV N (W, N,) (2.42)

+ (JVp N, No)([Viy, W], Ng) + (JVy Ny, No)* (W, Ny)
= ([Vi, Vi, W], No) + 20V No, NoY([Viy, W], N,)
+ ((HVyVyNy, Ny) + 3(JVy Ny, Ny)? — | TV N ) (W, N).
Write now K. and K in place of the first and the second derivative of K o W, and
let K and K{ be such derivatives computed in s = 0. Since K, = ((X, Ng)Fi(s) +
(Y, N5>F{/(s))/KS, we can write (2.40) in the following way:

K'*  F(s)
Kli=-—2 4~ 2.43
s K K, (243)

where we define F(s) to be the numerator of the second summand of (2.40). By (2.41)
and (2.42), for W = X; and W =Y, we get

n

F(s) =Y ((<[Vw, [V X51) No) + 4([Vy, X1, N (T Vi, Ns>) (X;, N;)

Jj=1

+ (([Vor Ve Tl] N 401V, i1, NIV, N ) 475, N2 (244

(Vi X1, Nof? o (Vi . Ns>2)
+ ((HVVyN, No) — |TVEN, P + 4(JVyN,, Ny)*) K.

We have then computed all terms involved in the second derivative of K, o W,.
Recalling now Lemma 2.2, and writing

2
K, =K+ sK)+ %Ké’ + O(s%),



2.2. VARIATION FORMULAS: THE SMOOTH CASE 49

we get the following Taylor expansion
K, 7V, =K + s(K(divV, — (JVuN,N)) + K{)
2
+ 82<K6' + K(div(JV¢V¢) — (HVyVyN,N) — 2(JV,,N, N)* + |(]V¢’f]\f|2
+ (divVy, — (JVyN, N))Q) + 2K, (divVy, — (JVyN, N))) + o(s%);
the second derivative of K_# ¥, will be thus the term multiplying s?/2. Recall, by (2.22)

and (2.27) in the proof of Theorem (2.2), that

dKgo Wy 1 &
= KIVNG N+ 2 57 (X, N [V, X] + (G, N [V, V31, NG )
s s j=1 (2.45)

= K (JVyNy, No) = 2 ((X1, N, (Yo, N2 ) /K
Thus, by (2.45), (2.43) and (2.44), we get, omitting the argument of 2,

2K, 7,
ds?

= (Kg + K(diV(JVd,Vw) — <%V¢V¢N, N> - 2<JV¢,N, N>2 + |JV¢,N|2)

s=0
+ 2K (divVy — (JVuN, N>>>

—K{Z oz ({ [V Vo X51)s N Y05, )+ { [Vis Vi il N5, )

+ (Vo X1, MY+ (Vi Yil, N)?)
Qw

Dy
IS ¢ % div Vi + (div Vy)? + div JV¢V¢}.

Tedious computations show that

5 (Vo Vi 251] NG ) 4 [V Ve Y], N D003, N) = 2400, N, (Yo, M),

J=1

and
S (Vs X1, NV 4+ (Vi Vi, NY? = 2, (X1, N), .. (Y, N)).
j=1
Moreover, we write
322 2y

_TU oz

7o 02 divVy, = —(,(ve))? + (divVy)?

by completing the squares.
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By (2.43) and (2.44) we deduce that there exists C' = C'(¢), A) such that

d’K o W,

- < CK,,

and then we can interchange integral and derivative. Moreover, there exists C; = Cy (¢, A)

such that

dPK, oW,
ds?

S ClKS7

and we conclude the proof invoking Taylor formula with Lagrange remainder as in the
proof of Theorem 2.2. This last inequality can be proved by direct computation or by a
homogeneity argument. [

Remarks:

(1) By Theorem 2.3, we get that a smooth H-perimeter minimizing set F in A satisfies,

for all ¢ € C°(A):

/A <5@(UE) - (%(VE))Q +32((n+ 1)T1/)>2 + div(Jvaw)>d,uE > 0,

along with vanishing first variation, whose formula was already proved in Theorem
2.2

/ oy (vg)dug =0 for all ¢ € C°(A).
A

Moreover, formula (2.37) improves the information about the difference
|P(V,(E),U,(A)) — P(E,A)| for small s discussed in the first remark at Theorem
2.2.

(17) As for formula (2.16), formula (2.37) displays objects making sense also for non-
smooth sets, actually, it makes sense for sets with just finite H-perimeter.

(#7) The integral corresponding to the second variation in formula (2.37) is well defined
for all test functions 1: this is again an instance of the characterization of contact
vector fields, and can be seen analogously to the third remark at Theorem 2.2.

This is particularly interesting, since we saw in formula (1.19) that the characteristic
set of OF could cause problems of integrability, and we were bound to restrict the
set of admissible test functions. Contact diffeomorphisms prevent such an issue. In
our setting, the characteristic set of OF is

Y(0F) ={p € OF : vg(p) = 0}.
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2.3 Variation formulas: the general case

We are going to prove a theorem that generalizes Theorem 2.3 to any set with finite
H-perimeter, and that, in particular, gives first and second variation formulas for such
sets.

Actually, we are proving this result for a slightly more general family of sets: H-
rectifiable sets. Since such sets are usually not boundaries of other sets, it does not make
sense talking of perimeter: we will thus deal with the spherical Hausdorff measure. Our
result will follow by the important fact that the "relevant" part of the boundary of sets
with finite H-perimeter is H-rectifiable and that, up to a constant, the perimeter measure
coincide with the spherical Hausdorff measure. We now clear up all of these notions and
preliminary results.

Reduced boundary and measure theoretic boundary. Recall the distance p de-
fined in (1.5): p(p,q) = ||p~* - qu;O, for p,q € H*. We define the balls of center p and
radius r with respect to p in the following way:

B(p,r)={qeH": [p~"q|. <7}

In analogy with the Euclidean setting, we define the reduced boundary:

Definition 2.3 (Reduced boundary). Let E C H" be a set with locally finite H-perimeter
in an open set A. Let vg its horizontal normal. We call reduced boundary of E the set
O*FE of all points p € A such that the following hold:

(1) pre(B(p,r)) >0 for allr > 0.
(i) There holds

lim vpdug = vg(p).
r—0 B(p,r)

(1ii) There holds |vg(p)| =1

The most important property of this set is the fact that the perimeter measure is
concentrated on it: this is the content of the following

Theorem 2.4. Let E, A as in the above definition. Then ug(A\ 0*E) =0

Definition 2.3 is introduced and studied in [9], where it is also proved Theorem 2.4.
We now give the definition of measure theoretic boundary; its connection with the reduced
boundary will be given in the next paragraph.

Definition 2.4. Let £ € H" be measurable. The measure theoretic boundary 0,F of E
is the set of p € H" such that

|E N B(p,r)| >0 and |B(p,r)\ E| >0 for all r > 0.
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Hausdorff measures in Heisenberg groups We consider again the distance p od
Definition 1.5. We define the diameter of a set U C H" as

diam U = sup p(p, q)
p,qeU

In particular, for p € H" the diameter of B(p,r) = 2r. Let E C H" be a set. We define,
for s > 0 and ¢ > 0 the following premeasures:

H3(E) = inf { S (diam U,)* - E € |J U, U; € H*, diam U; < 6}
jeN jeN
S3(E) = inf { S (diam B,)* : E C | B;, B; € H'p — balls, diam B; < 8}.
jeN jeN
Letting 6 — 0 we define

14 (E) = lim H3(E)
6—0

S(E) = lim S(E).
0—0

By Carathéodory’s criterion one can prove that H® and S® are actually Borel measures;
we call the first s-dimensional Hausdorff measure and the latter s-dimensional spherical
Hausdorff measures. Such measures are equivalent, in the sense that for £ C H" there
holds

H(F) < S°(E) < 2°H*(E).

One can prove that H? and S®, where we recall that Q = 2n + 2, are Haar measures
in H", and then, they coincide with the Lebesgue measure £2"*1 up to a multiplicative
constant factor. It follows that the natural dimension to measure hypersurfaces in H" is
Q) — 1. In fact, we have the following fundamental theorem, proved in [9].

Theorem 2.5. Let E C H", be a set with locally finite H-perimeter in A, with A open
in H™. Then we have
pE = cpSYTILOTE N A,

where ¢, > 0 is an absolute constant.

Even though H® and §* are equivalent measures, it is still an open problem establishing
the validity of the above theorem for &°.

We illustrate now some general facts we will use in the proof of our variation varia-
tion formula in the non-regular case. The following lemma can be proved by the same
techniques used in [8] adapted to our non-Euclidean case.

Lemma 2.3. Let E a set with finite H-perimeter in H™. Then there hold

(i) O*E C 0.F,
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(ii) SYO.E\ O*E) =0

We close this paragraph with the following easy result involving H-Lipschitz functions:
in particular it applies to contact diffeomorphisms (recall Proposition 2.2).

Proposition 2.3. Let A be an open and bounded set in H™, and let F' : A — H" be a
H-Lipschitz function, that is, there exists L such that

d(F(p), F(q)) < Ld(p,q)
for p,q € A and where d is the Carnot-Carathéodory distance in H". Let s > 0. Then
S*(F(A)) < L°S°(A).
Proof. Recall the equivalence between p and d established in Proposition 1.4 .Let § > 0.

Let, for j € N, B; := B(0,r;) such that A C U;B; and r; < §. Thus, diam F(B;) <
Ldiam B; < L§/2, and F(A) C U;F(B;). Thus

Z (diam F(B Z (diam B
J=1 Jj=1

and thus, taking the infimum on {B;},ey covering A we get
SisF'(A) < L*S5(A).
Taking the limit as 6 — 0 in the above inequality ends the proof. n

For more details on Hausdorff measures, see e.g. [8], where such a theory is carried
out in Euclidean setting.

H-rectifiability It is proved in [9] that the reduced boundary of a set with finite H-
perimeter is rectifiable in an intrinsic sense: a property called H -rectifiability. Roughly
speaking, it can be covered, up to null sets, with C} hypersurfaces, introduced in Def-
inition 1.8. As previously remarked, the natural measure for hypersurfaces in H" is the
Hausdorff spherical measure S@1.

Definition 2.5. A set R C H" is H-rectifiable if there exists a sequence of H-reqular
hypersurfaces {S;}jen with S91(S;) < oo such that

Se! <R\ U Sj> =0

j€EN
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In particular, it is clear that R C H" is H-rectifiable if and only if there exists a
S% L negligible set N and a sequence of sets S; = {p € U;, f;(p) = 0}, j € N with U open
and bounded in H" and f; € C}; such that S971(S;) < oo and

RCNU|JS;.
jEN
This is actually the characterization we will use in the proof of our variation formulas by
contact diffeomorphisms in the general case.

We can define S9! a.e. a horizontal normal for a H-rectifiable set R in the following
way: let p € RN U;S;, then we define the horizontal normal to R at p as

vilp) = vs, (p) (2.46)

where j is the unique integer such that p € S:\ U;35;.
Such a notion is well-defined up to a sign: namely if {S}}jen and {S?}jen are two
sequences of H-regular hypersurfaces such that

SQ1<R\ U S;> =0, S9! (R\ U Sf) =0,

jeN jEN
then,

vp(p) = £v5(p)

for S9! almost every point of R, where v} and v% are defined as in (2.46) respectively
by means of {S}}jen and {S7};en. The proof of this fact can be found in [13].

We now state the theorem making H-rectifiability so important. The proof of the
following is in [9].

Theorem 2.6. Let E C H" be a set with locally finite H-perimeter. Then its reduced
boundary O*E is H-rectifiable.

We finally state and prove the main theorem of the thesis. The proof of such a theorem,
up to the first variation, was carried out and never published by R. Monti and D. Vittone.

The following is an original result due to the author, along with the preparatory Theorem
2.3.

Theorem 2.7. Let R C H" be H-rectifiable and bounded, and let A be a bounded open
set containing R. Let vy be the horizontal normal to vg. Let ¥ : [=4,0] x A — H",
d =48(V, A), be the contact flow generated by 1 € CX(H™). Then there ezists a constant
C = C(¢,A) such that

‘56?1(\1/8(3» ~ S9U(R) + 5 / Ay (vp)dS?

< CSYY(R)s?,
(2.47)

_ 32/R <c§ﬂw(VR) - (JZZ/}(I/R))Q + 32((71 + 1)T¢)2 + div(JVwV¢)>dSQ—1
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where div(JV,Vy,) can be computed as in (2.38) and where ., and <7, are defined respec-
tively in (2.35) and (2.36).
In particular if E is a set with finite H-perimeter in A, with horizontal normal vg,

there exists C'= C(1, A) such that
[P0 (E). 0 (4) ~ PEA) +5 [ )i
A

_ 32/A (y@b(VE) — (@{w(VEDZ + 32((n + 1)T¢)2 + diV(JVwVw)>dME’ < CP(E, A)s3
(2.48)

Before proceeding with the proof, we list some results needed in the proof.
The following are two technical lemmas, trivial adaptations of results and proofs con-
tained in [14].

Lemma 2.4. Let S be a H-reqular hypersurface such that S = {p € U : f(p) = 0} with
U C H" open and bounded and f € C(U) such that Vg f(p ) # 0 for any p in S.

Then there exist U C H™ open and bounded, f € Ck(U) such that S = {q € U
flg) =0}, Vuf(q) #0 for any q in S and

fec=U\S).
Proof. 1t is an adaptation of Lemma 4.4 in [14]. O

Lemma 2.5. Let A € H" be an open set, and let Cy(A) the space of continuous and
bounded functions on A. Let {E;}jen be a sequence of sets with finite H-perimeter in A
such that xp, — xp in L'(A) and pg,(A) — pp(A). Let F : R*™ — R be a continuous
1-homogeneous function. Then F(vg,)dup, — F(vp)dug in the weak™ convergence of
measures, that is

ti [ pF(vs,)dus, = [ pF(ve)dus for any p € Gy(4),
A

J—00 A

Proof. 1t is a special case of Lemma 2.5 in [14] and of its proof. O

The following is an useful continuity theorem of Reshetnyak, adapted to best suit our
setting.

Theorem 2.8 (Reshetnyak continuity theorem). Let A € H" be an open set. Let {E;}jen
be a sequence of sets with finite H-perimeter in A such that pp,(A) — pp(A). Suppose
moreover that vg, jug; — VEUE weakly*. Then

]*)OO

lim f VE, duE —/f vg)dug

for any f € CO(S*"~1).
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Proof. Theorem 2.8 follows from the general version of Reshetnyak continuity theorem
(see e.g. [2], Theorem 2.39). O

We are ready to prove Theorem 2.7.
Proof of Theorem 2.7. We start by two preliminary remarks:

(i) Recall that vg, the horizontal normal to R, exists SY~1-almost everywhere up to a
sign. However, both 2, and .7, appearing in formula (2.47) are quadratic forms:
it implies that the integrals in such formula are well defined.

(i1) We assume with no loss of generality that all the open sets U, Us, C;, U;, Vi, appearing
later in the proof are all contained in A: in this way we can let 6 = d(¢, A) and
C' = C(1, A) uniform along the proof.

The proof is organized as follows: In Step 1 we prove formula (2.47) for a H-regular
surface S as the one in Lemma 2.4; in Step 2 we generalize such formula for arbitrary
subsets S, and finally in Step 3 to a H-rectifiable set R. At the end, we will deduce
formula (2.48).

Step 1. Let S be a H-regular surface with the following properties: S®71(S) < o0, S =
{p € U : f(p) = 0} for a suitable open and bounded set U € H" and

fecCyU), Vuf#0 in U (2.49)

By Lemma 2.4, we can assume f € C®(U \ 9).
Let now, for s € [, d],

Us = \IJS(U)a fs=[foV¥, Ss:{quS:fS(q):O}

We claim that f, enjoys the same properties of f with U in place of U. Clearly, Uy is an
open and bounded subset of H" and f; € C*>°(Us\ S5). Moreover, by the contact structure
of (¥,)~!, we have, for j = 1,...2n,

X000 = (VLI )X) = 3 g X ) + gtneas Vi)

Yj(fs) = <Vf> J(\Ds)_lXj> = Zg(nJri)in(f) + 9(n+i)(n+j)Yi(f)

i=1

for suitable smooth functions g;;, ¢, j = 1,...,2n. Thus, since (2.49) holds, we deduce our
claim, and, in particular, S, is a H-regular surface.
Define now, for r € R

E :={peU:flp)<r}, E:=E"
El:={qeU,: f(q <r}, E,=E’
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Notice that OF = S, and 0E; = Ss;. By Sard’s theorem, OE" and OFE! are smooth
hypersurfaces for almost every r € R; let then, for s € [=4,0] fixed, {r;}jen be an
infinitesimal real sequence such that E™ and Ej’ are smooth hypesurfaces. Since we are
going to deal with local convergences, let now K C U, and K := U (K). Thus, by
Theorem (2.37), we have

P(ED.K) = PEY.K) 45 [ ot s,
K

_ / (%(UE”) — (ylvs,)) +32((n+ )T) + div(JV¢V¢)>d,uErj (2.50)
< C'PI((ETJ',K)S?’.
It is easy to see that
E"— E in L (U). (2.51)
We claim that the following convergences hold too:
P(E",K) — P(E,K), P(E!, K,) — P(Es, Ky). (2.52)

We sketch a proof of the first of the (2.52): the second is obtained in a completely
analogous way. Since |V f| is non vanishing in K, we can assume, up to a rotation, that
X1(f) = 6 > 0. By an implicit function theorem in Heisenberg groups, that can be found
in [9], there exists a compact set I € R*" such that, for r; in a neighbourhood of 0, there
exists a continuous function ®" : [ — H" such that

- \Vufl, . 2
P(E", K) = D" (a))dL" (a).
(B, K) = | @ @)aca)
By continuity of ", Vi f and X, f, one can prove that

\Y% \Y
i 5@ @) = B0l a0y

and this, by exchanging integral and limit, proves our claim.

In particular, Lemma 2.5 applies and we get the weak™ convergences
VE" LB, — VEr[E,-

By Reshetnyak continuity theorem 2.8, and Theorem 2.5, we get

lim / (v, )dp,, = / Aywp)dus = on | Aplvs)dSET (2.53)
K K

j—oo SNK



58 CHAPTER 2. VARIATIONS BY CONTACT DIFFEOMORPHISMS

and

Jj—00

im | (ﬂ,(u&j) — (olvm,))’ +32((n+ 1)Tw)" + div(JVde,))duETj

_ /K (%(UE) — (vp)) +32((n + DT)" + div(JV¢V¢)>duE (2.54)

Now, we let r; — 0 in (2.50): by (2.51), (2.52), (2.53) and (2.54) we obtain that there
exists a constant C' = C(¢, A) such that

‘SQ—l(\PS(S NK)) - S SNK) + s oty ()5
SNK
_ 82/5 ) (Yw(l/s) - (ﬂfw(us))Q + 32((n + 1)Tw>2 + diV(JVwV¢)>dSQ—1 (2.55)

< C8Y(SNK)s,

Finally, let {K};en C U be a sequence of compact sets invading U. Applying formula
(2.55) to S N K; and passing to the limit as j — oo by monotone convergence theorem
completes Step 1.

Step 2. Let now X C S, with S a H-regular surface such that there exists U € A such that
S97Y(S)) <00, S={peU: f(p) =0} and f satisfies (2.49). Since S®! is a Radon

measure, we have
SO(Y) = inf{SY"1(SN 0,0 c H"open, ¥ C O},
and then, we fix a sequence of open sets O, such that ¥ C O; and
lim SHSNO;) = SUH(R).
Analogously, for s € [—0, d] fixed, we let B; such that U (X) C B; and

lim S (W, (S) N B)) = SUH(W,(D)).

jro0
Set then C; = O; N W (B;); we have

XCC;CO;, Yy(X)C ¥y (Cy) C B
and thus

lim S¢71(SNC;) =S89 H(Y), lim S 1 (W, (SN C))) =SUHU,(X).  (2.56)

j—o0 J—00
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Set S; = SN C;. We have that S; = {p € UNC; : f(p) = 0}, and thus, by Step I,

SO (5)) = SOUS) + 5 [ Al )aS
Sj

- 52/3 (Fulos) = (Aulvs)) +32((n + DTG)" + div(IVeV;) )aset| - (25D
< 0591(8,)s,
By dominated convergence theorem,
71550[9 %w(ygj)dSQ_l = jlirgo SXsﬂcjdw(ug)dSQ_l
= /ng%p(%)dSQl (2.58)
_ /E Ay () () S,
and, in a completely analogous way;,
i | (yw(usj) — (A (vs)) +32((n+ 1)Tw) + div(Jvaw)>dSQ1 -

- /E (5@(@) — () +32((n+ DTY)" + div(JV¢V¢))dSQ‘1.

Step 2 is achieved by taking into account (2.56), (2.58) and (2.59) in passing to the limit
as j — oo in (2.57).

Step 3. Finally, we prove formula (2.47) in its generality. Let then R be a H-rectifiable
set, that is,

Rc NUlJS,,
j=1
with S¢~1(N) = 0, S971(S;) < co and S; = {p € U; : f;j(p) = 0} for suitable U; € H"
open and bounded and f; satisfying (2.49). We can clearly assume

NUUS]'CA.

j=1

Up to replacing S; with S; \ U{;ll Si, we can assume that S; N S; = () whenever ¢ # j.
However, there might exist sequences of points points {pi}tren € S; and {qx}ren € S;
such that d(px, qx) — 0 as k — oo, where d is any metric: that, in general, prevents us to
define S; U S; as the level set of a function satisfying (2.49). We bypass such an issue in
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the following standard way. Let, for k > 1,

S;C = {p € X; :d(p, UZ1S;) > ]1} c S,
and let S* = U2, S¥: since the sets S}, j € N are at positive distance, it is clear that
we can find for each k open and bounded sets V; and functions g satisfying (2.49) such
that S* = {p € Vi : gr(p) = 0}. Since we are assuming that each S; is contained in the
bounded set A, and for each i # j we have d(S5;,S;) > 1/k, we deduce that S]’-€ # () for
only finitely many indexes j: it implies that SY~1(S*) < co. Thus, we can apply Step 2
to the set R N S* and obtain

’SQl(\I!s(R NS =S YRNS ) 45 | dyp(v)dSO

RNSk

_32/ <<%(VR) - (»Q{@ZJ(VR))2 +32((n+ 1)T¢>2+div(JV¢Vw)>dSQ_l (2.60)
RNS*k

< CSUYRNSH)S.

Letting 5™ := U255}, we clearly have Sk 8% as k — oo. Thus, passing to the limit
in (2.60), by monotone convergence theorem, we get

‘sQ—l(\yS(R N5%)) — S (RN S®) + 5 oAy (vg)dSO!
RNS>
(2.61)

_ 8 / ) <5@<yR) — (tvm)” +32((n+ )T)” + div(JV¢Vw)>dSQ_1
< CSSIE(R N.S%)s®.
Finally, by H-rectifiability of R, we have R\ S* C N and thus
SO (RN S>) =S I(R). (2.62)
Moreover, by H-Lipschitz continuity of ¥, and Proposition 2.3,
SUTHTL(R\ §%)) < SUTH(T(N)) < LZT'SUTH(N) =0
where L is the Lipschitz constant of Wy. It follows that
SO (W (RN S®) = ST, (R)). (2.63)

Taking into account (2.62) and (2.63) in (2.61) completes the proof of (2.47).

We are left to prove formula (2.48). Let E be a set with finite H-perimeter in A, and
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consider its measure theoretic boundary defined in Definition 2.4:
E={peH":|ENB(p,r)| >0and |E\ B(p,r) > 0|}.

By Lemma 2.3, the reduced boundary of Definition 2.3 satisfies *E C 0, F and SY~1(9,E\
O*E) = 0. In particular, by Theorem 2.6 0, F is H-rectifiable and pgLA = ¢,S9 L0, E,
by Theorem 2.5. By H-Lipschitzianity of Wy, it is clear that U (0.F) = 0.(V(E)).
Formula (2.48) finally follows applying formula (2.47) to R = 0,E N A. ]

Theorem 2.7 yields variation formulas for any H-rectifiable set, involving in this way
also highly non-regular sets, even with fractional Hausdorff dimension, see [10], Theorem
3.1. When a H-rectifiable set R is perimeter minimizing, or better S®~!-minimizing, we
have thus the following necessary conditions, holding for any test function i) € C°(R):

/ Ay (vr)dS™ = 0
/R (5@(@) - (%(VR))2 +32((n+ l)T@Z))Q + div(wa))dSQ—l > 0.

All the observations about the integrability of such expressions hold unchanged in the
general case too.
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