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Introduction

In this work we study the proof of Preiss' Theorem, which states that a
locally �nite Borel measure on Rn with positive and �nite density for almost
every point in the support of µ is recti�able. During all this work we consider
only Borel measures, then we will omit it in the statements.

Theorem 0.1 (Preiss' Theorem). Let µ be a locally �nite measure on Rn

and let m ∈ Z>0, m ≤ n. Assume that the limit

lim
r↓0

µ (Br(x))

rm

exists, is �nite and positive for µ-a.e. x ∈ supp (µ).
Then there exist a Borel measurable function f , a countable collection

{Γi}i of Lipschitz m-dimensional submanifolds of Rn and an m-dimensional
set E such that

Hm

(
E \

⋃
i

Γi

)
= 0 and µ = fHm E,

where Hm E is the m-dimensional Hausdor� measure restricted to the set
E.

In the original paper [P] Preiss proved a stronger version of this theorem,
but the proof of Theorem 0.1 contains most of the deep ideas, then we decided
to focus on this weaker, but not so much easier, version. In order to do that
we followed the method shown by De Lellis in [DL].

In the next section we give the �rst de�nitions and some results without
proofs that we will use in the following chapters.

0.1 Preliminary results and notation

First of all we de�ne the m-density of a measure.



viii INTRODUCTION

De�nition 0.1. Let µ be a positive Radon measure on Rn and m ∈ Z>0

Then we de�ne the upper m-density of µ at x as

θ∗m (µ, x) := lim sup
r↓0

µ (Br(x))

ωmrm
,

where ωm is the m-dimensional Hausdor� measure of the unit ball. Analo-
gously, we de�ne the lower m-density of µ at x as

θm∗ (µ, x) := lim inf
r↓0

µ (Br(x))

ωmrm
.

If θm∗ (µ, x) = θ∗m (µ, x) we de�ne the m-density of µ at x as

θm (µ, x) := lim
r↓0

µ (Br(x))

ωmrm
.

We note that we could de�ne the m-densities for m ∈ R>0 too, but
Martstrand proved that if them-density exists thenm is an integer, therefore,
given the hypotheses of Preiss' Theorem, we can restrict to this case. The
following de�nitions too can be de�ned for m ∈ R>0.

A �rst property of measures with positive and �nite upper density is the
following, for which we omit the proof.

Theorem 0.2. Let µ be a measure and m ∈ Z>0 such that

0 < θ∗m (µ, x) <∞

for µ-a.e. x. Then there exist an m-dimensional set E and a Borel function
f such that µ = fHm E.

Now we de�ne m-uniform measures.

De�nition 0.2. We say that µ is an m-uniform measure if, for every r > 0
and every x ∈ supp (µ),

µ (Br(x)) = ωmr
m.

We denote by Um (Rn) the set of m-uniform measures with 0 in their
support.

A �rst important observation on uniform measures is that if µ ∈ Um (Rn)
and supp (µ) ⊂ V , where V is an m-dimensional linear plane, then

µ = Hm V.
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In order to see that we study Um (Rm). We observe that, from the Besicovitch
Di�erentiation Theorem, µ = fLm, where Lm is the m-dimensional Lebesgue
measure and

f(x) = lim
r↓0

µ (Br(x))

ωmrm

for Lm-a.e. x. Since µ is uniform, for every x ∈ supp (µ) the limit is equal to
1, and for x /∈ supp (µ) it is euqal to 0. Then f = IdE, where E := supp (µ),
but 0 ∈ supp (µ), then for every r > 0:

µ (Br(0) ∩ E) = ωmr
m = Lm (Br(0)) ,

therefore, since E is closed, we obtain Br(0) ⊂ E for every r > 0, hence
E = Rm.

For µ ∈ Um (Rn) it su�ces to take an orthonormal basis in Rn with
V = 〈e1, ..., em〉 and we conclude that µ = Hm V .

Now we give the de�nition of the set of tangent measures.

De�nition 0.3. Let µ be a measure, x ∈ Rn, and r ∈ R>0. The measure
µx,r is de�ned by

µx,r(A) = µ (x+ rA)

for all Borel sets A ⊂ Rn.
For every m ∈ Z>0 we de�ne the set of m-tangent measures to µ at x,

Tanm (µ, x), as the set of all measures ν for which there exists a sequence of
radii ri ↓ 0 such that

µx,ri
rmi

∗−⇀ ν.

Now we state a relation between tangent measures and uniform measures
omitting the proof. The proof can be found, for example, in [DL], Proposi-
tion 3.4.

Theorem 0.3. Let µ be a measure with positive and �nite m-density. Then

∅ 6= Tan
m

(µ, x) ⊂ {θm(µ, x)ν : ν ∈ Um (Rn)} .

We state now a series of known computations which we will use a lot of
times in Chapters 3, 4 and 5, when we study the moments of µ. The proofs
of these computations can be found in [DL], Appendix B.

Lemma 0.1. The following formulas hold:∫
Rm

e−|z|
2

dLm(z) = πm/2;
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ω2m := L2m (B1(0)) =
πm

m!
;

ω2m+1 := L2m+1 (B1(0)) =
2m+1πm

(2m+ 1)!!
;

∫
Rm

|z|2je−|z|2dLm(z) = πm/2
j∏
i=1

(
i− 1 +

m

2

)
;

∫
Rm

|z|e−|z|2dLm(z) =
mωm

(m+ 1)ωm+1

π(m+1)/2;

∫
Rm

|z|2j+1e−|z|
2

dLm(z) =
mωm

(m+ 1)ωm+1

π(m+1)/2

j∏
i=1

(
i+

m− 1

2

)
.

0.2 Plan of the work

In Chapter 1 we study the proof of an important recti�ability criterion for
Borel sets with positive and �nite measure, due to Martstrand and Mattila.
Using that we prove a corollary that links tangent measures to recti�ability:
it states that if the upper density of µ is �nite, the lower density of µ is
positive and every tangent measure to µ at x are of the form cHk V where
V is a k-dimensional linear plane and c is a positive constant, then µ is
recti�able.

Martstrand, knowing that the tangent measures to µ at x are of the form
θm(µ, x)ν, where ν is a uniform measure, conjectured that every uniform
measure was of the form Hk V . This is true for k ≤ 2 and it would
conclude the proof of Theorem 0.1, but Preiss found a counterexample for
k = 3.

In Chapter 2 we outline the proof of Preiss' Theorem: we study the set of
tangent measures in order to prove that if the measure has positive and �nite
density then we can apply the corollary proved in Chapter 1. In order to do
that we state three theorems that we prove in Chapters 3, 4 and 5. Using
those three theorems we conclude the proof of Preiss' Theorem following two
steps: �rst of all we prove that given those hypotheses for µ-a.e. x there
exists a plane V such that θm(µ, x)Hk V is tangent to µ in x, then we prove
that the set of tangent measures to µ at x can not contain a measure of the
form θm(µ, x)Hk V and a measure which is not of that form. This means
that they are all of that form and we conclude.

In Chapter 3 we prove the �rst theorem that we assumed to prove Preiss'
Theorem, which states that if the measure is uniform then the set of its
tangent measures at in�nity is a singleton, therefore there exists a unique
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tangent measure at in�nity. To do that we introduce the moments of µ, bµk,s,
and we prove that they admit a Taylor expansion.

In Chapter 4 we prove the second theorem that we stated in Chapter 2,
which states that if the tangent measure at in�nity of a uniform measure is
su�ciently near to a �at measure than it is �at. In order to do that we prove
that the theorem is true for every conical measure. We prove it studying the
form b

µ,(1)
2 , which is the second term of the Taylor expansion of bµ2,s.

In Chapter 5 we prove the last theorem we used, which states that if a
uniform measure is �at at in�nity then it is �at. This proof is based on the
study of the forms b

µ,(1)
1 and b

µ,(2)
2 .
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Chapter 1

The Martstrand-Mattila

Recti�ability Criterion

In this chapter we study the proof of the Marstrand-Mattila Recti�ability
Criterion and a corollary that links recti�able measures with tangent mea-
sures.

De�nition 1.1. An m-dimensional Borel set E ⊂ Rn is called recti�able if
there exists a countable family {Γi}i of m-dimensional Lipschitz graphs such
that Hm (E \

⋃
Γi) = 0.

An m-dimensional set E ⊂ Rn is called purely unrecti�able if Hm(E) is
�nite and if for everym-dimensional Lipschitz graph Γ it holdsHm (E ∩ Γ) =
0.

A measure µ is called recti�able if there exist anm-dimensional recti�able
set E and a Borel function f such that µ = fHm E.

De�nition 1.2. Let E ⊂ Rn be an m-dimensional set and �x x ∈ Rn. E
is weakly linearly approximable at x if for every η > 0 there exist λ > 0
and r > 0 such that for every ρ ∈ (0, r) there exists an m-dimensional linear
plane W for which the following conditions hold:

Hm (E ∩Bρ(x) \ {z : dist(x+W, z) < ηρ}) < ηρm; (1.1)

Hm (E ∩Bηρ(z)) ≥ λρm, for all z ∈ (x+W ) ∩Bρ(x). (1.2)

The �rst condition of this de�nition means that in a small ball around
x most of E is contained in a tubular neighborhood of x + W . The second
condition means that in every small ball centered at a point of x+W there
is a signi�cant portion of E.

We prove now that if E is purely unrecti�able and weakly linearly ap-
proximable at Hm-a.e. point then its projection on every m-plane has Hm
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measure 0. To do that we need to restrict on a compact subset where the
conditions of weak linear approximation are uniform and a geometric lemma.

Lemma 1.1. Let E be a Borel set which is weakly linearly approximable at
Hm-a.e. x ∈ E and let ε > 0. Then there exist a compact set C ⊂ E and
positive numbers r0, η, δ such that Hm (E \ C) < ε and for every a ∈ C and
every r ∈ (0, r0), H

m (E ∩Br(a)) ≥ δrm and there exists a m-dimensional
linear plane W such that:

C ∩Br(a) ⊂ {z : dist(z, a+W ) ≤ ηr}. (1.3)

Proof. Since E is weakly linearly approximable at Hm-a.e. x ∈ E, then by
de�nition we can select a compact C ′ ⊂ E such that Hm (E \ C ′) < ε/2 and
there exist r1 > 0 and δ > 0 such that Hm (E ∩Br(a)) ≥ δrm for every
r ∈ (0, r1).

Now we can select a compact subset C ⊂ C ′ and two positive numbers
η < δε, r0 ∈ (0, r1) such that Hm (C ′ \ C) < ε/2 and for every a ∈ C and
every r ∈ (0, r0) there exists an m-dimensional linear plane W such that

Hm (E ∩B2r(a) \ {z : dist(z, a+W ) ≤ ηr/2}) < δ
(ηr

2

)m
.

We prove that this plane satis�es (1.3).
To do that we argue by contradiction: if it were false, then there would

exist z ∈ C ∩Br(a) with dist(z, a+W ) > ηr. Therefore

Bηr/2(z) ⊂ B2r(a) \ {z : dist(z, a+W ) ≤ ηr/2}.

Hence:

Hm (B2r(a) ∩ E \ {z : dist(z, a+W ) ≤ ηr/2}) ≥ Hm
(
Bηr/2(z)

)
≥ δ

(ηr
2

)m
.

This is a contradiction.

Let V be an m-plane. We will indicate with PV the orthogonal projection
on V , with QV the orthogonal projection on V ⊥ and we de�ne the m-cone
C(x, V, α) as

C(x, V, α) := x+ {y ∈ Rn : |QV (y)| ≤ α|PV (y)|},

with α ∈ (0,+∞) and x ∈ Rn.

Lemma 1.2 (Geometric Lemma). Let F ⊂ Rn and assume that there exists
a m-dimensional plane V and a positive number α such that F ⊂ C(x, V, α)
for every x ∈ F . Then there exists a Lipschitz map f : V → V ⊥ such that
F is contained in the graph of f .
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Lemma 1.3. Let E be a purely unrecti�able set which is weakly linearly
approximable at Hm-a.e. x ∈ E. Then Hm (PV (E)) = 0 for every m-
dimensional linear plane V .

Proof. We �x ε ∈ (0, 1/2) and let C be as in lemma 1.1. We �x a m-
dimensional linear plane V and for every i ∈ Z>0 we de�ne

Ci := {a ∈ C : C ∩Bi−1(a) \ C
(
a, V, η−1

)
= ∅}.

By the Geometric Lemma, the intersection of Ci with a ball of radius i−1/2
is contained in a Lipschitz graph, but C is purely unrecti�able, then:

Hm

(⋃
i

Ci

)
= 0.

For Hm-a.e. a ∈ C there exists b ∈ C ∩Br0(a) ∩Bi−1(a) such that

|QV (b− a)| > |PV (b− a)|
η

⇒ |PV (b− a)| < η|b− a|.

Set r := |b − a|, let W be as in Lemma 1.1 and set c := PW (b − a) + a.
Lemma 1.1 implies that b veri�es |c − b| ≤ ηr, since b ∈ C ∩ Br(a) and
c ∈ a + W with W satisfying (1.3). Furthermore, PW is a projection, then
|PW (b− a)| = |c− a| ≤ |b− a| = r, and we have that η < ε < 1/2. Then we
conclude that |c− a| ≥ |b− a| − |c− b| ≥ r − ηr > r/2.

Let w := (c− a)/|c− a|;

|PV (w)| = 1

|c− a|
|PV (c− b) + PV (b− a)| ≤ 2ηr

|c− a|
≤ η.

Now we prove that

Hm (PV ({z : dist(z, a+W ) < ηr} ∩Br(a))) ≤ 2m+2ηrm. (1.4)

After translating and rescaling this is equivalent to prove that

Hm (PV ({z : |QW (z)| < η} ∩B1(0))) ≤ 2m+2η.

Let W ′ be the subset of W perpendicular to w and set V ′ := PV (W ′). V ′

is a linear space with dimension at most m − 1, then we can choose a unit
vector v ∈ V perpendicular to V ′. We know that |〈w, v〉| ≤ |PV (w)| ≤ η, but
a generic ζ ∈ W ∩ B1(0) can be written as ζ = αw + w′ with w′ ∈ W ′ and
|α| < 1, then

|〈ζ, v〉| = |α||〈w, v〉|+ |〈w′, v〉| ≤ η
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for every ζ ∈ W ∩B1(0). Therefore for every ζ ′ ∈ B1(0):

|〈ζ ′, v〉| ≤ |〈PW (ζ), v〉|+ |〈QW (ζ), v〉| ≤ η + |QW (ζ)|.

This means that

PV ({z : |QW (z)| < η} ∩B1(0)) ⊂ {z : |〈z, v〉| ≤ 2η} ∩B1(0) ∩ V.

Now we can �x an orthonormal basis of V with v as �rst element, then using
the notation z = (z1, ..., zm) we obtain:

{z : |〈z, v〉| ≤ 2η} ∩B1(0) ∩ V ⊂ {z : |z1| ≤ 2η, |zi| ≤ 1, for i = 2, ...,m}.

Hence:
Hm (PV ({z : |QW (z)| < η} ∩B1(0))) ≤

≤ Hm ({z : |z1| ≤ 2η, |zi| ≤ 1, for i = 2, ...,m}) = 2m+2η.

Now with a rescalation and a translation we obtain (1.4).
For de�nition of W we know that C ∩Br(a) ⊂ {z : dist(z, a+W ) < ηr},

then
Hm (PV (C ∩Br(a))) ≤ 2m+2ηrm,

and obviously
Hm

(
PV (C ∩ B̄r/2(a))

)
≤ 2m+2ηrm. (1.5)

Using the Vitali-Besicovitch Covering Theorem we can choose a countable
set of balls B̄ri(ai) which are pairwise disjoint, cover Hm-almost all C, are
centered at ai ∈ C for all i, ri ∈ (0, r0/2) and satisfy (1.5) when we replace
r/2 and a with ri and ai. Hence

Hm(PV (C)) ≤
∑
i

Hm
(
PV (C ∩ B̄ri(ai))

)
≤
∑
i

22m+2ηrmi ≤

≤ 22m+2η

δ

∑
i

Hm
(
E ∩ B̄ri(ai)

)
≤ 22m+2η

δ
Hm(E) ≤ 22m+2εHm(E).

Moreover PV is a projection, then Hm (PV (E \ C)) ≤ Hm (E \ C) ≤ ε.
Hence:

Hm (PV (E)) ≤ Hm (PV (E \ C)) +Hm (PV (C)) ≤
(
1 + 22m+2Hm(E)

)
ε,

and by the arbitrariness of ε we can conclude that Hm (PV (E)) = 0.

The last tool we need in order to prove the Marstrand-Mattila recti�abil-
ity criterion is the following decomposition theorem.
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Theorem 1.1. Let E be a Borel set such that Hm(E) < ∞. Then there
exist two Borel sets Er, Eu ⊂ E such that Er ∪ Eu = E, with Er recti�able
and Eu purely unrecti�able. Moreover this decomposition is unique up to
Hm-null set.

Proof. Let R(E) := {E ′ ⊂ E : E ′ is a Borel and recti�able set} and de�ne
α := supE′∈R(E)H

m(E ′).

We take a sequence {Ei} ⊂ R(E) such that limi→∞H
m (Ei) = α, then we

set Er :=
⋃
iEi. E

r is recti�able because it is a countable union of recti�able
sets, Er ⊂ E and Hm (Er) = α. Let Ec := E \ Er. If there were a Lipschitz
graph Γ such that Hm (Ec ∩ Γ) > 0, then we would have that Er ∪ (Γ ∩ Ec)
is recti�able and Hm (Er ∪ (Γ ∩ Ec)) > α, that is a contradiction.

It remains to prove uniqueness: the intersection of a recti�able and a
purely unrecti�able set has always Hm measure 0. If we have two decom-
positions Er + Eu = E = F r + F u with Er, F r recti�able sets and Eu, F u

purely unrecti�able sets, then we know that

Hm (Er ∩ Eu) = Hm (Er ∩ F u) = Hm (F r ∩ Eu) = Hm (F r ∩ F u) = 0.

This means that:

Hm (Er \ F r) = Hm (F r \ Er) = Hm (Eu \ F u) = Hm (F u \ Eu) = 0.

Theorem 1.2 (Marstrand-Mattila Recti�ability Criterion). Let E be a Borel
set such that 0 < Hm(E) <∞ and assume that E is weakly linearly approx-
imable at Hm-a.e. x ∈ E. Then E is recti�able.

Idea of the proof: we will argue by contradiction; we suppose that there
exists a purely unrecti�able set E which is weakly linearly approximable
at Hm-a.e. point. Then we �x a point x where the set is weakly linearly
approximable and a ball Br(x). There we can select some pairwise disjoint
cylinders and inside each of them we choose N pairwise disjoint balls that
give a signi�cant contribution to the measure of E ∩Br(x). Then we can �x
the constants in order to reach a contradiction with the upper density of the
set E.

Proof. Step 1. We prove that if the theorem were false then there would
exists a purely unrecti�able set E with Hm(E) > 0 which is weakly linearly
approximable at Hm-a.e. x ∈ E.
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Indeed let F be an unrecti�able set which is weakly linearly approximable
at Hm-a.e. x ∈ F and let F u be its purely unrecti�able part as given in the
previous theorem. Using the Besicovitch Di�erentiation Theorem we see that

lim
r→0+

Hm (F u ∩Br(x))

Hm (F ∩Br(x))
= 1

for Hm-a.e. x ∈ F u. Then F weakly linearly approximable at x implies
that F u is weakly linearly approximable at x too, therefore F u is purely
unrecti�able and weakly linearly approximable at Hm-a.e. x ∈ F u.

Then if the theorem were false, than there would exist a Borel set E such
that 0 < Hm(E) < ∞, Hm(PV (E)) = 0 for every m-dimensional plane V
and E is weakly linearly approximable at Hm-a.e. x ∈ E.

Hence, arguing by contradiction, we suppose that there exists such a set
E.

Step 2. We reduce the set E losing a small quantity of measure and
gaining some useful properties.

First of all we choose a compact F ⊂ E such that 0 < Hm(F ) <∞ and
such that there exist r0, δ positive numbers such that Hm(E ∩Br(a)) ≥ δrm

for every a ∈ F and r < r0.
Next we �x a positive η ∈ (0, 1). We prove that there exists a compact

set F1 ⊂ F such that 0 < Hm(F1) <∞ and such that there exist r1 ∈ (0, r0)
and γ > 0 such that for every r ∈ (0, r1) and every a ∈ F1 there exists an
m-dimensional plane W with the following properties:

F ∩B2r(a) ⊂ {z : dist(z, a+W ) < ηr}; (1.6)

Hm (E ∩Bηr(b)) ≥ γ(ηr)m for all b ∈ (a+W ) ∩Br(a). (1.7)

For de�nition of weak linear approximability there exist a compact F1 ⊂ F ,
r1 ∈ (0, r0) and γ > 0 such that 0 < Hm(F1) <∞, (1.7) holds and

Hm (E ∩B2r(a) \ {z : dist(z, a+W ) ≤ ηr/2}) < γ
(ηr

2

)m
.

We know that Hm (E ∩Br(a)) ≥ δrm holds too, then we can argue as in the
proof of lemma 1.1 and we obtain (1.6).

Now we prove that there exists a compat G ⊂ F1 with positive measure
such that there exists r2 ∈ (0, r1) such that for every r ∈ (0, r2) and every
a ∈ G there exists an m- dimensional linear plane W which satis�es (1.6),
(1.7) and

(a+W ) ∩Br(a) ⊂ {z : dist(z, F ) < ηr}. (1.8)

For every a ∈ G and r < r2 we select W such that (1.6) and (1.7) hold.
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Since Hm(E) <∞, then there exists a constant c̃ such that

Hm (E ∩B2r(a)) ≤ c̃rm.

Hm (E ∩B2r(a)) = Hm ((E \ F ) ∩B2r(a)) +Hm (F ∩B2r(a))⇒

⇒ 1 =
Hm ((E \ F ) ∩B2r(a))

Hm (E ∩B2r(a))
+
Hm (F ∩B2r(a))

Hm (E ∩B2r(a))
.

Since a ∈ F , then for the Besicovitch Di�erentiation Theorem

lim
r→0

Hm (F ∩B2r(a))

Hm (E ∩B2r(a))
= 1⇒ lim

r→0

Hm ((E \ F ) ∩B2r(a))

Hm (E ∩B2r(a))
= 0.

Hence for every ε > 0 there exists r̄ > 0 such that for every r ∈ (0, r̄)
Hm((E\F )∩B2r(a))
Hm(E∩B2r(a))

≤ ε. Now applying Egorov's Theorem we can make the

convergence of the functions Hm((E\F )∩B2r(a))
Hm(E∩B2r(a))

uniform on a subset G ⊂ F

with positive measure, then there exists r2 ∈ (0, r1) such that

Hm ((E \ F ) ∩B2r(a)) ≤ εHm (E ∩B2r(a)) ≤ εc̃rm

for all a ∈ G and r ∈ (0, r2). We choose ε = γηm/ (2mc̃), then

Hm ((E \ F ) ∩B2r(a)) ≤ γ
(ηr

2

)m
for every a ∈ G and r ∈ (0, r2). Now, if (1.8) were false then it would exists
b ∈ (a+W ) ∩Br(a) such that Bηr(b) ∩ F = ∅. Therefore,

Hm (E ∩Bηr(b)) = Hm ((E \ F ) ∩Bηr(b)) ≤ Hm ((E \ F ) ∩B2r(a)) ≤ γ
(ηr

2

)m
,

that contradicts (1.7).
Let t ∈ (0, γηm/2) and a ∈ G such that θ∗m(G, a) ≤ 1 and

lim
r→0

r−mHm ((E \G) ∩Br(a)) = 0.

Without loss of generality we assume a = 0 and we select r3 ∈ (0, r2) such
that for every r ∈ (0, r3) the following conditions hold:

Hm (E ∩Br(0)) < 2ωkr
m; (1.9)

Hm ((E \G) ∩B2r(0)) < trm. (1.10)
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Now we �x r =: σ < r3 and select W which satis�es (1.6) and (1.8). From
hypotheses

Hm(PW (G)) ≤ Hm(PW (E)) = 0. (1.11)

We want to show that for η and t small enough the conditions from (1.6) to
(1.11) lead to a contradiction.

Step 3. Now we de�ne the cylinders that will lead us to the conclusion.
For b ∈ W and ρ ∈ R+ we de�ne

Dρ(b) := Bρ(b) ∩W and Cρ(b) := {x : PW (x) ∈ Dρ(b)}.

Let H := Dρ(0) \PW
(
G ∩ B̄2σ(0)

)
; H is open since G is compact. For every

x ∈ H we de�ne

ρ(x) := dist
(
x, PW

(
G ∩ B̄2σ(0)

))
,

and we note that if ρ(x) > ησ then we would have Bησ(0)∩G = ∅, therefore

Hm (E ∩Bησ(x)) = Hm ((E \G) ∩Bησ(x)) ≤ Hm ((E \G) ∩B2σ(x)) ≤ tσm,

and for t su�ciently small this is in contradiction with (1.7). Then

ρ ≤ ησ. (1.12)

Using the 5r-Covering Lemma we �nd a countable set {xi}i∈I of points in
H ∩Dσ/4(0) such that

{
D20ρ(xi)(xi)

}
i∈I is a covering of H ∩Dσ/4(0) and the

disks {D4ρ(xi)(xi)}i∈I are pairwise disjoint; we de�ne ρi := ρ(xi).
Since Hm

(
H ∩Dσ/4(0)

)
= Hm

(
Dσ/4(0)

)
= ωm(σ/4)m, then

∑
i∈I

ωmρ
m
i =

1

20m

∑
i∈I

ωm (20ρi)
m ≥

Hm
(
H ∩Dσ/4(0)

)
20m

=
ωmσ

m

80m
(1.13)

Now we split the indices in two sets:

J :=
{
i ∈ I : Cρi/2(xi) ∩ F ∩Bσ(0) 6= ∅

}
and K := I \ J.

Step 4. We study the sum of ωmρ
m
i on J and we reach an estimate of the

same sum on K.
For every i ∈ J let yi ∈ Cρi/2(xi)∩F ∩Bσ(0). Since yi ∈ F ∩Bσ(0), then

from (1.6) we have that |yi − PW (yi)| ≤ ησ, therefore

|yi| ≤ ησ + ρi/2⇒ Bρi/2(yi) ⊂ Bησ+ρ(0),
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but from (1.12) Bησ+ρ(0) ⊂ B2ησ(0). Taking η < 1/2 we obtain that
Bρi/2(yi) ⊂ Bσ(0). Moreover E ∩Bρi/2(yi) ⊂ Cρi(xi) ∩ (E \G), then:

Hm (Cρi(xi) ∩ (E \G) ∩Bσ(0)) ≥ Hm
(
E ∩Bρi/2(yi)

)
≥ δρmi

2m
.

We note that {Cρi(xi)}i∈I are pairwise disjoint, then:∑
i∈J

ωmρ
m
i ≤

∑
i∈J

ωm2m

δ
Hm (Cρi(xi) ∩ (E \G) ∩Bσ(0)) ≤

≤ ωm2m

δ
Hm ((E \G) ∩Bσ(0)) ≤ tωm2mσm

δ
.

From this estimate and (1.13) we can conclude that if we choose t su�-
ciently small there exists a constant c̄ such that∑

i∈K

ωmρ
m
i ≥ c̄σm.

Indeed ∑
i∈K

ωmρ
m
i ≥

ωmσ
m

80m
−
∑
i∈J

ωmρ
m
i ≥ ωmσ

m

(
1

80m
− 2mt

δ

)
,

then if we take t ≤ δ/(2 · 160m) we obtain∑
i∈K

ωmρ
m
i ≥

ωm
2 · 80m

σm.

Step 5. We focus on the cylinders Cρi(xi) with i ∈ K and we search some
pairwise disjoint balls in order to reach the contradiction with (1.9).

For every i ∈ K there exists a point zi ∈ ∂Cρi(xi)∩G∩ B̄2σ(0), moreover
ρi/(8η) ≤ ρi/η ≤ σ < r3, then we can �x an m-dimensional plane Wi which
meets the conditions (1.6) and (1.8) for a = zi and r = ρi

8η
.

Since i ∈ K, Cρi/2(xi) ∩ F ∩ Bσ(0) = ∅. Since (1.8) holds and ηr = ρi/8,
we have that

(zi +Wi) ∩ Cρi/4(xi) ∩B3σ/4 = ∅.

We prove that (zi + Wi) ∩ C2ρi(xi) ∩ Bσ/2 contains a segment Si of length
ρi/(8η).

Let Ai := Bρi/(8η)(zi)∩ (zi+Wi). From (1.8) Ai ⊂ {z : dist(z, F ) < ρi/8},
then xi /∈ PW (Ai), indeed we assume that there exists x ∈ Ai such that
PW (x) = bi. There would exists y ∈ F such that |x − y| ≤ ρi/8, then
PW (y) ∈ Bρi/2(xi), but Cρi/2(xi) ∩ F ∩Bσ(0) = ∅.
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Let Ii be the segment with end-points xi and PW (zi); since xi ∈ Ii\PW (Ai)
and PW (zi) ∈ Ii ∩ PW (Ai), then Ii ∩ ∂WPW (Ai) 6= ∅.

Since ∂WPW (Ai) = PW (∂Wi
Ai), then we can choose ai ∈ ∂Wi

Ai such that
PW (ai) ∈ Ii and we de�ne Si as the segment with end-points ai and zi.

We have that

Si ⊂ Ai ⊂ (zi +Wi) ∩ C2ρi(xi) ∩Bσ/2,

and Si has length ρi/(8η) as we wanted.
Therefore we can �nd N points zji ∈ Si for j = 1, ..., N with

N > |Si|/(2ρi) = 1/(16η)

such that the balls Bρi/2(z
j
i ) are pairwise disjoint. By (1.8) each ball Bρi/8(z

j
i )

must contain a point wji ∈ F , therefore

Hm
(
E ∩Bρi/8

(
wji
))
≥ δρmi

8m
.

Since Bρi/8(w
j
i ) ⊂ Bρi/4(z

j
i ), then {Bρi/8(w

j
i )}j are pairwise disjoint and

they are contained in C4ρi(xi), but {C4ρi(xi)}i∈K are pairwise disjoint, then
the balls Bρi/8(w

j
i ) with i ∈ K and j = 1, ..., N are pairwise disjoint.

Then we can conclude:

Hm (E ∩Bσ(0)) ≥
∑
i∈K

N∑
j=1

Hm
(
E ∩Bρi/8

(
wji
))
≥
∑
i∈K

N∑
j=1

δρmi
8m

=

=
Nδ

8mωm

∑
i∈K

ωmρ
m
i ≥

δc̄

23m+4ωmη
σm.

Therefore we can choose η small enough to obtain a contradiction with (1.9),
and this complete the proof.

Now we prove the corollary that we will use to prove Preiss' Theorem.

Theorem 1.3. Let µ be a measure such that for µ-a.e. x the densities
θm∗ (µ, x) and θ∗m(µ, x) are positive and �nite, and such that every tanget
measure to µ at x is of the form αHm V for some m-dimensional linear
plane V . Then µ is a recti�able measure.

Proof. Since 0 < θ∗m(µ, x) < ∞ for µ-a.e. x, there exist a Borel function f
and a Borel set E such that µ = fHm E. The thesis is equivalent to prove
that E∩{f > 0} is recti�able. Then it is enough to prove that Ec := E∩{c ≤
f ≤ c−1} is recti�able for any c ∈ (0, 1), because E =

⋃
i∈N>1

E1/i, and if E1/i
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is recti�able for every i > 1 then E is a countable union of countable unions
of Lipschitz graphs, hence it is a countable union of Lipschitz graphs.

We �x c ∈ (0, 1) and let ν := Hm Ec. Then, by the Besicovich Di�er-
entiation Theorem we have that

θ∗m(ν, x) =
θ∗m(µ, x)

f(x)
, and θm∗ (ν, x) =

θm∗ (µ, x)

f(x)

for Hm-a.e. x ∈ F , then

0 < θm∗ (ν, x) ≤ θ∗m(ν, x) <∞. (1.14)

From the locality of Tanm(ν, x) it follows that Tanm(ν, x) = Tanm(µ, x)/f(x)
for Hm-a.e. x ∈ F , therefore

Tanm(ν, x) ⊂ {aHm V : a ≥ 0 and V is an m-dimensional plane}. (1.15)

We prove that Ec is weakly linearly approximable at every point x which
satis�es (1.14) and (1.15)

We argue by contradiction: we assume that there exists x that satis�es
(1.14) and (1.15) but Ec is not weakly linearly approximable at x. Without
loss of generality we assume that x = 0; then there exist η > 0 and a
decreasing sequence rj ↓ 0 that for every m-dimensional plane W and every
j either

Hm(Ec ∩Brj(0) \ {z : dist(W, z) ≤ ηrj}) ≥ ηrmj (1.16)

or there exists zj,W ∈ W ∩Brj(0) with

Hm(Ec ∩Bηrj(zj,W ))

rmj
≤ 1

j
. (1.17)

Set νj := r−mj ν Brj(0): since θ∗m(ν, 0) < ∞ there exists a subsequence
{νji}i that converges to ν∞ ∈ Tanm(ν, 0).

From (1.15) it follows that there exist an m-dimensional plane W and a
constant c̄ ≥ 0 such that ν∞ = c̄Hm W . Moreover either (1.16) or (1.17)
holds for an in�nite number of indices i, then we can take a subsequence
{νjil}l such that it holds the same condition for all radii. We indicate that
subsequence with {νl}l.

In case (1.16) holds for all radii then

νl(B1(0) \ {z : dist(W, z) ≤ η}) ≥ η.

Let Ω be the closure of B1(0) \ {z : dist(W, z) ≤ η}. Then

c̄Hm (Ω ∩W ) = ν∞(Ω) ≥ lim sup
l→∞

νl(Ω) ≥ η,
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but Ω ∩W = ∅, therefore there is a contradiction.
If (1.17) holds for all radii, then there exists a sequence of points yl ∈

W ∩B1(0) such that
lim
l→∞

νl(Bη(yl)) = 0.

We take a converging subsequence {ylh}h: ylh → y ∈ W . Then

c̄ωmη
m = c̄Hm (W ∩Bη(y)) = ν∞(Bη(y)) ≤ lim

h→∞
νlh (Bη (ylh)) = 0,

hence c̄ = 0.
On the other hand for L1-a.e. ρ > 0:

θm∗ (ν, y) = lim inf
r→0

ν(Br(y))

ωmrm
≤ ν∞(Bρ(0))

ωmρm
=

c̄

ωm
= 0,

but θm∗ (ν, y) > 0 for (1.14), hence we reached a contradiction.



Chapter 2

Preiss' Theorem

In this chapter we give a proof of Preiss' theorem, that is the main result
of this work, skipping the proof of three steps that we will discuss in the
following chapters.

Theorem 2.1 (Preiss' Theorem). Let m be a positive integer and µ a locally
�nite measure on Rn such that

0 < θm∗ (µ, x) = θ∗m(µ, x) <∞

for µ-a.e. x. Then µ is an m-recti�able measure.

To prove this theorem we follow this strategy: �rst of all we prove
that if µ satis�es those hypotheses then for µ-a.e. x there exists an m-
dimensional plane Wx such that θ(µ, x)Hm Wx ∈ Tanm(µ, x); then we
prove that if Tanm(µ, x) ⊂ θ(µ, x)Um (Rn) and it contains a measure of the
form θ(µ, x)Hm V for an m-dimensional plane V , then all the measures in
Tanm(µ, x) are of that form. After these two steps we can conclude that at
µ-a.e. x the set of tangent measures at x consists of measures of the form
θ(µ, x)Hm V , then we can apply Theorem 1.3 and conclude that µ is rec-
ti�able.

2.1 Part A of Preiss' strategy

In this �rst section we prove the �rst step of the strategy described before.
The �rst tool that we need is a corollary of the Marstrand Theorem that

we state omitting the proof.

Corollary 2.1. Let m be an integer and µ ∈ Um (Rn). Then there exist an
m-dimensional linear plane V ⊂ Rn and two sequences {xi} ⊂ supp(µ) and
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{ri} ⊂ (0, 1] such that
µxi,ri
rmi

∗
⇀Hm V

in the sense of measures.

For the proof see Chapter 3 of [DL].

Lemma 2.1. Let µ be as in the Preiss' Theorem, then for µ-a.e. x the
following property holds: if ν ∈ Tanm(µ, x), then r−mνy,r ∈ Tanm(µ, x) for
every y ∈ supp(ν) and r > 0.

Proof. The thesis is equivalent to prove that for µ-a.e. a the following prop-
erty holds: if ν ∈ Tanm(µ, a) and x ∈ supp(ν) then νx,1 ∈ Tanm(µ, a).

Indeed, let a be a point where this last property holds, let ξ ∈ Tanm(µ, a)
and �x b ∈ supp(ξ) and r > 0. Let ν := r−mξ0,r. We see that ν ∈ Tanm(µ, a),
b/r ∈ supp(ν), and r−mξb,r = νb/r,1. The property we are assuming implies
that νb/r,1 ∈ Tanm(µ, a), then r−mξb,r ∈ Tanm(µ, a), that is our thesis.

Now we prove that property. For every j, k ∈ N we de�ne Ak,j as the set{
a ∈ Rn : ∃ν ∈ Tanm(µ, a), x ∈ supp(ν) with d(r−mµa,r, νx,1) ≥

1

k
∀r < 1

j

}
where d is the metric of the weak* topology.

The thesis is equivalent to prove that µ(Ak,j) = 0 for all k, j ∈ Rn. We
argue by contradiction: assume then that µ(Ak,j) > 0 for some k and j.
Then there exists R > 0 such that the set

Ak,j ∩ {a : R−1 < θm(µ, a) ≤ R}

has positive measure. Let B be that set for that choice of R and let

S := {νx,1 : ν ∈ Tanm(µ, a) for some a ∈ B, x ∈ supp(ν)}.

We note that

νx,1(Br(0)) = ν(Br(xa)) ≤ lim inf
i→∞

µa,ρi(Br(xa))

ρmi
=

= lim inf
i→∞

µ(a+Brρi(ρixa))

ωm(rρi)m
ωmr

m = θ(µ, a)ωmr
m ≤ Rωmr

m,

therefore S ⊂ {ν : ν(Br(0)) ≤ Rωmr
m ∀r > 0} =: C.

The set C is compact with respect to the metric d, then we can cover it
with a �nite family of sets Gi of type

Gi =

{
ζ : d(ζ, ζi) <

1

4k

}
.
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Consider the sets Di of points a ∈ B for which there exists at least a
measure νa ∈ Tanm(µ, a) and xa ∈ supp(νa) such that νaxa,1 ∈ Gi and
d(r−mµa,r, ν

a
xa,1) ≥ 1/k for every r ∈ (0, 1/j). The family sets {Di} is a

�nite covering of B, hence there exists a set D in that family such that
µ(D) > 0, and let G be the corresponding Gi.

For any a ∈ D we �x a measure νa and a point xa which satisfy the
previous inequality and νaxa,1 ∈ G. If a, b ∈ D then

d(νaxa,1, ν
b
xb,1

) <
1

2k
,

since νaxa,1, ν
b
xb,1
∈ G.

Since D is µ-measurable we can choose a ∈ D such that

lim
i→0

µ(D ∩Br(a))

µ(Br(a))
= 1. (2.1)

Then we choose ri ↓ 0 and {ai} ⊂ D such that

µa,ri
rmi

∗
⇀νa;

|ai − (a+ rixa)| < dist(a+ rixa, D) +
ri
i
.

Now we prove that

lim
i→∞

dist(a+ rixa, D)

ri
= 0.

Arguing by contradiction, we suppose that there exists a positive constant c
such that

lim sup
i→∞

dist(a+ rixa, D)

ri
> c.

We prove now that νa(Bc(xa)) = 0, that is in contradiction with the condition
xa ∈ supp(νa):

νa(Bc(xa)) ≤ lim inf
i→∞

µa,ri(Bc(xa))

rmi
= lim inf

i→∞

µ(Bric(a+ rixa))

rmi
.

Since (2.1) holds, for every ε > 0 there exists R > 0 such that for every
r < R it holds

µ(Br(a))

rm
≤ µ(D ∩Br(a))

rm
+ ε.

Now we can take a decreasing subsequence {rij}j such that dist(a +
rijxa, D) > rijc for every j and such ri2 < cri1/(c+ |xa|), with ri1 < R.
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For every j > 1 we have that

Bcrij
(a+ rijxa) ⊂ Brij (|xa|+c)(a) ⊂ Bcri1

(a+ ri1xa).

Then we can conclude

νa(Bc(xa)) ≤ lim inf
i→∞

µ(Bric(a+ rixa))

rmi
≤ lim inf

j→∞

µ(Brij c
(a+ rijxa))

rmij
≤

≤ lim inf
j→∞

µ(Brij (c+|xa|)(a))

rmij
≤ lim inf

j→∞

µ(Brij (c+|xa|)(a) ∩D)

rmij
+ ε ≤

≤ lim inf
j→∞

µ(Bri1c
(a+ ri1xa) ∩D)

rmij
+ ε = ε.

By the arbitrariness of ε it follows that νa(Bc(xa)) = 0, and then we
reached the contradiction.

Then it follows that∣∣∣∣ai − ari
− xa

∣∣∣∣ ≤ dist(a+ rixa, D)

ri
+

1

i
−−−→
i→∞

0.

Now we can note that

µai,ri
rmi

=

(
µa,ri
rmi

)
ai−a

ri

∗
⇀νaxa,1.

Therefore, we can choose ri < 1/j su�ciently small such that

d(νaxa,1, r
−m
i µai,ri) <

1

2k
.

Since ai ∈ D, then we conclude:

1

k
< d(νaixai ,1, r

−m
i µai,ri) ≤ d(νaixai ,1, ν

a
xa,1) + d(νaxa,1, r

−m
i µai,ri) <

1

2k
+

1

2k
=

1

k
.

Then we reached a contradiction and this conclude the proof.

Now we prove the �rst part of the Preiss' strategy.

Theorem 2.2. Let µ be as in the Preiss' Theorem, then for µ-a.e. x ∈ Rn

there exists a plane Wx such that θ(µ, x)Hm Wx ∈ Tanm(µ, x).
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Proof. Let x be a point where Corollary 2.1 and Lemma 2.1 hold and the
density θ(µ, x) exists.

If ν ∈ Tanm(µ, x), then for Lemma 2.1 r−mνy,r ∈ Tanm(µ, x) for every
y ∈ supp(ν) and r > 0. Furthermore ν is of the form θ(µ, x)ζ with ζ
uniform, hence for Corollary 2.1 there exist an m-dimensional plane V and
two sequences {xi} ⊂ supp(ν) and {ri} ⊂ (0, 1] such that

ζxi,ri
rmi

∗
⇀Hm V.

Multiplying for the density we have that θ(µ, x)r−mi ζxi,ri = r−mi νxi,ri , and
r−mi νxi,ri ∈ Tanm(µ, x), then

νxi,ri
rmi

∗
⇀θ(µ, x)Hm V.

We conclude that the weak* closure of Tanm(µ, x) contains a measure of the
form θ(µ, x)Hm V , where V is an m-dimensional plane.

We prove now that Tanm(µ, x) is closed, and this concludes the proof.
For every ρ ∈ (0, 1] consider the set

Cρ := {σ−mµx,σ : 0 < σ ≤ ρ}.

Let ξσ := σ−mµx,σ. We prove that ξσ(Br(0)) is bounded from above from a
constant depending only on µ and r. For σ ≥ ε > 0 we have that ξσ(Br(0))
is bounded because µ is locally bounded; near 0 instead, we have that the
density of µ exists, then there exists the limit

lim
σ→0

ξσ(Br(0)) = lim
σ→0

µ(Brσ(x))

ωm(rσ)m
ωmr

m = θ(µ, x)ωmr
m.

Hence there exists a constant c(r) depending only on r and µ such that

Cρ ⊂ {ξ : ξ(Br(0)) ≤ c(r) ∀r > 0}

for every ρ ∈ (0, 1].
As we can see in Theorem 2.6 of [DL], on this set the weak* topology is

metrized by a metric d. Let C̄ρ be the closure of Cρ in the metric d: since

Tanm(µ, x) =
⋂

0<ρ<1

C̄ρ,

then Tanm(µ, x) is weakly* closed.
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2.2 Part B of Preiss' strategy

In this section we outline a proof of the second step of Preiss' strategy, stating
three theorems that we will prove in the next chapters and showing how our
goal follows from them.

Theorem 2.3. Let µ be as in the Preiss' Theorem and let x be a point
such that Tanm(µ, x) ⊂ θ(µ, x)Um (Rn) and such that Tanm(µ, x) contains a
measure of the form θ(µ, x)Hm V for some m-dimensional plane V . Then
Tanm(µ, x) ⊂ θ(µ, x)Gm(Rn), where Gm(Rn) is the set of �at measures.

First of all we de�ne the set of tanget measures at in�nity; the �rst
result is the uniqueness theorem of tangent measures at in�nity for uniform
measures.

De�nition 2.1. Let α ∈ R+ and µ be a locally �nite measure. Then we
de�ne the set Tanα(µ,∞) as the set of measures ν such that there exists a
sequence of radii ri ↑ ∞ with

µ0,ri

rαi

∗
⇀ν.

Theorem 2.4 (Uniqueness Theorem). If ν ∈ Um (Rn), then there exists
ζ ∈ Um (Rn) such that Tanm(ν,∞) = {ζ}.

From this theorem it follows that the whole family {r−mν}r>0 converges
to ζ as r →∞, then we can de�ne ζ as the tangent measure at in�nity of ν.
We will give a proof of Theorem 2.4 in Chapter 3.

De�nition 2.2. We say that ν ∈ Um (Rn) is �at at in�nity if its tangent
measure at in�nity is �at.

The following theorem states that if ν is uniform and its tangent measure
at in�nity is su�ciently close to a �at measure, then ν is �at at in�nity. We
will prove it in Chapter 4.

Theorem 2.5. There exists a constant ε > 0 depending only on m and n
such that if ν ∈ Um (Rn), ζ is its tangent measure at in�nity and

min
V ∈G(m,n)

∫
B1(0)

[dist(x, V )]2dζ(x) ≤ ε,

then ζ is �at, where G(m,n) is the set of m-dimensional linear planes in Rn.

The third theorem we state will be proved in the last chapter, Chapter 5,
and it gives a relation between �atness at in�nity and �atness.
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Theorem 2.6. If ν ∈ Um (Rn) is �at at in�nity, then ν is �at.

The last result we need to prove Theorem 2.3 is the following lemma.
We indicate with M(Rn) the set of nonnegative locally �nite measures.

Lemma 2.2. Let ϕ ∈ Cc(Rn) be a nonnegative function and consider the
functional F : M(Rn)→ R given by

F (µ) := min
V ∈G(m,n)

∫
Rn

ϕ(z)[dist(z, V )]2dµ(z).

If µi
∗−⇀ µ then F (µi)→ F (µ).

Proof. Let Vi be such that

F (µi) =

∫
Rn

ϕ(z)[dist(z, Vi)]
2dµi(z).

Up to a subsequence we can assume that {Vi} converges to an m-dimensional
plane V∞; then the sequence of functions ϕ(·)[dist(·, Vi)]2 converges uniformly
to ϕ(·)[dist(·, V∞)]2. This implies that

lim
i→∞

∫
Rn

ϕ(z)[dist(z, Vi)]
2dµi =

∫
Rn

ϕ(z)[dist(z, V∞)]2dµ,

then

lim inf
i→∞

F (µi) = lim
i→∞

∫
Rn

ϕ(z)[dist(z, Vi)]
2dµi =

∫
Rn

ϕ(z)[dist(z, V∞)]2dµ ≥

≥ min
V ∈G(m,n)

∫
Rn

ϕ(z)[dist(z, V )]2dµ(z) = F (µ).

Let V̄ be an m-dimensional plane such that

F (µ) =

∫
Rn

ϕ(z)[dist(z, V̄ )]2dµ(z).

Then it holds that

F (µ) =

∫
Rn

ϕ(z)[dist(z, V̄ )]2dµ(z) = lim
i→∞

∫
Rn

ϕ(z)[dist(z, V̄ )]2dµi(z) ≥

≥ lim sup
i→∞

∫
Rn

ϕ(z)[dist(z, V̄i)]
2dµi(z) = lim sup

i→∞
F (µi).

This concludes the proof.
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Furthermore, with this de�nition of F we can note that if ν ∈ Um (Rn)
than ν is �at if and only if F (ν) = 0.

Now we give a proof of Theorem 2.3, which concludes the proof of Theo-
rem 2.1.

Proof. We argue by contradiction: let x be a point such that Tanm(µ, x) is
contained in θ(µ, x)Um (Rn) and such that there exist ν, ζ ∈ Tanm(µ, x) with
ν/θ(µ, x) �at and ζ/θ(µ, x) not �at. Without loss of generality we assume
θ(µ, x) = 1.

Let χ be the tangent measure at in�nity to ζ and �x ϕ ∈ Cc(B2(0)) such
that ϕ = 1 on B1(0) and ϕ(x) ≥ 0 for every x.

Since ζ is not �at, for Theorem 2.6 χ cannot be �at, then, for Theorem 2.5,
we have that F (χ) > ε.

Moreover we can note that χ ∈ Tanm(µ, x), indeed we know that there
exist two sequence ρi ↓ 0 and σj ↑ ∞ such that

µx,ρi
ρmi

∗
⇀ζ and

ζ0,σj
σmj

∗
⇀χ,

then
µx,ρiσj

(ρiσj)m
∗−−−⇀

i→∞

ζ0,σj
σmj

.

It follows that σ−mj ζ0,σj ∈ Tanm(µ, x) for every j, but in the proof of Theorem
2.2 we proved that Tanm(µ, x) is weakly* closed, therefore χ ∈ Tanm(µ, x).
Then we can �x two sequences of radii, rk ↓ 0 and sk ↓ 0, such that

µx,rk
rmk

∗
⇀ν and

µx,sk
smk

∗
⇀χ

and such that sk < rk for every k.
Let f : R+ → R+ de�ned as f(r) := F (r−mµ0,r).
Since ν is �at, we have that

lim
k→∞

f(rk) = F (ν) = 0;

then, for rk su�ciently small, f(rk) < ε.
Focusing on χ instead of ν:

lim
k→∞

f(sk) = F (χ) > ε;

then, for sk su�ciently small, f(sk) > ε.
Note that for Lemma 2.2 f is continuous, then for every k we can �x

σk ∈ [sk, rk] such that f(σk) = ε and f(r) ≤ ε for r ∈ [σk, rk].
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We know that if a sequence of measures is locally uniformly bounded,
then there exists a subsequence which converges in the weak* topology. Since
θ∗m(µ, x) <∞, then we have that for every ρ > 0 the set of numbers

µ(Bρr(x))

r−m
=
µx,r(Bρ(0))

r−m

is uniformly bounded, therefore the family of measures {r−mµx,r : r ∈ (0, 1]}
is locally uniformly bounded, then for any sequence of radii there exists a
subsequence that converges in the weak* topology.

Therefore we can assume that, up to a subsequence, σ−mk µx,σk converges
in the weak* topology to a measure ξ ∈ Um (Rn). We have that

F (ξ) = lim
k→∞

f(σk) = ε,

then ξ is not �at.
Now we prove that rk/σk → ∞. If it existed a sequence of indices {ki}

and a constant C ∈ [1,∞) such that rki/σki → C <∞, then we would have
that

ν
∗
↼− µx,rk

rmk
=

(
σk
rk

)m(
µx,σk
σmk

)
0,rk/σk

∗−⇀ C−mξ0,C ,

hence, ξ would be �at.
Now we note that for every R > 0 we have (Rσk)

−mµ0,Rσk
∗−⇀ R−mξ0,R,

then
F (ξ0,R) = lim

k→∞
f(Rσk).

Let R ≥ 1. Since rk/σk →∞, there exists k̄(R) such that for any k > k̄(R)
we have Rσk ∈ [σk, rk], then

F (R−mξ0,R) ≤ ε

for every R ≥ 1.
Let ψ be the tangent measure at in�nity to ξ:

F (ψ) = lim
R→∞

F (R−mξ0,R) ≤ ε,

then, for Theorem 2.5, ψ is �at, hence ξ is �at too for Theorem 2.6. Here we
reached a contradiction.
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Chapter 3

Uniqueness Theorem for tangent

measures at in�nity

In this chapter we prove Theorem 2.4, that is the uniqueness of tangent
measures at in�nity for uniform measures.

The �rst lemma states that the integral of a radial function on an uniform
measure µ does not depend on µ. We will use this fact several times in this
chapter and in the next ones.

Lemma 3.1. Let ϕ : R→ R+ be a Borel function, µ an m-uniform measure
and y ∈ supp(µ). Then∫

Rn

ϕ(|x|)dµ(x) =

∫
Rn

ϕ(|x− y|)dµ(x) =

∫
Rm

ϕ(|z|)dLm(z),

where Lm is the Lebesgue measure.

Proof. Since µ(Bn
r (0)) = µ(Bn

r (y)) = ωmr
m = Lm(Bm

r (z)), the identity is
true if ϕ is piecewise constant; then we can argue by density to conclude
that it is true for every Borel function ϕ.

We indicate with µr the measure r−me−|·|
2
µ0,r. Then, for every Borel

function ϕ we have that∫
Rn

ϕ(x)dµr(x) = r−m
∫
Rn

e−|x|
2/r2ϕ

(x
r

)
dµ(x).

Let ν ∈ Tanm(µ,∞) and ri ↑ ∞ a sequence such that r−mi µ0,ri
∗−⇀ ν,

then µri
∗−⇀ e−|·|

2
ν. The uniqueness of the tangent measure at in�nity is then

equivalent to the existence of a unique limit of µr for r ↑ ∞.
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Let P be a polynomial and let FP (r) :=
∫
Rn P (z)dµr(z). With a density

argument we will prove that the existence of a unique limit of µr for r ↑ ∞
is equivalent to the existence of the limit

lim
r→∞

FP (r). (3.1)

For µ ∈ Um (Rn) and s > 0 we indicate with I(s) the integral

I(s) :=

∫
Rn

es|z|
2

dµ(z).

De�nition 3.1. Let µ ∈ Um (Rn), k ∈ Z>0, u1, ..., uk ∈ Rn and s ∈ R+.
Then we de�ne the moments bµk,s(u1, ..., uk) as

bµk,s(u1, ..., uk) :=
(2s)k

k!
I(s)−1

∫
Rn

〈z, u1〉...〈z, uk〉e−s|z|
2

dµ(z).

We will prove then that the existence of the limit (3.1) is equivalent to
the existence of the limit

lim
s↓0

bµN,s
sN/2

. (3.2)

We study now the existence of the limit (3.2). In order to do that we
need a Taylor expansion for bµk,s, that we will reach using the estimates in
the following lemmas.

Lemma 3.2. Let µ ∈ Um (Rn). Then there exists a constant C(m) such
that

|bµk,s(u1, ..., uk)| ≤ C(m)
2kkk/2

k!
sk/2|u1|...|uk|.

Proof. Since

bµk,s(u1, ..., uk) =
(2s)k

k!
I(s)−1

∫
Rn

〈z, u1〉...〈z, uk〉e−s|z|
2

dµ(z),

then

|bµk,s(u1, ..., uk)| ≤ |u1|...|uk|
(2s)k

k!
I(s)−1

∫
Rn

|z|ke−s|z|2dµ(z).

From Lemma 3.1 it follows that

I(s) :=

∫
Rn

e−s|z|
2

dµ(x) =

∫
Rm

e−s|z|
2

dLm(x) =
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= s−m/2
∫
Rm

e−|y|
2

dLm(y) =
(π
s

)m/2
,

then

|bµk,s(u1, ..., uk)| ≤ |u1|...|uk|
2ksk/2

πmk!
sk/2+m/2

∫
Rn

|z|ke−s|z|2dµ(z). (3.3)

Using Lemma 3.1 we conclude that

sk/2+m/2
∫
Rn

|z|ke−s|z|2dµ(z) =

∫
Rn

|s1/2z|ke−|s1/2z|2d[sm/2µ(z)] =

=

∫
Rm

|s1/2z|ke−|s1/2z|2d[sm/2Lm(z)] =

∫
Rm

|y|ke−|y|2dLm(y).

We know that there exists a dimensional constant C1(m) such that∫
Rm

|y|ke−|y|2dLm(y) ≤ C1(m)kk/2,

then combining this with (3.3) we conclude the proof.

We indicate with bµk,s(x
k) the number bµk,s(x, x, ..., x).

Lemma 3.3. Let µ ∈ Um (Rn). Then there exists a constant C̄(m) such
that for every q ∈ N∣∣∣∣∣

2q∑
k=1

bµk,s(x
k)−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣ ≤ C̄(m)(s|x|2)q+1/2

for every x ∈ supp(µ).

Proof. If |x| = 0 the lemma is true.
Let s|x|2 ≥ 1, then∣∣∣∣∣

2q∑
k=1

bµk,s(x
k)−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣ ≤
∣∣∣∣∣

2q∑
k=1

bµk,s(x
k)

∣∣∣∣∣+

∣∣∣∣∣
q∑

k=1

(s|x|2)k

k!

∣∣∣∣∣ ≤
≤ C(m)

2q∑
k=1

2kkk/2

k!
(s|x|2)k/2 + (s|x|2)q

∞∑
k=1

1

k!
≤

≤ C(m)(s|x|2)q
∞∑
k=1

2kkk/2

k!
+ e(s|x|2)q.
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Since k! ≥ Ckke−k from Stirling's Formula, we have that the series

∞∑
k=1

2kkk/2

k!

converges, then∣∣∣∣∣
2q∑
k=1

bµk,s(x
k)−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣ ≤ C1(m)(s|x|2)q ≤ C1(m)(s|x|2)q+1/2.

Consider now the case s|x|2 ∈ (0, 1).
Let us �x the convention that bµ0,s(x

0) := 1. We prove that for every s > 0
and x ∈ supp(µ) such that s|x|2 < 1 we have that

∞∑
k=0

bµk,s(x
k) = es|x|

2

. (3.4)

From Lemma 3.2 it follows that

∞∑
k=1

|bµk,s(x
k)| ≤

∞∑
k=1

C
2kkk/2

k!
(s|x2|)k/2 ≤ C

∞∑
k=1

2kkk/2

k!
≤ C2,

since, as we saw in the previous case, that series converges. Then the series

∞∑
k=0

bµk,s(x
k)

is summable for s|x|2 < 1, therefore

∞∑
k=0

bµk,s(x
k) = lim

q→∞

q∑
k=0

I(s)−1
∫
Rn

(2s〈z, x〉)k

k!
e−s|z|

2

dµ(z).

Since e−s(|·|
2+2|·||x|) ∈ L1(µ) and∣∣∣∣∣

q∑
k=0

(2s〈z, x〉)k

k!
e−s|z|

2

∣∣∣∣∣ ≤ e−s|z|
2

q∑
k=0

(2|z||x|)k

k!
≤ e−s(|z|

2+2|z||x|),

then by the Dominated Convergence Theorem we conclude

∞∑
k=0

bµk,s(x
k) = I(s)−1

∫
Rn

[
∞∑
k=0

(2s〈z, x〉)k

k!

]
e−s|z|

2

dµ(z) =
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= I(s)−1
∫
Rn

e2s〈z,x〉−s|z|
2

dµ(z) = I(s)−1es|x
2|
∫
Rn

e−s|z−x|
2

dµ(z).

From Lemma 3.1 we obtain∫
Rn

e−s|z−x|
2

dµ(z) =

∫
Rn

e−s|z|
2

dµ(z) = I(s),

and this concludes the proof of (3.4).
Now we can compute the wanted estimate:∣∣∣∣∣

2q∑
k=1

bµk,s(x
k)−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣ ≤
≤

∣∣∣∣∣
∞∑
k=1

bµk,s(x
k)−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣+

∣∣∣∣∣
∞∑
k=1

bµk,s(x
k)−

2q∑
k=1

bµk,s(x
k)

∣∣∣∣∣ .
We study the �rst addend:∣∣∣∣∣
∞∑
k=1

bµk,s(x
k)−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣ =

∣∣∣∣∣es|x|2 −
q∑

k=1

(s|x|2)k

k!

∣∣∣∣∣ =
∞∑

k=q+1

(s|x|2)k

k!
≤

≤ (s|x|2)q+1

∞∑
k=0

1

k!
= e(s|x|2)q+1 ≤ e(s|x|2)q+1/2.

We study the second addend:∣∣∣∣∣
∞∑
k=1

bµk,s(x
k)−

2q∑
k=1

bµk,s(x
k)

∣∣∣∣∣ ≤
≤

∞∑
k=2q+1

|bµk,s(x
k)| ≤ C(m)

∞∑
k=2q+1

2kkk/2

k!
sk/2|x|k ≤

≤ C(m)(s|x|2)q+1/2

∞∑
k=1

2kkk/2

k!
≤ C2(m)(s|x|2)q+1/2.

Then we conclude:∣∣∣∣∣
2q∑
k=1

bµk,s(x
k)−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣ ≤ (e+ C2(m))(s|x|2)q+1/2.
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Theorem 3.1 (Taylor expansion). Let µ ∈ Um (Rn) and k ∈ Z>0. Then

there exist symmetric k-linear forms b
(j)
k , with j ∈ Z>0, such that for all

q ∈ Z>0 and x ∈ supp(µ) the following three conditions hold:

bµk,s =

q∑
j=1

sjb
(j)
k

j!
+ o(sq); (3.5)

b
(j)
k = 0 whenever j < k/2; (3.6)

2q∑
k=1

b
(q)
k (xk) = |x|2q. (3.7)

In order to prove this theorem we need to introduce some notation.
We indicate with

⊙k Rn the vector space of symmetric k-tensor on Rn.
Then bµk,s ∈ Hom(

⊙k Rn,R), and the function s → bµk,s is a curve in

Hom(
⊙k Rn,R).

We de�ne Xk,n := Rn ⊕
⊙2Rn ⊕ ... ⊕

⊙k Rn, and Pj is the canonical
projection of Xk,x on

⊙j Rn.
We indicate with 〈·, ·〉k the unique scalar product on

⊙k Rn such that

〈u1 � ...� uk, v1 � ...� vk〉k =
1

k!

∑
σ∈Gk

〈
u1, vσ(1)

〉
...
〈
uk, vσ(k)

〉
,

where Gk is the set of permutations of {1, 2, ..., k}.

De�nition 3.2. Let k, n ∈ Z>0. Then we de�ne on Xk,n the scalar productt·, ·y as

tu, vy :=
k∑
j=1

2j〈Pj(u), Pj(v)〉j
j!

,

and we set ‖u‖ := tu, uy1/2.
We indicate with V ⊥ the orthogonal subspace with respect of t·, ·y.

Proof. Step 0. An overview on the proof of (3.5), that is the core of this
proof.

We �x a q. Using the tensor notation, we can see the map

s→ bs :=

2q∑
k=1

bµk,s ∈ Hom(X2q,n,R)
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as a curve of linear operators. Then, if x ∈ supp(µ), Lemma 3.3 gives us the
expansion

bs(x+ x2 + ...+ x2q) =

q∑
k=1

sk|x|2k

k!
+ ‖x‖2q+1o(sq),

which de�nes the function on a vector space V by linearity.
Our goal is then to �nd an analytic curve ωs and a certain projection Qs

such that
bs = ωs ◦Qs + o(sq).

Proving the analyticity of an extension of Qs to s = 0 will conclude the proof.
Step 1. We prove now (3.5).
Let q ∈ Z>0, X := X2q,n, and consider the curve

s→ bs :=

2q∑
k=1

bµk,s ∈ Hom(X,R), for s > 0.

For every k ∈ Z>0 let ω̂2k ∈ Hom(X,R) be such that ω̂2k(y) = 0 for every
y ∈

⊙j Rn with j 6= 2k and

ω̂2k(x
2k) =

|x|2k

k!
.

We observe that ω̂2k ∈
⊙2k Rn and it is given by

ω̂2k(x1, ..., x2k) =
1

k!(2k)!

∑
σ∈G2k

〈xσ(1), xσ(2)〉...〈xσ(2k−1), xσ(2k)〉.

Now we de�ne, for s > 0, ωs ∈ Hom(X,R) as

ωs :=

q∑
k=1

skω̂2k,

and V as the linear subspace of X generated by the elements of the form
x+ x2 + ...+ x2q for x ∈ supp(µ).

Let as(·, ·) be the bilinear form on X de�ned by

as(u, v) := x
2q∑
k=1

skPk(u), v} .
We note that it is a scalar product on X.



30 CHAPTER 3. UNIQUENESS THEOREM

De�ne Fs as the subspace of X orthogonal to V with respect of the scalar
product as(·, ·), that is

Fs :=

{
u ∈ X : x

2q∑
k=1

skPk(u), v} = 0 ∀v ∈ V

}
.

Then we have that V ⊕ Fs = X.
We de�ne Qs as the orthogonal projection on V with respect to the scalar

product as(·, ·), then Qs : X → X is the linear map such that it is the identity
on V and it is 0 on Fs.

We note that

‖x+ x2 + ...+ x2q‖2 =

2q∑
j=1

2j

j!
|x|2j,

then we have that, for y ∈ V , Lemma 3.3 can be written as

bs(y) = ωs(y) + ‖y‖1+co(sq), (3.8)

where c = 2q if |x| < 1 and c = 1/(2q) if |x| ≥ 1.
Moreover we note that

bs(u) =

2q∑
k=1

I(s)−1
2k

k!
sk
∫
Rn

〈
Pku, v

k
〉
k
e−s|v|

2

dµ(v) =

= I(s)−1
∫
Rn

2q∑
k=1

2k

k!

〈
skPku, Pk(v + v2 + ...+ v2q)

〉
k
e−s|v|

2

dµ(v) =

= I(s)−1
∫
Rn

x
2q∑
k=1

skPku, v + v2 + ...+ v2q} e−s|v|2dµ(v) =

= I(s)−1
∫
Rn

as(u, v + v2 + ...+ v2q)e−s|v|
2

dµ(v).

Then we conclude that for u ∈ Fs:

bs(u) = 0 = ωs(0) = ωs(Qs(u)).

Therefore we can write (3.8) as

bs = ωs ◦Qs + ‖Qs‖1+co(sq),
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and since Qs is a projection, ‖Qs‖ ≤ 1, then

bs = ωs ◦Qs + o(sq).

We note that we can de�ne bs for s = 0 too, and since ωs can be de�ned
also for s = 0 and the curve s → ωs is analytic, we have that bs is analytic
at s = 0 if Qs can be extended analytically to s = 0.

If bs is analytic at s = 0 then its components, that are bµk,s, are analytic,
and this concludes the proof.

We prove now that Qs has an analytic extension at s = 0.
We know that(

2q∑
k=1

skPk

)
◦

(
2q∑
j=1

s−jPj

)
=

2q∑
k,j=1

sk−jPk ◦ Pj =

2q∑
k=1

Pk = Id,

therefore the map
∑2q

j=1 s
−jPj is the inverse of the map

∑2q
k=1 s

kPk. Then
x ∈ Fs if and only if

x ∈

[
2q∑
j=1

s−jPj

]
(V ⊥).

Moreover, we can decompose the linear space V ⊥ in 2q linear spaces which
are pairwise orthogonal:

V1 := V ⊥ ∩
⊙

1Rn,

V2 :=
{
V ⊥ ∩

[⊙
1Rn ⊕

⊙
2Rn

]}
∩ V ⊥1 ,

Vk :=

{
V ⊥ ∩

[⊕
j≤k

(⊙
jRn
)]}

∩
⋂
j<k

V ⊥j .

Let As : X → X be a linear map such that As is the identity on V , and
on Vk is given by Pk + sPk−1 + ...+ sk−1P1.

We note that As maps V into V and V ⊥ into Fs, and that the curve
s→ As is analytic.

We prove that A0 is invertible, and then we conclude proving that the
map Q̃s := PV ◦ A−1s is an analytic extension of Qs.

Let w ∈ X such that A0(w) = 0 and decompose it as w = −v0 + v1 + ...+
v2q, where v0 ∈ V and v1 ∈ Vi for i = 1, 2, ..., 2q. Assume by contradiction
that there exists k > 0 such that vk 6= 0 and choose the smallest k with that
property.
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Since vk ∈
⊕

j≤k

(⊙j Rn
)
, then

vk = Pk(vk) +
k−1∑
j=1

Pj(vk).

On the other hand, we know that

0 = A0(w) = −v0 +

2q∑
j=1

Pj (vi)⇒ v0 = Pk(vk)

2q∑
j=k+1

Pj(vj).

Then we obtain

tvk, v0y = |Pk(vk)|2,

but vk ∈ Vk ⊂ V ⊥, then Pk(vk) = 0. Since vk ∈
⊕

j≤k(
⊙j Rn) and we have

that Pk(vk) = 0, then vk ∈
⊕

j≤k−1

(⊙j Rn
)
, therefore

vk ∈

{
V ⊥ ∩

[ ⊕
j≤k−1

(⊙
jRn
)]}

∩
⋂
j<k

V ⊥j ⊂

⊂

{
V ⊥ ∩

[ ⊕
j≤k−1

(⊙
jRn
)]}

∩
⋂

j<k−1

V ⊥j = Vk−1.

We know that Vk−1 ⊥ Vk, then vk = 0. This concludes the proof of invert-
ibility of A0.

Then As is analytic and invertible at 0; this implies that As is invertible
in a neighborhood of 0 and the map s→ A−1s is analytic.

Let Q̃s := PV ◦ A−1s , where PV is the orthogonal projection on V with
respect of the scalar product t·, ·y.

We know that Q̃s is analytic in a neighborhood of 0, Q̃s is the identity
on V , and, since for every s > 0 A−1s maps Fs into V

⊥, Q̃s is 0 on Fs.
Then we proved that Qs = Q̃s for s > 0, therefore Qs has an analytic

extension at 0, and this concludes the proof of (3.5).
Step 2. We note that (3.6) is an immediate consequence of (3.5) and

Lemma 3.2, since the lemma states that bµk,s, for s→ 0, goes to 0 faster than

sk/2, then its Taylor expansion can not go to 0 slower than sk/2, then b
(j)
k = 0

whenever j < k/2.
Step 3. Now we prove (3.7), which follows from Lemma 3.3, (3.5), and

(3.6).
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Let q ∈ Z>0. From Lemma 3.3 we have that for every x ∈ supp(µ) it
holds ∣∣∣∣∣

2q∑
k=1

bµk,s
(
xk
)
−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣ ≤ C̄(m)
(
s|x|2

)q+1/2
,

and from (3.5) we have that for every x ∈ Rn it holds

bµk,s(x
k) =

q∑
j=1

sjb
(j)
k (xk)

j!
+ o (sq) .

Then, since b
(j)
k = 0 if j < k/2,

o (sq) =

∣∣∣∣∣
2q∑
k=1

q∑
j=1

sjb
(j)
k (xk)

j!
−

q∑
k=1

(s|x|2)k

k!

∣∣∣∣∣ =

∣∣∣∣∣
q∑
j=1

sj

j!

(
2j∑
k=1

b
(j)
k (xk)− |x|2j

)∣∣∣∣∣ .
If we �x q = 1 we �nd

∣∣∣b(1)1 (x) + b
(1)
2 (x2)− |x|2

∣∣∣ = o(s)/s, then

b
(1)
1 (x) + b

(1)
2 (x2) = |x|2.

By induction we have that for j = 1, 2, ..., 2q and x ∈ supp(µ)

2j∑
k=1

b
(j)
k

(
xk
)

= |x|2j,

and this concludes the proof.

We note that the existence of the limit (3.2) follows from (3.5) and (3.6);
we do not use (3.7) now, but it will be useful in the next chapters.

Now we prove Theorem 2.4, which is the main result of this chapter.

Proof. Let N ∈ Z>0. We �x q > N/2, and we note that from (3.5) it follows
that

lim
s↓0

bµN,s(x1, ..., xN)

sN/2
= lim

s↓0

[
q∑
j=1

sj−N/2b
(j)
N (x1, ..., xN)

j!
+ o(sq)

]
=

=

q∑
j=1

lim
s↓0

sj−N/2b
(j)
N (x1, ..., xN)

j!
.

For (3.6) the limit is 0 for j < N/2, and for j > N/2 it is 0 since sj−N/2 → 0.
Therefore we have that the limit (3.2) exists for every N : indeed it is 0

whenever N is odd and it is b
(N/2)
N (x1, ..., xN)/(N/2)! whenever N is even.
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Now we prove that since limit (3.2) exists, then limit (3.1) exists for every
polynomial P .

Since I(s) = (π/s)m/2, we have that

bµN,s(u1, ..., uN)

sN/2
=

2N

N !πm/2
sN/2+m/2

∫
Rn

〈z, u1〉...〈z, uN〉e−s|z|
2

dµ(z).

Let r := s−1/2:

bµN,s(u1, ..., uN)

sN/2
=

2N

N !πm/2
r−m

∫
Rn

〈r−1z, u1〉...〈r−1z, uN〉e−|z|
2/r2dµ(z) =

=
2N

N !πm/2

∫
Rn

〈z, u1〉...〈z, uN〉dµr(z).

Then we conclude that the limit (3.1) exists for every polynomial of the form
〈z, u1〉...〈z, uN〉.

Let ν1, ν2 ∈ Tanm(µ,∞) and {rk}k, {sk}k two sequences such that rk ↑ ∞,
sk ↑ ∞ and

µ0,rk

rmk

∗
⇀ν1,

µ0,sk

smk

∗
⇀ν2.

We indicate with ν̃1 and ν̃2 the measures e−|·|
2
ν1 and e−|·|

2
ν2 respectively,

then we have
µrk

∗−⇀ ν̃1, µsk
∗−⇀ ν̃2.

From the de�nitions we gave we note that for every j ∈ N and ε > 0
there exists M > 0 such that∫

Rn\BM (0)

|z|jdµr(z) ≤ ε,

then we can conclude that

lim
k↑∞

∫
Rn

〈z, u〉jdµrk(z) =

∫
Rn

〈z, u〉jdν̃1(z),

lim
k↑∞

∫
Rn

〈z, u〉jdµsk(z) =

∫
Rn

〈z, u〉jdν̃2(z).

Therefore, since we proved that the limit exists for r ↑ ∞, we have that for
every j ∫

Rn

〈z, u〉jdν̃1(z) =

∫
Rn

〈z, u〉jdν̃2(z).

Then for every polynomial P in n variables we conclude∫
Rn

e−|z|
2

P (z)dν1(z) =

∫
Rn

e−|z|
2

P (z)dν2(z),
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and using the Taylor expansion for e−a|z|
2
we obtain the following equation

for every a ≥ 0:∫
Rn

e−(1+a)|z|
2

P (z)dν1(z) =

∫
Rn

e−(1+a)|z|
2

P (z)dν2(z).

We prove now, with a density argument, that∫
Rn

ϕ(z)dν1(z) =

∫
Rn

ϕ(z)dν2(z) (3.9)

for every ϕ ∈ Cc(Rn), which concludes the proof.
Let B be the vector space generated by functions of the form

b+ e−(1+a)|z|
2

P (z)

where a ≥ 0, b ∈ R and P is a polynomial.
In order to prove (3.9) we show that for every ψ ∈ Cc(Rn) there exists a

sequence {ψi}i ⊂ B which converges uniformly to ψ.
We �x ψ ∈ Cc(Rn) and let Sn be the usual one-point compacti�cation

of Rn. We denote with ψ̃ ∈ Cc(Sn) the unique continuous extension of ψ,
and we note that for every χ ∈ B there exists a unique continuous extension
χ̃ ∈ C(Sn), then we indicate with B̃ the vector space of such extensions. B̃ is
an algebra of continuous functions on a compact set, it separates the points
and it vanishes at no point, then we conclude, using the Stone-Weierstrass

Theorem, that there exists a sequence
{
ψ̃i

}
⊂ B̃ which converges uniformly

to ψ̃. Now, the corresponding sequence {ψi} ⊂ B converges uniformly to ψ.
We conclude now the proof of the theorem using this property: let ϕ ∈

Cc(Rn) and choose a sequence {ψi} ∈ B which converges uniformly to ψ :=
e|·|

2
ϕ. Moreover we note that if χ ∈ B then e−|·|

2
χ is a sum of functions of

the form e−(1+a)|·|
2
P (·), then we can conclude that∫

Rn

e−|z|
2

ψi(z)dν1(z) =

∫
Rn

e−|z|
2

ψi(z)dν2(z)

for our previous computation. Since {ψi} is uniformly bounded, we let i ↑ ∞
and we obtain (3.9), which concludes the proof.
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Chapter 4

Flatness Criterion for conical

measures

In this chapter we prove Theorem 2.5. In order to do that we introduce
conical measures and we prove that if µ is uniform and λ is its tangent at
in�nity then λ is a conical measure. After that we prove that a stronger
version of Theorem 2.5 holds for every conical and uniform measure.

De�nition 4.1. A measure λ is called a conical measure if for every ρ > 0
it holds

λ0,ρ = ρmλ.

We see that the conical property of the tangent measure at in�nity is an
immediate consequence of the uniqueness of tangent measure at in�nity.

Corollary 4.1. Let µ ∈ Um (Rn) and λ ∈ Um (Rn) be its tangent measure
at in�nity. Then λ is a conical measure and it holds that if x ∈ supp(λ) then
ρx ∈ supp(λ) for every ρ > 0.

Proof. Let ri ↑ ∞ be a sequence of radii such that r−mi µ0,ri
∗−⇀ λ and let

ρ > 0. Then
µ0,ρri

(ρri)m
∗−⇀ λ0,ρ

ρm
,

therefore ρ−mλ0,ρ ∈ Tanm(µ,∞) = {λ}. This means that the conical prop-
erty holds for the tangent measure at in�nity of a uniform measure.

Now let x ∈ supp(λ). Since λ0,ρ = ρmλ, then

λ(Br(ρx)) = ρmλ(Br/ρ(x)) > 0

for every r > 0. This means that ρx ∈ supp(λ), and this concludes the
proof.
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The aim of this chapter is then to prove the following theorem, and The-
orem 2.5 follows trivially from that and Corollary 4.1.

Theorem 4.1. Let λ ∈ Um (Rn) be a conical measure. Then:

• if m ≤ 2 then λ is �at;

• if m ≥ 3 then there exists a constant ε > 0 depending only on m and
n such that if

min
V ∈G(m,n)

∫
B1(0)

[dist(x, V )]2 dλ(x) ≤ ε

then λ is �at.

In order to prove this theorem we need to study the behaviour of the
moments bλk,s when λ is uniform and conical.

Lemma 4.1. Let λ ∈ Um (Rn) be conical. Then:

1. bλ2k−1,s = 0 and bλ2k,s = [(k)!]−1skb
λ,(k)
2k , then only one term of the Taylor

expansion of bλ2k,s is di�erent from 0;

2. supp(λ) ⊂ {x ∈ Rn : b
λ,(k)
2k (x2k) = |x|2k};

3. for every u ∈ supp(λ), every w ∈ Rm such that |w| = |u| and ev-
ery function ϕ : R≥0 × R → R with ϕ(|z|, 〈z, u〉) ∈ L1(Rn, λ) and
ϕ(|x|, 〈x,w〉) ∈ L1(Rm) it holds∫

Rn

ϕ (|z|, 〈z, u〉) dλ(z) =

∫
Rm

ϕ (|x|, 〈x,w〉) dLm(x).

Proof. Step 1. We prove the �rst statement.
Let x ∈ supp(λ). From a change of variables w = s1/2z and the conical

property λ0,s1/2 = sm/2λ follows that

bλj,s(x
j) =

(2s)j

j!
I(s)−1

∫
Rn

e−s|z|
2〈x, z〉jdλ(z) =

=
(2s)j

j!
I(s)−1s−j/2−m/2

∫
Rn

e−|w|
2〈x,w〉jdλ(w) =

=
2jsj/2

πm/2j!

∫
Rn

e−|w|
2〈x,w〉jdλ(w).
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Then, from the Taylor expansion (3.5) follows that for every x ∈ supp(λ)
if j is odd then we have bλj,s(x

j) = 0, if j is even then we have

bλj,s
(
xj
)

=
sj/2

(j/2)!
b
λ,(j/2)
j (xj),

with

b
λ,(j/2)
j

(
xj
)

=
2j(j/2)!

πm/2j!

∫
Rn

e−|w|
2〈x,w〉jdλ(w).

Since we can determine a symmetric j-linear form from its values on the
elements of the form xj, we conclude that if j is odd then bλj,s = 0, and if j

is even then bλj,s = [(j/2)!]−1 sj/2b
λ,(j/2)
j .

Step 2. Now we prove the second statement.
From the �rst statement and the Taylor expansion of bλj,s we have that

b
λ,(k)
j = 0 if j 6= 2k, and from (3.7) follows that for every x ∈ supp(λ) we
obtain

b
λ,(k)
2k

(
x2k
)

= |x|2k,
which concludes the proof of the second statement.

Step 3. In this step we prove the third statement.
From the �rst and the second statements follows that for every s > 0, for

every u ∈ supp(λ) and for every k ∈ Z>0 we can compute:∫
Rn

e−s|z|
2 〈z, u〉2k−1 dλ(z) =

(2k − 1)!

(2s)2k−1
I(s)bλ2k−1,s

(
u2k−1

)
= 0,

and ∫
Rn

e−s|z|
2 〈z, u〉2k dλ(z) =

(π
s

)m/2 (2k)!

22ks2k
bλ2k,s

(
u2k
)

=

=
(π
s

)m/2 (2k)!

k!22ksk
b
λ,(k)
2k

(
u2k
)

=
(π
s

)m/2 (2k)!

k!22ksk
|u|2k.

Let e1, ..., em be an orthonormal base of Rm and let w := |u|e1. Then:∫
Rm

e−s|x|
2 〈x,w〉2k dLm(x) = |u|2k

∫
Rm−1

e−s|ξ|
2

dLm−1(ξ)

∫
R
e−s|t|

2

t2kdL1(t).

Integrating by parts the last integral we reach∫
Rm

e−s|x|
2 〈x,w〉2k dLm(x) =

(π
s

)m/2 (2k)!

k!22ksk
|u|2k,

then ∫
Rn

e−s|z|
2 〈z, u〉j dλ(z) =

∫
Rm

e−s|x|
2 〈x,w〉j dLm(x). (4.1)
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By the arbitrariness of the choice of the base e1, ..., em we conclude that
(4.1) holds for every w ∈ Rm such that |w| = |u|.

Let B be the set of Borel functions ϕ : R≥0 ×R→ R such that for every
u ∈ supp(λ) and f ∈ Rm such that |w| = |u| the following holds:

ϕ(|z|, 〈z, u〉) ∈ L1(Rn, λ)

and ∫
Rn

ϕ(|z|, 〈z, u〉)dλ(z) =

∫
Rm

ϕ(|x|, 〈x,w〉)dLm(x).

We prove that B contains the set of functions that are continue and with
compact support from R≥0 × R to R.

From (4.1) we know that B ⊃ {e−sy21yj2 : s > 0, j ∈ N}, and by taking the
derivatives in s of (4.1) we obtain that B ⊃ {e−sy21y2k1 y

j
2 : s > 0, k, j ∈ N}.

Since B is a vector space, we have that B contains all the fuctions of the
form

e−sy
2
1y2k1 y

j
2

(
N∑
i=1

(−1)i
siy2i2
i!

)
(4.2)

with s > 0, k, j ∈ N and N ∈ Z≥0.
Let |w| = |u| < 1. Then we have that for every N ∈ Z>0∣∣∣∣∣e−s|x|2|x|2k 〈w, x〉

(
N∑
i=1

(−1)i
si 〈w, x〉2i

i!

)∣∣∣∣∣ ≤
≤ e−s|x|

2|x|2k+j|w|jes|w|2|x|2 = e−s|x|
2(1−|w|2)|x|2k+j|w|j, (4.3)

which is an integrable function, then we can apply the Dominated Conver-
gence Theorem:

lim
N↑∞

∫
Rm

e−s|x|
2|x|2k 〈w, x〉

(
N∑
i=1

(−1)i
si 〈w, x〉2i

i!

)
dLm(x) =

=

∫
Rm

e−s(|x|
2+〈w,x〉2)|x|2k 〈w, x〉j dLm(x). (4.4)

We note that the function in (4.3) is radial, then it is integrable with respect
to the measure λ ∈ Um (Rn), and if we replace w with u we can apply the
Dominated Convergence Theorem to obtain

lim
N↑∞

∫
Rn

e−s|z|
2|z|2k 〈u, z〉

(
N∑
i=1

(−1)i
si 〈u, z〉2i

i!

)
dλ(z) =
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=

∫
Rn

e−s(|z|
2+〈u,z〉2)|z|2k 〈u, z〉j dλ(z). (4.5)

Then the two limits (4.4) and (4.5) exist, and from (4.2) they are equal.
Now let ŵ := cw and û := cu with |w| = |u| < 1. We prove that for every

c ∈ R the integrals in (4.4) and (4.5) are equal with ŵ and û in place of w
and u, and this means that the functions of the form

e−s|y|
2

y2k1 y
j
2

with positive s belong to B.
Indeed, using the conical property of λ and Lm we conclude that∫

Rn

e−s(|z|
2+〈û,z〉2)|z|2k 〈û, z〉j dλ(z) =

=

∫
Rn

e−s(|cz|
2/c2+〈u,cz〉2) |cz|2k

c2k
〈u, cz〉j dλ(z) =

=
1

c2k+m

∫
Rn

e−s̃(|z
′|2+〈u,w〉2)|z′|2k 〈u, z′〉j dλ(z′),

where s̃ := s/c2. We can do the same computation for Lm to obtain that∫
Rm

e−s(|x|
2+〈ŵ,x〉2)|x|2k 〈ŵ, x〉j dLm(x) =

=
1

c2k+m

∫
Rm

e−s̃(|x
′|2+〈w,x′〉2)|x′|2k 〈w, x′〉j dLm(x′),

and we conclude that the two integrals are equal because we just proved it
for |w| = |u| < 1.

Then B contains any linear combination of functions of the form

e−s|y|
2

y2k1 y
j
2

with s > 0.
Let ϕ ∈ Cc(R≥0 × R) be a nonnegative function.
We de�nce C as the vector space generated by the functions of the form

a+ e−s|y|
2

Q
(
y21, y2

)
,

where a ∈ R, s > 0 and Q are polynomials. Moreover we de�ne X as the
one-point compacti�cation of R≥0 × R.

Let ψ(y1, y2) := e|y|
2
ϕ(y1, y2) and let ψ̃ be its extension in C(X), that

is ψ̃ = ψ on R≥0 × R and ψ̃(∞) = 0. Every function f ∈ C has a unique
continuous extension f̃ ∈ C(X): let C̃ be the set of such extensions.
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The set C̃ is an algebra that separates the points and vanishes at no
point, then we can apply the Stone-Weiertstrass Theorem, which gives us

a sequence
{
f̃i

}
⊂ C̃ which converges uniformly to ψ̃. Let {fi} ⊂ C be

its corresponding sequence: then the sequence gi(y1, y2) := e−|y|
2
fi(y1, y2)

converges uniformly to ϕ and |gi(y)| ≤ Ce−|y|
2
.

Since λ ∈ Um (Rn) and |gi(y)| ≤ Ce−|y|
2
we can apply the Dominated

Convergence Theorem with respect to both measures Lm and λ and we obtain∫
Rm

ϕ(|x|, 〈x,w〉)dLm(x) = lim
i↑∞

∫
Rm

gi(|x|, 〈x,w〉)dLm(x) =

= lim
i↑∞

∫
Rn

gi(|z|, 〈z, u〉)dλ(z) =

∫
Rn

ϕ(|z|, 〈z, u〉)dλ(z).

Therefore ϕ ∈ B, and this concludes the proof.

Now we focus on b
λ,(1)
2 . The second statement of the previous lemma

states that for every x ∈ supp(λ) we have b
λ,(1)
2 (x2) = |x|2. Then the sym-

metric bilinear form b
λ,(1)
2 is positive semide�nite, therefore we can �x an

orthonormal base e1, ..., en which diagonalizes b
λ,(1)
2 and we can write

b
λ,(1)
2 (x� y) = α1 〈x, e1〉+ ...+ αn 〈x, en〉

with α1 ≥ α2 ≥ ... ≥ αn ≥ 0.

Lemma 4.2. Let λ ∈ Um (Rn) be conical. Then

tr
(
b
λ,(1)
2

)
= tr

(
bλ2,1
)

= m.

Proof. From the �rst statement of the previous lemma it follows the �rst

equality: tr
(
b
λ,(1)
2

)
= tr

(
bλ2,1
)
. Now we compute:

tr
(
bλ2,1
)

=
n∑
i=1

bλ2,1(e
2
i ) = 2I(1)−1

∫
Rn

e−|z|
2

n∑
i=1

〈ei, z〉2dλ(z) =

= 2I(1)−1
∫
Rn

e−|z|
2|z|2dλ(z) = 2I(1)−1

∫
Rm

e−|x|
2|x|2dLm(x).

Integrating by parts we know that∫
Rm

e−|x|
2|x|2dLm(x) =

m

2
I(1),

then we conclude
tr
(
bλ2,1
)

= m.
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In order to prove Theorem 4.1 we need a last lemma.

Lemma 4.3. For every δ > 0 there exists ε̃ > 0 such that for every µ ∈
Um (Rn), if W is an m-dimensional linear plane such that∫

Rn

e−|z|
2

[dist(z,W )]2 dµ(z) ≤ ε̃,

then for every v ∈ W ∩ B̄1(0) there exists x ∈ supp(µ) such that |x− v| ≤ δ.

Proof. We argue by contradiction. We negate the theorem: there exists
δ > 0 such that for every ε > 0 there exists a measure µ ∈ Um (Rn), an
m-dimensional linear plane W and x ∈ W ∩ B̄1(0) such that∫

Rn

e−|z|
2

[dist(z,W )]2 dµ(z) ≤ ε,

and Bδ(x) ∩ supp(µ) = ∅.
Let εk = 1/k for every k ∈ Z>0 and let µk, Wk, xk be the corresponding

measure, plane and point that satisfy those two conditions. We can �x an
m-dimensional linear plane W and rotate all the measures µk in order to
have Wk = W for every k.

Then the following three conditions hold:

lim
k↑∞

∫
Rn

e−|z|
2

[dist(z,W )]2 dµk(z) = 0;

xk ∈ W ∩ B̄1(0) for every k ∈ Z>0;

µk (Bδ(xk)) = 0 for every k ∈ Z>0.

Since W ∩ B̄1(0) is compact, there exists a subsequence {xkj}j which
converges to x ∈ W ∩ B̄1(0). Moreover, since µk ∈ Um (Rn) for every k, the
sequence {µk} is uniformly locally bounded, then we can assume that up to

a subsequence µkj
∗−⇀ µ. Then we have that µ ∈ Um (Rn), supp(µ) ⊂ W and

xk /∈ supp(µ), but it is impossible, since the �rst two conditions imply that
µ = Hm V , which is in contradiction whit the third one.

Now we prove Theorem 4.1, which concludes the proof of Theorem 2.5.

Proof. Step 1. Trivial case and idea of the proof.
For m = 0 we have that U0(Rn) = {δ0}, where δ0 is the Dirac mass

concentrated at the origin, then in this case the proposition is true.
For m ≥ 1 we consider the form b

(1)
2 and we �x a base e1, ..., en that

diagonalizes it as before. We claim that αm ≥ 1, then for Lemma 4.2 we
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have α1 = ... = αm = 1 and αm+1 = ... = αn = 0. Let V be the vector space

generated by e1, ...em, then b
(1)
2 (x2) = |PV (x)|2, and for Lemma 4.1:

supp(λ) ⊂
{
x : |x|2 = |PV (x)|2

}
= V,

then we would conclude λ = Hm V , which is the thesis.
Then to conclude the proof it is enough to prove that am ≥ 1.
Step 2. Case m = 1, 2.
Since λ(B1(0)) = ωm > 0 and

λ ({0}) = lim
r↓0

λ(Br(0)) = lim
r↓0

ωmr
m = 0,

we have that supp(λ) \ {0} 6= ∅. Let x ∈ supp(λ) \ {0} and z := x/|x|. Since
λ is conical then z ∈ supp(λ), therefore we can apply Lemma 4.1 to reach

b
(1)
2 (z2) = |z|2 = 1. Then we have

α1 ≥ sup
|z|=1

b
(1)
2 (z2) ≥ 1.

We proved the case m = 1.
Let m = 2 and w ∈ Rm such that |w| = |z| = 1. We consider the function

ϕ : R≥0 × R given by
ϕ(y1, y2) := χ{|y2|≤1}.

From Lemma 4.1 follows that

λ({y ∈ Rn : |〈y, z〉| ≤ 1}) =

∫
Rn

χ|〈y,z〉|≤1dλ(z) =

=

∫
R2

χ|〈x,w〉|≤1dL2(x) =∞.

Then there exists a sequence {z′j} ⊂ supp(λ) such that for every j

|〈z′j, z〉| ≤ 1

and
lim
j↑∞
|z′j| =∞.

Let yj := z′j/|z′j|. Up to a subsequence we have that {yj} converges to a
y ∈ Rn with |y| = 1, moreover

|〈y, z〉| = lim
j↑∞

|〈z′j, z〉
|z′j|

= 0.
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Since z′j ∈ supp(λ), from the conical property we know that yj ∈ supp(λ),
then we can apply the second statement of Lemma 4.1 and we have

b
(1)
2 (y2j ) = |yj|2 = 1,

and passing to the limit in j we have b
(1)
2 (y2) = 1.

Then we have found a vector y that has norm 1, is orthogonal to z and
is such that b

(1)
2 (y2) = b

(1)
2 (z2) = 1. This implies that α2 ≥ 1, which is the

desired conclusion.
Step 3. Case m ≥ 3.
Let W be an m-dimensional linear plane. We �x an orthonormal base

ē1, ..., ēn−m of W⊥ and we compute:

tr
(
b
(1)
2 W⊥

)
= tr

(
b2,1 W⊥) =

n−m∑
i=1

b2,1(ē
2
i ) =

= 2I(1)−1
∫
Rn

e−|z|
2
n−m∑
i=1

〈z, ēi〉2 dλ(z) = 2π−m/2
∫
Rn

e−|z|
2

[dist(z,W )]2 dλ(z).

Let V be the m-dimensional linear plane generated by e1, ..., em. Since
V ⊥ is the n−m-dimensional linear plane spanned by the eigenvectors corre-
sponding to the smallest eigenvalues of b

(1)
2 , we have that

tr
(
b
(1)
2 V ⊥

)
= min

W∈G(m,n)
tr(b

(1)
2 W⊥).

Then we conclude∫
Rn

e−|z|
2

[dist(z, V )]2dλ(z) = min
W∈G(m,n)

∫
Rn

e−|z|
2

[dist(z,W )]2dλ(z).

Now we take δ > 0, that we will �x later, and we apply Lemma 4.3 to
µ = λ, W = V and v = em: then there exists ε̃ := ε̃(δ) such that if

ε̃ ≥
∫
Rn

e−|z|
2

[dist(z, V )]2dλ(z) = min
W∈G(m,n)

∫
Rn

e−|z|
2

[dist(z,W )]2dλ(z),

then there exists x ∈ supp(λ) such that |x− em| ≤ δ. Since tr
(
b
(1)
2

)
= m we

have that αm ≤ 1 and for every i ≤ m− 1 we have

αi + (m− 1)αm ≤ tr
(
b
(1)
2

)
= m⇒ αi − 1 ≤ (m− 1)(1− αm).
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Since x ∈ supp(λ) then

n∑
i=1

αi 〈x, ei〉2 = b
(1)
2 (x2) = |x|2 =

n∑
i=1

〈x, ei〉2 ,

therefore we can compute

0 =
n∑
i=1

(αi − 1) 〈x, ei〉2 ≤
m∑
i=1

(αi − 1) 〈x, ei〉2 ≤

≤ (m− 1)(1− αm)
m−1∑
i=1

〈x, ei〉2 + (αm − 1) 〈x, em〉2 =

= (m− 1)(1− αm)
m−1∑
i=1

〈x− em, ei〉2 − (1− αm) (〈em, em〉+ 〈x− em, em〉)2 ≤

≤ (1− αm)

(
(m− 1)

m−1∑
i=1

|x− em|2 − (1− |x− em|)2
)
≤

≤ (1− αm)
(
(m− 1)2 δ2 − (1− δ)2

)
= (1− αm)

((
m2 − 2m

)
δ2 + 2δ − 1

)
=

= (1− αm)
(
m2 − 2m

)(
δ − 1

2m

)(
δ +

1

m− 2

)
.

Then we can choose δ ∈ (0, 1/(2m)) and we obtain that there exists ε̃ > 0
such that if

min
W∈G(m,n)

∫
Rn

e−|z|
2

[dist(z,W )]2dλ(z) ≤ ε̃,

then αm ≥ 1, therefore αm = 1, that means that the measure λ is �at.
We prove now that there exists a constant c̃ > 0 such that∫

Rn

e−|z|
2

[dist(z,W )]2dλ(z) ≤ c̃

∫
B1(0)

[dist(z,W )]2dλ(z). (4.6)

This concludes the proof, because if we choose ε = ε̃/c̃, we have that∫
B1(0)

[dist(z,W )]2dλ(z) ≤ ε⇒

⇒
∫
Rn

e−|z|
2

[dist(z,W )]2dλ(z) ≤ c̃

∫
B1(0)

[dist(z,W )]2dλ(z) ≤ ε̃,

and for what we just proved, this means that λ is �at.
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The inequality (4.6) follows from the conical property of λ: let

J(r) :=

∫
Br(0)

[dist(z,W )]2dλ(z).

We compute J(r):

J(r) =

∫
Br(0)

[dist(z,W )]2dλ(z) =

∫
Br(0)

r2[dist(z/r,W )]2dλ(z) =

= rm+2

∫
B1(0)

[dist(y,W )]2dλ(y) = rm+2J(1).

Now we search the constant c̃, knowing that e−t
2
is decreasing:∫

Rn

e−|z|
2

[dist(z,W )]2dλ(z) ≤
∞∑
j=0

∫
Bj+1(0)\Bj(0)

e−j
2

[dist(z,W )]2dλ(z) =

=
∞∑
j=0

e−j
2

(J(j + 1)− J(j)) =
∞∑
j=0

e−j
2 (

(j + 1)m+2 − jm+2
)
J(1).

Using the ratio test we note that the last series converges. Let c̃ be its limit,
then we found ∫

Rn

e−|z|
2

[dist(z,W )]2dλ(z) ≤ c̃J(1),

and this concludes the proof.
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Chapter 5

Relation between �atness at

in�nity and �atness

In this chapter we study the proof of Theorem 2.6, that is the relation between
�atness at in�nity and �atness of a measure. More precisely we prove the
following theorem, which concludes the proof of Preiss' theorem.

Theorem 5.1. Let µ ∈ Um (Rn) and V be an m-dimensional linear plane.
If Hm V is the tangent measure at in�nity to µ, then µ = Hm V .

As in Chapter 1, we indicate with PV the orthogonal projection on the
m-dimensional linear plane V and with QV the orthogonal projection on V ⊥.

In order to prove Theorem 5.1, we prove that under those hypotheses

b
µ,(1)
1 (x) = |QV (x)|2 for every x ∈ supp(µ),

and that
b
µ,(1)
1 = 0,

then the support of µ is contained in the plane V ; this, together with µ ∈
Um (Rn) implies that µ = Hm V .

In all this chapter we will omit µ in b
µ,(j)
k and bµk,s, and we will specify

when they are about another measure.
Moreover for all this chapter we take the measure µ and the plane V as

in Theorem 5.1.
If µ is uniform and �at at in�nity, we can compute the moments b

(k)
2k as

follows.

Lemma 5.1. For every x ∈ Rn it holds

b
(k)
2k

(
x2k
)

= k!bH
m V

2,1

(
x2k
)

= b
Hm V,(k)
2k

(
x2k
)

= |PV (x)|2k.
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Proof. In the proof of Theorem 2.4 we saw that

b
(k)
2k (u1, ..., u2k)

k!
= lim

s↓0

b2k,s(u1, ..., u2k)

sk
.

Moreover, with a change of variable r := s−1/2 and the fact that µ is �at at
in�nity, we can compute this limit:

lim
s↓0

b2k,s(u1, ..., u2k)

sk
=

= lim
s↓0

(2s)2k

sk(2k)!
I(s)−1

∫
Rn

〈z, u1〉 ... 〈z, u2k〉 e−s|z|
2

dµ(z) =

=
22k

(2k)!
I(1)−1 lim

s↓0

∫
Rn

〈
s1/2z, u1

〉
...
〈
s1/2z, u2k

〉
e−|s

1/2z|2sm/2dµ(z) =

=
22k

(2k)!
I(1)−1 lim

r↑∞

∫
Rn

〈w, u1〉 ... 〈w, u2k〉 e−|w|
2

d
[µ0,r

rm

]
(w) =

=
22k

(2k)!
I(1)−1

∫
Rn

〈w, u1〉 ... 〈w, u2k〉 e−|w|
2

d [Hm V ] (w) =

= bH
m V

2k,1 (u1, ..., u2k).

Then we conclude
b
(k)
2k

(
x2k
)

= k!bH
m V

2k,1

(
x2k
)
. (5.1)

This concludes the proof of the �rst and the second equation, because if we
took µ = Hm V it would satisfy the hypotheses and we just proved that
for every µ which satisfy the hypotheses (5.1) holds. In order to prove the
last equation we must compute the second term of (5.1):

b
(k)
2k

(
x2k
)

= k!bH
m V

2k,1

(
x2k
)

=

=
22kk!

(2k)!
I(1)−1

∫
Rn

〈z, x〉2k e−|z|2d [Hm V ] (z) =

=
22kk!|PV (x)|2k

(2k)!
I(1)−1

∫
Rn

〈
z,

PV (x)

|PV (x)|

〉2k

e−|z|
2

d [Hm V ] (z).

We �x an orthonormal basis of Rn such that e1 := PV (x)/|PV (x)| and
{e1, ..., em} is a basis of V :

b
(k)
2k

(
x2k
)

= k!bH
m V

2k,1

(
x2k
)

=
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=
22kk!|PV (x)|2k

(2k)!
I(1)−1

∫
Rn

〈z, e1〉2k e−|z|
2

d [Hm V ] (z) =

=
22kk!|PV (x)|2k

(2k)!
I(1)−1

∫
Rm

z2k1 e
−z21e−z

2
2−...−z2mdLm(z) =

=
22kk!|PV (x)|2k

(2k)!
I(1)−1

∫
Rm−1

e−|w|
2

dLm−1(w)

∫
R
t2ke−t

2

dL1(t) =

=
22kk!|PV (x)|2k

πm/2(2k)!
π(m−1)/2

(
2k − 1

2

)
· · · 3

2
· 1

2
π1/2 = |PV (x)|2k.

Then we just proved the last equation.

Now we study the moments of the form b
(k)
2k−1.

Lemma 5.2. For every k ∈ Z>0 it holds

b
(k)
2k−1 V = 0.

Proof. The form b
(k)
2k−1 is symmetric, then to prove that it is 0 on V it su�ces

to show that b
(k)
2k−1

(
y2k−1

)
= 0 for every y ∈ V .

Let y ∈ V \ {0}. Since r−mµ0,r
∗−⇀ Hm V , there exists a sequence

{xj} ⊂ supp(µ) such that |xj| → ∞ and

xj
|xj|
→ y

|y|
.

Then

b
(k)
2k−1

(
y2k−1

)
= |y|2k−1 lim

j↑∞

b
(k)
2k−1

(
x2k−1j

)
|xj|2k−1

.

Fixing q = k in (3.7) we have that

b
(k)
2k−1

(
x2k−1j

)
= |x|2k − b(k)2k

(
x2kj
)
−

2k−2∑
i=1

b
(k)
i

(
xij
)

=

= |x|2k − |PV (x)|2k −
2k−2∑
i=1

b
(k)
i

(
xij
)
≥ −

2k−2∑
i=1

b
(k)
i

(
xij
)
,

where the last sum is 0 for k = 1. Then we have that

b
(k)
2k−1

(
y2k−1

)
≥ −|y|2k−1 lim

j↑∞

1

|xj|2k−1
2k−2∑
i=1

b
(k)
i

(
xij
)
.
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Since b
(j)
i are symmetric i-linear forms, there exist two constants C1, C2 such

that
b
(j)
i

(
xij
)
≤ C1|xj|i ≤ C2

(
1 + |xj|2k−2

)
,

and using this we �nd

b
(k)
2k−1

(
y2k−1

)
≥ −C2 lim

j↑∞

1 + |xj|2k−2

|xj|2k−1
= 0.

Since y ∈ V , then −y ∈ V , and in the same way we �nd

−b(k)2k−1
(
y2k−1

)
= b

(k)
2k−1

(
(−y)2k−1

)
≥ 0,

then b
(k)
2k−1

(
y2k−1

)
= 0 for every y ∈ V .

Let k = 1. We proved that b
(1)
1 (y) = 0 for every y ∈ V . This means that

there exists w ∈ V ⊥ such that

b
(1)
1 (v) = 〈v, w〉

for every v ∈ Rn.
Let b = w/2, then we have that b ∈ V ⊥ and

b
(1)
1 (v) = 2 〈b, v〉 .

The next lemma is an immediate consequence of the Lemma 5.3 and it
gives us the �rst property of b

(1)
1 that we need in order to prove the theorem.

Lemma 5.3. For every x ∈ supp(µ) the following two relations hold:

• b(1)1 (x) = |QV (x)|2;

• |QV (x)| ≤
∥∥∥b(1)1

∥∥∥.
Proof. Fixing q = 1 in (3.7) and using Lemma 5.1, we have that, for every
x ∈ supp(µ),

2 〈b, x〉+ |PV (x)|2 = |x|2 ⇒ 2 〈b, x〉 = |QV (x)|2.

The second statment follows from the �rst and the fact that b ∈ V ⊥:

2|b||QV (x)| ≥ 2 〈b,QV (x)〉 = 2 〈b, x〉 = |QV (x)|2.
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This lemma means that the distance of x ∈ supp(µ) from V is uniformly

bounded by a constant, ‖b(1)1 ‖. Then, if we prove that b
(1)
1 = 0 then we have

that supp(µ) ⊂ V , which concludes the proof.
We prove now that the distance of v ∈ V from supp(µ) is bounded by a

constant r0.

Lemma 5.4. There exists r0 > 0 such that dist(v, supp(µ)) < r0 for every
v ∈ V .

Proof. We argue by contradiction: assume that there exists {xk}k ⊂ V such
that

rk := dist (xk, supp(µ))→∞,

and for every k let yk ∈ supp(µ) such that |yk − xk| = rk.
Let zk ∈ V be such that |yk − zk| = dist(yk, V ): for Lemma 5.3,

|yk − zk| = dist(yk, V ) ≤
∥∥∥b(1)1

∥∥∥ .
Consider the sequence of measures {µk}k where µk := r−mk µzk,rk . Those

measures are uniformly locally bounded, since

µk (Br(x)) = ωmr
m,

then, up to a subsequence, µk
∗−⇀ µ∞. We note that x ∈ supp(µk) if and only

if zk + rkx ∈ supp(µ).
We verify that 0 ∈ supp(µ∞):

dist
(
0, supp(µk)

)
=

1

rk
dist (zk, supp(µ)) ≤

≤ |zk − yk|
rk

≤

∥∥∥b(1)1

∥∥∥
rk

→ 0.

Therefore 0 ∈ supp(µ∞) and µ∞ (Br(x)) = ωmr
m, then µ∞ ∈ Um (Rn).

Moreover, if we �x x ∈ supp(µk), we have that

|QV (x)| = dist(x, V ) =
1

rk
dist(zk + rkx, V ) ≤ 1

rk

∣∣∣b(1)1

∣∣∣ ,
since zk + rkx ∈ supp(µ). Then:

supp(µk) ⊂
{
x ∈ Rn | |QV (x)| ≤ 1

rk

∣∣∣b(1)1

∣∣∣} .
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Therefore we conclude that supp(µ∞) ⊂ V and µ∞ ∈ Um (Rn), then
µ∞ = Hm V .

Let wk := xk − zk. We have that wk ∈ V and

lim
k↑∞

|wk|
rk
≤ lim

k↑∞

|xk − yk|+ |yk − zk|
rk

= 1,

therefore, up to a subsequence, the sequence wk/rk converges to a limit u ∈ V .
Since rk = dist (xk, supp(µ)), we have that µ (Brk(xk)) = 0, then:

0 = µk (B1(wk/rk))→ µ∞ (B1(u)) ,

and this contradicts µ∞ = Hm V .

The next step is to study the trace of b
(2)
2 proving that

tr
(
b
(2)
2

)
≥ 4

m+ 2

∣∣∣b(1)1

∣∣∣2 , (5.2)

that is the longest part of the proof of Theorem 5.1.
After that, it su�ces to prove that tr(b

(2)
2 ) = 0 to conclude.

In order to prove (5.2) we split the trace in two parts:

tr
(
b
(2)
2

)
= tr

(
b
(2)
2 V ⊥

)
+ tr

(
b
(2)
2 V

)
. (5.3)

In the following lemma we compute the �rst addend of (5.3).

Lemma 5.5. The following formula holds:

tr
(
b
(2)
2 V ⊥

)
= 2

∣∣∣b(1)1

∣∣∣2 . (5.4)

Proof. From the Taylor expansion of b2,s we have that

b2,s = sb
(1)
2 + s2b

(2)
2 + o(s2),

then

tr
(
b
(2)
2 V ⊥

)
= 2 lim

s↓0

tr
(
b2,s V ⊥

)
− s tr

(
b
(1)
2 V ⊥

)
s2

.

From Lemma 5.1 we have that tr
(
b
(1)
2

)
= 0, therefore

tr
(
b
(2)
2 V ⊥

)
= 2 lim

s↓0

tr
(
b2,s V ⊥

)
s2

.
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We study now tr
(
b2,s V ⊥

)
. Let e1, ..., en−m be an orthonormal basis of

V ⊥. Then:

tr
(
b2,s V ⊥

)
=

n−m∑
i=1

2s2I(s)−1
∫
Rn

e−s|z|
2 〈z, ei〉2 dµ(z) =

= 2s2I(s)−1
∫
Rn

e−s|z|
2
n−m∑
i=1

〈z, ei〉2 dµ(z) =

= 2s2I(s)−1
∫
Rn

e−s|z|
2|QV (z)|2dµ(z).

From Lemma 5.3 we have that for every z ∈ supp(µ), |QV (z)|2 = b
(1)
1 (z), and

from the Taylor expansion of b1,s we know that

b1,s(z) = sb
(1)
1 (z) + o(s) = 2 〈b, z〉+ o(s).

Using these equations we �nd:

tr
(
b
(2)
2 V ⊥

)
= 2 lim

s↓0

tr
(
b2,s V ⊥

)
s2

=

= 4 lim
s↓0

I(s)−1
∫
Rn

e−s|z|
2 |QV (z)|2dµ(z) =

= 4 lim
s↓0

I(s)−1
∫
Rn

e−s|z|
2

b
(1)
1 (z)dµ(z) =

= 4 lim
s↓0

2I(s)−1
∫
Rn

e−s|z|
2 〈b, z〉 dµ(z) = 4 lim

s↓0

b1,s(b)

s
=

= 8|b|2 = 2
∣∣∣b(1)1

∣∣∣2 .
Now we study the second addend, in order to reach the wanted estimate.
We introduce some notation. Let γ := (2π)−m/2e−|z|

2/2Hm V , and let
ω : �2V → Rn and b̂ ∈ Hom(�2V,Rn) be two linear maps de�ned as follow:

• 〈ω(u1 � u2), w〉 := 3b
(2)
3 (u1 � u2 � w)− 4 〈u1, u2〉 〈b, w〉 ;

• b̂(u1, u2) := b
(2)
2 (u1, u2) + 〈ω(u1 � u2), b〉 .
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In this work we will always use this notation with u1 = u2 =: u, that is〈
ω(u2), w

〉
= 3b

(2)
3 (u2 � w)− 4|u|2 〈b, w〉 ,

and
b̂(u2) = b

(2)
2 (u2) +

〈
ω(u2), b

〉
.

We note that for every u,w ∈ V it holds〈
ω(u2), w

〉
= 0,

since, from Lemma 5.2, b
(2)
3 V = 0 and 〈b, w〉 = 0 because b ∈ V ⊥, then

ω(u2) ∈ V ⊥ for every u ∈ V .
With this notation we can �nd an integral formula for tr(b

(2)
2 V ).

Lemma 5.6. Using the notation just introduced, the following formula holds:

tr
(
b
(2)
2 V

)
=

∫
Rn

b̂(v2)dγ(v).

Proof. Since b
(2)
2 V is symmetric, we can �x a system of orthonormal coor-

dinates on V , v1, ..., vm, where the corresponding orthonormal vector e1, ...em
are eigenvectors of b

(2)
2 , and let β1, ..., βm be their corresponding eigenvalues.

Then: ∫
Rn

b
(2)
2

(
v2
)
dγ(v) =

∫
Rn

(
β1v

2
1 + ...+ βmv

2
m

)
dγ(v) =

=
m∑
i=1

βi(2π)−m/2
∫
Rn

e−|v|
2/2v2i d (Hm V ) =

=
m∑
i=1

βi
(2π)m/2

∫
Rm−1

e−|x|
2/2dLm−1(x)

∫
R
t2e−t

2/2dt =

=
m∑
i=1

βi
(2π)m/2

(2π)(m−1)/2 · 23/2π
1/2

2
= β1 + ..+ βm = tr

(
b
(2)
2 V

)
.

Therefore we have to prove that∫
Rn

〈
ω(v2), b

〉
dγ(v) = 0.

Let z ∈ Rn. Then, using the same argument that we just used:∫
Rn

〈z, v〉2 dγ(v) =

∫
V

〈PV (z), v〉2 dγ(v) =
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=
m∑
i=1

∫
V

[PV (z)]2i v
2
i dγ(v) =

m∑
i=1

[PV (z)]2i = |PV (z)|2 . (5.5)

Now we want to write 〈ω(v2), w〉 as a limit of an integral, when v ∈ V
and w ∈ V ⊥.

Let v, w ∈ Rn; we write the Taylor expansion of b3,s and b2,s:

b3,s = sb
(1)
3 +

s2

2
b
(2)
3 + o(s2) =

s2

2
b
(2)
3 + o(s2);

b2,s = sb
(1)
2 + o(s).

Then:

b
(2)
3

(
v2 � w

)
= lim

s↓0

2

s2
b3,s
(
v2 � w

)
=

= lim
s↓0

8s

3I(s)

∫
Rn

〈z, v〉2 〈z, w〉 e−s|z|2dµ(z);

b
(1)
2

(
v2
)

= lim
s↓0

1

s
b2,s
(
v2
)

= lim
s↓0

2s

I(s)

∫
Rn

〈z, v〉2 e−s|z|2dµ(z).

Therefore we have that for every v, w ∈ Rn:

3b
(2)
3

(
v2 � w

)
− 4 〈b, w〉 b(1)2

(
v2
)

= lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2 〈z, v〉2 〈z − b, w〉 dµ(z).

(5.6)
Letting v ∈ V and w ∈ V ⊥, we have that, for Lemma 5.1,

b
(1)
2

(
v2
)

= |PV (v)|2 = |v|2,

then

lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2 〈z, v〉2 〈z − b, w〉 dµ(z) =

= 3b
(2)
3

(
v2 � w

)
− 4 〈b, w〉 b(1)2

(
v2
)

=

= 3b
(2)
3

(
v2 � w

)
− 4|v|2 〈b, w〉 =

〈
ω(v2), w

〉
. (5.7)

We need to compute the integral of this limit, then we verify that we can
apply the Dominated Convergence Theorem in order to switch the limit with
the integral: ∣∣∣∣ 8s

I(s)

∫
Rn

e−s|z|
2 〈z, v〉2 〈z − b, w〉 dµ(z)

∣∣∣∣ ≤
≤ 8

πm/2
s1+m/2

∫
Rn

e−s|z|
2|z|2|v|2 (|〈z, w〉|+ |b||w|) dµ(z) ≤
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≤
8|v|2|w|

(∥∥∥b(1)1

∥∥∥+ |b|
)

πm/2
s1+m/2

∫
Rn

e−s|z|
2|z|2dµ(z) =

=
8|v|2|w| (3|b|)

πm/2
m

2
πm/2 = 12|b||w||v|2,

which is integrable with respect to the measure γ.
Then, we compute:∫
V

〈
ω(v2), b

〉
dγ(v) =

∫
V

lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2 〈z, v〉2 〈z − b, b〉 dµ(z)dγ(v) =

= lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2 〈z − b, b〉

∫
V

〈z, v〉2 dγ(v)dµ(z) =

= lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2 |PV (z)|2 〈z − b, b〉 dµ(z). (5.8)

Our goal is to prove that the last limit is equal to 0. We study the limit
with QV (z) instead of PV (z) and a general w ∈ V ⊥ instead of b in the second
factor of the last product; after that we can sum the two limits and study
the limit with z instead of PV (z):∣∣∣∣∫

Rn

e−s|z|
2 |QV (z)|2 〈z − b, w〉 dµ(z)

∣∣∣∣ ≤
≤ 4|b|2|w|

∫
Rn

e−s|z|
2

(|z|+ |b|) dµ(z) = 4|b|2|w|
[
s−(m+1)/2ĉ+ s−m/2πm/2|b|

]
;

then the limit is

lim
s↓0

∣∣∣∣ 8s

I(s)

∫
Rn

e−s|z|
2 |QV (z)|2 〈z − b, w〉 dµ(z)

∣∣∣∣ ≤
≤ lim

s↓0

32|b|2|w|
πm/2

s1+m/2
[
s−(m+1)/2ĉ+ s−m/2πm/2|b|

]
= 0,

hence

lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2 |QV (z)|2 〈z − b, w〉 dµ(z) = 0. (5.9)

Summing (5.8) and (5.9) with w = b, we �nd that our goal is equivalent
to prove that

lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2 |z|2 〈z − b, b〉 dµ(z) = 0.
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We prove that, for every w ∈ V ⊥,

lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2 |z|2 〈z − b, w〉 dµ(z) = 0.

That limit exists: indeed, if we �x an orthonormal basis of Rn, we can
apply (5.6) to reach

lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2 |z|2 〈z − b, w〉 dµ(z) =

=
n∑
i=1

lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2 〈z, ei〉2 〈z − b, w〉 dµ(z) =

=
n∑
i=1

3

8
b
(2)
3

(
e2i � w

)
− 1

2
b
(1)
2

(
e2i
)
〈b, w〉 .

We note that

s

I(s)

∫
Rn

e−s|z|
2 |z|2 〈z − b, w〉 dµ(z) =

= π−m/2
∫
Rn e

−s|z|2 |z|2 〈z − b, w〉 dµ(z)

s−1−m/2
=

= π−m/2
− d
ds

∫
Rn e

−s|z|2 〈z − b, w〉 dµ(z)

− 2
m

d
ds
s−m/2

,

then, in order to compute the limit for s ↓ 0, we can apply the De L'Hôpital
rule:

lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2 |z|2 〈z − b, w〉 dµ(z) =

=
m

2πm/2
lim
s↓0

∫
Rn e

−s|z|2 〈z − b, w〉 dµ(z)

s−m/2
=

=
m

2
lim
s↓0

I(s)−1
∫
Rn

e−s|z|
2 〈z − b, w〉 dµ(z) =

=
m

2
lim
s↓0

[
I(s)−1

∫
Rn

e−s|z|
2 〈z, w〉 dµ(z)− I(s)−1

∫
Rn

e−s|z|
2 〈b, w〉 dµ(z)

]
=

=
m

2
lim
s↓0

[
1

2
s−1b1,s(w)− 〈b, w〉

]
=
m

2

[
1

2
b
(1)
1 (w)− 〈b, w〉

]
=

=
m

2
[〈b, w〉 − 〈b, w〉] = 0.
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Subtracting (5.9) from this we obtain that, for every w ∈ V ⊥,

lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2 |PV (z)|2 〈z − b, w〉 dµ(z) = 0. (5.10)

Then, taking w = b in (5.10), the lemma is proved.

We note that the whole argument with a generic w ∈ V ⊥ was not essential
for this proof, here we could do all the computations with b instead of w, but
(5.10) will be useful in the next proofs, and that is the reason we proved it
in a more general case.

The next lemma is an useful equation which follows from (3.7).

Lemma 5.7. For every z ∈ supp(µ) it holds

b
(2)
1 (z) + b

(2)
2

(
z2
)

+ 3b
(2)
3

(
(PV (z))2 �QV (z)

)
=

= |QV (z)|2
(
|QV (z)|2 + 2|PV (z)|2

)
. (5.11)

Proof. From (3.7) with q = 2, we have that, for every z ∈ supp(µ),

b
(2)
1 (z) + b

(2)
2

(
z2
)

+ b
(2)
3

(
z3
)

+ b
(2)
4

(
z4
)

= |z|4. (5.12)

We know, from Lemma 5.1, that b
(2)
4 (z4) = |PV (z)|4. Moreover,

|z|4 =
(
|z|2
)2

=
(
|PV (z)|2 + |QV (z)|2

)2
=

= |PV (z)|4 + 2|PV (z)|2|QV (z)|2 + |QV (z)|4.
Substituting these informations in (5.12), we obtain

b
(2)
1 (z) + b

(2)
2

(
z2
)

+ b
(2)
3

(
z3
)

= |QV (z)|2
(
|QV (z)|2 + 2|PV (z)|2

)
. (5.13)

We study now the term b
(2)
3 (z3): our goal is to prove that

b
(2)
3

(
z3
)

= 3b
(2)
3

(
(PV (z))2 �QV (z)

)
. (5.14)

Since b
(2)
3 is linear we can write

b
(2)
3

(
z3
)

= b
(2)
3

(
(PV (z))3

)
+ 3b

(2)
3

(
(PV (z))2 �QV (z)

)
+

+3b
(2)
3

(
PV (z)� (QV (z))2

)
+ b

(2)
3

(
(QV (z))3

)
.

We prove that for every v ∈ V and for every w ∈ V ⊥,

b
(2)
3

(
v � w2

)
= b

(2)
3

(
v3
)

= b
(2)
3

(
w3
)

= 0,
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and this concludes the proof of this lemma.
From Lemma 5.2 follows that b

(2)
3 (v3) = 0 for every v ∈ V .

From the Taylor expansion of b3,s, we know that

b3,s
(
v � w2

)
= sb

(1)
3

(
v � w2

)
+
s2

2
b
(1)
3

(
v � w2

)
+ o(s2),

but we proved that b
(1)
3 = 0, then:

b
(2)
3

(
v � w2

)
= lim

s↓0

2

s2
b3,s
(
v � w2

)
=

= lim
s↓0

8s

3I(s)

∫
Rn

e−s|z|
2 〈z, v〉 〈z, w〉2 dµ(z).

Since w ∈ V ⊥, 〈z, w〉2 = 〈QV (z), w〉2 ≤ |w|2|QV (z)|2 ≤ |w|2
∣∣∣b(1)1

∣∣∣2, then∣∣∣b(2)3

(
v � w2

)∣∣∣ ≤ lim
s↓0

8s

3I(s)

∫
Rn

e−s|z|
2 |〈z, v〉| |〈z, w〉|2 dµ(z) ≤

≤ lim
s↓0

8s|v||w|2
∣∣∣b(1)1

∣∣∣2
3I(s)

∫
Rn

e−s|z|
2|z|dµ(z) =

= lim
s↓0

8s|v||w|2
∣∣∣b(1)1

∣∣∣2
3I(s)

∫
Rm

e−s|x|
2|x|dLm(x) =

8|v||w|2
∣∣∣b(1)1

∣∣∣2
3πm/2

∫
Rm

e−|y|
2|y|dLm(y) lim

s↓0

s1+m/2

s(m+1)/2
= 0.

We study now b
(2)
3 (w3). The computation is similar to the one we just

did for b
(2)
3 (v � w2):

b
(2)
3

(
w3
)

= lim
s↓0

8s

3I(s)

∫
Rn

e−s|z|
2 〈z, w〉3 dµ(z),

then ∣∣∣b(2)3

(
w3
)∣∣∣ ≤ lim

s↓0

8s

3I(s)

∫
Rn

e−s|z|
2 |〈z, w〉|3 dµ(z) ≤

≤ lim
s↓0

8s|w|3
∣∣∣b(1)1

∣∣∣3
3I(s)

∫
Rn

e−s|z|
2|dµ(z) =

8|w|3
∣∣∣b(1)1

∣∣∣3
3

lim
s↓0

s

I(s)
I(s) = 0.
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Then, we can focus on b̂(v2), with v ∈ V .

Lemma 5.8. For every v ∈ V it holds the following inequality:(
b̂(v2)

)2
≤
∣∣ω(v2)

∣∣2 |b|2.
Proof. Let v ∈ V and {ti}i ⊂ R an increasing divergent sequence: for
Lemma 5.4, for every i there exist zi such that tiv+zi ∈ supp(µ) and |zi| ≤ r0.
Let vi := PV (zi) and wi := QV (zi).

Since wi ∈ Br0(0)∩V ⊥, that is compact, we have that up to a subsequence
wi → w ∈ V ⊥. We apply Lemma 5.7 to tiv + vi + wi:

b
(2)
1 (tiv + vi + wi) + b

(2)
2

(
(tiv + vi + wi)

2
)

+ 3b
(2)
3

(
(tiv + vi)

2 � wi
)

=

= 2|tiv + vi|2|wi|2 + |wi|4. (5.15)

We divide the equation (5.15) by t2i and we take the limit for i→∞:

b
(2)
2

(
v2
)

+ 3b
(2)
3

(
v2 � w

)
= 2|v|2|w|2. (5.16)

We chose vi and wi such that tiv + vi +wi ∈ supp(µ), then from Lemma 5.3
we have

b
(1)
1 (tiv + vi + wi) = |wi|2,

but tiv+vi ∈ V , then, from Lemma 5.2, b
(1)
1 (tiv+vi) = 0; hence we conclude

that
b
(1)
1 (wi) = |wi|2,

and letting i→∞,
b
(1)
1 (w) = |w|2.

Then we conclude that |w|2 = 2 〈b, w〉.
Substituting this in (5.16) we �nd

0 = b
(2)
2

(
v2
)

+ 3b
(2)
3

(
v2 � w

)
− 4|v|2 〈b, w〉 = b

(2)
2

(
v2
)

+
〈
ω
(
v2
)
, w
〉
.

Summing and subtracting 〈ω(v2), b〉 from this last term we obtain

b̂
(
v2
)

+
〈
ω(v2), w − b

〉
= 0.

Then we conclude: (
b̂
(
v2
))2
≤
∣∣ω (v2)∣∣2 |w − b|2 =

=
∣∣ω (v2)∣∣2 (|w|2 − 2 〈w, b〉+ |b|2

)
=
∣∣ω (v2)∣∣2 |b|2 .
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Now we are ready to study the second addend of (5.3).

Lemma 5.9. The following inequality holds:

tr
(
b
(2)
2 V

)
≥ − 2m

m+ 2

∣∣∣b(1)1

∣∣∣2 . (5.17)

Proof. To prove this lemma we need to do some computations: the compu-
tation in the �rst step will be used in the second step to link

∫
V
b̂ (v2) dγ and∫

V

(
b̂ (v2)

)2
dγ and reach the �rst inequality that will lead to the end, that

is ∫
V

(
b̂
(
v2
))2

dγ(v) ≤ −8|b|2
∫
V

b̂
(
v2
)
dγ(v);

in the third step we use some of the estimates done in the second step to
reach the second and last inequality that will conclude the proof, that is∫

V

(
b̂
(
v2
))2

dγ(v) ≥
(

1 +
2

m

)[∫
V

b̂
(
v2
)
dγ(v)

]2
.

Step 1. We know that, for every z ∈ supp(µ),

|QV (z)|2 = b
(1)
1 (z) = b

(1)
1 (QV (z)) = 2 〈b,QV (z)〉 ,

then we substitute it in (5.11), we sum and subtract 〈ω((PV (z))2), b〉, and we
obtain that for every z ∈ supp(µ):

0 = b
(2)
1 (z) + b

(2)
2

(
z2
)

+ 3b
(2)
3

(
(PV (z))2 �QV (z)

)
+

−|QV (z)|4 − 2|PV (z)|2|QV (z)|2 =

= b
(2)
1 (z) + b

(2)
2

(
(QV (z))2

)
+ 2b

(2)
2 (PV (z)�QV (z)) + b

(2)
2

(
(PV (z))2

)
+

+
〈
ω((PV (z))2), b

〉
+ 3b

(2)
3

(
(PV (z))2 �QV (z)

)
+

−4 |PV (z)|2 〈b,QV (z)〉2 −
〈
ω((PV (z))2), b

〉
−
(
b
(1)
1 (QV (z))

)2
=

= b̂
(
(PV (z))2

)
+
〈
ω
(
(PV (z))2

)
, QV (z)− b

〉
+ b

(2)
1 (z)+

+2b
(2)
2 (PV (z)�QV (z)) + b

(2)
2

(
(QV (z))2

)
−
(
b
(1)
1 (QV (z))

)2
.

Therefore:∣∣∣b̂ ((PV (z))2
)

+
〈
ω
(
(PV (z))2

)
, QV (z)− b

〉∣∣∣ ≤ ∣∣∣b(2)1 (z)
∣∣∣+
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+2
∣∣∣b(2)2 (PV (z)�QV (z))

∣∣∣+
∣∣∣b(2)2

(
(QV (z))2

)∣∣∣+

∣∣∣∣(b(1)1 (QV (z))
)2∣∣∣∣ .

We note that, from Lemma 5.3, the last two terms are bounded, while
the �rst is linear. Moreover:∣∣∣b(2)2 (PV (z)�QV (z))

∣∣∣ ≤ sup
v∈V ∩B|z|(0),w∈V ⊥∩B2|b|(0)

∣∣∣b(2)2 (v � w)
∣∣∣ ≤

≤ 2|z||b| sup
v∈V ∩B1(0),w∈V ⊥∩B1(0)

∣∣∣b(2)2 (v � w)
∣∣∣ =: K1|z|.

Then the second term too has at most a linear growth, therefore there exists
a constant K > 0 such that∣∣∣b̂ ((PV (z))2

)
+
〈
ω
(
(PV (z))2

)
, QV (z)− b

〉∣∣∣ ≤ K (|z|+ 1)

for every z ∈ supp(µ).
Using this estimate we compute the following limit:

lim sup
s↓0

∣∣∣∣ s

I(s)

∫
Rn

e−s|z|
2
[
b̂
(
PV (z)2

)
+
〈
ω
(
PV (z)2

)
, QV (z)− b

〉]
dµ(z)

∣∣∣∣ ≤
≤ K lim

s↓0

s

I(s)

∫
Rn

e−s|z|
2 (|z|2 + 1

)
dµ(z) = 0,

where the last limit is 0 as we already saw in the computation of (5.9).
Then we reached that

lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2

b̂
(
(PV (z))2

)
dµ(z) =

= − lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2 〈
ω
(
(PV (z))2

)
, QV (z)− b

〉
dµ(z). (5.18)

Step 2. First of all we compute
∫
V
〈ζ, v〉4 dγ(v) with ζ ∈ V : we �x an

orthonormal system of coordinates x1, ..., xm on V such that ζ = (|ζ|, 0, ..., 0).
Then ∫

V

〈ζ, v〉4 dγ(v) = (2π)−m/2
∫
Rm

|ζ|4x41e−|x|
2/2dx =

= |ζ|4π−m/2
∫
Rm

4y41e
−|y|2dy = 4|ζ|4π−m/2

∫
Rm−1

e−|y
′|2dy′

∫
R
y41e
−|y1|2dy1 =

= 4|ζ|4π−m/2
(
π(m−1)/2)(3

4
π−1/2

)
= 3|ζ|4. (5.19)
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Using an analogue argument we compute the following two integrals. Let
y, z ∈ V be orthogonal and let x1, ..., xm be an orthonormal system of co-
ordinates such that y = (|y|, 0, ..., 0) and z = (0, |z|, 0, ..., 0). Then we can
compute: ∫

V

〈y, v〉2 〈z, v〉2 dγ(v) =

= 4|y|2|z|2π−m/2
∫
Rm−2

e−|x
′|2dx′

∫
R
x21e
−x21dx1

∫
R
x22e
−x22dx2 =

= 4|y|2|z|2π−m/2π(m−2)/2
(

1

2
π1/2

)2

= |y|2|z|2; (5.20)∫
V

〈y, v〉 〈z, v〉3 dγ(v) =

= 4|y|2|z|2π−m/2
∫
Rm−2

e−|x
′|2dx′

∫
R
x21e
−x21dx1

∫
R
x22e
−x22dx2 = 0. (5.21)

For general y, z ∈ V , we can write y = ξ + az with ξ and z orthogonal,
therefore: ∫

V

〈y, v〉2 〈z, v〉2 dγ(v) =

=

∫
V

〈ξ, v〉2 〈z, v〉2 dγ(v) + 2a

∫
V

〈y, v〉 〈z, v〉3 dγ(v) + a2
∫
V

〈z, v〉4 dγ(v) =

= |ξ|2|z|2 + 3a2|z|4 =
(
|ξ|2 + a2|z|2

)
|z|2 + 2

(
a|z|2

)2
= |y|2|z|2 + 2 〈y, z〉2 .

(5.22)
Now let y ∈ V and w ∈ V ⊥. Using (5.7), (5.10) and (5.22) we compute∫

V

〈y, v〉2
〈
ω
(
v2
)
, w
〉
dγ(v) =

=

∫
V

〈y, v〉2
[
lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2 〈z, v〉2 〈z − b, w〉 dµ(z)

]
;

using the same estimate done for (5.8), we can apply the Dominate Conver-
gence Theorem and the Fubini's Theorem:∫

V

〈y, v〉2
〈
ω
(
v2
)
, w
〉
dγ(v) =

= lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2 〈z − b, w〉 dµ(z)

[∫
V

〈y, v〉2 〈z, v〉2 dγ(v)

]
dµ(z) =

= lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2|PV (z)|2 〈z − b, w〉 dµ(z)+
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+ lim
s↓0

16s

I(s)

∫
Rn

e−s|z|
2 〈z − b, w〉 〈z, y〉2 dµ(z) = 2

〈
ω
(
y2
)
, w
〉
.

Now we study
∫
V

(
b̂ (v2)

)2
dγ(v). We know that ω (v2) ∈ V ⊥ for every

v ∈ V , then we have that 〈z − b, ω(v2)〉 = 〈QV (z) − b, ω(v2)〉, and we can
consider (5.7) with w = ω (v2):∫

V

(
b̂
(
v2
))2

dγ(v) ≤ |b|2
∫
V

∣∣ω (v2)∣∣2 dγ(v) =

= |b|2 lim
s↓0

∫
V

8s

I(s)

∫
Rn

e−s|z|
2 〈z, v〉2

〈
z − b, ω

(
v2
)〉
dµ(z)dγ(v) =

= |b|2 lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2

∫
V

〈z, v〉2
〈
z − b, ω

(
v2
)〉
dγ(v)dµ(z) =

= |b|2 lim
s↓0

8s

I(s)

∫
Rn

e−s|z|
2

∫
V

〈PV (z), v〉2
〈
QV (z)− b, ω

(
v2
)〉
dγ(v)dµ(z) =

= |b|2 lim
s↓0

16s

I(s)

∫
Rn

e−s|z|
2 〈
ω
(
(PV (z))2

)
, QV (z)− b

〉
dµ(z) =

= −16|b|2 lim
s↓0

s

I(s)

∫
Rn

e−s|z|
2

b̂
(
(PV (z))2

)
dµ(z) =

= −16π−m/2|b|2
∫
Rn

e−|z|
2

b̂
(
(PV (z))2

)
dHm V =

= −8|b|2
∫
V

b̂
(
v2
)
dγ(v). (5.23)

This is the �rst estimate we need.
Step 3. We can �x coordinates v1, ..., vm on V such that the corresponding

unit vectors e1, ..., em are orthonormal and they are the eigenvectors of b̂. Let
β1, ..., βm be the corresponding eigenvalues of b̂. Using (5.5), we compute∫

V

b̂
(
v2
)
dγ(v) =

∫
V

m∑
i=1

βi 〈v, ei〉2 dγ(v) =
m∑
i=1

βi = tr
(
b̂
)
, (5.24)

and ∫
V

(
b̂
(
v2
))2

dγ(v) =

∫
V

(
m∑
i=1

βi 〈v, ei〉2
)2

dγ(v) =

=
m∑
i=1

β2
i

∫
V

〈v, ei〉4 dγ(v) +
∑
i 6=j

βiβj

∫
V

〈v, ei〉2 〈v, ej〉2 dγ(v) =
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= 3
m∑
i=1

β2
i +

∑
i 6=j

βiβj =

(
m∑
i=1

βi

)2

+ 2
m∑
i=1

β2
i .

Using the inequality between arithmetic mean and quadratic mean, we con-
clude: (

m∑
i=1

βi

)2

+ 2
m∑
i=1

β2
i ≥

(
1 +

2

m

)( m∑
i=1

βi

)2

=

=

(
1 +

2

m

)[∫
V

b̂
(
v2
)
dγ(v)

]2
,

then ∫
V

(
b̂
(
v2
))2

dγ(v) ≥
(

1 +
2

m

)[∫
V

b̂
(
v2
)
dγ(v)

]2
. (5.25)

Combinig (5.23) with (5.25) we obtain(
1 +

2

m

)[∫
V

b̂
(
v2
)
dγ(v)

]2
≤ −8|b|2

∫
V

b̂
(
v2
)
dγ(v);

if
∫
V
b̂ (v2) dγ(v) = 0 the lemma is proved, and it can not be positive, because(

1 + 2
m

) [∫
V
b̂ (v2) dγ(v)

]2
> 0, then we take −8|b|2

∫
V
b̂ (v2) dγ(v) < 0 and

we divide:∫
V

b̂
(
v2
)
dγ(v) ≥ −

(
1 +

2

m

)−1
8|b|2 = − 2m

m+ 2

∣∣∣b(1)1

∣∣∣2 . (5.26)

From (5.26) and Lemma 5.6 we obtain the thesis.

Summing (5.4) and (5.17) we reach (5.2), that is the wanted estimate.

Now we compute tr
(
b
(2)
2

)
.

Lemma 5.10. The trace of the linear form b
(2)
2 is 0.

Proof. From the Taylor expansion of b2,s, we have that

b2,s = sb
(1)
2 +

s2

2
b
(2)
2 + o(s2),

then

tr
(
b
(2)
2

)
= 2 lim

s↓0

tr (s−1b2,s)− tr
(
b
(1)
2

)
s

.
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Lemma 5.1 with k = 1 gives us b
(1)
2 (u, v) = 〈PV (u), PV (v)〉, therefore

tr
(
b
(1)
2

)
= m. (5.27)

Now we study tr (s−1b2,s). Let e1, ..., en be an orthonormal basis of Rn:

tr
(
s−1b2,s

)
= s−1

n∑
i=1

b2,s
(
e2i
)

=

= s−1
(2s)2

2I(s)

∫
Rn

e−s|z|
2

n∑
i=1

〈z, ei〉2 dµ(z) =

=
2s1+m/2

πm/2

∫
Rn

|z|2e−s|z|2dµ(z) =
2s1+m/2

πm/2

∫
Rm

|x|2e−s|x|2dLm(x) =

=
2

πm/2

∫
Rm

∣∣s1/2x∣∣2 e−|s1/2x|2sm/2dLm(x) =

=
2

πm/2

∫
Rm

|y|2e−|y|2dLm(y) = m.

Summing this with (5.27) we obtain

tr
(
b
(2)
2

)
= 0.

Then, from Lemma 5.10 and (5.2), we conclude that b
(1)
1 = 0, which

concludes the proof of Theorem 5.1.
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