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Introduction

In this work we study the proof of Preiss’ Theorem, which states that a
locally finite Borel measure on R"™ with positive and finite density for almost
every point in the support of y is rectifiable. During all this work we consider
only Borel measures, then we will omit it in the statements.

Theorem 0.1 (Preiss’ Theorem). Let p be a locally finite measure on R™
and let m € Z-o, m < n. Assume that the limit

p(Ba)
rl0 rm

exists, is finite and positive for p-a.e. x € supp (u).

Then there exist a Borel measurable function f, a countable collection
{I;}, of Lipschitz m-dimensional submanifolds of R" and an m-dimensional
set E such that

H™ (E\UFZ) —0and pu=fH"LE,

where H™ L E is the m-dimensional Hausdorfl measure restricted to the set
E.

In the original paper [P] Preiss proved a stronger version of this theorem,
but the proof of Theorem 0.1 contains most of the deep ideas, then we decided
to focus on this weaker, but not so much easier, version. In order to do that
we followed the method shown by De Lellis in [DL].

In the next section we give the first definitions and some results without
proofs that we will use in the following chapters.

0.1 Preliminary results and notation

First of all we define the m-density of a measure.
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Definition 0.1. Let p be a positive Radon measure on R™ and m € Zq
Then we define the upper m-density of u at x as

0™ (u, x) := limsup

where w,, is the m-dimensional Hausdorfl measure of the unit ball. Analo-
gously, we define the lower m-density of u at = as

o (Br(2))
oy =1 f—————.
< (p, ) = lim in o
If 07 (p, x) = 0*™ (1, x) we define the m-density of u at x as
1 (Br(2))
o = lim ———.
(1, %) = lim o

We note that we could define the m-densities for m € R.q too, but
Martstrand proved that if the m-density exists then m is an integer, therefore,
given the hypotheses of Preiss’ Theorem, we can restrict to this case. The
following definitions too can be defined for m € R-,.

A first property of measures with positive and finite upper density is the
following, for which we omit the proof.

Theorem 0.2. Let i1 be a measure and m € Z- such that
0<60™(u,x) < oo

for p-a.e. x. Then there exist an m-dimensional set £ and a Borel function
f such that u= fH™L E.

Now we define m-uniform measures.

Definition 0.2. We say that p is an m-uniform measure if, for every r > 0
and every x € supp (u),

p (B (x)) = wnr™.

We denote by U™ (R"™) the set of m-uniform measures with 0 in their
support.

A first important observation on uniform measures is that if u € U™ (R™)
and supp () C V, where V' is an m-dimensional linear plane, then

w=H"LV.



0.1. PRELIMINARY RESULTS AND NOTATION ix

In order to see that we study U™ (R™). We observe that, from the Besicovitch
Differentiation Theorem, u = fL,,, where L,, is the m-dimensional Lebesgue
measure and (B.(x))
- p(B(x
= lim—— 2~
f(x) ;ﬁ} W™
for L,-a.e. z. Since p is uniform, for every = € supp (u) the limit is equal to
1, and for = ¢ supp (p) it is euqal to 0. Then f = Idg, where E := supp (u),
but 0 € supp (p), then for every r > 0:

H (BT<O) N E) = mem = Lm (BT<O)) )

therefore, since E is closed, we obtain B.(0) C E for every r > 0, hence
E=R™

For € U™ (R™) it suffices to take an orthonormal basis in R" with
V = (eq,...,en) and we conclude that p= H™ V.

Now we give the definition of the set of tangent measures.

Definition 0.3. Let p be a measure, x € R", and r € R.y. The measure
[ty is defined by
,ux,r<A> = p(z+rA)

for all Borel sets A C R™.

For every m € Z-o we define the set of m-tangent measures to p at x,
Tan,, (u,x), as the set of all measures v for which there exists a sequence of
radii ; J. 0 such that

Hari >y,

rm

1

Now we state a relation between tangent measures and uniform measures
omitting the proof. The proof can be found, for example, in [DL], Proposi-
tion 3.4.

Theorem 0.3. Let i be a measure with positive and finite m-density. Then
0 # Tan(u,z) C {0™(u,x)v : v e U™ (R™)}.

We state now a series of known computations which we will use a lot of
times in Chapters 3, 4 and 5, when we study the moments of ;. The proofs
of these computations can be found in [DL|, Appendix B.

Lemma 0.1. The following formulas hold:

/ e_|z|2dLm(z) = 7™/
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,/Tm
Wam, = Loy, (B1(0)) = ek
2m+1ﬂ.m
a1 = Lom, Bi(0) = ———;
Wam+1 2 +1( 1( )) (2m+1)”

J
27 —\z|2dL — -m/2 <_1 E)
[ e = w [ (-1 )

—l=1 _ MWm (m+1)/2.
zle dL,(2) = —————7 ;
/m| | (2) (m 4+ 1)wmi1

J
‘ -1
sty Py oy — M e 4 ™)
/m |z|7 e m(2) T 1)wm+l7r | | i+ 5

=1

0.2 Plan of the work

In Chapter 1 we study the proof of an important rectifiability criterion for
Borel sets with positive and finite measure, due to Martstrand and Mattila.
Using that we prove a corollary that links tangent measures to rectifiability:
it states that if the upper density of p is finite, the lower density of pu is
positive and every tangent measure to p at x are of the form cH* LV where
V is a k-dimensional linear plane and c is a positive constant, then p is
rectifiable.

Martstrand, knowing that the tangent measures to p at x are of the form
0™ (p, x)v, where v is a uniform measure, conjectured that every uniform
measure was of the form H* L V. This is true for £ < 2 and it would
conclude the proof of Theorem 0.1, but Preiss found a counterexample for
k= 3.

In Chapter 2 we outline the proof of Preiss’” Theorem: we study the set of
tangent measures in order to prove that if the measure has positive and finite
density then we can apply the corollary proved in Chapter 1. In order to do
that we state three theorems that we prove in Chapters 3, 4 and 5. Using
those three theorems we conclude the proof of Preiss’ Theorem following two
steps: first of all we prove that given those hypotheses for p-a.e. x there
exists a plane V such that 0™ (u, z) H*LLV is tangent to p in z, then we prove
that the set of tangent measures to p at x can not contain a measure of the
form 0™ (u,x)H* LV and a measure which is not of that form. This means
that they are all of that form and we conclude.

In Chapter 3 we prove the first theorem that we assumed to prove Preiss’
Theorem, which states that if the measure is uniform then the set of its
tangent measures at infinity is a singleton, therefore there exists a unique
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tangent measure at infinity. To do that we introduce the moments of p, bZ,S,
and we prove that they admit a Taylor expansion.

In Chapter 4 we prove the second theorem that we stated in Chapter 2,
which states that if the tangent measure at infinity of a uniform measure is
sufficiently near to a flat measure than it is flat. In order to do that we prove
that the theorem is true for every conical measure. We prove it studying the
form bY ’(1), which is the second term of the Taylor expansion of b ..

In Chapter 5 we prove the last theorem we used, which states that if a
uniform measure is flat at inﬁnitX then it is flat. This proof is based on the
study of the forms b and t5"®.
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Chapter 1

The Martstrand-Mattila
Rectifiability Criterion

In this chapter we study the proof of the Marstrand-Mattila Rectifiability
Criterion and a corollary that links rectifiable measures with tangent mea-
sures.

Definition 1.1. An m-dimensional Borel set £ C R” is called rectifiable if
there exists a countable family {I';}; of m-dimensional Lipschitz graphs such
that H™ (E\ JT;) = 0.

An m-dimensional set £ C R" is called purely unrectifiable if H™(F) is
finite and if for every m-dimensional Lipschitz graph I it holds H™ (E N T") =
0.

A measure y is called rectifiable if there exist an m-dimensional rectifiable
set E and a Borel function f such that = fH™L F.

Definition 1.2. Let £ C R"” be an m-dimensional set and fix v € R". F
is weakly linearly approximable at z if for every n > 0 there exist A > 0
and r > 0 such that for every p € (0,r) there exists an m-dimensional linear
plane W for which the following conditions hold:

H™(ENB,(z) \ {7 : dist(x + W, 2) < np}) < np™; (1.1)
H™(ENB,,(z)) > A\p™, for all z € (x+ W) N B,(x). (1.2)

The first condition of this definition means that in a small ball around
x most of E is contained in a tubular neighborhood of x + W. The second
condition means that in every small ball centered at a point of z + W there
is a significant portion of E.

We prove now that if E is purely unrectifiable and weakly linearly ap-
proximable at H™-a.e. point then its projection on every m-plane has H™
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measure 0. To do that we need to restrict on a compact subset where the
conditions of weak linear approximation are uniform and a geometric lemma.

Lemma 1.1. Let E be a Borel set which is weakly linearly approximable at
H™-a.e. x € E and let ¢ > 0. Then there exist a compact set C' C E and
positive numbers rg,n, 0 such that H™ (E \ C') < ¢ and for every a € C' and
every r € (0,ry), H™ (EN B.(a)) > dr™ and there exists a m-dimensional
linear plane W such that:

CNB(a) C{z:dist(z,a+ W) <nr}. (1.3)

Proof. Since FE is weakly linearly approximable at H™-a.e. x € F, then by
definition we can select a compact C' C E such that H™ (E\ (") < /2 and
there exist 7, > 0 and 0 > 0 such that H™ (E'N B.(a)) > or™ for every
r € (0,r).

Now we can select a compact subset C' C C" and two positive numbers
n < og, ro € (0,r1) such that H™ (C"\ C) < €/2 and for every a € C and
every r € (0,79) there exists an m-dimensional linear plane W such that

H™(E N By(a) \ {z : dist(z,a + W) < nr/2}) < ¢ (%)m

We prove that this plane satisfies (1.3).
To do that we argue by contradiction: if it were false, then there would
exist z € C'N B,(a) with dist(z,a + W) > nr. Therefore

By jao(2) C Bop(a) \ {z : dist(z,a + W) < nr/2}.
Hence:

H" (Bye(@) 0 B\ (= = dist(z,a+ W) <r/2)) > H™ (Byopo(2)) 26 ()
This is a contradiction. 0

Let V' be an m-plane. We will indicate with P}, the orthogonal projection
on V, with Qy the orthogonal projection on V+ and we define the m-cone
C(z,V,a) as

Clz,V,a) =z +{y e R" : |Qv(y)| < a|Pv(y)[},
with a € (0,+00) and x € R™.

Lemma 1.2 (Geometric Lemma). Let F' C R" and assume that there exists
a m-dimensional plane V' and a positive number « such that F* C C(z,V, «)
for every € F. Then there exists a Lipschitz map f : V — V* such that
F' is contained in the graph of f.



Lemma 1.3. Let E be a purely unrectifiable set which is weakly linearly
approximable at H™-a.e. = € E. Then H™ (Py(E)) = 0 for every m-
dimensional linear plane V.

Proof. We fix ¢ € (0,1/2) and let C' be as in lemma 1.1. We fix a m-
dimensional linear plane V' and for every ¢ € Z-q we define

Ci:={a€eC:CNB-1(a)\C(a,V.n~") =0}.

By the Geometric Lemma, the intersection of C; with a ball of radius i~!/2
is contained in a Lipschitz graph, but C' is purely unrectifiable, then:

am (U Ci) = 0.

For H™-a.e. a € C there exists b € C'N B,,(a) N B;-1(a) such that

Qub—a) > T2l

7 = |Py(b—a)| <nlb—al.

Set r := |b — al, let W be as in Lemma 1.1 and set ¢ := Py (b — a) + a.
Lemma 1.1 implies that b verifies |c — b| < nr, since b € C' N B,(a) and
c € a+ W with W satisfying (1.3). Furthermore, Py is a projection, then
|Pw(b—a)| =|c—a|] <|b—a|=r, and we have that n < ¢ < 1/2. Then we
conclude that |¢c —a| > |b—a|—|c—b| >r —nr > r/2.

Let w:= (¢ —a)/|c — al;

2nr

Py (w)] = ——|Po(c—b) + Po(b—a)| <

< <.
lc — d

¢ = al
Now we prove that

H™ (Py({z : dist(z,a + W) < nr} N By(a))) < 2™ 2™, (1.4)
After translating and rescaling this is equivalent to prove that

H™ (Py({z : [Qw(2)] < n} N Bi(0))) < 2™,

Let W’ be the subset of W perpendicular to w and set V' := Py, (W’). V'
is a linear space with dimension at most m — 1, then we can choose a unit
vector v € V perpendicular to V’. We know that |[(w,v)| < |Py(w)| < n, but
a generic ¢ € W N B(0) can be written as ( = aw + v’ with w’ € W’ and
|a| < 1, then

(S, 0] = laf[(w,v)| + [{w',v)| <7
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for every ¢ € W N By(0). Therefore for every (' € B;(0):

(¢, )] < [{Pw (€), v)| + [{Qw (), v)] < n+ |Qw(C)]-

This means that

Py ({z:1Qw(2)] <n} N Bi(0)) € {z: [{z,0)| <20} N B, (0) N V.

Now we can fix an orthonormal basis of V' with v as first element, then using
the notation z = (21, ..., 2,,) we obtain:

{z:[{z,0)| <20} N B(0)NV C{z:|z1| <2n,|z| <1, fori =2,....m}.
Hence:
H™(Py({z : |Qw(2)| < n} N B1(0))) <
<H™{z: |z <21, |z <1, fori=2,...,m}) =2""y.

Now with a rescalation and a translation we obtain (1.4).
For definition of W we know that C'N B,(a) C {z : dist(z,a+ W) < nr},
then
H™ (Py(C N By(a))) <22y,

and obviously B
H™ (Py(C N Byjala))) < 2™ 2nr™. (1.5)

Using the Vitali-Besicovitch Covering Theorem we can choose a countable
set of balls B,,(a;) which are pairwise disjoint, cover H™-almost all C, are
centered at a; € C for all i, r; € (0,7ry/2) and satisfy (1.5) when we replace
r/2 and a with r; and a;. Hence

H™(Py(C)) < Z H™ (Py(C N By(a;))) < Z 9Im+2ppm <

< 22m+2gZHm (EN By, (a;)) < 22m+2gHm(E) < 922 (),

Moreover Py is a projection, then H™ (P, (E\C)) < H™(E\C) < e,
Hence:

H™(Py(E)) < H™(Py (E\C))+H™(Py(C)) < (1+2*"H™(E)) €,
and by the arbitrariness of € we can conclude that H™ (Py(E)) = 0. O

The last tool we need in order to prove the Marstrand-Mattila rectifiabil-
ity criterion is the following decomposition theorem.



Theorem 1.1. Let E be a Borel set such that H™(E) < co. Then there
exist two Borel sets £", E* C E such that E” U E* = F, with E" rectifiable
and E* purely unrectifiable. Moreover this decomposition is unique up to
H™-null set.

Proof. Let R(E) := {E' C E : E’ is a Borel and rectifiable set} and define
= SUPgre () H™(E).

We take a sequence {E;} C R(F) such that lim;_,.. H™ (F;) = «, then we
set B := |, E;. E" is rectifiable because it is a countable union of rectifiable
sets, B C E'and H™ (E") = a. Let E¢:= E \ E". If there were a Lipschitz
graph I' such that H™ (E°NT) > 0, then we would have that E" U (I' N E°)
is rectifiable and H™ (E" U (I'N E°)) > «, that is a contradiction.

It remains to prove uniqueness: the intersection of a rectifiable and a
purely unrectifiable set has always H™ measure 0. If we have two decom-
positions K" 4+ E* = E = F" + F* with E", F" rectifiable sets and E*, F™
purely unrectifiable sets, then we know that

H"(E'NEY)=H"(E"NFY)=H"(F"NE*)=H"(F'NF")=0.
This means that:
H™(E"\F")=H™(F'"\E")=H™(E“\ F*)=H™(F“\ E*) =0.
O

Theorem 1.2 (Marstrand-Mattila Rectifiability Criterion). Let E be a Borel
set such that 0 < H™(F) < oo and assume that F is weakly linearly approx-
imable at H™-a.e. x € E. Then E is rectifiable.

Idea of the proof: we will argue by contradiction; we suppose that there
exists a purely unrectifiable set F which is weakly linearly approximable
at H™-a.e. point. Then we fix a point = where the set is weakly linearly
approximable and a ball B,(x). There we can select some pairwise disjoint
cylinders and inside each of them we choose N pairwise disjoint balls that
give a significant contribution to the measure of £ N B,.(z). Then we can fix
the constants in order to reach a contradiction with the upper density of the
set F.

Proof. Step 1. We prove that if the theorem were false then there would
exists a purely unrectifiable set £ with H™(E) > 0 which is weakly linearly
approximable at H™-a.e. x € F.
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Indeed let F' be an unrectifiable set which is weakly linearly approximable
at H™-a.e. x € I' and let I be its purely unrectifiable part as given in the
previous theorem. Using the Besicovitch Differentiation Theorem we see that

H™(F“N B,(x))

I —
a0t H™ (F N B, (2))

for H™-a.e. x € F“. Then F weakly linearly approximable at x implies
that F* is weakly linearly approximable at x too, therefore F™ is purely
unrectifiable and weakly linearly approximable at H™-a.e. x € F™.

Then if the theorem were false, than there would exist a Borel set E such
that 0 < H™(E) < oo, H™(Py(F)) = 0 for every m-dimensional plane V'
and F is weakly linearly approximable at H™-a.e. x € F.

Hence, arguing by contradiction, we suppose that there exists such a set
E.

Step 2. We reduce the set E losing a small quantity of measure and
gaining some useful properties.

First of all we choose a compact F' C E such that 0 < H™(F') < oo and
such that there exist 7y, d positive numbers such that H™(E N B.(a)) > or™
for every a € F and r < ry.

Next we fix a positive n € (0,1). We prove that there exists a compact
set F; C F such that 0 < H™(F}) < oo and such that there exist r € (0, 7))
and v > 0 such that for every r € (0,r1) and every a € F} there exists an
m-~dimensional plane W with the following properties:

FN By (a) C{z:dist(z,a+ W) <nrk; (1.6)

H™ (EN By (b)) > ~(nr)™ for all b € (a+ W) N B,(a). (1.7)

For definition of weak linear approximability there exist a compact F; C F,
r1 € (0,79) and v > 0 such that 0 < H™(F}) < oo, (1.7) holds and

H™ (E O By (a) \ {2 : dist(z,a + W) < nr/2}) <~ (%)m .
We know that H™ (E N B,.(a)) > dr™ holds too, then we can argue as in the
proof of lemma 1.1 and we obtain (1.6).

Now we prove that there exists a compat G C F; with positive measure
such that there exists 7o € (0,71) such that for every r € (0,r2) and every
a € G there exists an m- dimensional linear plane W which satisfies (1.6),
(1.7) and

(a+W)N B.(a) C {z:dist(z, F) < nr}. (1.8)

For every a € G and r < ry we select W such that (1.6) and (1.7) hold.



Since H™(E) < oo, then there exists a constant ¢ such that

H™(EN By (a)) < ér™.

H™ (E N By(a)) = H™ ((E\ F) N Byy(a)) + H™ (F 0 By (a)) =

H™((E\ F)N By (a)) ~H™(FN By(a))
H™(E N Ba(a)) H™(E N By(a))

Since a € F', then for the Besicovitch Differentiation Theorem

= 1=

H™ (FNBy(a) _ | _ 4 H"(E\F) N By (a))

" Em (B O Bar(a)) M (BN Ba(a)

Hence for every ¢ > 0 there exists 7 > 0 such that for every r € (0,7)
H™((E\F)NBar(a))
H™(ENBy, ()

convergence of the functions

< e. Now applying Egorov’s Theorem we can make the
H™((E\F)NBa,(a)

H™(ENBay(a))
with positive measure, then there exists ro € (0,71) such that

) uniform on a subset G C F

H™ ((E\ F) 1 Ba(a)) < eH™ (BN By (a)) < 6™

for all a € G and r € (0,73). We choose € = yn™/ (2™¢), then

H™((E\ F)N By(a)) <~ (%)m

for every a € G and r € (0,73). Now, if (1.8) were false then it would exists
b€ (a+W)N B,(a) such that B,,(b) N F' = (). Therefore,

H™ (BN B,y (b)) = H" (B\ F) N B,r(h) < H" (E\ F) N Byy(a) <7 ()",

that contradicts (1.7).
Let t € (0,91™/2) and a € G such that 6" (G,a) < 1 and

limr~"H™ ((E\ G)N B.(a)) = 0.

r—0

Without loss of generality we assume a = 0 and we select r3 € (0,72) such
that for every r € (0,73) the following conditions hold:

H™ (E N B,(0)) < 2wpr™: (1.9)

H™((E\ G) N By, (0)) < tr™. (1.10)
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Now we fix 7 =: ¢ < r3 and select W which satisfies (1.6) and (1.8). From
hypotheses
H™(Pw(G)) < H"(Pw(E)) = 0. (1.11)

We want to show that for n and ¢ small enough the conditions from (1.6) to
(1.11) lead to a contradiction.
Step 3. Now we define the cylinders that will lead us to the conclusion.
For b € W and p € RT we define

D,(b) :== B,(b) N W and C,(b) := {z : Pw(z) € D,(b)}.

Let H := D,(0)\ Pw (G N By, (0)); H is open since G is compact. For every
x € H we define

p(z) := dist (z, Pw (G N By, (0))) ,

and we note that if p(z) > no then we would have B,,(0) NG = (), therefore
H" (E 1\ Byy(2) = H™ ((E\ G) N Byo(x)) < H™ (B G) N By (a)) < 1™,
and for ¢ sufficiently small this is in contradiction with (1.7). Then

p < no. (1.12)
Using the 5r-Covering Lemma we find a countable set {z;};c; of points in
H N D,/4(0) such that {Dzop(mi)(xi)}ie_[ is a covering of H N D,/4(0) and the
disks {Dup(z,)(;) }icr are pairwise disjoint; we define p; := p(z;).

Since H™ (H N Dy 4(0)) = H™ (Dy/a(0)) = win(o/4)™, then

1 m . H™(H N Dgsu(0 W™

Now we split the indices in two sets:
Ji={i€l:Chpx)NFNB,(0)#0} and K := 1\ J.

Step 4. We study the sum of w,,p]" on J and we reach an estimate of the
same sum on K.

For every i € J let y; € C), j2(x;) N F'N By(0). Since y; € F N B,(0), then
from (1.6) we have that |y; — Pw(vy;)| < no, therefore

|yi‘ < no + pi/2 = sz'/?(yi) C BﬂU+P<O)7



but from (1.12) B,,4,(0) C By, (0). Taking n < 1/2 we obtain that
By, 2(yi) C B,(0). Moreover EN B, /2(y;) C Cp,(x;) N (E '\ G), then:

H™ (o) O B\ G) 0 By (0) = H™ (01 By ) = o

We note that {C,, (x;)};c; are pairwise disjoint, then:

W 2™
D wompt <> 51" (Cp(z) N(E\G)N B,(0)) <
icJ ied
W 2™ tw,p,2mo™
)

From this estimate and (1.13) we can conclude that if we choose ¢ suffi-
ciently small there exists a constant ¢ such that

E WP > co™.
ieK

<

H™ ((E\G)N B(0)) <

Indeed

m o Wm0 m m [ 1 2m¢
S el 2 S = Sl 2 ™ (= ).

1€EK ieJ

then if we take ¢ < 6/(2-160™) we obtain

> wmplt > Cn_gm

Step 5. We focus on the cylinders C,, (z;) with ¢ € K and we search some
pairwise disjoint balls in order to reach the contradiction with (1.9).

For every i € K there exists a point z; € C,,(;) NG N By, (0), moreover
pi/(8n) < pi/n < o < rz, then we can fix an m-dimensional plane W; which
meets the conditions (1.6) and (1.8) for a = z; and r = £

Since ¢ € K, C,,/2(z;) N F N B,(0) = . Since (1.8) holds and nr = p;/8,
we have that

(2 + W) N Cp,ja(wi) N Bgya = 0.

We prove that (z; + W;) N Cyyp,(2;) N By contains a segment S; of length
pi/ (8n).

Let A; := B, s (2) N (2i+W;). From (1.8) A; C {2 : dist(z, F)) < p;/8},
then z; ¢ Py (A4;), indeed we assume that there exists x € A; such that
Py (x) = b;. There would exists y € F such that |x — y| < p;/8, then
Pw<y) € Bpi/Q(xi), but sz/g(fﬂl) NEN BO-(O) = @
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Let I; be the segment with end-points z; and Py (2;); since z; € I;\ P (A;)

Since Ow Pw (A;) = Pw (0w, A;), then we can choose a; € Oy, A; such that
Py (a;) € I; and we define S; as the segment with end-points a; and z;.

We have that

Si C Az C (ZZ —+ V[/z) N Cgpi(l’i) N BU/Q,

and S; has length p;/(8n) as we wanted.
Therefore we can find N points z] € S; for j =1,..., N with

N > [8]/(2p;) = 1/(16n)
such that the balls B,, /2( z]) are pairwise disjoint. By (1.8) each ball B, /5(2])

must contain a point w; € F, therefore

. spn
b (0 By (1) = 5
Since B,,/s(w]) C B, a(z]), then {B,, js(w!)}; are pairwise disjoint and
they are contained in Cj), (xl) but {Cl,, (ml)}leK are pairwise disjoint, then
the balls B, /s(w ) with i € K and j = 1,..., N are pairwise disjoint.
Then we can Conclude

H™(EN B,(0 >ZZHW (ENB,,s (w ZZ‘S/’@ _

ieK j=1 ieK j=1
N§ 0c
m
= qm Z mpl — 93m+4 g
8™ Wy, —t 2 WmN
1

Therefore we can choose 7 small enough to obtain a contradiction with (1.9),
and this complete the proof. O

Now we prove the corollary that we will use to prove Preiss’ Theorem.

Theorem 1.3. Let pu be a measure such that for p-a.e. x the densities
07 (u, ) and 0*™(u,z) are positive and finite, and such that every tanget
measure to p at z is of the form aH™ L V for some m-dimensional linear
plane V. Then p is a rectifiable measure.

Proof. Since 0 < 0*™(u,x) < oo for p-a.e. x, there exist a Borel function f
and a Borel set E such that u = fH™ | E. The thesis is equivalent to prove
that EN{f > 0} is rectifiable. Then it is enough to prove that E. := EN{c <
f < ¢} is rectifiable for any ¢ € (0,1), because E = Uien., E1/i> and if By,
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is rectifiable for every ¢ > 1 then F is a countable union of countable unions
of Lipschitz graphs, hence it is a countable union of Lipschitz graphs.

We fix ¢ € (0,1) and let v := H™L E,.. Then, by the Besicovich Differ-
entiation Theorem we have that

0" (p, @) 0" (1, )
0" (v, x) = ————=, and 07" (v, x) = ———=
S U= "5
for H™-a.e. x € F, then
0<0(v,z) <0 (v,x) < 0. (1.14)

From the locality of Tan,, (v, z) it follows that Tan,, (v, z) = Tan,,(u, z)/f(x)
for H™-a.e. x € F, therefore

Tan,,(v,z) C {aH™LV :a >0 and V is an m-dimensional plane}. (1.15)

We prove that E. is weakly linearly approximable at every point x which
satisfies (1.14) and (1.15)

We argue by contradiction: we assume that there exists x that satisfies
(1.14) and (1.15) but E. is not weakly linearly approximable at . Without
loss of generality we assume that x = 0; then there exist n > 0 and a
decreasing sequence r; | 0 that for every m-dimensional plane W and every
j either

H™(E.N By, (0) \ {z : dist(W, 2) < nrj}) > nri (1.16)
or there exists z;w € W N B, (0) with
H™E.N By, (%
( m77 ](Z]’W)) S 1 (117)
Tl J
Set v; = r;"vL B,,(0): since 0" (r,0) < oo there exists a subsequence

{v;, }; that converges to vy € Tan,,(v,0).

From (1.15) it follows that there exist an m-dimensional plane W and a
constant ¢ > 0 such that v,, = ¢H™L W. Moreover either (1.16) or (1.17)
holds for an infinite number of indices i, then we can take a subsequence
{vj, i such that it holds the same condition for all radii. We indicate that
subsequence with {v;};.

In case (1.16) holds for all radii then

v (B1(0) \{z : dist(W, z) <n}) >n.
Let © be the closure of By(0) \ {z : dist(W, z) < n}. Then
CH™ (QNW) = vy(2) > limsup 1(2) > 7,

l—00
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but Q NW = (), therefore there is a contradiction.
If (1.17) holds for all radii, then there exists a sequence of points y; €
W N B1(0) such that
fim 24(By (1)) = 0.

We take a converging subsequence {y;, }1: yi, — v € W. Then

o™ = CH™ (W 01 By(y) = vcl(By(y)) < Jim m, (By (3,)) =0,

hence ¢ = 0.
On the other hand for L'-a.e. p > 0:

9 0r) — it VB0 _ 7B

c
r—0 W™ W P W

=0,

but 07*(v,y) > 0 for (1.14), hence we reached a contradiction. O



Chapter 2

Preiss’ Theorem

In this chapter we give a proof of Preiss’ theorem, that is the main result
of this work, skipping the proof of three steps that we will discuss in the
following chapters.

Theorem 2.1 (Preiss’ Theorem). Let m be a positive integer and p a locally
finite measure on R™ such that

0 <0 (p, ) = 0" (p,z) < o0
for p-a.e. x. Then p is an m-rectifiable measure.

To prove this theorem we follow this strategy: first of all we prove
that if p satisfies those hypotheses then for p-a.e. x there exists an m-
dimensional plane W, such that O(u,z)H™ L W, € Tan,,(u,z); then we
prove that if Tan,,(u,z) C 0(u, 2)U™ (R™) and it contains a measure of the
form 6(p,x) H™ LV for an m-dimensional plane V', then all the measures in
Tan,,(u, x) are of that form. After these two steps we can conclude that at
p-a.e. x the set of tangent measures at = consists of measures of the form
O(p,z)H™ LV, then we can apply Theorem 1.3 and conclude that p is rec-
tifiable.

2.1 Part A of Preiss’ strategy

In this first section we prove the first step of the strategy described before.
The first tool that we need is a corollary of the Marstrand Theorem that
we state omitting the proof.

Corollary 2.1. Let m be an integer and p € U™ (R™). Then there exist an
m-~dimensional linear plane V' C R" and two sequences {x;} C supp(u) and
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{r;} € (0,1] such that

T

in the sense of measures.
For the proof see Chapter 3 of [DL].

Lemma 2.1. Let p be as in the Preiss’” Theorem, then for p-a.e. x the
following property holds: if v € Tan,, (¢, x), then r~™v,, € Tan,,(u,x) for
every y € supp(v) and r > 0.

Proof. The thesis is equivalent to prove that for p-a.e. a the following prop-
erty holds: if v € Tan,,(p, a) and = € supp(v) then v, ; € Tan,, (i, a).
Indeed, let a be a point where this last property holds, let £ € Tan,,(u, a)
and fix b € supp(§) and r > 0. Let v :=r~™&;,. We see that v € Tan,,(u, a),
b/r € supp(v), and r~"&,, = vy/,1. The property we are assuming implies
that v,1 € Tan,, (i, @), then 77™&,, € Tan,,(u, a), that is our thesis.
Now we prove that property. For every j, k € N we define A; ; as the set

1 1
{a € R": v € Tan,,(p, a),x € supp(v) with d(r " pg,, Vo) > % Vr < —,}
J

where d is the metric of the weak™ topology.

The thesis is equivalent to prove that p(Ag;) = 0 for all k,j € R". We
argue by contradiction: assume then that p(Ag ;) > 0 for some k and j.
Then there exists R > 0 such that the set

ApjN{a: R < 0™(u,a) < R}
has positive measure. Let B be that set for that choice of R and let
S = A{vy1 1 v € Tan,, (i, a) for some a € B, x € supp(v)}.

We note that

(B
Va1 (B,(0)) = v(B,(1,)) < liminf Lﬂ:@a)) _
11— 00 pZ
BT i 1La
_ Jim jnf A0 F Bro(pi ))wmrm — O(p, @)™ < Reor™,

i—00 wm(rpi)m

therefore S C {v: v(B,(0)) < Rw,,r™ Vr > 0} =: C.
The set C'is compact with respect to the metric d, then we can cover it
with a finite family of sets GG; of type

Giz{C:d<c,g><ﬁ}.
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Consider the sets D; of points a € B for which there exists at least a
measure v* € Tan,(u,a) and z, € supp(v*) such that vy | € G; and
d(r~"pas,ve, 1) > 1/k for every r € (0,1/j). The family sets {D;} is a
finite covering of B, hence there exists a set D in that family such that
(D) > 0, and let G be the corresponding G;.

For any a € D we fix a measure v* and a point z, which satisfy the
previous inequality and v; ; € G. If a,b € D then
b 1

) <o

d(v 2%

za,1> Vg1

: a b
since vy 1,V,,1 € G.
Since D is p-measurable we can choose a € D such that

i AP N Br(a))
=0 p(B(a))

Then we choose r; | 0 and {a;} C D such that

= 1. (2.1)

:u(lﬂ’i * o a
—_ _\ .
rm v
i

’ai - (a + rixa)‘ < dist(a + 1riTq, D) + Q
]

Now we prove that

lim dist(a + x4, D)

1—00 Ti

= 0.

Arguing by contradiction, we suppose that there exists a positive constant ¢

such that q n
ist(a + r;x
lim sup (a+ ri¢a, D) > c.
i—00 r;

We prove now that v%(B.(z,)) = 0, that is in contradiction with the condition
x, € supp(v?):

(B B, ,
V*(B.(2,)) < liminf Lﬂ:(%)) — liminf o mc(anjr ria))
71— 00 Tl 1—00 T’Z

Since (2.1) holds, for every € > 0 there exists R > 0 such that for every

r < R it holds
p(B,(@) _ p(D 0 B,(a))

+ €.

rm rm
Now we can take a decreasing subsequence {r;}; such that dist(a +

Ti;Tq, D) > r;;c for every j and such ry, < cry /(¢4 |24]), with r; < R.
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For every 7 > 1 we have that
Ber (a4 7i;2a) C By, (jeal+e)(@) C Ber,, (a4 riz,).
Then we can conclude

Br'c ilaq 'M(Bri'c a+rijxa)
v*(B:(z,)) < liminf #(Brie(a + 1ia)) < lim inf ! ( )

i—00 ’l”im Jj—oo r

m =
]

1( By, (ct]za))(@)) p( By, (e+]za))(@) N D)
< lim inf ( 3 (Hlza) < lim inf e Trl) +e<
J—00 T’L" J—0o0 ,r’i'
J J
Br; c\a + T, Tq ﬂ D
gliminfu( el — ) )—i—a‘:g.
j—o0 r

L

By the arbitrariness of ¢ it follows that v*(B.(z,)) = 0, and then we
reached the contradiction.
Then it follows that

a; —a

_‘,I;CL

dist(a + iz, D) 1
‘ +

T

Now we can note that

Hairi [ Hayr; N o
rim N rim a;—a Ta,l”
i i a5—a

Therefore, we can choose r; < 1/ sufficiently small such that

1
d(v?® T g ) < —.
(VLBU,,l? T’L /’L iy z) 2]{;
Since a; € D, then we conclude:
1 a; —-m a; a a —m 1 1
T < d(l/:p;i,lﬂﬂi Hazr;) < d(yz;i,lv Ve 1)+ d(yr{,,,lvri Pair;) < 57+ 57 =

1
2k 2k Kk
Then we reached a contradiction and this conclude the proof. O

Now we prove the first part of the Preiss’ strategy.

Theorem 2.2. Let p be as in the Preiss” Theorem, then for p-a.e. x € R
there exists a plane W, such that 0(u,z)H™ LW, € Tan,,(u, x).
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Proof. Let x be a point where Corollary 2.1 and Lemma 2.1 hold and the
density 0(u, x) exists.

If v € Tan,,(p, x), then for Lemma 2.1 r~™v,, € Tan,,(p, z) for every
y € supp(v) and r > 0. Furthermore v is of the form 6(u,z)( with ¢
uniform, hence for Corollary 2.1 there exist an m-dimensional plane V' and
two sequences {x;} C supp(v) and {r;} C (0, 1] such that

—C”;;ji SH™LV.

T

Multiplying for the density we have that 0(u,z)r; ™y = 77 ""Vay i and
r; "y, r, € Tan,,(u, x), then

Brors g, 2) H™ L V.
We conclude that the weak™ closure of Tan,,(u, z) contains a measure of the
form O(p,x)H™L V', where V is an m-dimensional plane.
We prove now that Tan,,(u, x) is closed, and this concludes the proof.
For every p € (0, 1] consider the set

C, =00 : 0 <0 < p}.

Let & = 0"y ,. We prove that &,(B,(0)) is bounded from above from a
constant depending only on p and r. For 0 > e > 0 we have that &,(B,(0))
is bounded because p is locally bounded; near 0 instead, we have that the
density of u exists, then there exists the limit

—M(Brg<x))wmrm =0, v)wyr™.

lim &,(B,(0)) = lim

o—0 o—0 wnxra)m
Hence there exists a constant ¢(r) depending only on r and u such that
C, C{£:£(Br(0)) <c(r) Vr >0}

for every p € (0, 1].
As we can see in Theorem 2.6 of [DL], on this set the weak™ topology is
metrized by a metric d. Let C, be the closure of C}, in the metric d: since

Tan,, (1, ) = ﬂ C,,

0<p<1

then Tan,, (i, z) is weakly™ closed. ]
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2.2 Part B of Preiss’ strategy

In this section we outline a proof of the second step of Preiss’ strategy, stating
three theorems that we will prove in the next chapters and showing how our
goal follows from them.

Theorem 2.3. Let p be as in the Preiss” Theorem and let z be a point
such that Tan,,(u, ) C 0(u, 2)U™ (R™) and such that Tan,,(u, x) contains a
measure of the form 6(p, x)H™ LV for some m-dimensional plane V. Then
Tan,, (u, ) C 0(p, )G (R™), where G,,,(R"™) is the set of flat measures.

First of all we define the set of tanget measures at infinity; the first
result is the uniqueness theorem of tangent measures at infinity for uniform
measures.

Definition 2.1. Let « € R* and p be a locally finite measure. Then we
define the set Tan, (1, 00) as the set of measures v such that there exists a
sequence of radii r; T oo with

T

Theorem 2.4 (Uniqueness Theorem). If v € U™ (R"), then there exists
¢ € U™ (R") such that Tan,,(v,c0) = {(}.

From this theorem it follows that the whole family {r~"v},~o converges
to ( as r — oo, then we can define ¢ as the tangent measure at infinity of v.
We will give a proof of Theorem 2.4 in Chapter 3.

Definition 2.2. We say that v € U™ (R") is flat at infinity if its tangent
measure at infinity is flat.

The following theorem states that if v is uniform and its tangent measure
at infinity is sufficiently close to a flat measure, then v is flat at infinity. We
will prove it in Chapter 4.

Theorem 2.5. There exists a constant ¢ > 0 depending only on m and n
such that if v € U™ (R™), ( is its tangent measure at infinity and

min dist(x, V)]2d¢(z) < e,
i [ s vPace)

then ( is flat, where G(m,n) is the set of m-dimensional linear planes in R".

The third theorem we state will be proved in the last chapter, Chapter 5,
and it gives a relation between flatness at infinity and flatness.
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Theorem 2.6. If v € U™ (R") is flat at infinity, then v is flat.

The last result we need to prove Theorem 2.3 is the following lemma.
We indicate with M (R™) the set of nonnegative locally finite measures.

Lemma 2.2. Let ¢ € C.(R") be a nonnegative function and consider the
functional F' : M(R™) — R given by

Floi=, min [ p(a)ldist(z, V) du(2)

If pi; = p then F(u;) — F(p).
Proof. Let V; be such that

Flu) = [ o()ldist (e, VPd(2)

Up to a subsequence we can assume that {V;} converges to an m-dimensional
plane V,.; then the sequence of functions ¢(-)[dist(-, V;)]* converges uniformly
to ¢(+)[dist(+, Voo )]?. This implies that

lim o(2)[dist(z, V;)2du; = /n o(2)[dist(z, Voo )]*dp,

1—00 Rn

then

liminf F'(y;) = lim o(2)[dist(z, Vi) 2dp; = /n o(2)[dist(z, Vi) ?dp >

i—00 1—00 R®

zvggm/;w@mmuwwwmaszy

Let V be an m-dimensional plane such that

Pl = [ ol distlz, V)Pducz).
Then it holds that

F(p) = /n p(2)[dist(z, V)|*du(z) = lim | o(z)[dist(z, V)] dui(z) >

1—00 R™

> lim sup /n o(2)[dist(z, V;)]*dpi(z) = limsup F(p;).

1—00 1—00

This concludes the proof. O
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Furthermore, with this definition of F' we can note that if v € U™ (R™)
than v is flat if and only if F'(v) = 0.

Now we give a proof of Theorem 2.3, which concludes the proof of Theo-
rem 2.1.

Proof. We argue by contradiction: let x be a point such that Tan,,(u, z) is
contained in (p, x)U™ (R™) and such that there exist v, ( € Tan,,(u, z) with
v/0(u,x) flat and ¢/6(p, z) not flat. Without loss of generality we assume
O(p,z) = 1.

Let x be the tangent measure at infinity to ¢ and fix ¢ € C.(B(0)) such
that ¢ = 1 on B1(0) and ¢(z) > 0 for every z.

Since ( is not flat, for Theorem 2.6 x cannot be flat, then, for Theorem 2.5,
we have that F'(x) > e.

Moreover we can note that x € Tan,, (¢, x), indeed we know that there
exist two sequence p; | 0 and o; 1 0o such that

lL[/g;7 . ok C0,0" *
= and 2 Sy
Pi oy

then
Haz,pio; * C()pj

(o) o o7

It follows that 0™ (o,; € Tan,,(u, x) for every j, but in the proof of Theorem
2.2 we proved that Tan,, (i, z) is weakly™ closed, therefore y € Tan,,(u, x).
Then we can fix two sequences of radii, r, | 0 and s | 0, such that

—y an —x
Tk Sk

and such that s, < ry for every k.
Let f: RT — RT defined as f(r) := F(r "™puo,)-
Since v is flat, we have that
lim f(ry) = F(v) =0;
k—o0
then, for ry sufficiently small, f(rg) < e.
Focusing on y instead of v:
lim f(s) = F(x) > &;
k—o00
then, for s sufficiently small, f(s;) > e.

Note that for Lemma 2.2 f is continuous, then for every k we can fix
ok € [Sg, k] such that f(ox) =€ and f(r) < e for r € [og, 7%
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We know that if a sequence of measures is locally uniformly bounded,
then there exists a subsequence which converges in the weak™ topology. Since
0™ (1, x) < 0o, then we have that for every p > 0 the set of numbers

(B (1)) _ fer(B,(0))

r—m r—m

is uniformly bounded, therefore the family of measures {r " u,, : r € (0,1]}
is locally uniformly bounded, then for any sequence of radii there exists a
subsequence that converges in the weak™ topology.

Therefore we can assume that, up to a subsequence, o, " ji,,, converges
in the weak* topology to a measure £ € U™ (R"). We have that

F(§) = lim f(ox) =,

k—o00

then £ is not flat.
Now we prove that ry/op — oo. If it existed a sequence of indices {k;}
and a constant C' € [1,00) such that ry, /oy, — C' < oo, then we would have

that
x M Ok Mz o *
Z,Tk 30k —m
V- —= = - — AN C §0707
Tk Tk k O,rk/dk

hence, £ would be flat.
Now we note that for every R > 0 we have (Roy,) ™o ro, — R™&0.r,
then

F(&.r) = lim f(Roy).
k—o00
Let R > 1. Since ry,/0), — oo, there exists k(R) such that for any k& > k(R)
we have Roy, € [0y, k], then

F(R™&Rp) <¢

for every R > 1.
Let 1) be the tangent measure at infinity to &:

F(y) = lim F(R™&.R) <e,

R—o0

then, for Theorem 2.5, 1 is flat, hence ¢ is flat too for Theorem 2.6. Here we
reached a contradiction. O
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Chapter 3

Uniqueness Theorem for tangent
measures at infinity

In this chapter we prove Theorem 2.4, that is the uniqueness of tangent
measures at infinity for uniform measures.

The first lemma states that the integral of a radial function on an uniform
measure y does not depend on . We will use this fact several times in this
chapter and in the next ones.

Lemma 3.1. Let ¢ : R — R* be a Borel function, z an m-uniform measure
and y € supp(u). Then

[ elleliduta) = [ ello = sduta) = [ ellzDdLn ),
where L,, is the Lebesgue measure.

Proof. Since p(Br(0)) = w(B!y)) = wnr™ = Ly, (B™(2)), the identity is
true if ¢ is piecewise constant; then we can argue by density to conclude
that it is true for every Borel function . ]

We indicate with p, the measure r‘me_|'|2,uo7,.. Then, for every Borel
function ¢ we have that

[ o) = [ e () duo)

Let v € Tan,,(u,00) and r; T 0o a sequence such that r; ™, — v,
then p,, — e~ I"Pu. The uniqueness of the tangent measure at infinity is then
equivalent to the existence of a unique limit of u,. for r 1 occ.
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Let P be a polynomial and let Fp(r) := [, P(z)du.(z). With a density
argument we will prove that the ex1stence of a unique hmlt of u, for r 1 oo
is equivalent to the existence of the limit

lim Fp(r). (3.1)

T—00

For p € U™ (R™) and s > 0 we indicate with I(s) the integral

I(s) :== /n e du(z2).

Definition 3.1. Let p € U™ (R"), k € Z~o, uy,...,ur € R® and s € R™.
Then we define the moments bj, (u1, ..., ux) as

b‘kf,s(ul,...,uk) = (2;!> I(s)™ /n<z,ul)...<z,uk>e_sz|2du(z).

We will prove then that the existence of the limit (3.1) is equivalent to
the existence of the limit

lim —=2. (3.2)

We study now the existence of the limit (3.2). In order to do that we
need a Taylor expansion for b, that we will reach using the estimates in
the following lemmas.

Lemma 3.2. Let p € U™ (R™). Then there exists a constant C(m) such
that k1)
k!

’bll:,s(uh s uk)l S C(m>

Proof. Since

S L1 [ (ool unde du),

by o (un, oy uy) =
then

I(s)7! 2[Fe =51 dpu(2).

R

|bk8(u1, e )| < g Jugl

(25)"
k!
From Lemma 3.1 it follows that

19)i= [ e o) = [ e, (@) -
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= 5 ™/? /m e WAL, (y) = <§>m/2’

then

2k8kz/2
k!

B0 (1 oy )] < fta ]| /22 / e P dp(z).  (33)
R

Using Lemma 3.1 we conclude that

Sk/2+m/2 |Z|k€—s|z|2dlu(z) _ |81/2Z|ke—\sl/22|2d[5m/21u(z)] —
R® R™

= [ e L () = [ e L ),

m

We know that there exists a dimensional constant Cy(m) such that

/ ylFe AL () < Cu(m)kH2,

then combining this with (3.3) we conclude the proof. O
We indicate with b (2*) the number b (z,z, ..., z).

Lemma 3.3. Let ¢ € U™ (R"). Then there exists a constant C(m) such
that for every ¢ € N

< Cm)(s|ef?)r+/?

2q q

(s|=*)"
sz,s(xk) - k!
k=1 )

k=1

for every = € supp(u).

Proof. 1If |x| = 0 the lemma is true.
Let s|x|* > 1, then

2q q 2\k 2q q 2\k
s\ s\
Sttt = S B < S e+ [0 B <
k=1 k=1 ' k=1 k=1 '
L 2kEH2 2\k/2 2 1
a —
< Clm) Yy == (slalP) " + (slal)" Y - <
k=1 k=1
0 ok k/2
< C(m)(s|z[*)? +e(slz])".

k!

k=1
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Since k! > Ck¥e™* from Stirling’s Formula, we have that the series

> 2k]€k/2
k!

k=1

converges, then

. T (slz|2)k
> () - ( ‘/J! V| < cym)(slal®)r < Cofm) (5] )72

k=1

Consider now the case s|z|> € (0,1).
Let us fix the convention that bjj ,(z°) := 1. We prove that for every s > 0
and z € supp(u) such that s|z|*> < 1 we have that

Z b, (") = eslel’. (3.4)
k=0

From Lemma 3.2 it follows that

o 0 2kkk/2 o0 2kkk’/2
PRI Pe o (slz? )2 < ¢y T <O
k=1 k=1 k=1

since, as we saw in the previous case, that series converges. Then the series

DB NEY
k=0

is summable for s|z|? < 1, therefore

oo q k
, _ 2s{z, @ —slz
St ot = tim Sor(e) [ BB gy,
k=0 k=0 " ’
Since e~s("*+21lel) ¢ L1(1) and

q k
—s]z|? (2[z]]=[) —s(]2|2+2|2||z])
k! Se) erse ’

k=0

k=0

then by the Dominated Convergence Theorem we conclude

>t =167 [ [Z ek ] P du() =

k=0



_ ](S>_1/ e?s(z,:p)—s|z\2dﬂ(z) _ [(S)—les|m2|/ 6_S|Z_m|2d,u(2).

From Lemma 3.1 we obtain

[ et = [ e Faute) = 106)

and this concludes the proof of (3.4).
Now we can compute the wanted estimate:

k=1
(sl=[>)*] |, 15
Zb Y | T e Zb
k=1 k=1
We study the first addend:
q k q 2\k oo 2\k
(s]zl*) P (s]=]*) (slz[*)
—ZT . K| 2 RS
k=1 k=1 k=q+1
— 1
\x| Zk:— — m q+1 < e(s|z| )q+1/2
k=0

We study the second addend:

2q
2 : o k
o bk,s (.CC
k=1

- k - Qkkk/z k/2,.1k
< Y DI <Cm) D st el <
k=2q+1 k=2q+1

k‘k/2

< Cy(m)(s]af*) 7172,

Clm) (sl WZ

Then we conclude:

Sou ) = 3 BN oy m)) sl

27
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Theorem 3.1 (Taylor expansion). Let u € U™ (R") and k € Z~o. Then

there exist symmetric k-linear forms bk , with j € Z-, such that for all
q € Z~o and x € supp(p) the following three conditions hold:

sjb(j
b, = Z S olsh); (3.5)
7=1
bg) = 0 whenever j < k/2; (3.6)
2q
> 07 () = Jaf*. (3.7)
k=1

In order to prove this theorem we need to introduce some notation.

We indicate with @k R™ the vector space of symmetric k-tensor on R".

Then by, € Hom(()"R",R), and the function s — by, is a curve in
Hom ()" R", R).

We define X% := R" @ O’R" @ ... ® O"R", and P; is the canonical
projection of X** on ()’ R™.

We indicate with (-, -), the unique scalar product on O"R" such that

<'LL1@ O U,V O . @Uk k?‘ Z U1, Vo(1 <uk7vo(k)>7

o€Gy
where Gy is the set of permutations of {1,2,...,k}.
Definition 3.2. Let k,n € Z~o. Then we define on X*" the scalar product

{(-,-) as
521 (P;(u), P;(v)),
= { (;! ()>’

j=1

and we set ||u| := (u, u)/2.

We indicate with ¥+ the orthogonal subspace with respect of (-, ).

Proof. Step 0. An overview on the proof of (3.5), that is the core of this
proof.
We fix a ¢q. Using the tensor notation, we can see the map

2q
s = by =Y b € Hom(X*" R)

k=1
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as a curve of linear operators. Then, if z € supp(u), Lemma 3.3 gives us the
expansion

4q Sk‘x|2k

be(z + 2%+ ... + %) = Z—

o+l o(s?),
k=1 )

which defines the function on a vector space V' by linearity.
Our goal is then to find an analytic curve w, and a certain projection Q)
such that
bs = ws 0 Q, + o(s?).

Proving the analyticity of an extension of (s to s = 0 will conclude the proof.
Step 1. We prove now (3.5).
Let g € Zwy, X := X?" and consider the curve

2q
s —> by = Zb?s € Hom(X,R), for s > 0.
k=1

For every k € Z let Wy, € Hom(X,R) be such that @y (y) = 0 for every
y € O R™ with j # 2k and

We observe that wy, € @% R™ and it is given by

- 1
w2k(5€1, ~-~>372k> = W Z <x0(1)7xo‘(2)>---<xa(2k—1)7xa(Qk)>-

oc€Goy

Now we define, for s > 0, ws € Hom(X,R) as

q
N E kA
Wg 1= S Wag,
k=1

and V' as the linear subspace of X generated by the elements of the form
r+ 2% + ... + 2% for x € supp(u).
Let as(-,-) be the bilinear form on X defined by

as(u,v) = <<Z skPk(u),v» :

We note that it is a scalar product on X.
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Define F; as the subspace of X orthogonal to V' with respect of the scalar
product as(+,-), that is

Fs = {u €eX: <<Zq: skPk(u),v» =0 W e V} :

k=1

Then we have that V & F, = X.

We define ), as the orthogonal projection on V' with respect to the scalar
product a4(+, ), then @, : X — X is the linear map such that it is the identity
on V and it is 0 on Fj.

We note that

2q 2] '
|+ 2® + 2 =) ﬁm%,
j=1 7"

then we have that, for y € V', Lemma 3.3 can be written as

bs(y) = ws(y) + llyll'* o(s?), (3.8)

where ¢ = 2¢ if |x| <1 and ¢ =1/(2¢q) if |z| > 1.
Moreover we note that

2q k
2
bs(u) = g I(s)_lysk/R <Pku,vk>k e~ 1P dp(v) =
=1 . n

2(] k
2
= I(s)"* /R T (s*Pou, Py(v+0* + ...+ v2q)>k e P dp(v) =
n k_ .

= I(s)7* / <<Zq: s*Pou,v +0? o+ 212‘1» e 1P dp(v) =

k=1
=I(s)"" / as(u, v + 0% + .. + 02 e P du(v).
Then we conclude that for u € Fi:
bs(u) = 0 = ws(0) = ws(Qs(u)).
Therefore we can write (3.8) as

bs = ws 0 Qs +[|Qs [ F€0(s7),
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and since Qg is a projection, [|Qs|| < 1, then
bs = ws 0 Qs + o(s?).

We note that we can define b, for s = 0 too, and since w, can be defined
also for s = 0 and the curve s — wy is analytic, we have that b, is analytic
at s = 0 if Q)5 can be extended analytically to s = 0.

If b, is analytic at s = 0 then its components, that are b’,j’s, are analytic,
and this concludes the proof.

We prove now that (), has an analytic extension at s = 0.

We know that

2q 2q 2q 24
(Z p) ° (Z P) =Y SRR =Y P-1d
k=1 j=1 b=l

k,j=1

therefore the map Z?il 579 P; is the inverse of the map 33", s*P,. Then
x € Fy if and only if

(V).

2q
T e [Z s_ij

J=1

Moreover, we can decompose the linear space V+ in 2¢ linear spaces which
are pairwise orthogonal:

Vi=vtn()'R"
V= {vl N [@ IR" @211%”} } NV,
®(O=)|}nny-

j<k j<k

Vi = {Vim

Let A, : X — X be a linear map such that A, is the identity on V, and
on Vj, is given by P, + sP,_1 + ... +s" 1P,

We note that A; maps V into V and V+ into Fj, and that the curve
s — A, is analytic.

We prove that Ag is invertible, and then we conclude proving that the
map Q, := Py o A7l is an analytic extension of Q.

Let w € X such that Ag(w) = 0 and decompose it as w = —vg+ vy + ... +
Vgq, Where vg € V and vy € V; for i = 1,2,...,2¢q. Assume by contradiction
that there exists & > 0 such that vy # 0 and choose the smallest k with that

property.



32 CHAPTER 3. UNIQUENESS THEOREM

Since vy € B (@] R”), then

k—1
vk = Pelvr) + > Pi(vg),
j=1
On the other hand, we know that
2q 2q
0= Ag(w) = —vo+ > _ P;(vi) = vo = Pulv) Y Py(vy).
j=1 j=k+1

Then we obtain
{(vk; vo)) = | Pe(ve) P,

but vy € Vi C VL, then Py(vy) = 0. Since v, € @jgk(@j R™) and we have
that Py(vy) = 0, then vy, € B, 4 (@j ]R”), therefore

we{vin L@ (O)

<k-1
C{Vlﬂ

We know that V,_; L V., then v, = 0. This concludes the proof of invert-
ibility of Ag.

Then A, is analytic and invertible at 0; this implies that A, is invertible
in a neighborhood of 0 and the map s — A;! is analytic.

Let Q, := Py o A7l where Py is the orthogonal projection on V with
respect of the scalar product (-, -)).

We know that Q, is analytic in a neighborhood of 0, Q, is the identity
on V, and, since for every s > 0 A;! maps F; into V1, Q. is 0 on F.

Then we proved that Q, = Q, for s > 0, therefore Q, has an analytic
extension at 0, and this concludes the proof of (3.5).

Step 2. We note that (3.6) is an immediate consequence of (3.5) and
Lemma 3.2, since the lemma states that b’,;s, for s — 0, goes to 0 faster than

}mﬂvfc

j<k

D (O

Jj<k-1

}ﬂ () v =Vir

j<k—1

sF/2 then its Taylor expansion can not go to 0 slower than s*/2, then b,gj) =0
whenever j < k/2.

Step 3. Now we prove (3.7), which follows from Lemma 3.3, (3.5), and
(3.6).
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Let ¢ € Z~y. From Lemma 3.3 we have that for every = € supp(u) it

holds ) .
q q slx 2
> i, () - 3 PR
k=1

k=1

< C(m) (slz[>)"*,

and from (3.5) we have that for every x € R™ it holds

4 ipld) (yk
e () = 30 2P (.

=

Then, since b,(j) =0if j < k/2,

iisﬂ‘bw) L (sfa)"
- T k!

|
k=1 j=1 J k=1

5 (50 -
Zf,(Zb,: <wk>—|x|2ﬂ> :
A\t

j=1

If we fix ¢ = 1 we find ‘bgl)(x) + bgl)(xZ) - |x|2‘ = 0(s)/s, then

b () + b5) (22) = |2

By induction we have that for j = 1,2,...,2¢ and x € supp(u)

2%
D0 (@) = Jo,
k=1

and this concludes the proof. ]

We note that the existence of the limit (3.2) follows from (3.5) and (3.6);
we do not use (3.7) now, but it will be useful in the next chapters.
Now we prove Theorem 2.4, which is the main result of this chapter.

Proof. Let N € Z~o. We fix ¢ > N/2, and we note that from (3.5) it follows
that

by (xq, ..., x 9 N2 (g
lim N’S( 1N/2 v) = lim i N (,‘xl’ . TN) +o(s?) | =
510 S 510 — 7!
J_
=gy Y )
= sl0 j'

For (3.6) the limit is 0 for j < N/2, and for j > N/2 it is 0 since s7=/2 — 0.
Therefore we have that the limit (3.2) exists for every N: indeed it is 0
whenever N is odd and it is b%vﬂ) (1, ...,2n)/(N/2)! whenever N is even.
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Now we prove that since limit (3.2) exists, then limit (3.1) exists for every
polynomial P.
Since I(s) = (m/s)™?, we have that

bl](fs(ulv"wuN) 2N —sz|?
’ SN/2 - Nlﬂm/28N/2+m/2/ (z,w)..(z, un)e 1 du(z).

Let r:= s~ /2

bllji/s(ula"wu]\/') 2N _ _ B 22
’ SN/2 = N!ﬂ_m/gr /n<r lzaU1>.-.<T 1Z,UN>€ |21/ dlu(z) =

2N

= W/RH<Z,U1>...<Z,UN>d/LT(Z)'

Then we conclude that the limit (3.1) exists for every polynomial of the form
(z,u1)...{z, un).
Let ', v? € Tan,, (i, 00) and {7y }x, { sk }x two sequences such that r, 1 oo,
sk T oo and
Hore > 1 Hose = 2

—\ v
9 m *

m
Tk Sk

.. . - - L2 2 .
We indicate with 7' and 7 the measures e I'"v! and e~ I"1? respectively,

then we have
/“LTkéﬁlﬂ ,LLsk—\772.
From the definitions we gave we note that for every j € N and ¢ > 0
there exists M > 0 such that

/ =P (=) < e,
R"\BM(O)

then we can conclude that

im [ (2 u)dp, (2) = / (2, u) i (2),

kToo R™ n

lim [ (z,u)du,, (2) = /n<z,u>jd172(z).

kTOO R™
Therefore, since we proved that the limit exists for » T oo, we have that for
every j

/n(z,u>jdﬁ1(z) _ /n<z,u>jd172(z).

Then for every polynomial P in n variables we conclude

/ ) e PP P()dv' () = / ) e P P(2)dv(2),
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—alz|?

and using the Taylor expansion for e
for every a > 0:

/ e~ P P du (2) :/ e~ 9lEP p(2)dv?(2).

we obtain the following equation

We prove now, with a density argument, that

/ ) p(2)dv'(z) = / ) p(2)dv?(2) (3.9)

for every ¢ € C.(R™), which concludes the proof.
Let B be the vector space generated by functions of the form

b+e 1+a)|\P<>

where a > 0, b € R and P is a polynomial.

In order to prove (3.9) we show that for every ¢ € C.(R™) there exists a
sequence {1;}; C B which converges uniformly to .

We fix ¢ € C.(R") and let S" be the usual one-point compactification
of R". We denote with ¢ € C.(S™) the unique continuous extension of v,
and we note that for every x € B there exists a unique continuous extension
X € C(S™), then we indicate with B the vector space of such extensions. B is
an algebra of continuous functions on a compact set, it separates the points
and it vanishes at no point, then we conclude, using the Stone-Weierstrass

Theorem, that there exists a sequence {@Zl} C B which converges uniformly

to 1. Now, the corresponding sequence {1;} C B converges uniformly to ).

We conclude now the proof of the theorem using this property: let ¢ €
C.(R™) and choose a sequence {1;} € B which converges uniformly to ¢ :=
eI’ 0. Moreover we note that if y € B then e "y is a sum of functions of
the form e~(1+9)” P()  then we can conclude that

/n Ty (2)dv () = / e yi(2)d ()

for our previous computation. Since {1;} is uniformly bounded, we let i 1 oo
and we obtain (3.9), which concludes the proof. O
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Chapter 4

Flatness Criterion for conical
measures

In this chapter we prove Theorem 2.5. In order to do that we introduce
conical measures and we prove that if p is uniform and X is its tangent at
infinity then A is a conical measure. After that we prove that a stronger
version of Theorem 2.5 holds for every conical and uniform measure.

Definition 4.1. A measure A is called a conical measure if for every p > 0
it holds
>\0,p = pm>\

We see that the conical property of the tangent measure at infinity is an
immediate consequence of the uniqueness of tangent measure at infinity.

Corollary 4.1. Let p € U™ (R™) and A € U™ (R™) be its tangent measure
at infinity. Then X is a conical measure and it holds that if x € supp(\) then
px € supp() for every p > 0.

Proof. Let r; T oo be a sequence of radii such that r; "0, =\ and let
p > 0. Then

Y

Fopre » Aop
(prs)™  p™
therefore p~™\o, € Tan,,(y,00) = {A}. This means that the conical prop-

erty holds for the tangent measure at infinity of a uniform measure.
Now let = € supp(A). Since Ay, = p™A, then

)\(Br(pl‘)) = pm)‘(Br/P(x)) >0

for every r > 0. This means that pz € supp()), and this concludes the
proof. ]
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The aim of this chapter is then to prove the following theorem, and The-
orem 2.5 follows trivially from that and Corollary 4.1.

Theorem 4.1. Let A € U™ (R") be a conical measure. Then:
e if m < 2 then \ is flat;

e if m > 3 then there exists a constant € > 0 depending only on m and
n such that if

VeG(m,n)

min / dist(z, V)2 dA(z) <
B1(0)

then A is flat.

In order to prove this theorem we need to study the behaviour of the
moments by , when A is uniform and conical.

Lemma 4.1. Let A € U™ (R") be conical. Then:

1. by, =0and by, = [(k)!]_ls’“b;\,;(k), then only one term of the Taylor
expansion of by, , is different from 0;

2. supp(\) C {x € R™: b;};(k)(ﬁk) |22

3. for every u € supp()), every w € R™ such that |w| = |u| and ev-
ery function ¢ : Rsg x R — R with ¢(]z], (z,u)) € L'(R",\) and
o(|z], (z,w)) € L'(R™) it holds

[ et ) ane = [ (el o, w) dLn(o)

Proof. Step 1. We prove the first statement.
Let 2 € supp(A). From a change of variables w = s'/2z and the conical
property Ag /2 = s"™/?X follows that

b?g(a:j) = (25)]](3)_1 /" e‘leP(x, 2)d\(z) =

4!

_ (QJi)][<S)1Sj/2m/2/ e*‘w‘2<x,w>jd)\(w) -

n

27 gi/?2

| e wpirw),

- om/24)
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Then, from the Taylor expansion (3.5) follows that for every = € supp(A)
if j is odd then we have b} (27) = 0, if j is even then we have
/2
P NG ()

e (2) = G

with (/)
NG (g 202N [ qep j
b (27) = ) e (x,w) d\(w).

Since we can determine a symmetric j-linear form from its values on the
elements of the form 27, we conclude that if j is odd then b]{s =0, and if j
is even then b}, = [(j/2)!] " /26,V/%).

Step 2. Now we prove the second statement.

From the first statement and the Taylor expansion of b}, we have that

b;’(k) = 0if j # 2k, and from (3.7) follows that for every = € supp(\) we

obtain
b;\];(k) (ka) — |ZL”2k,
which concludes the proof of the second statement.
Step 3. In this step we prove the third statement.
From the first and the second statements follows that for every s > 0, for
every u € supp(A) and for every k € Z-o we can compute:

e ) 2%k —1)! .
/ e 1 (2, u)* T dA(2) = ((ZS)T_)ll(S)bgk—l,s (v 1) =0,

and /2 (2k)!
—sl2]2 T\™ !

/n el <z,u>2k d\(z) = (g) —Q%S%b%k,s (u%) =

N2 (2R Nk (o ™2 (2R) o

B (E) 122k gk 2k (u™) = <§> prozhgr U

Let ey, ..., €, be an orthonormal base of R™ and let w := |u|e;. Then:

/ e~z w)F dL,, (z) = ]u\%/ 6_8|§|2dLm1(5)/6_8|tl2t2de1(t)-
m Rm—1

R

Integrating by parts the last integral we reach

/m e (3 ) ¥ dL, (2) = <§>m/2 (2k)! 2

K122k gk

then

/n ol <Z,u>j d\(z) = /m el <x>w>j AL (). (4.1)
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By the arbitrariness of the choice of the base ey, ..., e, we conclude that
(4.1) holds for every w € R™ such that |w| = |ul.

Let B be the set of Borel functions ¢ : R>y x R — R such that for every
u € supp(A) and f € R™ such that |w| = |u| the following holds:

p(l2], (2,u)) € LH(R™, A)

and
[ el unane) = [ el (o whaLn(a).

We prove that B contains the set of functions that are continue and with
compact support from R>y x R to R.

From (4.1) we know that B D {e™*¥{y} : s > 0, j € N}, and by taking the
derivatives in s of (4.1) we obtain that B D {e~*¥iy?*y} : s > 0, k,j € N}.

Since B is a vector space, we have that B contains all the fuctions of the

form
i, 2
2

N
_sy? j iSY
e~y Py (2(—1) : ) (4.2)

i=1
with s >0, k,j € Nand N € Z>0.
Let |w| = |u| < 1. Then we have that for every N € Z-

|z[? | .| 2k - s (w, )"

—s|z —1)¢ ’ <

el ) | -1 )| <

< eS| g Pt | sl el = sl () g 2K (4.3)

which is an integrable function, then we can apply the Dominated Conver-
gence Theorem:

lim e~ | 22F (w, ) (Z(—1)1M> dL,,(x) =

Ntoo Jgm i=1

- / e (=) |12k oy 0N gL (). (4.4)

We note that the function in (4.3) is radial, then it is integrable with respect
to the measure A € U™ (R"), and if we replace w with u we can apply the
Dominated Convergence Theorem to obtain

N1oo Rn

lim e =12 2|2 (u, 2) (Z(—1)1M> d\(z) =
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:/ e (R 225 () dA(2). (4.5)

Then the two limits (4.4) and (4.5) exist, and from (4.2) they are equal.

Now let @ := cw and @ := cu with |w| = |u|] < 1. We prove that for every
¢ € R the integrals in (4.4) and (4.5) are equal with @ and @ in place of w
and u, and this means that the functions of the form

glul? i
e~ ytys

with positive s belong to B.

Indeed, using the conical property of A and L,, we conclude that

/’gmwwmﬂw%@ﬁyw@%:

) 2k .
_ /]R e—s(\cz\ /e +{u,cz) )% (u,cz>] d)\(Z) -

_ 1 / 675(\z/|2+<u,w>2)|21|2k <u’ Z/>j d)\(z'),
R?’L

62k+m

where §:= s/c?. We can do the same computation for L,, to obtain that
/ efs(|x\2+(w,x>2)|x|2k <1D,x)j dLm(CL’) —

]- _3 / 2+ N2 2% .
:Zyaz;4m€ (e P (w, a')) L (),
and we conclude that the two integrals are equal because we just proved it
for |w| = |u|] < 1.
Then B contains any linear combination of functions of the form

2 .
—sly|=, 2k, J
e W Y1 Y2

with s > 0.
Let ¢ € C.(R>o x R) be a nonnegative function.
We defince C' as the vector space generated by the functions of the form

a+eQ (41, s)

where a € R, s > 0 and () are polynomials. Moreover we define X as the
one-point compactification of Ry x R.

Let ¥(y1,1) := el’o(y1,y2) and let 1) be its extension in C'(X), that
is 1) =1 on R>p x R and zﬂ(oo) = 0. Every function f € C has a unique
continuous extension f € C (X): let C be the set of such extensions.
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The set C is an algebra that separates the points and vanishes at no
point, then we can apply the Stone-Weiertstrass Theorem, which gives us

a sequence {ﬂ} C C which converges uniformly to . Let {f;} C C be

its corresponding sequence: then the sequence g;(y1,v2) = e"y‘in(yl,yg)
converges uniformly to ¢ and |g;(y)| < Ce v,

Since A € U™ (R") and |g;(y)| < Ce ¥ we can apply the Dominated
Convergence Theorem with respect to both measures L,,, and A and we obtain

/m plle], @, w))dLm(2) =lim | gi(|z], (2,w))dLn(z) =

ttoo Jpm

—tim [ el a)are) = [ pllz] ) rG),
Therefore p € B, and this concludes the proof. n

Now we focus on bg’(l). The second statement of the previous lemma

states that for every z € supp(\) we have b)’ () (2?) = |z|?. Then the sym-

1

R AL .
metric bilinear form b5 is positive semidefinite, therefore we can fix an

. . . A\ (1 .
orthonormal base e, ..., e, which diagonalizes b5 M and we can write

by V(e ©y) = o fw,e1) + ot o 2, 00)
with oy > a9 > ... > a,, > 0.
Lemma 4.2. Let A € U™ (R") be conical. Then

tr <b;’(1)) =tr (bé\jl) =m.

Proof. From the first statement of the previous lemma it follows the first
equality: tr (bg’(1)> =tr (bgl). Now we compute:

80 -SSR0 [ o -

= 21(1)1/ e 122\ () = 21(1)1/ eI |2 Pd Ly, ().
Integrating by parts we know that
/ e 2P d Ly (x) = S1(1),

then we conclude
tr (bé\l) =m.
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In order to prove Theorem 4.1 we need a last lemma.

Lemma 4.3. For every § > 0 there exists € > 0 such that for every u €
U™ (R™), if W is an m-dimensional linear plane such that

/ | e 1#F [dist(z, W)]* du(z) < &,

then for every v € W N By(0) there exists € supp(u) such that |z —v| < 4.

Proof. We argue by contradiction. We negate the theorem: there exists
6 > 0 such that for every e > 0 there exists a measure u € U™ (R"), an
m-~dimensional linear plane W and z € W N B;(0) such that

/n e 1P [dist(z, W)]* du(z) < e,

and Bs(x) Nsupp(p) = 0.

Let e = 1/k for every k € Z~( and let ug, Wy, x be the corresponding
measure, plane and point that satisfy those two conditions. We can fix an
m-dimensional linear plane W and rotate all the measures p; in order to
have W, = W for every k.

Then the following three conditions hold:

lim [ e *7 [dist(z, W)]* dug(2) = 0;
kTOO Rn

xr € WN B(0) for every k € Zy;
tr (Bs(zg)) =0 for every k € Z~y.

Since W N B;(0) is compact, there exists a subsequence {xx,}; which
converges to x € W N By(0). Moreover, since u € U™ (R") for every k, the
sequence {yy} is uniformly locally bounded, then we can assume that up to
a subsequence ju,; — p. Then we have that € U™ (R"), supp(p) C W and
x), ¢ supp(u), but it is impossible, since the first two conditions imply that
w= H™L YV, which is in contradiction whit the third one. [

Now we prove Theorem 4.1, which concludes the proof of Theorem 2.5.

Proof. Step 1. Trivial case and idea of the proof.

For m = 0 we have that U%(R") = {4y}, where & is the Dirac mass
concentrated at the origin, then in this case the proposition is true.

For m > 1 we consider the form bél) and we fix a base eq,...,e, that
diagonalizes it as before. We claim that a,, > 1, then for Lemma 4.2 we
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have ay = ... = a,, = 1 and a1 1 = ... = a,, = 0. Let V' be the vector space

generated by ey, ..., then by (22) = | Py (2)[%, and for Lemma 4.1:

supp(A) C {a: [af* = [Py (2)[*} =V,

then we would conclude A = H™ LV, which is the thesis.
Then to conclude the proof it is enough to prove that a,, > 1.
Step 2. Case m =1, 2.
Since A(B1(0)) = wy, > 0 and

A ({O}) = 1:{51)‘(37“(0)) = lg(r)lwmr =0,

we have that supp(A) \ {0} # 0. Let « € supp(A) \ {0} and z := z/|x|. Since
A is conical then z € supp()\), therefore we can apply Lemma 4.1 to reach

bY(22) = |22 = 1. Then we have

ap > sup bél)(ZQ) > 1.

|2|=1 -

We proved the case m = 1.
Let m = 2 and w € R™ such that |w| = |z| = 1. We consider the function
¢ R>g x R given by
(Y1, Y2) 1= X{Jya1<1}-

From Lemma 4.1 follows that

My € B 2 < 1)) = [ xgaiandi:) =

—/ X|(ww)|<1dL2(x) = o0
R2

Then there exists a sequence {z}} C supp(X) such that for every j
(2}, 2)| < 1

and
lim [2}] = oo.
Jtoo
Let y; := 27/|zj|. Up to a subsequence we have that {y;} converges to a
y € R" with |y| = 1, moreover
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Since zj € supp(\), from the conical property we know that y; € supp(A),
then we can apply the second statement of Lemma 4.1 and we have

1
b (y2) = [y;? = 1,

and passing to the limit in j we have b3 (y2) = 1.

Then we have found a vector y that has norm 1, is orthogonal to z and
is such that b5”(y?) = bS”(22) = 1. This implies that ap > 1, which is the
desired conclusion.

Step 3. Case m > 3.

Let W be an m-dimensional linear plane. We fix an orthonormal base
€1, ..rr Enm of W and we compute:

tr (W)LY =t (b L) = 7 b (e) =
=1

n

=27(1)"! / ) e|z|27§<z,éi)2d)\(z) = o ~/? / e 1# [dist(z, W) dA(2).

Let V' be the m-dimensional linear plane generated by ey, ..., e,,. Since
V1 is the n — m-dimensional linear plane spanned by the eigenvectors corre-
sponding to the smallest eigenvalues of bgl), we have that

tr (bgl) L VL) = min tr(bgl) L W),

WeG(m,n)

Then we conclude

/ e 1 [dist(z, V)]2dA(z) = min / el dist (2, W)2dA(2).
n WEG(m,n) n

Now we take 0 > 0, that we will fix later, and we apply Lemma 4.3 to
p=A W =V and v = e,,: then there exists ¢ := £(J) such that if

E> / e #P[dist(z, V)]?dA(z) = min / e PP [dist (2, W))2dA(2),

weG(mn) Jr

then there exists € supp(A) such that |z —e,,| < J. Since tr (bg)) =m we
have that «,, < 1 and for every i < m — 1 we have

a; + (m—1)a,, <tr <b(21)) =m=0a0;—1<(m—1)(1—ay).
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Since = € supp(A) then

n

Y ai(me)® =050 = 2P =Y (3,0,
=1

=1

therefore we can compute

< (1- ) (<m—1>zrx—em|2—<1— rx—em|>2> <
)

<(1—am) ((m=1)%6% = (1-0)*) = (1 — an) ((m* —2m) 6 +26 — 1) =
:(1—am)(m2—2m) 5—%) (5+ﬁ).

Then we can choose 0 € (0,1/(2m)) and we obtain that there exists € > 0
such that if

i P [dist (2, W)2dA(2) < &
wllin / e [dist(z, W)PdAG:) < &

then «,, > 1, therefore «,,, = 1, that means that the measure \ is flat.
We prove now that there exists a constant ¢ > 0 such that

/ P dist (2, W) PAACE) < ¢ / dist(z, W)PdA(z).  (4.6)

B1(0)

This concludes the proof, because if we choose € = £/¢, we have that

/ [dist(z, W)]?dA\(z) < & =
B1(0)

= e P dist (2, W))2dA(2) < 6/ [dist(z, W)]?d\(2) < &,
Rr B1(0)

and for what we just proved, this means that A is flat.
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The inequality (4.6) follows from the conical property of A: let
J(r) ::/ [dist(z, W)]dA(z).
B (0)
We compute J(r):

J(r) = /B (O)[dist(z,W)]sz(z): / r2[dist (= /r, W)|2dA(z) =

B, (0)

- Tm+2/B © [dist(y, W)]?dA(y) = r™+2J(1).

2

Now we search the constant ¢, knowing that e™ is decreasing:

[ e e wrae < 3 € PAA) =

J=0

=D e T UIGH) = IG) =3 e (G =) ).

=0 =0
Using the ratio test we note that the last series converges. Let ¢ be its limit,
then we found
e 1 [dist(z, W)2dA(z) < @J(1),
Rn
and this concludes the proof. O
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Chapter 5

Relation between flatness at
infinity and flatness

In this chapter we study the proof of Theorem 2.6, that is the relation between
flatness at infinity and flatness of a measure. More precisely we prove the
following theorem, which concludes the proof of Preiss’ theorem.

Theorem 5.1. Let o € U™ (R™) and V' be an m-dimensional linear plane.
If H" LV is the tangent measure at infinity to p, then p = H™ L V.

As in Chapter 1, we indicate with Py the orthogonal projection on the
m-dimensional linear plane V and with @)y the orthogonal projection on V.
In order to prove Theorem 5.1, we prove that under those hypotheses

bllh(l)(x) — |QV($)|2 for every x € supp(u),

and that
=0,

then the support of y is contained in the plane V; this, together with u €
U™ (R™) implies that p = H™L V.

In all this chapter we will omit p in bg’(j ) and bz,s, and we will specify
when they are about another measure.

Moreover for all this chapter we take the measure p and the plane V' as
in Theorem 5.1.

If 44 is uniform and flat at infinity, we can compute the moments bg,? as
follows.

Lemma 5.1. For every x € R" it holds

bé’,? (x%) _ k!bgrl_v (ac%) _ bimLV’(k) (xzk) _ |Pv(x)]2k.
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Proof. In the proof of Theorem 2.4 we saw that

bg,?(ul’ ooy Ugk) i boks (U1, ..., Ugk)
k' 5\1,0 Sk :

Moreover, with a change of variable r := s7'/2 and the fact that u is flat at
infinity, we can compute this limit:
bak,s (U1, ..., Usg)

lim =
) sk

—im 2 (5 e g z) —
= Sliljgl Sk(2k)| (S) <Z,u1>...<Z,UZk>e M(z) —
2 1 1/2 1/2 1222 m/2
= o) IR gm/ 2 ) =
(2k)! (1) ;{5‘ - <8 z,u1> <5 27U2k>6 s u(z)
22k . i
= G 07t [ [0 ) =
: rtoo Jrn
22k ) .
= (2k)|]<1)_ / <w,U1>...<w,u2k> 6—\711\ d[Hml_V} (w) _
= bgfﬁl_v(uh "'7U’2k)-

Then we conclude

D) (27F) = RISV (27 . (5.1)

This concludes the proof of the first and the second equation, because if we
took p = H™L V it would satisfy the hypotheses and we just proved that
for every p which satisfy the hypotheses (5.1) holds. In order to prove the
last equation we must compute the second term of (5.1):

bg’,j,) (ka:) _ k!bgﬁ—v (ka) _

2k
- ?21«];5](1)_1 / (z,2) A [H™ L V] (2) =
2k Py (2) | Pr(@) \™ 2 im
SR [ () oA

We fix an orthonormal basis of R™ such that e; := Py (z)/|Pv(z)| and
{e1,...,em} is a basis of V:

ptk) (:sz) _ k!bgﬂl_v (ka) _

2k



o1

_2 k!(liv)(!x)l (1) /R (z,e)™ e P A [H™LV] (2) =

22kk!|Pv(ZE)‘2k _ .2 2 .2
. W / e e H T T d Ly (2) =

22K K| Py ()|
- (‘21:)(1—@’ (1) / L, (w) / e dL (t) =
. RmMm—

::%_EiEKQQL_WW*4V2 Qk——l 3
m/2(2k)! 2) 2

Then we just proved the last equation. O
Now we study the moments of the form bgz)_l.

Lemma 5.2. For every k € Z~ it holds
b LV =0.

Proof. The form bg,?_l is symmetric, then to prove that it is 0 on V' it suffices
to show that bl | (y*~1) =0 for every y € V.

Let y € V \ {0}. Since r™po, = H™LV, there exists a sequence
{z;} C supp(p) such that |z,;| — oo and

Ty
lz5l |yl
Then "
b | (a21)
k _ 1. _
0, 0 - g )

jtoe ;%

Fixing ¢ = k in (3.7) we have that

by (a250) = o = b (o2%) = 70 () =
=1
2k—2 2k—2
= la* @) = S0 (55) 2 = 3 ().
i=1 i=1

where the last sum is 0 for £ = 1. Then we have that
2%k—2

_ 1 1 i
b (™) 2 Iyl lim s D (55))
J i=1
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Since bgj ) are symmetric i-linear forms, there exist two constants C, Cs such
that 4
b (a5) < Culayl' < Co (L4 |y [2)

and using this we find

1 |2k—2
bg;?_1 <y2k—l) > _(,lim + |z

gt |a;|2R1

=0.

Since y € V, then —y € V, and in the same way we find
k - k _
_bgk)—l (y% 1) = bgk)—l ((—y)% 1) > 0,
then b5 | (y*~1) = 0 for every y € V. O

Let k = 1. We proved that bgl)(y) = 0 for every y € V. This means that
there exists w € V* such that

for every v € R™.
Let b = w/2, then we have that b € V+ and

b (v) =2 (b, v).

The next lemma is an immediate consequence of the Lemma 5.3 and it
gives us the first property of bgl) that we need in order to prove the theorem.

Lemma 5.3. For every x € supp(u) the following two relations hold:
1
o 0(2) = 1Qv(a)P;

o [Qvi@)l < |fpt”

Proof. Fixing ¢ = 1 in (3.7) and using Lemma 5.1, we have that, for every
x € supp(p),

2(b,z) + |Py(x)] = |z* = 2(b,z) = |Qv(z)[*.
The second statment follows from the first and the fact that b € V+:

2[b[1Qv ()] > 2 (b, Qv (z)) = 2(b,x) = |Qv (z)|*.
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This lemma means that the distance of « € supp(u) from V' is uniformly
bounded by a constant, Hb§1)||. Then, if we prove that bgl) = 0 then we have
that supp(p) C V, which concludes the proof.

We prove now that the distance of v € V' from supp(u) is bounded by a
constant rg.

Lemma 5.4. There exists o > 0 such that dist(v,supp(u)) < ro for every
velV.

Proof. We argue by contradiction: assume that there exists {zy}r C V such
that
1) = dist (xg, supp(u)) — oo,
and for every k let y, € supp(p) such that |y, — xx| = 7.
Let z;, € V' be such that |y, — 2| = dist(yg, V'): for Lemma 5.3,

Consider the sequence of measures {x*};, where p* := r,™u,, .. Those
measures are uniformly locally bounded, since

1F (B (x)) = wr™,
then, up to a subsequence, p* = p>. We note that x € supp(y*) if and only

if 2, + rrx € supp(u).
We verify that 0 € supp(u*):

. L .
dist (0, supp(u*)) = — dist (2, supp(p)) <

-l _|
Therefore 0 € supp(u*>) and u™ (B.(z)) = wy,r™, then u> € U™ (R™).
Moreover, if we fix z € supp(u*), we have that

— 0.

)

1 1
Qv (z)| = dist(z, V) = — dist(z + rpz, V) < — |tV
Tk Tk

since zx, + rx € supp(u). Then:

1
supp(p*) C {w eR"||Qv(z)| < - ‘%”‘} :
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Therefore we conclude that supp(p>*) C V and p>® € U™ (R"), then
pue=Hm"LV.
Let wy := x — 2. We have that w, € V and

|wg|

kToo Tk kToo Tk

L,

therefore, up to a subsequence, the sequence wy, /1y, converges to a limit u € V.
Since 1y, = dist (zg, supp(p)), we have that u (B,, (x)) = 0, then:

0= p* (Bu(wi/re)) — 1> (Bu(u))
and this contradicts > = H™ L V. [

The next step is to study the trace of bgz) proving that

4 2
@) > ‘(1)‘
tr <b2 > “m+2 bl (5:2)

that is the longest part of the proof of Theorem 5.1.
After that, it suffices to prove that tr(bgz)) = 0 to conclude.
In order to prove (5.2) we split the trace in two parts:

tr (b;2>) — tr (ng> L VL> +tr (bg2> L V) . (5.3)

In the following lemma we compute the first addend of (5.3).

Lemma 5.5. The following formula holds:

2
tr (b§2> L vL) =2 [p{V (5.4)

Proof. From the Taylor expansion of b, ; we have that
bys = b5 + s2by” + o(s?),

then
tr (bas L V) = str (80 LV

52

tr (b? L Vi> — 2lim
s]0
From Lemma 5.1 we have that tr <b§1)> = 0, therefore

tr (by L VL
tr <b§2)|_VL> = 2lim M

sl0 52
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We study now tr (6275 L VL). Let eq, ..., e,_,, be an orthonormal basis of
V+. Then:

r (b s LVT) Z 25?1 (s / el (z,e)* du(z) =

= 251(s)” / ¢S Z z ) du(z

— 2521(s) ! / e Qu () ().

From Lemma 5.3 we have that for every z € supp(u), |Qv(2)|* = bgl)(z), and
from the Taylor expansion of b; ; we know that

bis(z) = sV (2) + o(s) = 2(b, 2) + o(s).
Using these equations we find:

1
(#mL_v¢>——2hm-—gEiEli).:

510 52

— 4lim I(s)"! / e IQu () Pdn(z) =

sl0

sJ0

= 4limI(s)_1/ e_S‘ZPbgl)(z)du(z) =

. - - bis(0)
= 4lim2I(s)™" [ e (b, 2) du(z) = 4lim —> =
im 21(s) /n (b, 2} dp(z) = 4lim ==

2
:&W:zﬁﬂ.
O

Now we study the second addend, in order to reach the wanted estimate.
We introduce some notation. Let vy := (2m)~m/2e~1#* /2™ |_ V| and let
w: ®*V — R" and b € Hom(®*V,R™) be two linear maps defined as follow:

o (w(uy ®ug),w) = 3b§2)(u1 © uy © w) — 4 (uy, ug) (b,w);

~

o bug, us) == b (ug, us) + (wlug ® us),b) .
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In this work we will always use this notation with u; = uy =: u, that is

(w(u?),w) = 365 (u? © w) — 4uf* (b, w),

and R
b(u?) = b (u?) + (w(u?),b).
We note that for every u,w € V it holds

<w(u2),w> =0,

since, from Lemma 5.2, ng) LV =0 and (b,w) = 0 because b € V-, then
w(u?) € V* for every u € V.
With this notation we can find an integral formula for tr(b5 L V).

Lemma 5.6. Using the notation just introduced, the following formula holds:
tr (bg) LV) = / b(v?)dry(v).

Proof. Since bg) LV is symmetric, we can fix a system of orthonormal coor-
dinates on V', vy, ..., v,,, where the corresponding orthonormal vector ey, ...e,,
are eigenvectors of ng), and let (3, ..., B,, be their corresponding eigenvalues.

Then:
/n bg) (02) dvy(v) = /n (ﬁllﬁ + oo+ Bvp, ) dy(v) =

=Y aem e [ elraEnLY) -

i=1 "
zm: Bi / _x|2/2dLm_1(x)/t2e_t2/2dt _
— 27-‘-)m/2 R

m /2
Z 275;%/2 (2m) " 92T g =Tt A=t <b(22)|_v>'

Therefore we have to prove that

. (w(v?),b) dy(v) = 0.

Let z € R™. Then, using the same argument that we just used:

| i = [ (P -



a7

= Z /V [Py (2)]; vidy(v) = Z [Py (2)]? = |Pv(2)]*. (5.5)

Now we want to write (w(v?),w) as a limit of an integral, when v € V
and w € V*.
Let v,w € R"; we write the Taylor expansion of b3 ; and by :

o, 5o N 2
6375 - Sb3 + 563 _I_ O(S ) - Ebg + O(S ),

bos = sbgl) + o(s).
Then: 5
(2) (.2 s 2 _
by (v ® w) = 18%1 ?b&S (v ® w) =

. 8s ) 5|22 .
= 111513[—<S)/Rn (z,0) (z,w) e *FFdp(2);

S

1 . 2s sls
17 (0%) =t b () = lim s [ e ()

Therefore we have that for every v, w € R™:

8
3b§f) (v* ©w) —4(b,w) bél) (v*) = lig)l Tz)/ e~ 12 (2, 0)? (2 — b, w) du(2).
(5.6)
Letting v € V and w € V*, we have that, for Lemma 5.1,
by (v) = |Po(o)[* = Jof?,

then .

b e / e (2, 0)" (2 — bow) du(2) =

=305 (v ©w) — 4 (bw) by (v?) =
=305 (v @ w) — 4[v]? (b,w) = (w(v?),w) . (5.7)

We need to compute the integral of this limit, then we verify that we can
apply the Dominated Convergence Theorem in order to switch the limit with
the integral:

’% /n eI (z, U>2 (z —b,w)du(z)| <

_8 m —s|z|?
< wm/251+ /2/ e P2 o)? (|(z, w)| + |b||w]) du(z) <
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_ Sl ([ + 1o
= grm/z ) sitm/? / e |2 Pdp(z) =

_ 8[olPlw[ B m

m/2 2

* = 120b[jw][v]?,

which is integrable with respect to the measure ~.
Then, we compute:

w(v? V) = 1m§ el (2 )2 (2 — z V) =
[ et pare) = [t [ e et - b i)

8s _s|2|2 2 .
—tim 5 [t ) [ G drodue) -
: 8s —slz
= lim 7 / P (e~ b ) dp(e). (5.8)

Our goal is to prove that the last limit is equal to 0. We study the limit
with Qv (2) instead of Py/(2) and a general w € V= instead of b in the second
factor of the last product; after that we can sum the two limits and study
the limit with z instead of Py (z2):

[ e IQu@P = - b dntz)| <

< 4[b[*[w] - e (2] 4 B]) du(z) = 4 |w| [~ Pe 4 5722 b

then the limit is

lim
s0

8_5 6—8|z|2 . 2 Y —bw B
I(s) / Qv (2)]” (z — b,w) du(z)| <

< lim 32|b| |’LU| 1+m/2[ (m+1)/26—|—8_m/27Tm/2|b|] -0
S\LO 7-(-7)’7,/2

hence
nmg—s) e 1Qy () (2 — b,w) du(z) = 0. (5.9)

Summing (5.8) and (5.9) with w = b, we find that our goal is equivalent
to prove that

im—— [ e P2 — _
1811%1 T0s) /Rne |z|" (2 = b,b) du(z) = 0.
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We prove that, for every w € V4,

lim m T e = by du(z) =0,

That limit exists: indeed, if we fix an orthonormal basis of R”, we can
apply (5.6) to reach

: S —s|z
13?01@/ e 2 (2 = bw) dp(z) =
= » lim —/ e~ (2, e)? (2 — b, w) du(z) =
i=1

=3 5 (@ ow) - 1 () Gy

i=1
We note that

S

— e 1212 (2 — b, w z) =
o e = ) de)

—y) fR" el |Z|2 (z = b,w) du(2)
=7 g—1-m/2

i e e = b dp(2)

m ds

then, in order to compute the limit for s | 0, we can apply the De L’Hopital
rule:

S 2
lim —— —slz| 2 _ —
;E)l ](5) / e |Z’ <Z b, w) du(z)

m Jan e~ (2 — b, w) du(z)

- 27Tm/2 lslig S—m/2 -
=3 lm i) / e~ bw) d(z) =

= lim [I(s)—l / e (o) dp(z) — 1() / e ) du(z)} _

_ My lebl,s(w) — (b,w>} :% Bb§1>(w) - <b,w>} —

[{b, w) = (b, w)] = 0.

o] 3
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Subtracting (5.9) from this we obtain that, for every w € V*,

fiNe) / P () (2 = bow) dpz) = 0. (5.10)
Then, taking w = b in (5.10), the lemma is proved. ]

We note that the whole argument with a generic w € V- was not essential
for this proof, here we could do all the computations with b instead of w, but
(5.10) will be useful in the next proofs, and that is the reason we proved it
in a more general case.

The next lemma is an useful equation which follows from (3.7).

Lemma 5.7. For every z € supp(u) it holds
b7 (z) + 057 (=) + 3057 ((Pv(2)) © Qu(2)) =

= Qv ()] (|Qv ()] +2[Pv(2)[) . (5.11)
Proof. From (3.7) with ¢ = 2, we have that, for every z € supp(u),

P (2) + 0P (%) + b5 (%) + b (1) = |2 (5.12)
We know, from Lemma 5.1, that b{” (24) = | Py (2)|*. Moreover,
2 2
21" = (121*)" = (IPv(2)P + Qv (2)?)” =
= [Pv(2)[* + 2| Py (2)]?|Qv (2)* + Qv (2)[*-

Substituting these informations in (5.12), we obtain
D2 (2) + 057 (22) + 05 (%) = [Qv(2)? (1Qv(2) + 21 Pv(2)]?) . (5.13)
We study now the term béQ) (2%): our goal is to prove that
b7 (=) = 305 ((Pv(2))* @ Qu(=). (5.14)
Since b:(f) is linear we can write
b7 (%) = b5 ((Pv(2))*) + 3657 ((Pv(2))” © Qu(2)) +

+305” (Pr(2) © (Qu(2))?) + 857 ((Qu(2)))
We prove that for every v € V and for every w € V+,

b (vouw?) = b (v¥) = b (v?) =0,



61

and this concludes the proof of this lemma.
From Lemma 5.2 follows that b (v3) = 0 for every v € V.
From the Taylor expansion of b3 5, we know that

2
bss (VO W) = sbél) (vOw?) + %bg) (v ©w?) + ofs?),
but we proved that bél) = 0, then:
.2
by (voOw?) = 181&)1 ;bg’s (voOw?) =

2
Since w € V4, (z,w)’ = (Qu(), w)’ < [wP|Qu () < w]? o], then

b:(f) (vOw?)| < lim

slo 31(s)

/Rn e 1z, 0)| (2, w) 2 dpal(z) <

2

8s|v||w]? [b{"
< lim

7822
im 30) / e 2| du(z) =
2
b
= lim

‘2

8svl|w?

e~ 2 |d Ly () =

14m/2

ellol P
3ﬂ_m/2 - € |y| m(y) ;igl S(m+1)/2 = 0.

We study now bgf) (w®). The computation is similar to the one we just
did for b:(f) (v ®w?):

2 . 88 |22
0 () =timrs [ ) ),
then 5
: S —sl|z|?
02 ()| < tim s [ e o)) <
3 3
< li Sslul” | i ~slal?) g 8’w’3‘b§1) lim ——I(s) = 0
S —ary Jo € ) = ———lm g I(s) =0
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Then, we can focus on b(v?), with v € V.

Lemma 5.8. For every v € V it holds the following inequality:
TN 2112 17,2
(56™) " < Jwe)[* o2

Proof. Let v € V and {t;}; C R an increasing divergent sequence: for
Lemma 5.4, for every i there exist z; such that t;,v+z; € supp(p) and |z;| < ro.
Let v; := Py(z;) and w; := Qv (z;).

Since w; € B,,(0)NV+, that is compact, we have that up to a subsequence
w; = w € V. We apply Lemma 5.7 to t;v + v; + w;:

bg2) (tiv 4+ v; +w;) + bé2) ((tw +v; + wi)2) + 3?)&2) ((tiv + Ui)Q ® wi) —
= 2t;0 + v |wi]* + [w;|*. (5.15)
We divide the equation (5.15) by ¢? and we take the limit for i — oo:
bgz) (1)2) + Sbgf) (v2 o w) _ 2|v|2|w|2. (5.16)

We chose v; and w; such that t;v + v; + w; € supp(u), then from Lemma 5.3
we have
bgl)(tiv + v +wy) = |wil?,

but t;,v+v; € V, then, from Lemma 5.2, bgl)(tiv+w) = 0; hence we conclude
that
0 (wi) = |wif?,
and letting i — oo,
b (w) = [wl?.
Then we conclude that |w|* = 2 (b, w).
Substituting this in (5.16) we find

0= béz) (v*) + 31)&2) (v* ©w) — 4] (b,w) = bg) (v?) 4+ (w (v*) ,w) .
Summing and subtracting (w(v?),b) from this last term we obtain
3(1)2) + {w(v®),w —b) = 0.
Then we conclude:
o2 o (2 )
()" < o (A o — o =

= Jw () * (Jwl? = 2 (w, b) + [b]%) = |w (%) " b
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Now we are ready to study the second addend of (5.3).

Lemma 5.9. The following inequality holds:

2m
" <b(2)I_V> > 2|
F\% ~— m+21t

2

(5.17)

Proof. To prove this lemma we need to do some computations: the Compu—
tation in the first step will be used in the second step to link fv 2) dry and

Iy ( b (v?) ) d~ and reach the first inequality that will lead to the end, that

/V <l; (v2)>2d7(v) < _8|b|2/\/6 (v*) dy(v);

in the third step we use some of the estimates done in the second step to
reach the second and last inequality that will conclude the proof, that is

/V (5(*)) dtw) > (1+%) { /V b (0?) dfy(v)r.

Step 1. We know that, for every z € supp(u),

Qv (2)]* = b1 (2) = b (Qu(2)) = 2 (b, Qv (2)),

then we substitute it in (5.11), we sum and subtract (w((Py(2))?),b), and we
obtain that for every z € supp(p):

0= b (2) + b5 (2*) + 305 ((Pv(2)* © Qu(2)) +
—\@ch)r* = 2|Py(2)|Qu () =
= b7 (2) + b5 ((Qv(2))) + 269 (Py(2) © Qu(2)) + b5 (Pr(2))?) +
+ (w((Pv( ))2)»b>+3b (Pv(2)?©Qv(z)) +
4P (b, Q) — (((Br(2)).0) — (0 (Q(2)) =
= b ((Pv(2))°) + (w (Pv(2))") , Qu(2) — b) + b (2)+

12 (P (2) © Qu(2)) + 2 ((Qu(2)) — (0" (@v (=)
Therefore:

b ((Pe(2))?) + (@ ((Pr(2))?), Qu(z) = )| < o (2)] +




64 CHAPTER 5. FLATNESS AT INFINITY AND FLATNESS

20 (Pr(2) © Qu(=))| + [0 ((@v(=)))] + ‘(b&” @) |

We note that, from Lemma 5.3, the last two terms are bounded, while
the first is linear. Moreover:

B (Py(2) © Qu(2))| < sup

W wow)| <
vEVNB),|(0),wEVLNByy (0)

< 2|zJb] sup ]b@” (v@w)‘ — K|2|.
veVNB1(0),weV-+NB1(0)

Then the second term too has at most a linear growth, therefore there exists
a constant K > 0 such that

b ((PA2)) + (w0 (Pr(2))) . Qulz) = )| < K (121 + 1)

for every z € supp(u).
Using this estimate we compute the following limit:

lin:isoup ‘%/n sl [13 (Py(2)?) +{w (Pv(2)?),Qv(z) — b>} du(z

S 2
< 1 —_ 5|Z‘ 2 —
Klslﬁ)l ) /n e (|z| + 1) du(z) = 0,

where the last limit is 0 as we already saw in the computation of (5.9).
Then we reached that

i / e (Pr(=))) dn(z) =

——tim s [ (R v - ). (6

Step 2. First of all we compute [, (¢ Y dy(v) with ¢ € V: we fix an
orthonormal system of coordinates 1, .. xm on V such that ¢ = (|¢],0,...,0).

Then
/ <C,'U>4 d’y(U) = (27T)_m/2/ |C|4x4116_|a3|2/2d'r _
v R

= [¢[tamm / dyle™ " dy = 4[¢|'7m/ / e ay / yte 1 Fdy, =
m Rmfl R

= A¢[m 2 (w0 (2 /) 3[¢l" (5.19)
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Using an analogue argument we compute the following two integrals. Let
y,z € V be orthogonal and let zq,...,x,, be an orthonormal system of co-
ordinates such that y = (|y],0,...,0) and z = (0, |2[,0,...,0). Then we can
compute:

/V (4, 0)? (2,02 dy () =

— |2 2 2
= dly[*|2*m "/ e Py | afedr, [ xie "2dxy =
Rm—2 R R

1 2
= 4ly|?|z a2 (m=2)/2 <§7r1/2) = |y|?|z|%; (5.20)
/ <yuv> <Z,U>3 drY(”) =
VvV

:4|y|2|2|27T_m/2/ e‘ﬂlex'/x%e_m%dxl/x%e‘zgdxg =0. (5.21)
Rm—2 R R

For general y,z € V', we can write y = ¢ 4+ az with £ and z orthogonal,
therefore:

/V (4, 0)? (2,02 dy(w) =
(4,0) (2,0)" d(v) + / (2, 0) dr(v) =

|4

— [0 ot v |
v v

= [6P12 + 30?2 = (6P + @[2) 21" + 2 (al=?)” = ly|=* + 2 (y, 2)°
(5.22)

Now let y € V and w € V. Using (5.7), (5.10) and (5.22) we compute

/V (9, 0)* (w0 (7)) dy(v) =

= [ i [ e e b e

using the same estimate done for (5.8), we can apply the Dominate Conver-
gence Theorem and the Fubini’s Theorem:

/V (y, v>2 <w (02) ,w> dvy(v) =

8s

—ti s [ b dnGe) | [ o) 0 )] dute) -

= lim % / PR (2 b ) du(e)+
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—l—lgﬂ]lm/ne_“'Q(z—b,w)( ) du(z ) =2(w (y*) ,w).

. 2
Now we study [, <b (vz)) dy(v). We know that w (v?) € V* for every

v € V, then we have that (z — b,w(v?)) = (Qy(2) — b,w(v?)), and we can
consider (5.7) with w = w (v?):

[ (609) ) <o [ o 03 i) =

:|b|2151?01 %/ e~ (2, 0)? (z = b,w (v*)) dp(z)dv(v) =
|b|2151£[_ ) el / Z,0) <z—bw( 2)) dy(v)dp(=
=0 s [ e [P0 (@) = b () o)) =

=Pt 7 [ o (Pr) . Quie) B duce)
= 16 i s [ (P (9)7) ) =
= —167r_m/2|b|2/ e FPh ((Py(2))?) dH™ LV =

— _8|b]2/vla(v2) dy(v). (5.23)

This is the first estimate we need.

Step 3. We can fix coordinates vy, ..., v, on V such that the corresponding
unit vectors ey, ..., €, are orthonormal and they are the eigenvectors of b. Let
b1, ..., Bm be the corresponding eigenvalues of b. Using (5.5), we compute

/V /ZB v, ) dy(v Zﬁz—tro (5.24)

/V (5 (UQ))2 dy(v) = /V (é B; (v, ei>2> 2 dy(v) =

225?/ v,ei)! +ij/ v,e)? (v, ;) dy(v) =

i#j

and
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m m 2 m
=3) B+ A= (Z@-) +2) 6
i=1 1=1 i=1

i#]

Using the inequality between arithmetic mean and quadratic mean, we con-

clude:
(gﬂi> +2§532 (1+%) (éﬁ) =
= (1+%) Uvz}(zﬂ) dv(v)r,
then

/V(z} (vQ))de(v) > <1+%) Vviy(v?) dv(v)r. (5.25)

Combinig (5.23) with (5.25) we obtain

<1+%) sz}(v?) d’y(v)r < —8|b|2/vz3(v2) dy(v);

if [, b (v?) dy(v) = 0 the lemma is proved, and it can not be positive, because

. 2 .
(1+2) [fvb(UQ)dV(U)} > 0, then we take —8b|? [, b(v?) dy(v) < 0 and
we divide:

. 2\ ! 9 2
/Vb (0%) dy(v) > — (1 + E) 8[b|? = _m—T2 bV (5.26)
From (5.26) and Lemma 5.6 we obtain the thesis. O

Summing (5.4) and (5.17) we reach (5.2), that is the wanted estimate.
Now we compute tr (bg)).

Lemma 5.10. The trace of the linear form bég) is 0.

Proof. From the Taylor expansion of b, 5, we have that

2
S
bg}s = Sbél) + 51)9) + 0(32)7

then

tr (s 1hy) — tr (bé”)
tr (bé2)> = 2lim .

50 S
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Lemma 5.1 with k£ = 1 gives us bg)(u, v) = (Py(u), Py(v)), therefore
tr <bgl)> = m. (5.27)

Now we study tr (s‘leS). Let eq, ..., e, be an orthonormal basis of R":

tr (s_lbu) =gt Z ba (e?) —
i—1

-1 (28)2 / —s|z|? - 2
=s e z,e) du(z) =
21(s) Jpn ; (2 e )
281+m/2 ) ) 251+m/2 )
_ —slzl? g — 2p-sl2l g, =
L [ e ) = 2 [ jape oL o

_ 2 / |Sl/2x‘2 6_|81/2I‘28m/2dLm(x> —
R'rn

Tm/2

2 e
- m/z/R ly[Pe™ AL (y) = m.

Summing this with (5.27) we obtain

tr (b;2)> =0.

O

Then, from Lemma 5.10 and (5.2), we conclude that bgl) = 0, which
concludes the proof of Theorem 5.1.
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