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Introduction

General Framework

The study of differentiability properties of Lipschitz functions has a long story.
It started with H. Lebesgue who proved the almost everywhere differentiability of
Lipschitz functions on the real line. In 1919 H. Rademacher understood that this
almost everywhere differentiability was not just a property of the line itself, indeed
he proved his famous and celbrated:

Theorem 0.1 (Rademacher, 1919). A Lipschitz function f : Rn → Rm is differen-
tiable outside a Lebesgue null set.

Such a beautiful result left a lot of questions open, which can be organized in
two big families:

(i) Does a similar statement hold for infinite dimensional Banach spaces?

(ii) Does a viceversa hold for the Rademacher theorem, i.e., is it possible to give
a characterization of non-differentiability sets of Lipschitz functions?

A lot of problems concerning both these macro areas of research are still open
however a lot of work has been done, as well. A remarkable breaktrough in both
problems occured in 1990 when D. Preiss published his paper [11], in which he proved
that on Banach spaces having an equivalent norm that is differentiable away from the
origin, Lipschitz functions are Fréchet differentiable on a dense subset. Moreover, in
the last pages of this paper Preiss esplicitely contructed aGδ dense in set Rn on which
every real valued Lipschitz function has a differentiability point. This amazing and
counterintuitive result made it clear that a converse for the Rademacher’s Theorem
was not a straightforward problem at all. From this starting point a lot of theory
has been developed in the last few years in order to solve (ii), indeed in 2005 G.
Alberti, M. Csörnyei and D. Preiss announced with their papers [2] and [3] a complete
solution for (ii) in the case of maps from Rn to Rm with m > n. In 2015 G. Alberti
and A. Marchese proved in [1] that the Rademacher Theorem can be extended to
finite mass Borel measures and in the same year D. Preiss and G. Speight proved in
the paper [9] that for any m ≤ n there exists a set of universal differentiability for
maps from Rn to Rm, but in this case a full characterization for non-differentiability
sets seems to be not around the corner.
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Main Result, scheme of its proof and some comments

The problem we investigate in this thesis could be intuitively rephrased in the fol-
lowing way: “If we have a huge amount of Lipschtz functions being non-differentiable
on the same set, what can we say about that set?”

In 1995 D. Preiss and J. Tĭser studyed this problem for the space of Lipschitz
funtions Lip1(1, 1) := {f : [0, 1] → R : Lip(f) ≤ 1} endowed with the uniform
norm. They actually were able to give a precise meaning to the above question and
a complete answer, which is contained in the main result of the paper [10]:

Theorem 0.2. Let E ⊆ [0, 1] ⊆ R be an analytic set. The following are equivalent:

(i) The set S of those functions f ∈ Lip1(1, 1) which are differentiable at no point
of E is residual in Lip1(1, 1).

(ii) E is contained in an Fσ subset of [0, 1] of Lebesgue measure zero.

We note that in this result the “size” of sets involved is described in terms of
their topological properties.

The main result of this work is an extension to general dimension of domain and
codomain of the (i)⇒(ii) implication of Theorem 0.2:

Theorem 0.3. Let E ⊆ [0, 1]n be an analytic set. If the set S of those functions
f ∈ Lip1(n,m) which are differentiable at no point of E is residual in Lip1(n,m),
then the set E is contained in an Fσ subset of [0, 1]n of Lebesgue measure zero.

The approach we use in the proof of Theorem 0.3 is similar (from the point of
view of the ideas involved) to the one Preiss and Tĭser used in [10]. The goal is
to find a winning strategy for Player II in the Banach-Mazur game in Lip1(n,m),
which is introduced in Section 1.1; where Player I is dealt with the set:

A := {f ∈ Lip1(n,m) : f is non-differentiable on E}.

Therefore, thanks to Theorem 1.3, which characterizes residual sets with Banach-
Mazur game, we prove by contradiction in Theorem 2.14 that whenever the set E is
not contained in a Fσ of null Lebesgue measure, we can construct a winning strategy
for Player II, and hence the set Lip1(n,m) \A is residual.

To find such a strategy, in Section 1.2 we introduce the set of P(n,m) func-
tions, which are piecewse linear Lip1(n,m) functions having Jacobian with maximal
Hilbert Schimdt norm where the differential is defined. These functions are dense in
Lip1(n,m) (fact that is proved in Section 1.4) and satisfy to the following inequality
(see Theorem 1.11):

ˆ
[0,1]n
‖J(f − g)‖2HSdx ≤ C(f, n,m)‖f − g‖∞. (1)
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In the proof of this inequality is fundamental that the Hilbert-Schmidt norm of
the Jacobian in constant. Moreover, in order to obtain a dense class of functions sat-
isfying (1), we have to add the condition that the Hilbert-Schmidt norm is maximal.
Therefore, using (1) and the strong L2-estimate for the maximal operator defined
in Section 1.3) we prove the following:

Proposition 0.4. For all 0 < ε < 1
2n+2 and f ∈ P(n,m) there exists an open neigh-

bourhood V of f in Lip1(n,m) with diam(V ) < ε such that for any g ∈ P(n,m)∩ V
there are an open set G ⊆ (0, 1)n and a constant D(n,m) having the following prop-
ertGies:

(i) Ln([0, 1]n \G) < D(n,m)ε.

(ii) ‖J(f − g)(x)‖HS ≤ ε for any x ∈ G.

(iii) |g(y)− g(x)− (f(y)− f(x))| ≤ ε|x− y| for any x ∈ G and any y ∈ [0, 1]n.

This proposition links the topology of Lip1(n,m) to the measure of the set where
we have control on the differential with a certain precision. In this way, the second
player can choose a sequence of functions {fk}k∈N uniformly converging to some
f ∈ Lip1(n,m) and a sequence of open sets Gk such that

⋂
k∈NGk ∩E 6= ∅. Thanks

to Proposition 0.4, Gk are chosen in such a way f is differentiable at any x ∈⋂
k∈NGk ∩E and Jfk(x)→ Jf(x) as k →∞ (see Proposition 2.10). In this way we

get a contradiction and therefore Theorem 0.3 is proved.
To conclude we would like to remark that there is a deep difference between

Theorem 0.2 and Theorem 0.3. Indeed the former is an characterzation, the latter is
not. Therefore one could wonder if it is possible to get a converse for Theorem 0.3, in
full analogy with the one dimensional case. The answer is not always, since M. Doré
and O.Maleva proved in [5] that for any n > 1 there exists a compact Lebesgue-null
subset of Rn which contains a point of differentability for any real valued Lipschitz
function. Therefore to get a converse for Theorem 0.3 we should requre some extra
property of the set E.
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Chapter 1

Preliminaries

This preliminary chapter is divided in four sections. In each section we provide
a different tool that will be foundamental in the proof of Theorem 2.14.

In Section 1.1 we introduce and recall some basic facts about residuality and
its relations with the Banach-Mazur game. In Section 1.2 we study the space of
Lip1(n,m) functions and its natural topology induced by nets of pointwise conver-
gence, and we introduce the set P(n,m) of piecewise affine functions. In Section 1.3
we define a maximal operator over a suitable and controlled class of cylinders and we
prove that such an operator is bounded from Lp to Lp for 1 < p <∞. In Section 1.4
we prove that the set P(n,m) is dense in Lip1(n,m).

1.1 Residuality

Definition 1.1. Let (X, T ) be a topological space. Let A ⊆ X:

(i) if int(cl(A)) = ∅, A is said to be nowhere dense,

(ii) if A is the countable union of nowhere dense sets, A is said to be meagre,

(iii) if A is the complement of a meagre set, A is said to be residual.

We define the Banach − Mazur game, which will be used to prove Proposi-
tion 2.10.

Definition 1.2. Let (X, T ) be a topological space. The Banach-Mazur game, is a
game between two players, Player I and Player II.

Player I is dealt with an arbitrary subset A ⊆ X and Player II with the set
B := X \A.

The game 〈A,B〉 is played as follows: I chooses arbitrarely an open set U1 ⊆ X;
then II chooses an open set V1 ⊆ U1; then I chooses an open set U2 ⊆ V1 and so on.

If the set
(⋂

n∈N Vi
)
∩A 6= ∅ then I wins. Otherwise II wins.

The following proposition explains the connection between the Banach-Mazur
game and the topology of the space on which we are playing:

1



2 Preliminaries

Theorem 1.3. There exists a strategy by which Player II can be sure to win if and
only if B is residual in X, or equivalently if and only if A is meagre.

Proof. The proof of this result is given in [8] only in the case of the real line. However
that argoument works in the same way in a generic topological space.

1.2 Sets of Lip1(n,m) and P(n,m) functions

Definition 1.4. Let Lip1(n,m) be the following space of Lipschitz functions:

Lip1(n,m) = {f : [0, 1]n −→ Rm : f is Lipschitz with Lip(f) ≤ 1} ,

where:

Lip(f) := sup
x,y∈[0,1]n

x 6=y

|f(x)− f(y)|
|x− y|

.

We endow Lip1(n,m) with the topology T induced by the pointwise convergence,
which means that we are taking in consideration the topology induced by nets of
pointwise converging functions in Lip1(n,m), see [7] for a reference.

Remark 1.5. One could be puzzled by the above definition since the topology defined
by nets of pointwise convergence seems not to be the most natural one.

First of all there are many possible topologies and so one could wonder what is
the most meaningful in this framework. First of all we note that the Sobolev norm
and the Lipschitz-constant norm endow Lip1(n,m) with a nonseparable metric space
structure and in these spaces smooth functions are even not dense. Hence good
candidates for meaningful topologies are pointwise convergence topology, uniform
convergence topology, and local uniform convergence topology. However we first
remark that Lemma 1.6 and Proposition 1.7 will provide that the topology induced
by pointwise convergence on Lip1(n,m) is the one induced by ‖·‖∞, the supremum
norm, and hence for Lipschitz functions on [0, 1]n topologies mentioned above are
actually the same.

Lemma 1.6. If a, b, c ≥ 0 and c ≤ a+ b, then

c

1 + c
≤ a

1 + a
+

b

1 + b
.

Proof. Thanks to the fact that a, b, c are non negative:

c ≤ a+ b

⇒ c ≤ a+ b+ 2ab+ abc

⇒ c+ ac+ bc+ abc ≤ a+ ac+ ab+ abc+ b+ bc+ ba+ abc

⇒ (1 + a)(1 + b)c ≤ (1 + b)(1 + c)a+ (1 + c)(1 + a)b

Therefore dividing by (1 + a)(1 + b)(1 + c) we prove the thesis.
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Proposition 1.7. The topological space (Lip1(n,m), T ) is a completely metriz-
able space. Moreover the topology induced on Lip1(n,m) by the pointwise conver-
gence is equivalent to the one induced by the uniform norm ‖·‖∞, where ‖f‖∞ :=
sup {|f(x)| : x ∈ [0, 1]n}.

Proof. Let us prove that (Lip1(n,m), T ) is a metrizable space. Let {qi}i∈N be an
enumeration of [0, 1]n ∩Qn and f, g ∈ Lip1(n,m), we define:

d(f, g) :=
∑
i∈N

1

2i
|f(qi)− g(qi)|

1 + |f(qi)− g(qi)|
.

First of all we show that the function d(·, ·) : Lip1(n,m) × Lip1(n,m) −→ [0,∞[
is well defined and it is a metric on Lip1(n,m). It is well defined since for every
f, g ∈ Lip1(n,m):

∑
i∈N

1

2i
|f(qi)− g(qi)|

1 + |f(qi)− g(qi)|
≤
∑
i∈N

1

2i
≤ 2.

We verify for d(·, ·) the metric axioms:

(i) d(f, g) ≥ 0 for any f, g ∈ Lip1(n,m) by definition.

(ii) If d(f, g) = 0 then |f(qi)− g(qi)| = 0 for any i ∈ N and by continuity of f and
g we deduce that f(x) = g(x) on [0, 1]n, the converse is obvious.

(iii) Thanks to the fact that |f(x)−g(x)| = |g(x)−f(x)| we have d(f, g) = d(g, f).

(iv) d(f, g) ≤ d(f, h) + d(h, g) for any f, g, h ∈ Lip1(n,m), indeed since

|f(qi)− g(qi)| ≤ |f(qi)− h(qi)|+ |g(qi)− h(qi)|

and Lemma 1.6, we have that:

|f(qi)− g(qi)|
1 + |f(qi)− g(qi)|

≤ |f(qi)− h(qi)|
1 + |f(qi)− h(qi)|

+
|g(qi)− h(qi)|

1 + |g(qi)− h(qi)|
.

Therefore, dividing by 1
2i

and summing over i ∈ N we get:

∑
i∈N

1

2i
|f(qi)− g(qi)|

1 + |f(qi)− g(qi)|
≤
∑
i∈N

1

2i

(
|f(qi)− h(qi)|

1 + |f(qi)− h(qi)|
+
|g(qi)− h(qi)|

1 + |g(qi)− h(qi)|

)
,

finally thanks to the absolute convergence we can split the right hand side
obtaining the triangular inequality for d.

We prove now that fn(x)→ f(x) for any x ∈ [0, 1]n if and only if d(fn, f)→ 0.
Let us suppose that fn(x)→ f(x) for any x ∈ [0, 1]n. Then for any ε > 0 there exists
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an N1 ∈ N such that |f(qi) − fn(qi)| ≤ ε for any n ≥ N1 and every i ∈ {1, . . . , N1}
Moreover there exists an N2 ∈ N such that∑

i>N2

1

2i
|f(qi)− fn(qi)|

1 + |f(qi)− fn(qi)|
≤
∑
i>N2

1

2i
≤ ε.

Choosing N := max{N1, N2}, we have that:

∑
i∈N

1

2i
|f(qi)− fn(qi)|

1 + |f(qi)− fn(qi)|
≤

N∑
i=1

1

2i
|f(qi)− fn(qi)|

1 + |f(qi)− fn(qi)|
+
∑
i>N

1

2i
|f(qi)− fn(qi)|

1 + |f(qi)− fn(qi)|

≤
N∑
i=1

1

2i
ε+ ε ≤ 2ε ∀n ≥ N.

Viceversa, for any ε > 0 there exists a N1 ∈ N such that for any n ≥ N1:

∑
i∈N

1

2i
|f(qi)− fn(qi)|

1 + |f(qi)− fn(qi)|
≤ ε.

In particular for any i ∈ N, provided that ε ≤ 1
2i+1 , we get that:

|f(qi)− fn(qi)| ≤
2iε

1− 2iε
≤ 2ε.

Thus by continuity we get pointwise convergence on [0, 1]n.

Now we have to prove completeness. In order to do so, we take a Cauchy sequence
{fn}n ∈ N in (Lip1(n,m), d). Then for any ε > 0 there exists N ∈ N such that for
any j, k ≥ N we have that d (fj , fk) ≤ ε. Therefore for any 0 < ε ≤ 1

2i+1 and any
j, k ≥ N we have that |fj(qi)− fk(qi)| ≤ 2ε. Thus {fn(qi)}n∈N is a Cauchy sequence
for any i ∈ N. Let us define:

f(qi) := lim
n→∞

fn(qi).

First of all we want to prove now that f is Lipschitz on
⋃
i∈N{qi} with Lip(f) ≤ 1.

Indeed fixed i1, i2 ∈ N there exists an N ∈ N such that for any n ≥ N

|f(qi1)− fn(qi2)|+ |fn(qi1)− f(qi2)| ≤ ε,

thus applying triangular inequality and recalling that fn ∈ Lip1(n,m) we have that:

|f(qi1)− f(qi2)| ≤ |f(qi1)− fn(qi2)|+ |fn(qi1)− fn(qi2)|+ |fn(qi1)− f(qi2)|
≤ ε+ |qi1 − qi2 |.
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Thus since ε was aribtrary, we prove that f satifies the claim. Now fix an x ∈ [0, 1]n

and let {r1
j}j∈N, {r2

j}j∈N ⊆
⋃
i∈N{qi} be two sequences such that rkj → x as j → ∞

for k = 1, 2. For such sequences we have that:

0 ≤ lim
j→∞

∣∣f (r1
j

)
− f

(
r2
j

)∣∣ ≤ lim
j→∞

∣∣r1
j − r2

j

∣∣ = 0.

Therefore the function f can be well defined on the whole [0, 1]n as:

f(x) := lim
j→∞

f(rj) for any sequence {rj}j∈N ⊆
⋃
i∈N
{qi} converging to x.

We are left to show that such an f is contained in Lip1(n,m), since d(fn, f)→ 0 by
construction. Indeed, let x1, x2 ∈ [0, 1]n. Then for any ε > 0 there exist qj1 , qj2 ∈⋃
i∈N{qi} such that |xk − qjk |+ |f(xk)− f(qjk)| ≤ ε for k = 1, 2. Thus we have that:

|f(x1)− f(x2)| ≤ |f(x1)− f(qj1)|+ |f(qj1)− f(qj2)|+ |f(qj2)− f(x2)|
≤ |f(x1)− f(qj1)|+ |qj1 − qj2 |+ |f(qj2)− f(x2)|
≤ |f(x1)− f(qj1)|+ |qj1 − x1|+ |x1 − x2|+ |x2 − qj2 |+ |f(qj2)− f(x2)|
≤ 2ε+ |x1 − x2|.

Since ε > 0 was arbitrary, we have that f ∈ Lip1(n,m), and this proves that
(Lip1(n,m), T ) is a complete metric space. We have to prove the equivalence be-
tween the topology induced by the ‖·‖∞ norm and the one induced by pointwise
convergence. Indeed:

d(f, g) =
∑
i∈N

1

2i
|f(qi)− g(qi)|

1 + |f(qi)− g(qi)|
≤
∑
i∈N

1

2i
‖f − g‖∞ ≤ ‖f − g‖∞.

For the viceversa, first of all suppose by contradiction that there exists an ε > 0 such
that for any N ∈ N there exists an xN ∈ [0, 1]n such that we have that Bε(xN ) ∩⋃N
i=1{qi} = ∅. Since {xN}N∈N is a sequence in [0, 1]n we can find a subsequence

converging to a point x, and we can assume that without loss of generality {xN}N∈N
converges to x. Therefore there exists an M ∈ N such that for any N ≥ M we
have that |xN − x|∞ ≤ ε

4 . Therefore for any N ≥ M B ε
4
(x) ⊆ Bε(xN ), and this

would imply that B ε
4
(x) ∩

⋃N
i=1{qi} = ∅ for any N , which contradicts the density

of
⋃N
i=1{qi} = ∅ in [0, 1]n. Therefore for any ε > 0 there exists an N ∈ N such that

for any x ∈ [0, 1]n we have that Bε(x) ∩
⋃N
i=1{qi} 6= ∅. Moreover, since f − g is a

2-Lipschitz function on the unit cube we have that:

|f(qi)− g(qi)| ≤ |f(qi)− g(qi)− (f(q1)− g(q1))|+ |f(q1)− g(q1)|
≤ 2|qi − q1|+ |f(q1)− g(q1)| ≤ 2

√
n+ |f(q1)− g(q1)|.
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Therefore:

d(f, g) =
∑
i∈N

1

2i
|f(qi)− g(qi)|

1 + |f(qi)− g(qi)|
≥

N∑
i=1

1

2i
|f(qi)− g(qi)|

1 + |f(qi)− g(qi)|

≥ 1

1 + |f(q1)− g(q1)|+ 2
√
n

N∑
i=1

1

2i
|f(qi)− g(qi)|

≥ 1

1 + |f(q1)− g(q1)|+ 2
√
n

N∑
i=1

|f(qi)− g(qi)|

≥ 1

1 + |f(q1)− g(q1)|+ 2
√
n
|f(qi)− g(qi)| ∀i ∈ {1, . . . N},

Hence fixed an x ∈ [0, 1]n, there exists an i ∈ {1, . . . N} such that |x − qi| ≤ ε, we
have that:

|f(x)− g(x)| ≤ |f(qi)− g(qi)|+ |(f(x)− g(x))− (f(qi)− g(qi))| ≤ |f(qi)− g(qi)|+ 2|x− qi|
≤ |f(qi)− g(qi)|+ 2ε ≤ (1 + |f(q1)− g(q1)|+ 2

√
n)2Nd(f, g) + 2ε.

We choose now ε ≤ d(f, g) so that we have

‖f − g‖∞ ≤
(
(1 + |f(q1)− g(q1)|+ 2

√
n)2N + 2

)
d(f, g).

Moreover by definition:

1

2
· |f(q1)− g(q1)|

1 + |f(q1)− g(q1)|
≤ d(f, g),

hence:

‖f − g‖∞ ≤
((

1 +
2d(f, g)

1− d(f, g)
+ 2
√
n

)
2N + 2

)
d(f, g).

At last we note that inequality above proves the claim, i.e. the equivalence of the
topologies induced by uniform and pointwise convergence, and we would like to
remark that the constant(

1 +
2d(f, g)

1− d(f, g)
+ 2
√
n

)
2N + 2

depends on d(f, g) and on N = N(ε). Since we fixed ε ≤ d(f, g), we have that
ε = ε(d(f, g)) and hence there exists an increasing function g : [0, 1[→ [0,∞[ such
that:

‖f − g‖∞ ≤ g(d(f, g))d(f, g).

Therefore since g is unbounded, we do not have the equivalence of metrics d and
‖·‖∞.

We introduce some standard notation and at last we will define the set P(n,m).
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Definition 1.8. We define τ to be the family of all Π ⊆ P([0, 1]n), where P([0, 1]n)
is the power set of [0, 1]n, such that Card Π < ∞, every element P of Π is an open
n-simplex and:

cl

( ⋃
P∈Π

P

)
= [0, 1]n.

Definition 1.9 (Hilbert-Schmidt norm for matrices). We define the Hilbert-Schimdt
norm of a matrix A ∈Mm×n(R) as:

‖A‖HS :=

√√√√ m∑
i=1

n∑
j=1

A2
ij ,

where A = (Aij)i∈{1,...,m}
j∈{1,...,n}

.

Definition 1.10 (Piecewise Affine Functions). We define P(n,m) as the set of
Lip1(n,m) functions for which there exists a Π ∈ τ such that for all P ∈ Π we have
that f |P is affne and the following equality holds:

‖Jf |P ‖2HS = min{n,m},

where Jf(x) is the Jacobian matrix of f in x ∈ [0, 1]n. We will refer to elements
of P(n,m) as piecewise affine functions (despite the fact we are forcing a certain
condition on the jacobian), and we will say that f is piecewise affine on the partion
Π if for any P ∈ Π we have that f |P is affine.

In order to understand why this class of Lipschitz functions is important for
the solution of our problem, we prove Theorem 1.11, which will be the core of
the proof of Proposition 2.8 in Chapter 2, and hence foundamental in the proof of
Proposition 2.10. This theorem establishes a connection between the distance in the
supremum norm of two functions with the mean behaviour of their jacobians.

Theorem 1.11. Let f ∈ P(n,m) be fixed, then there exists a constant C(f, n,m)
depending only on f , n, m such that for any g ∈ P(n,m)

ˆ
[0,1]n
‖J(f − g)‖2HSdx ≤ C(f, n,m)‖f − g‖∞.

Proof. Using the definition and recalling that the set where the Jacobian of f and
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g is not defined has measure zero, we get:

ˆ
[0,1]n
‖J(f − g)‖2HSdx =

ˆ
[0,1]n

m∑
j=1

n∑
i=1

(∂i(f − g)j)
2dx

=

ˆ
[0,1]n

m∑
j=1

n∑
i=1

((∂ifj)
2 + (∂igj)

2 − 2∂ifj · ∂igj)dx

=

ˆ
[0,1]n

m∑
j=1

n∑
i=1

(∂ifj)
2dx+

ˆ
[0,1]n

m∑
j=1

n∑
i=1

(∂igj)
2dx− 2

ˆ
[0,1]n

m∑
j=1

n∑
i=1

∂ifj · ∂igjdx

= 2 min{n,m} − 2

ˆ
[0,1]n

m∑
j=1

n∑
i=1

∂ifj · ∂igjdx

= 2 min{n,m} − 2

ˆ
[0,1]n

m∑
j=1

n∑
i=1

∂ifj · ∂i(gj − fj)dx− 2

ˆ
[0,1]n

m∑
j=1

n∑
i=1

(∂ifj)
2dx

= 2 min{n,m} − 2 min{n,m}+ 2

ˆ
[0,1]n

m∑
j=1

n∑
i=1

∂ifj · ∂i(fj − gj)dx

= 2

ˆ
[0,1]n

m∑
j=1

n∑
i=1

∂ifj · ∂i(fj − gj)dx

Let {Pl}l and {Qk}k be the partitions of [0, 1]n on which f and g are piecewise affine.
Then we have:ˆ

[0,1]n
‖J(f − g)‖2HSdx = 2

ˆ
[0,1]n

m∑
j=1

n∑
i=1

∂ifj · ∂i(fj − gj)dx

= 2
∑
l

∑
k

ˆ
Pl∩Qk

m∑
j=1

n∑
i=1

∂ifj · ∂i(fj − gj)dx,

and using the Green’s formula over Pl∩Qk on each fj and gj , recalling that an affine
function is harmonic, we get:∑

l

∑
k

ˆ
Pl∩Qk

n∑
i=1

∂ifj · ∂i(fj − gj)dx =
∑
l

∑
k

ˆ
Pl∩Qk

∇fj · ∇(fj − gj)dx

=
∑
l

∑
k

ˆ
∂(Pl∩Qk)

(fj − gj)(∇fj · ν)dHn−1(x)−
∑
l

∑
k

ˆ
Pl∩Qk

(fj − gj)∆fjdx

=
∑
l

∑
k

ˆ
∂(Pl∩Qk)

(fj − gj)(∇fj · ν)dHn−1(x),

where ν is the outer normal to Pl ∩ Qk. If Pl ∩ Qk1 and Pl ∩ Qk2 share a common
n− 1-dimensional face S then:ˆ

S
(fj − gj)(∇fj · ν|k1)dHn−1(x) = −

ˆ
S

(fj − gj)(∇fj · ν|k2)dHn−1(x),
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this means that summing over k the contribute coming from the faces of Qk cancels:

∑
l

∑
k

ˆ
∂(Pl∩Qk)

(fj − gj)(∇fj · ν)dHn−1(x) =
∑
l

ˆ
∂Pl

(fj − gj)(∇fj · µ)dHn−1(x),

where µ is the is the outer normal to Pl. So this yelds:

ˆ
[0,1]n
‖J(f − g)‖2HS= 2

∑
l

m∑
j=1

ˆ
∂Pl

(fj − gj)(∇fj · µ)dHn−1(x).

Observing that |∇fj | ≤
√

min{n,m} and that |fj − gj | ≤ ‖f − g‖∞, we get:

ˆ
[0,1]n
‖J(f − g)‖2HS≤ 2m ·

√
min{n,m} ·

(∑
l

Hn−1(∂Pl)

)
‖f − g‖∞.

1.3 A cilindrical maximal operator

The maximal operator introduced in this section and its boundness on L2(Rn)
will be foundamental in the proof of Proposition 2.8.

Definition 1.12. Given π ⊆ Rn a linear subspace of dimesion n − 1 and a point
x ∈ π, we define the disk lying on the hyperplane x+π of radius r and centre x as:

Dπ,r(x) := cl(Br(x)) ∩ (x+ π).

Given a point y ∈ Rn \ (x + π), we define the nondegenerate cylinder with bases
Dπ,r(x) and Dπ,r(y) as the convex hull of Dπ,r(x) and Dπ,r(y), and we will refer to
x+y

2 as the centre of the cylinder.
We denote by Bi(C(x, y, r, π)) the set of closed balls with centre x+y

2 contained
in C(x, y, r, π) and with Be(C(x, y, r, π)) the set of closed balls with centre x+y

2 that
contain C(x, y, r, π). Thus we define:

ρ(C(x, y, r, π)) := max
(B1,B2)∈Bi(C(x,y,r,π))×Be(C(x,y,r,π))

diam(B1)

diam(B2)
.

Definition 1.13. Let us fix x ∈ Rn and y ∈ Rn \{x} and introduce the hyperplane:

π(x, y, r) := x+
r

2
· x− y
|x− y|

+ (x− y)⊥.

In order to simplify the notation we define:

Cx,y,r := C
(
x+

r

2
· x− y
|x− y|

, y +
r

2
· y − x
|y − x|

, r, π(x, y, r)

)
.
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Remark 1.14. The cylinders Cx,y,r are only right circular cylinders with centre x+y
2 ,

basis with radius r and height (1 + r)|x− y|.

Definition 1.15. Fixed γ > 0 and R > 0, we define C (γ,R) as the set of cylinders
Cx,y,r with x ∈ Rn, y ∈ Qn \{x} and r > 0 for whch ρ (Cx,y,r) ≥ γ and diam(Cx,y,r) ≤
R.

Definition 1.16 (Cilindrical maximal operator). Given a function f ∈ L1
loc(Rn),

γ > 0 and R > 0, we define the maximal operator on the set of cylinders C (γ,R):

MC (γ,R)f(x) := sup
x∈int(C)
C∈C (γ,R)

 
C
|f(ξ)|dξ.

Proposition 1.17. For any γ > 0, R > 0 and any f ∈ L1
loc(Rn), the function

x 7→MC (γ,R)f(x) is lower semicontinous.

Proof. We will prove that for any α, the set
{
MC (γ,R)f > α

}
is open. If x ∈{

MC (γ,R)f > α
}

then
MC (γ,R)f(x) > α.

Therefore we can choose ε > 0 such that MC (γ,R)f(x) − ε > α. Moreover by
definition, for any ε > 0 there exists a cylinder Cε ∈ C (γ,R) such that x ∈ int(Cε)
and  

Cε

|f(ξ)|dξ > MC (γ,R)f − ε.

Hence:  
Cε

|f(ξ)|dξ > MC (γ,R)f − ε > α.

Since x ∈ int(Cε), then there is a ball centred in x such that B ⊆ Cε, and hence, for
any z ∈ B, we have that z ∈ Cε. Thus

MC (γ,R)f(z) > α ∀z ∈ B,

and so this proves the result.

Definition 1.18. Let β > 0 ,γ > 0, R > 0, and C ∈ C (γ,R). We define the dilated
cylinder βC as:

βC := {z ∈ Rn : ∃λ ∈ [0, β], y ∈ C s.t. z = G(C) + λ(y −G(C))} ,

where G(C) is the centre of the cylinder C of Definition 1.12.

Lemma 1.19 (A covering lemma for cylinders). For any γ > 0 and R > 0, there
exists a countable subfamily G ⊆ C (γ,R) of pairwise disjoint cylinders such that:⋃

C∈C (γ,R)

C ⊆
⋃
C∈G

(
32

γ

)2

C,

where the set
(

32
γ

)2
C is the dilated cylinder defined in Definition 1.18.
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Proof. Let C ∈ C (γ,R). By definition there are two balls Bi(C) ∈ Bi(C) and

Be(C) ∈ Be(C) such that diam(Bi(C))
diam(Be(C)) ≥

γ
2 . Observe now that the balls Be(C) and

Bi(C) have the same centre, and we know by construction that diam(Bi(C)) ≥
γ
2 diam(Be(C)). Hence Be(C) ⊆ 2

γBi(C), and therefore Be(C) ⊆ 3 · 2
γBi(C). This

implies that ⋃
C∈C (γ,R)

C ⊆
⋃

C∈C (γ,R)

Be(C) ⊆
⋃

C∈C (γ,R)

3 · 2

γ
Bi(C).

By the Vitali covering lemma for the set {Bi(C)}C∈C (γ,R), there exists a countable
subset F in C (γ,R), such that:⋃

C∈C (γ,R)

Bi(C) ⊆
⋃
C∈F

5Bi(C).

This implies that:⋃
C∈C (γ,R)

3 · 2

γ
Bi(C) ⊆

⋃
C∈F

5 · 3 · 2

γ
Bi(C) ⊆

⋃
C∈F

30

γ
C,

and therefore summing up: ⋃
C∈C (γ,R)

C ⊆
⋃
C∈F

30

γ
C.

Moreover by contruction C ⊆ Be(C), and hence we deduce that:⋃
C∈C (γ,R)

C ⊆
⋃
C∈F

30

γ
C ⊆

⋃
C∈F

30

γ
Be(C).

Applying the Vitali covering lemma to the set of balls {Be(C)}C∈F , we get a sub-
family G of F such that {Be(C)}C∈G are pairwise disjoint and moreover:⋃

C∈C (γ,R)

Be(C) ⊆
⋃
C∈F

5Be(C).

Thus ⋃
C∈F

30

γ
Be(C) ⊆

⋃
C∈G

5 · 30

γ
Be(C) ⊆

⋃
C∈G

5 · 30

γ
·
(

3 · 2

γ
Bi(C)

)

=
⋃
C∈G

(
30

γ

)2

Bi(C) ⊆
⋃
C∈G

(
30

γ

)2

C ⊆
⋃
C∈G

(
32

γ

)2

C.
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Proposition 1.20 (Weak estimate for the conical maximal operator). Let f ∈
L1(Rn), then the following estimate holds true:

Ln
({
MC (γ,R)f > t

})
≤ 1

t
·
(

32

γ

)2 ˆ
Rn
|f(z)|dz.

Proof. Let us define the set:

Ct :=

{
C ∈ C (γ,R) : ∃ x ∈

{
MC (γ,R)f > t

}
s.t. x ∈ int(C) and

 
C
|f(z)|dz > t

}
,

Recalling Lemma 1.19, we get a countable subset G ⊆ Ct of disjoint cylinders such
that {

MC (γ,R)f > t
}
⊆
⋃
C∈Ct

C ⊆
⋃
C∈G

(
32

γ

)2

C,

thus:

Ln
({
MC (γ,R)f > t

})
≤ Ln

( ⋃
C∈G

(
32

γ

)2

C

)
≤
∑
C∈G

Ln
((

32

γ

)2

C

)

=

(
32

γ

)2n ∑
C∈G

Ln (C) ≤
(

32

γ

)2n ∑
C∈G

1

t

ˆ
C
|f(z)|dz.

Since the cylinders C ∈ G are pairwise disjoint, then:

Ln
({
MC (γ,R)f > t

})
≤
(

32

γ

)2n ∑
C∈G

1

t

ˆ
C
|f(z)|dz

=

(
32

γ

)2n

· 1

t

ˆ
⋃
C∈G C

|f(z)|dz ≤
(

32

γ

)2n

· 1

t

ˆ
Rn
|f(z)|dz.

Proposition 1.21. Let 1 < p <∞. If f ∈ Lp(Rn), then

‖MC (γ,R)f‖p ≤ N(n, γ, p)‖f‖p,

where N(n, γ, p) := 2
(

32
γ

) 2n
p
(

p
p−1

) 1
p
, in particoular if f ∈ L2(Rn), then:

‖MC (γ,R)f‖2 ≤
√

2

(
32

γ

)n
‖f‖2.
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Proof. We have:

ˆ
Rn
|MC (γ,R)f(z)|pdz = p

ˆ
Rn

ˆ MC(γ,R)f(z)

0
tp−1dtdz

= p

ˆ
Rn

ˆ +∞

0
χ[0,MC(γ,R)f(z))(t)t

p−1dtdz

= p

ˆ
Rn

ˆ +∞

0
χ{MC(γ,R)f(z)>t}(z)t

p−1dtdz

= p

ˆ +∞

0

(ˆ
Rn
χ{MC(γ,R)f(z)>t}(z)dz

)
tp−1dt

= p

ˆ +∞

0
Ln({MC (γ,R)f(z) > t})tp−1dt.

Since |f(z)| ≤ |f(z)χ{|f |> t
2
}(z)|+

t
2 . Thus:

 
C
|f(z)| ≤

 
C
|f(z)|χ{|f |> t

2
}(z)dz +

t

2

for any cylinder C ∈ C (γ,R). Therefore we obtain:

MC (γ,R)f(x) ≤MC (γ,R)

(
f(z)χ{|f |> t

2
}

)
+
t

2
.

This yelds:

Ln
({
MC (γ,R)f > t

})
≤ Ln

({
MC (γ,R)

(
fχ{|f |> t

2
}

)
+
t

2
> t

})
= Ln

({
MC (γ,R)

(
fχ{|f |> t

2
}

)
>
t

2

})
.
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Applying now Proposition 1.20 to the function fχ{|f |> t
2
} we have that:

ˆ
Rn
|MC (γ,R)f(z)|pdz = p

ˆ +∞

0
Ln({MC (γ,R)f(z) > t})tp−1dt

≤ p
ˆ +∞

0
Ln
({

MC (γ,R)fχ{|f |> t
2
} >

t

2

})
tp−1dt

≤ p
ˆ +∞

0

(
2

t
·
(

32

γ

)2n ˆ
Rn
|f(z)χ{|f |> t

2
}(z)|dz

)
tp−1dt

= 2p

(
32

γ

)2n ˆ +∞

0

(ˆ
Rn
|f(z)χ{|f |> t

2
}(z)|dz

)
tp−2dt

= 2p

(
32

γ

)2n ˆ
Rn

(ˆ +∞

0
χ[0,2|f(z)|](t)t

p−2dt

)
|f(z)|dz

= 2p

(
32

γ

)2n ˆ
Rn

(ˆ 2|f(z)|

0
tp−2dt

)
|f(z)|dz

= 2

(
32

γ

)2n

· p

p− 1

ˆ
Rn

(2|f(z)|)p−1 |f(z)|dz

= 2p
(

32

γ

)2n

· p

p− 1

ˆ
Rn
|f(z)|pdz.

Hence, we have that:

‖MC (γ,R)f‖p ≤ 2

(
32

γ

) 2n
p

·
(

p

p− 1

) 1
p

‖f‖p.

1.4 Density of P(n,m) in Lip1(n,m)

First of all, we introduce some notation and facts contained in [4], in order to
prove that the set P(n,m) is dense in Lip1(n,m). Brehm introduced the concept
of piecewise congruent mappings in [4]. Using our notation his definition can be
rephrased as:

Definition 1.22 (Piecewise congruent mappings). Let n ≤ m. A mapping f :
[0, 1]n −→ Rm is called a piecewise congruent piecewise mapping if it is continuous
and there exists a Π ∈ τ such that the restriction f |P for any P ∈ Π is an affine
isometric mapping.

Let us prove the following:

Proposition 1.23. Let n ≤ m. If f is a piecewise congruent mapping then it is
contained in P(n,m).
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Proof. Let Π be a partition on which f is a congruent piecewise mapping and fix
x, y ∈ [0, 1]n and consider the closed segment [x, y]. There exist an N ∈ N and
{xi}i∈{1,...,N} ⊆ [x, y] such that for every P ∈ Π either Card(cl(P ) ∩ [x, y]) < ∞ or
there exists an i ∈ {1, . . . , N − 1} such that cl(P ∩ [x, y]) = [xi, xi+1]. Then:

|f(x)−f(y)| =

∣∣∣∣∣
k∑
i=1

f(xi)− f(xi+1)

∣∣∣∣∣ ≤
k∑
i=1

|f(xi)− f(xi+1)| =
k∑
i=1

|xi − xi+1| = |x−y|,

and thus f is in Lip1(n,m). Now for any P ∈ Π, we can write f |P as f |P (x) := Ax+b
where A ∈ Mm×n(R) and b ∈ Rm. Therefore for such an affine mapping we have
that:

1 = |ej − 0|2 = |Aej + b−A0− b|2 = |Aej |2 =
m∑
i=1

A2
i,j ,

and thus

min{m,n} = n =
n∑
j=1

1 =
n∑
j=1

m∑
i=1

A2
i,j = ‖A‖2HS .

This implies that if f is a congruent mapping, then it is contained in P(n,m).

Brehm in [4] proves the following:

Theorem 1.24. Let n ≤ m and M ⊆ Rn, with Card(M) < ∞. Then for any
distance-reducing mapping f : M −→ Rm, there is an extension to a piecewise
congruent mapping f : Rn −→ Rm .

Hence we can use the Theorem 1.24 in order to prove the following:

Proposition 1.25. The set P(n,m) is dense in Lip1(n,m).

Proof. Let us consider the case n ≤ m first. Consider the set:

M(k) :=

{
xI :=

(
I1

2k
, . . . ,

In
2k

)
: I = (I1, . . . , In) ∈ {0, . . . , 2k}n

}
.

Given a function f ∈ Lip1(n,m) we have that f |M(k) is distance reducing, and

thanks to Theorem 1.24 and the fact that Card(M(k)) = 2(k+1)n we can find a
function fk : Rn −→ Rm such that fk(x) = f(x) if x ∈ M(k). Moreover, thanks to
Proposition 1.23 we have that gk := fk|[0,1]n is in P(n,m). We split now [0, 1]n and
we have the following fact:

‖gk − f‖∞ = max
I∈{0,...,2k−1}n

∥∥∥∥(g − f)|∏n
i=1

[
Ii
2k
,
Ii+1

2k

]∥∥∥∥
∞
.

Moreover since gk − f is a 2-Lipschitz function and gk(xI)− f(xI) = 0, we have the
following estimate:∥∥∥∥(gk − f)|∏n

i=1

[
Ii
2k
,
Ii+1

2k

]∥∥∥∥
∞
≤ 2·diam

(
n∏
i=1

[
Ii
2k
,
Ii + 1

2k

])
=

√
n

2k−1
∀I ∈ {0, . . . , 2k−1}n.
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Therefore:

‖gk − f‖∞ ≤
√
n

2k−1
.

Thus if n ≤ m, for any f ∈ Lip1(n,m) and any ε > 0 we can find a function in
g ∈ P(n,m) such that ‖g − f‖∞ ≤ ε.

If n > m we can define F : [0, 1]n −→ Rn to be F (x) := (f1(x), . . . , fm(x), 0, . . . , 0)
and hence for any ε > 0 we can find G ∈ P(n, n) such that ‖G− F‖∞ ≤ ε. Let us
define now the function g : [0, 1]n −→ Rm as:

g(x) := (G1(x), . . . , Gm(x)),

we have that:

|g(x)− g(y)| =

√√√√ m∑
i=1

|gi(x)− gi(y)|2 =

√√√√ m∑
i=1

|Gi(x)−Gi(y)|2

≤

√√√√ n∑
i=1

|Gi(x)−Gi(y)|2 = |x− y|.

In order to show that g ∈ P(n,m) we have to prove that ‖Jg‖2HS = m, since g is
trivially piecewise affine. To do this we only have to note that JG(x) ∈ O(n) for
x ∈ [0, 1]n where the differential exists:

JG(x) :=


rT1
...
rTm
...
rTn

 ,

where ri ∈ Rn and ri · rj = δi,j for any i, j ∈ {1, . . . , n}. Therefore we have that:

Jg(x) =

 rT1
...
rTm

 ,

and ‖Jg‖2HS =
∑m

i=1|ri|2 =
∑m

i=1 1 = m. This concludes the proof that P(n,m) is
dense in Lip1(n,m) for any n,m ∈ N.



Chapter 2

Residuality implies Fσ

This chapter is divided in three sections. Section 2.1 is the prelude of Section 2.2,
since in the former there are some technical details which will be used in the latter.
Lemma 2.3, Proposition 2.2 are foundamental in the proof of Proposition 2.8 since
they will be used in order to introduce a family of controlled cylinders on which the
maximal operator of Section 1.3 will be built. Moreover, Lemma 2.7 togheter with
results of Section 2.1, will be used in order to get the estimate (2.2). Section 2.3
containtains the proof of the main result Theorem 2.14. In this last section the
Banach-Mazur game (see Section 1.1) and the density of P(n,m) (see Section 1.4)
functions will come into play.

2.1 Construction of a cylinder family

Definition 2.1. Let 0 < ε < 1
2n+2 and x ∈ Rn. For any y ∈ [0, 1]n \ {x} we define:

r(ε, x, y) :=
ε

32
|x− y|.

In order to have a manageable notation, we slightly modify the one introduced in
Definition 1.12 and in Definition 1.13. We let:

(i)

Dε(x, y) := Dπ(x,y,r(ε,x,y)),r(ε,x,y)

(
x+

r(ε, x, y)

2
· x− y
|x− y|

)
,

(ii)
Cε(x, y) = C(x, y, r(ε, x, y)).

Proposition 2.2. Fix 0 < ε < 1
2n+2 and x ∈ [0, 1]n. Then for any y ∈ [0, 1]n \ {x}

there holds:

r(ε, x, y) ≤ min

{
1

2
,
ε
√
n

32
,
ε|x− y|

32

}
.

17
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Proof. Since 0 < ε < 1
2n and |x− y| ≤ diam([0, 1]n) =

√
n, we have:

r(ε, x, y) =
ε

32
|x− y| ≤ ε

32

√
n ≤

1
2n

25

√
n ≤ 1

2n+5

√
n ≤ 1

2
.

Lemma 2.3 (A geometric property for cylinders of the type Cε(x, y)). Fix 0 < ε <
1

2n+2 , and consider a cylinder Cε(x, y) as in Definition 2.1, then:

ρ(Cε(x, y)) ≥ ε

128

uniformily in x ∈ [0, 1]n and y ∈ [0, 1]n \ {x}, where ρ is as in Definition 1.12.

Proof. First of all, recall that Cε(x, y) is a right circular cylinder with centre x+y
2 ,

basis congruent to the disk Dε(x, y) with radious ε
32 |x−y|, and height

(
1 + ε

32

)
|x−y|

as observed in Remark 1.14, recall that in this case r = ε
32 |x − y|. Thus we have

B ε
64
|x−y|(

x+y
2 ) ⊆ Cε(x, y). On the other hand B(1+ε)|x−y|

(x+y
2

)
⊇ Cε(x, y) and hence:

ρ(Cε(x, y)) ≥
diam

(
B ε

64
|x−y|(

x+y
2 )
)

diam
(
B(1+ε)|x−y|

(x+y
2

)) =
ε

64 |x− y|
(1 + ε)|x− y|

=
ε

64

(1 + ε)
≥ ε

128
.

2.2 Functions in P(n,m) close in ‖·‖∞ norm have close
differentials

This section is devoted to the proof of the core statement of this thesis. What
we are going to prove is that if two functions in P(n,m) are close in the supremum
norm, then there exists an open set with large measure where Jacobians are close in
the Hilbert-Schmidt norm.

Lemma 2.4. For any 0 < l < 1
2n+2 we have:

Ln([−2l, 2l + 1]n \ [0, 1]n) ≤ 2n+2l.

Proof. This is an easy computation.

Definition 2.5. For f ∈ Lip1(n,m) we define the function F in the following way:

F (x) :=

{
f(x) if x ∈ [0, 1]n

0 if x 6∈ [−Lip(f)‖f‖∞, 1 + Lip(f)‖f‖∞]n
,

Then we define E(f) : Rn → Rm as the exension of F to the whole Rn provided
by the Kirszbraun’s theorem. Moreover we define E(f)j : Rn → R to be the j-th
component of E(f).
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Remark 2.6. We note that Lip(E(f)) = Lip(f) by the Kirszbraun’s theorem, and
therefore Lip(E(f))j ≤ Lip(f).

Lemma 2.7. Let 0 < ε < 1
2n+2 and let F : Rn → Rm be a 2-Lipschitz function.

Then for all points x, y ∈ Rn such that:

|F (y)− F (x)| ≥ ε|x− y|,

for any 0 < r < ε
16 |x− y|, z ∈ Br(x) and w ∈ Br(y) we have:

|F (w)− F (z)| ≥ ε

2
|z − w|.

Proof. Thanks to the condition on r we have that ε
16 |x−y| > r, and thus ε

2 |x−y| >
8r ≥ 6r. Hence,

ε

2
|z − w| ≤ ε

2
(|z − x|+ |x− y|+ |y − w|) ≤ ε

2
(|x− y|+ 2r)

≤ ε

2
(|x− y|+ 2r) +

ε

2
|x− y| − 6r = ε |x− y|+ εr − 6r ≤ ε |x− y| − 4r.

Recall that |z − x| ≤ r and |y − w| ≤ r. This implies that:

ε|x− y| − 4r ≤ ε |x− y| − 2 |x− z| − 2 |y − w| ≤ |F (x)− F (y)| − 2 |x− z| − 2 |y − w|
≤ |F (x)− F (y)| − (|F (x)− F (z)|+ |F (w)− F (y)|)
≤ |F (x)− F (y)| − |F (x)− F (z) + F (w)− F (y)|
≤ |F (x)− F (y)− [F (x)− F (z) + F (w)− F (y)]| = |F (w)− F (z)|.

Proposition 2.8. For all 0 < ε < 1
2n+2 and f ∈ P(n,m) there exists an open neigh-

bourhood V of f in Lip1(n,m) with diam(V ) < ε such that for any g ∈ P(n,m)∩V
there are an open set G ⊆ (0, 1)n and a constant D(n,m) having the following prop-
erties:

(i) Ln([0, 1]n \G) < D(n,m)ε.

(ii) ‖J(f − g)(x)‖HS ≤ ε for any x ∈ G.

(iii) |g(y)− g(x)− (f(y)− f(x))| ≤ ε|x− y| for any x ∈ G and any y ∈ [0, 1]n.

Proof. Let {Pl}l = Π ∈ τ be a partition on which f is piecewise affine and define V
as:

V :=

{
g ∈ Lip1(n,m) : ‖f − g‖∞ <

ε2n+3

m · 644n ·
√

min{n,m} · (1 +
∑

lHn−1(∂Pl))

}
.
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We will show that such a neighbourhood of f satisfies the claim of Proposition 2.8.
Let g ∈ V ∩P(n,m). By Theorem 1.11 and the definition of V we have:

ˆ
[0,1]n
‖J(f − g)‖2HSdx ≤ m ·

√
min{n,m} ·

(∑
l

Hn−1(∂Pl)

)
‖f − g‖∞ <

ε2n+3

644n
.

(2.1)

Let us introduce now three sets:

(i) F0 := {x ∈ [0, 1]n : f is non-differentiable}∪{x ∈ [0, 1]n : g is non-differentiable}.

(ii) F1 := {x ∈ [0, 1]n \ F0 : ‖J(f − g)‖HS ≥ ε}.

(iii) F2 := {x ∈ [0, 1]n \ (F0 ∪ F1) : ∃ y ∈ [0, 1]n \ {x} s.t. |g(y) − g(x) − (f(y) −
f(x))| ≥ ε|x− y|}.

Suppose the following claim holds:

Claim: F0 ∪ F1 ∪ F2 is a closed set with Ln(F0 ∪ F1 ∪ F2) ≤ 64(n+m)2ε.

Then the open set we are looking for is G := (F0 ∪ F1 ∪ F2)c. Indeed, G is open
since it is the complement of a closed set, and with

D(n,m) := 64(n+m)2,

we have Ln([0, 1]n \G) < D(n,m)ε. Moreover by definition of F1 and F2, conditions
(ii), (iii) in the statement of the proposition are satisfied by G. We are therefore
left to prove the claim.

First Step: F0 ∪ F1 ∪ F2 is a closed set.

Since f and g are Lipschitz, the set were they are non-differentiable has measure
zero by Rademacher’s Theorem, so Ln(F0) = 0. Moreover F0 is closed since f, g are
piecewise affine by hypothesis. Analogously F0∪F1 is a closed set, since F0∪F1 is a
union of finitely many close portions of hyperplanes and close symplexes (recall that
we are dealing with piecewise affine functions, and thus the differential is piecewise
constant). Finally, F0 ∪ F1 ∪ F2 is closed since it is the union of two closed sets,
F0 ∪ F1 and:

{x ∈ [0, 1]n : ∃ y ∈ [0, 1]n \ {x} s.t. |g(y)− g(x)− (f(y)− f(x))| ≥ ε|x− y|}.

Second Step: estimate of the measure of F1.
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We estimate the measure of F1 using Chebyshev’s inequality and (2.1):

Ln({‖J(f − g)‖HSχ[0,1]n\F0
≥ ε}) ≤ 1

ε2

ˆ
[0,1]n\F0

‖J(f − g)‖2HSdx

≤ 1

ε2

ˆ
[0,1]n
‖J(f − g)‖2HSdx

<
1

ε2
· ε

2n+3

644n
=
ε2n+1

644n
.

Third Step: estimate of the measure of F2.

We introduce the following function defined on Rn:

Ψε(x) := sup
y∈(Qn∩[0,1]n)\{x}

m∑
j=1

 
Cε(x,y)

∣∣∣∣〈 y − x
|y − x|

,∇(E(f − g)j)(z)

〉∣∣∣∣ dz.
First of all, we have to show that this function is well defined and measurable. Let

Iε,y,j(x) : =

 
Cε(x,y)

∣∣∣∣〈 y − x
|y − x|

,∇(E(f − g)j)(z)

〉∣∣∣∣ dz
≤
 
Cε(x,y)

|∇(E(f − g)j)(z)| dz

≤
 
Cε(x,y)

2dz = 2

for any y ∈ (Qn ∩ [0, 1]n) \ {x}. The integral in the above computation is well
defined since we know that ∇(E(f−g)j) exists almost everywehere by Rademacher’s
theorem. The first inequality comes from Cauchy-Schwartz inequality and the last
line from the fact that Lip(E(f − g)) ≤ 2. Therefore 0 ≤ Iε,y,j(x) ≤ 2 and hence
Ψε(x) = supy∈(Qn∩[0,1]n)\{x}

∑m
j=1 Iε,y,j(x) exists is finite and we deduce that 0 ≤

Ψε(x) ≤ 2m for any x ∈ Rn. Thus Ψε(x) is well defined. It is measurable because it
is a pointwise supremum of countable many measurable functions.

We will use this function in order to bound the measure of F2. Indeed suppose
the two following inequalities hold:

ˆ
Rn

Ψε(x)2dx ≥ ε2

16m
Ln(F2), (2.2)

ˆ
Rn

Ψε(x)2 ≤ 2(n+m)ε3. (2.3)

Using (2.2) and (2.3) we can estimate the measure of the set F2:

Ln(F2) ≤ 32m(m+ n)ε.
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In order to get such an estimate we are left to prove inequalities (2.2) and (2.3).
First of all, let us prove inequality (2.2). Let x ∈ Rn and y ∈ Rn \ {x}. By

Rademacher’s theorem we know that the set B where the differential of E(f − g)j
does not exists has measure 0 and that on Bc it holds that:〈

y − x
|y − x|

,∇(E(f − g)j)(z)

〉
= ∂ y−x

|y−x|
E(f − g)j(z).

We can express any z ∈ Cε(x, y) as z = ξ + t y−x|y−x| where ξ ∈ Dε(x, y) and t ∈[
0,
(
1 + ε

32

)
|x− y|

]
, since as we already noticed in the proof of Proposition 2.3, the

height of the cylinder Cε(x, y) is
(
1 + ε

32

)
|x − y|. Thus by Fubini-Tonelli Theorem

we have that for Hn−1-a.e. ξ ∈ Dε(x, y) it holds that:

∂ y−x
|y−x|

E(f − g)j

(
ξ + t

y − x
|y − x|

)
=

d

ds
E(f − g)j

(
ξ + s

y − x
|y − x|

) ∣∣∣
s=t

for a.e. t ∈
[
0,
(
1 + ε

16

)
|x− y|

]
. Therefore:

Iε,y,j(x) : =

 
Cε(x,y)

∣∣∣∣〈 y − x
|y − x|

,∇(E(f − g)j)(z)

〉∣∣∣∣ dz
=

 
Cε(x,y)

∣∣∣∣∂ y−x
|y−x|

E(f − g)j(z)

∣∣∣∣ dz
=

 
Dε(x,y)×[0,(1+ ε

32)|x−y|]

∣∣∣∣∂ y−x
|y−x|

E(f − g)j

(
ξ + t

y − x
|y − x|

)∣∣∣∣ dt⊗ dHn−1(ξ)

=

 
Dε(x,y)

( (1+ ε
32)|y−x|

0

∣∣∣∣∂ y−x
|y−x|

E(f − g)j

(
ξ + t

y − x
|y − x|

)∣∣∣∣ dt
)
dHn−1(ξ)

=

 
Dε(x,y)

( (1+ ε
32)|y−x|

0

∣∣∣∣ ddsE(f − g)j

(
ξ + s

y − x
|y − x|

) ∣∣∣
s=t

∣∣∣∣ dt
)
dHn−1(ξ).

Choose now x ∈ F2, then there exists y ∈ [0, 1]n\{x} such that |g(y)−g(x)−(f(y)−
f(x))| ≥ ε|x− y|. Hence, by density of Qn ∩ [0, 1]n in [0, 1]n and continuity of f − g,
there exists ỹ ∈ Qn ∩ [0, 1]n \ {x} such that |(f − g)(ỹ)− (f − g)(x))| ≥ ε

2 |x− ỹ| i.e.,
|E(f −g)(ỹ)−E(f −g)(x))| ≥ ε

2 |x− ỹ|. Therefore there exists a coordinate function
E(f − g)k such that |E(f − g)k(ỹ)− E(f − g)k(x))| ≥ ε

2
√
m
|x− ỹ|. Hence:

Ψε(x) =
m∑
j=1

 
Dε(x,ỹ)

( (1+ ε
32)|ỹ−x|

0

∣∣∣∣ ddsE(f − g)j

(
ξ + s

ỹ − x
|ỹ − x|

) ∣∣∣
s=t

∣∣∣∣ dt
)
dHn−1(ξ)

≥
m∑
j=1

 
Dε(x,ỹ)

∣∣∣∣∣
 (1+ ε

32)|ỹ−x|

0

d

ds
E(f − g)j

(
ξ + s

ỹ − x
|ỹ − x|

) ∣∣∣
s=t
dt

∣∣∣∣∣ dHn−1(ξ)

=

m∑
j=1

 
Dε(x,ỹ)

∣∣∣∣∣E(f − g)j
(
ξ +

(
1 + ε

32

)
(ỹ − x)

)
− E(f − g)j(ξ)(

1 + ε
32

)
|ỹ − x|

∣∣∣∣∣ dHn−1(ξ).
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Since ξ+
(
1 + ε

32

)
(ỹ−x) ∈ Dε(ỹ, x) ⊆ B ε

16
|x−ỹ|(ỹ) for any ξ ∈ Dε(x, ỹ) ⊆ B ε

16
|x−ỹ|(x),

we can apply Lemma 2.7, obtaining:∣∣∣∣∣E(f − g)k
(
ξ +

(
1 + ε

32

)
(ỹ − x)

)
− E(f − g)k(ξ)(

1 + ε
32

)
|ỹ − x|

∣∣∣∣∣ ≥ 1

2
· ε

2
√
m
|x− ỹ|,

and hence:

m∑
j=1

 
Dε(x,ỹ)

∣∣∣∣∣E(f − g)j
(
ξ +

(
1 + ε

32

)
(ỹ − x)

)
− E(f − g)j(ξ)(

1 + ε
32

)
|ỹ − x|

∣∣∣∣∣ dHn−1(ξ)

≥
 
Dε(x,ỹ)

∣∣∣∣∣E(f − g)k
(
ξ +

(
1 + ε

32

)
(ỹ − x)

)
− E(f − g)k(ξ)(

1 + ε
32

)
|ỹ − x|

∣∣∣∣∣ dHn−1(ξ)

≥
 
Dε(x,ỹ)

ε

4
√
m
dHn−1(z) =

ε

4
√
m
.

So Ψε(x) ≥ ε
4
√
m

if x ∈ F2 and we can evaluate the L2-norm of Ψε from below:

ˆ
Rn

Ψε(x)2dx ≥
ˆ
F2

Ψε(x)2dx ≥ ε2

16m
Ln(F2).

Next, let us prove inequality (2.3). First of all we note that for any x ∈ [0, 1]n

and any y ∈ [0, 1]n \ {x}, thanks to Lemma 2.3 and |x − y| ≤
√
n, we have that

Cε(x, y) ∈ C
(
ε

128 , 2
√
n
)
, where the set C (γ(ε)) is defined in Definition 1.15. Thus:

Ψε(x) = sup
y∈(Qn∩[0,1]n)\{x}

m∑
j=1

 
Cε(x,y)

∣∣∣∣〈 y − x
|y − x|

,∇(E(f − g)j)(z)

〉∣∣∣∣
≤ sup

x∈int(C)

C∈C ( ε
128

,2
√
n)

 
C

m∑
j=1

∣∣∣∣〈 y − x
|y − x|

,∇(E(f − g)j)(z)

〉∣∣∣∣ dz
≤ sup

x∈int(C)

C∈C ( ε
128

,2
√
n)

 
C

m∑
j=1

|∇(E(f − g)j)(z)| dz

Recalling the definition of the cylindrical maximal function MC ( ε
128

,2
√
n) in Defini-

tion 1.16 we have:

Ψε(x) ≤MC ( ε
128

,2
√
n)

 m∑
j=1

|∇(E(f − g)j)|

 (x).
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We can now apply Proposition 1.21 obtaining:

ˆ
Rn

Ψε(x)2dx ≤
ˆ
Rn

MC ( ε
128

,2
√
n)

 m∑
j=1

|∇(E(f − g)j)|

 (x)

2

dx

= 2

(
642

ε

)2n ˆ
Rn

 m∑
j=1

|∇(E(f − g)j)(z)|

2

dz.

Using the inequality between the aritmetic mean and the quadratic mean we get:

ˆ
Rn

 m∑
j=1

|∇(E(f − g)j)(z)|

2

dz =

ˆ
Rn
m2 ·

(∑m
j=1 |∇(E(f − g)j)(z)|

m

)2

dz

≤
ˆ
Rn
m2 ·

∑m
j=1 |∇(E(f − g)j)(z)|2

m
dz = m

ˆ
Rn

m∑
j=1

|∇(E(f − g)j)(z)|2 dz

= m

ˆ
Rn
‖J(E(f − g))(z)‖2HSdz.

Therefore summing up we get the following estimate:
ˆ
Rn

Ψε(x)2dx ≤ 2m

(
642

ε

)2n ˆ
Rn
‖J(E(f − g))(z)‖2HSdz

= 2m

(
642

ε

)2n
(ˆ

[0,1]n
‖J(E(f − g))(z)‖2HSdz +

ˆ
([0,1]n)c

‖J(E(f − g))(z)‖2HSdz

)
.

In order to bound the first integral in the last line, we recall Definition 2.5 and we
apply (2.1) obtaining:

ˆ
[0,1]n
‖J(E(f − g))(z)‖2HSdz =

ˆ
[0,1]n
‖J(f − g)(z)‖2HSdz ≤

ε2n+3

644n
.

In order to estimate the second one, we recall that E(f − g) = 0 outside [−2‖f −
g‖∞, 1 + 2‖f − g‖∞]n, by Defintion 2.5. Hence we have:ˆ

([0,1]n)c
‖J(E(f − g))(z)‖2HSdz =

ˆ
K
‖J(E(f − g))(z)‖2HSdz,

Where we let K := [−2‖f−g‖∞, 1+2‖f−g‖∞]n\([0, 1]n) Moreover since Lip(E(f−
g)) = 2, then sup|v|=1 |J(E(f − g))(z)(v)| ≤ 2 for every z ∈ Rn where the differential
exists. Provided that {ek}k=1,...,n is the standard orthonormal basis of Rn, we get the
following estimate (recall that outside [0, 1]n we extended by Kirzbraun’s theorem
and hence we do not have any control on the Hilbert-Schmidt norm of the Jacobian
besides the one given by the Lipschitz constant):

‖J(E(f − g))(z)‖2HS=

n∑
k=1

|J(E(f − g))(z)(ek)|2 ≤
n∑
k=1

4 = 4n,
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and hence, thanks to Lemma 2.4 we have:

ˆ
K
‖J(E(f − g))(z)‖2HSdz ≤ Ln(K) · 4n

≤ 2n+2 · 2‖f − g‖∞ · 4n = 2n+5n‖f − g‖∞

≤ 2n+5n
ε2n+3

m · 644n ·
√

min{n,m} · (1 +
∑

lHn−1(∂Pl))

≤ nε2n+3

m · 644n ·
√

min{n,m}
.

Therefore can write now:

ˆ
Rn

Ψε(x)2dx ≤ 2m

(
642

ε

)2n
(ˆ

[0,1]n
‖J(E(f − g))(z)‖2HSdz +

ˆ
([0,1]n)c

‖J(E(f − g))(z)‖2HSdz

)

≤ 2m

(
642

ε

)2n
(
ε2n+3

644n
+

nε2n+3

m
√

min{n,m}642n

)
=

(
2m+

2n√
min{n,m}

)
ε3

≤ 2(n+m)ε3.

Fourth Step: Estimate of the measure of F0 ∪ F1 ∪ F2.

We can now estimate the measure of the closed set F0 ∪ F1 ∪ F2. Indeed, we
have:

Ln(F0 ∪ F1 ∪ F2) ≤ Ln(F0) + Ln(F1) + Ln(F2)

<
ε2n+1

644n
+ 32m(n+m)ε ≤ 64(n+m)2ε.

2.3 Proof of the main result

In this section, we prove the main result of the thesis. The core argument is
contained in the following proposition.

Definition 2.9. Let F ⊆ Rn be a Borel set. F has each portion of positive measure
if for any open set U ⊆ Rn such that U ∩ F 6= ∅ then Ln(U ∩ F ) > 0.

Proposition 2.10. Let F ⊆ [0, 1]n be a closed, nonempty subset with any partition
of positive measure on the unit cube and let E ⊆ [0, 1]n be such that E∩F is residual
in F . If S ⊆ Lip1(n,m) is the set of functions which are differentiable at least in a
point of E ∩ F then S is residual in Lip1(n,m).
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Proof. Let E1 ⊇ E2 ⊇ . . . be relatively dense open subsets of F such that
⋂∞
k=1Ek ⊆

E. To prove that S is residual we will build a winning strategy for the Player II
in the corresponding Banach-Mazur game in which in addition to the nonempty
open subsets Vk ⊆ Lip1(n,m), we will make the second player choose functions in
Vk ∩P(n,m) and nonempty relatively open subsets Mk ⊆ F in such a way that:

(i)

diam(Vk) ≤
1

2(k−1)·(2n+3)
.

(ii) For every g ∈ Vk ∩P(n,m) there is an open set G ⊆ (0, 1)n such that:

(a) Ln([0, 1]n \G) < D(n,m)Ln(Mk ∩ Ek).
(b) ‖J(fk − g)(x)‖HS ≤ 1

2k
for any x ∈ G.

(c) |g(y)−g(x)−(fk(y)−fk(x))| ≤ 1
2k
|x−y| for any x ∈ G and any y ∈ [0, 1]n.

(iii) For any x ∈ Mk f1, . . . , fk are differentiable at x and if k ≥ 2 the following
holds:

‖J(fk − fk−1)(x)‖HS ≤
1

2k−1
.

(iv) Mk ⊆Mk−1 ∩ Ek−1 if k ≥ 2.

(v) |fk(y) − fk(x) − (fk−1(y) − fk−1(x))| ≤ 1
2k−1 |x − y| for any x ∈ Mk and any

y ∈ [0, 1]n.

The required strategy for Player II can be described as follows.
The construction of the answer of Player II to the first move U1 of Player I

starts by picking an arbitrary f1 ∈ U ∩ P(n,m). It exists thanks to the fact that
P(n,m) is dense in Lip1(n,m). The set M1 is defined as the set of points where
f1 is differentiable, and thus this choice satisfies (iii). Moreover since F \M1 has
measure zero, then M1 is a nonempty open set in [0, 1]n (because f1 ∈ P(n,m)).
Since E1 is a dense and relatively open subset of F , then the set M1 ∩ E1 is a
nonempty relatively open subset of F and therefore it has a positive measure. Thus,
applying Proposition 2.8 to f1 and ε := min

{
1

2n+6 ,Ln(M1 ∩ E1)
}

gives an open
neighbourhood V1 of f1 such that (ii) holds, indeed we get for every g ∈ V1 that:

(a) Ln([0, 1]n \G) < D(n,m)ε ≤ D(n,m)Ln(M1 ∩ E1).

(b) ‖J(f1 − g)(x)‖HS ≤ ε ≤ 1
2n+6 ≤ 1

2 for any x ∈ G.

(c) |g(y)−g(x)− (f1(y)−f1(x))| ≤ ε|x−y| ≤ 1
2n+6 |x−y| ≤ 1

2 |x−y| for any x ∈ G
and any y ∈ [0, 1]n.

Moreover (i) holds for such a V1, indeed:

diam(V1) ≤ ε2n+3

m(32 · 64)2n
√

min{n,m} (1 +
∑

lHn−1(∂Pl))
≤ ε ≤ 1

2n+6
.
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Moreover (iv) and (v) are trivially satisfied.
Now, let k ≥ 2 and

Lip1(n,m) ⊇ U1 ⊇ V1 ⊇ . . . ⊇ Uk−1 ⊇ Vk−1,

functions f1, . . . , fk−1 and nonempty relatively open subsets M1, . . . ,Mk−1 of F
verifying the required conditions have been already defined. Let Uk ⊆ Vk−1 be
the arbitrary k-th move of Player I. Then Player II chooses an arbitrary function
fk ∈ Uk ∩ P(n,m) and uses (ii) of the (k − 1)-step: for every g ∈ Vk−1 ∩ P(n,m)
there exists an open set G ⊆ (0, 1)n such that:

(α) Ln([0, 1]n \G) < D(n,m)Ln(Mk−1 ∩ Ek−1).

(β) ‖J(g − fk−1)(x)‖HS ≤ 1
2k−1 for every x ∈ G.

(γ) |g(y)− g(x)− (f(y)− f(x))| ≤ 1
2k−1 |x− y| for any x ∈ G and any y ∈ [0, 1]n.

Since the set G ∩Mk−1 ∩ Ek−1 is relatively open in F and since (α) implies that
it is nonempty, then there is a nonempty relatively open subset Mk of F such that
Mk ⊆ G ∩Mk−1 ∩ Ek−1. Because of (α), (β), (γ) the choice of fk and Mk verifies
(iii), (iv) and (v). The remaining part of the construction is similar to the case
k = 1: since Ek is a dense relatively open subset of F , it has positive measure.
Hence Proposition 2.8 with f := fk and ε := min

{
1
2k
, 1

2n+6 ,Ln(Mk ∩ Ek)
}

gives a
neighbourhood Vk of fk such that (i) and (ii) hold true. It remains to show that
any function f ∈

⋂∞
k=1 Vk is differentiable at some point of E ∩ F . Because of (i) a

function f such that fk → f uniformily. In view of (iv), we have that ∅ 6=
⋂∞
k=1Mk ⊆

E, because Mk ⊂⊂Mk−1 and compact sets have the property of finite intersection.
Thus it suffices to show that f is differentiable at every x ∈

⋂∞
k=1Mk. Thanks to

the way we choosed functions fk, we have that {Jfk}k∈N is a Cauchy sequence in
Mm×n(R) endowed with the ‖·‖HS norm, indeed without loss of generality for i < j
we have:

‖Jfi(x)− Jfj(x)‖HS ≤
n−1∑
k=i

‖Jfk(x)− Jfk+1(x)‖HS ≤
j−1∑
k=i

1

2k

=

j−i−1∑
k=0

1

2i+k
=

1

2i

j−i−1∑
k=0

1

2k
≤ 1

2i
· 2 =

1

2i
,

for any x ∈
⋂∞
k=1Mk. Thus for any ε > 0 there exists an N ∈ N such that for any

n, i > N we have that ‖Jfi(x) − Jfj(x)‖HS < ε for any x ∈
⋂∞
k=1Mk. Therefore

the limit of the sequence Jfk(x) exists. Let J(x) be such a limit. Let us prove that
J(x) is the differential of f in x ∈

⋂∞
k=1Mk. In order to do this, let us fix i ∈ N:∣∣∣∣f(y)− f(x)− J(x)(y − x)

|x− y|

∣∣∣∣ ≤ ∣∣∣∣f(y)− f(x)− Jfi(x)(y − x)

|x− y|

∣∣∣∣+

∣∣∣∣(Jfi(x)− J(x))(y − x)

|x− y|

∣∣∣∣
≤
∣∣∣∣fi(y)− fi(x)− Jfi(x)(y − x)

|x− y|

∣∣∣∣+
∞∑
k=i

∣∣∣∣fk+1(y)− fk+1(x)

|x− y|
− fk(y)− fk(x)

|x− y|

∣∣∣∣+ ‖Jfi(x)− J(x)‖ ,
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where ‖·‖ is the operator norm. Now recalling that all norms are equivalent in finite
dimensional vector spaces, and property (v) on points of

⋂∞
k=1Mk we have that:∣∣∣∣fi(y)− fi(x)− Jfi(x)(y − x)

|x− y|

∣∣∣∣+
∞∑
k=i

∣∣∣∣fk+1(y)− fk+1(x)

|x− y|
− fk(y)− fk(x)

|x− y|

∣∣∣∣
+ ‖Jfi(x)− J(x)‖

≤
∣∣∣∣fi(y)− fi(x)− Jfi(x)(y − x)

|x− y|

∣∣∣∣+

∞∑
k=i

1

2k
+
√
m ‖Jfi(x)− J(x)‖HS

=

∣∣∣∣fi(y)− fi(x)− Jfi(x)(y − x)

|x− y|

∣∣∣∣+
1

2i−1
+
√
m ‖Jfi(x)− J(x)‖HS .

But thanks to the definition of J(x):

‖Jfi(x)− J(x)‖HS ≤
∞∑
k=i

‖Jfk+1(x)− Jfk(x)‖HS ≤
∞∑
k=i

1

2k
=

1

2i
· 2 ≤ 1

2i−1
,

hence we deduce that:∣∣∣∣fi(y)− fi(x)− Jfi(x)(y − x)

|x− y|

∣∣∣∣+
1

2i−1
+
√
m ‖Jfi(x)− J(x)‖HS

≤
∣∣∣∣fi(y)− fi(x)− Jfi(x)(y − x)

|x− y|

∣∣∣∣+
1 +
√
m

2i−1
.

Therefore, taking the lim sup for y → x,

lim sup
y→x

∣∣∣∣f(y)− f(x)− J(x)(y − x)

|x− y|

∣∣∣∣ ≤ 1 +
√
m

2i−1
+ lim sup

y→x

∣∣∣∣fi(y)− fi(x)− Jfi(x)(y − x)

|x− y|

∣∣∣∣
=

1 +
√
m

2i−1
,

for any i ∈ N, hence:

lim sup
y→x

∣∣∣∣f(y)− f(x)− J(x)(y − x)

|x− y|

∣∣∣∣ = 0,

and thus f is differentiable in x ∈
⋂∞
k=1Mk and its differential is precisely J(x).

We recall the definition of analytic set.

Definition 2.11 (Analytic sets). A set in a complete metric space is said to be
analytic if it is a continuous image of a complete metric space.

Remark 2.12. Recall that every Borel set is analytic (see [6]).

The following theorem relates analytic sets to closed sets of zero measure.
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Theorem 2.13 (Solecki). Any analytic set E ⊆ Rn is either covered by a countable
union of closed sets of zero measure, or there exists a closed set F such that E ∩ F
contains a Gδ set dense in F . Moreover F has each portion of positive measure.

Proof. It is a straightforward application of the main result of [12].

Theorem 2.14. Let E ⊆ [0, 1]n be an analytic set. If the set S of those functions
f ∈ Lip1(n,m) which are differentiable at no point of E is residual in Lip1(n,m),
then the set E is contained in an Fσ subset of [0, 1]n of Lebesgue measure zero.

Proof. Suppose it is false. Then E cannot be covered by any Fσ set of measure zero.
Using Theorem 2.13 we find a closed nonempty set F ⊆ [0, 1]n with every portion
of positive measure such that E ∩ F is residual in F . Applying Proposition 2.10 we
get a contradiction.
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