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Introduction

In 1978 De Giorgi formulated the following conjecture [15]:

Conjecture 0.1. (De Giorgi’s Conjecture) Let us consider a solution u € C%(R") in
all R™ of the partial differential equation

Au=1®—u (1)
such that

lu| <1, Opu>0 (2)

in the whole R™. Is it true that all level sets {u = A} are hyperplanes, at least if n < 8%
This conjecture is naturally extended to the case Au = h{(u), where hq is a “double
well” potential. For n = 2 the conjecture was proved by N. Ghoussoub and C. Gui in
[28] and for n = 3 it was proved by L. Ambrosio and X. Cabré in [3]. In [20] we can find
a counterexample for n > 9 by M. Del Pino, M. Kowalczyk and J. Wei. The question

remains open for 8 > n > 4.
In this thesis we study the following result achieved by O. Savin in [44].

Theorem 0.1. Let u € C%(R") be a solution of the partial differential equation

Au = hg(u) (3)
i all R™ such that:
lul <1, Op,u >0, znlinilwu(x',xn) ==+1. (4)

Then, if n < 8, the level sets of u are hyperplanes.

This theorem is the solution of a reduced version of De Giorgi’s Conjecture and it is
strongly related to phase transitions problems. Indeed, we consider u such that |u| <1 in
R™ and u is a local minimizer in R™ of the following energy functional

(1, Q) = /Q %yw? + ho(u) da, (5)

that describes the energy of a fluid in a phase transition regime (see for instance [33],
[43], [10]). It is called Ginzburg-Landau functional. Equation is the Euler-Lagrange
equation of the functional and, we will see in Section that if u satisfies conditions
then w is a local minimizer of the Ginzburg-Landau functional.

Using this deep connection between minimizers of the Ginzburg-Landau functional and
De Giorgi’s Conjecture we can prove that Theorem is a consequence of the following
result (see Section [2.2)
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Theorem 0.2. Let u € H} (R™) be a local minimizer of J in R™ and u(0) = 0, then the
following holds:

(i) If n < 7 then the level sets of u are hyperplanes.

(ii) If n =8 and Oy, u > 0 then the level sets of u are hyperplanes.

In the first part of the thesis, we consider the rescaled minimizer u. = u(%) and we see
how the level sets of u. converge uniformly, on compact sets, to OF when € goes to zero,
where E is a set with locally minimal perimeter in R”. Namely, L. Modica proved in [40]
that there exists a sequence u,, such that u., converge to xg — xge in LZIOC(R”).

One of the main steps for proving Theorem is the following density estimate proved
in [11]

Theorem 0.3. Given o > —1 and B < 1, if u € HY(Bg(x)) is a minimizer of J(-, Br(z))
and u(z) > «, then there exist a constant ¢ depending only on n and hy and a constant
ro(a, B) depending on «, B, n, and hg such that:

L"{u> B} N By(x)) > er”,
L"{u < ByN Bp(z)) > er™
forr > ro(a, B), provided that Byyo(x) C Bgr(x).

In order to prove this theorem we do not follow the proof given by Caffarelli and
Cordoba in [I1], but we adapt the techniques used in [52] to our specific functional. Using
these techniques we simplify a bit the proof and we correct some minor flaws present in
[11].

We see how Theorem allows us to pass from the L} (R™) convergence to a uniform
convergence of {u = A}, on compact sets, to E. Thanks to Simon’s theorem on sets with
minimal perimeter in R"™ proved in [51], we prove that the level sets of u are asymptotically
flat at oo for n < 7 and, if we also assume J,u > 0, this asymptotic behaviour is still true
for n = 8.

In the second part of the thesis, we show how De Giorgi’s conjecture can be proved
using this asymptotic behaviour of the level sets. For this purpose we need a more pre-
cise estimate of the behaviour at co of the level sets of u. In particular we prove the
“Improvement of Flatness” theorem:

Theorem 0.4. Let uw € H (R") be a local minimizer of J in {|z'| < I} x {|lz,| < I}.
Assume that u(0) = 0 and assume that there exists @ <1 such that:

{u=0} c{|2/| <1} x {|zn| < 6}.

Then there exist small constants 0 < n; < n2 < 1 depending on n and hy such that: given
0o > 0 there exists €1(0y) > 0 depending on n, hg and 6y such that if

0 <e1(bo), 6o <0,

then
{u =0} N{|mex| <ml} x {|z- & <ml}
1s included in a flatter cylinder
{mex| < mal} x {|z - §] <mo},

for some unit vector £, where mex = x — (x - §)E.



The proof of this result is divided into three steps.

In the first step, we construct two different families of viscosity supersolutions of Au =
h{(u), and we develop several “sliding methods” that allow us to compare a weak Sobolev
solution of Au = h{(u) to this two families of viscosity supersolutions. In the second step
we use this “sliding methods” to prove that the level sets of the minimizers satisfy the zero
mean curvature equation in the viscosity sense. In this two steps we present the results
achieved by B. Sciunzi and E. Valdinoci in [50], in particular in the proof of Theorem [3.9
we correct some minor flaws present in Lemma 6.6 of [50].

In the last step, we finally prove the “Improvement of Flatness” Theorem using the
Harnack inequality for flat level sets of minimizers and the geometric information on the
level sets proved in the second step. In this last step we present the results achieved by
O. Savin, B. Sciunzi and E. Valdinoci in [49].

This thesis is structured as follows. In Chapter 1 we introduce De Giorgi’s conjecture,
we present the state of art of the conjecture, and we study a link between phase transi-
tions and minimal surfaces. In particular, we prove Theorem and an asymptotic flat
behaviour of the level sets of phase transitions.

In Chapter 2 we introduce the “Improvement of Flatness” Theorem, we prove De
Giorgi’s conjecture for phase transitions and finally we prove the reduced version of De
Giorgi’s conjecture.

In Chapter 3 we introfuce the notion of hypersurface that satisfies the zero mean
curvature equation in the viscosity sense. We construct two different families of viscosity
supersolutions of Au = h{(u) and we develop several “sliding methods”. Finally, we
prove that the level sets of the minimizers satisfy the zero mean curvature equation in the
viscosity sense. In particular, in this chapter we present the first two steps of the proof of
Theorem [0.4]

In Chapter 4, we present the final step of the proof of Theorem We introduce the
Harnack inequality and, using the geometric information on level sets achieved in Chapter
3, we prove the “Improvement of Flatness” Theorem.
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Chapter 1

De Giorgi’s Conjecture and
Minimal Surfaces

1.1 De Giorgi’s Conjecture

De Giorgi’s conjecture is related to the study of bounded solution of the semilinear elliptic
equation Au— F’(u) = 0 in the whole space R, under the assumption that « is monotone
in one direction, say J,u > 0. In particular the goal is to prove that the solution wu is
one-dimensional, namely, u only depends on one variable. This question was raised by De
Giorgi in 1978, who made the following conjecture (page 175 of [15])

Conjecture 1.1. (De Giorgi’s Conjecture) Let us consider a solution u € C*(R") in
all R™ of the partial differential equation

Au=1®—u (1.1)

such that
lu| <1, Opu>0 (1.2)

in the whole R™. Is it true that all level sets {u = A} are hyperplanes, at least if n < 82

De Giorgi’s conjecture is equivalent to the one-dimensional symmetry property. In
fact, if the conjecture is true, then v depends only on the direction orthogonal to the level
sets.

The particular elliptic equation is called the Allen-Cahn equation, but the results
achieved in the past years are dealing with more general elliptic equations of the form:

Au(z) — F'(u(z)) =0, = €R", (1.3)

where F' € C?(R) and F(z) > min{F (1), F(=1)} for every z € (—1,1).

The conjecture remained completely open until 1998 when C. Gui and N. Ghoussoub
in [28] proved the result for n = 2. Their proof use a Liouville-type theorem for elliptic
equations in divergence form, developed by H. Berestycki, L. Caffarelli and L. Nirenberg

in [5], applied to the ratio
Oz, U

o= :
Oz, U

They proved that o is constant in all R?, and, using this result, they proved the conjecture
for n = 2. Using similar techniques, L. Ambrosio and X. Cabre in [3] extended these
results to the dimension n = 3. We can resume this two works in the following theorem:

1



2 Chapter 1. De Giorgi’s Conjecture and Minimal Surfaces

Theorem 1.1. Assume that F € C?(R), F(z) > min{F (1), F(—1)} for every x € (—1,1)
and u is a solution of (1.3) in all R™ satisfying the conditions (1.2). If n =2 orn =3

then all level sets of u are hyperplanes.

Another fundamental result was achieved in 2009 by M. Del Pino, M. Kowalczyk and
J. Wei in [20]; for n > 9 they showed examples of solutions u of , satisfying conditions
, that are not one dimensional. In this way they proved that the upper bound n < 8
in Conjecture is sharp. This is the state of the art on Conjecture , the problem
is still open for dimensions 4 < n < 8.

Despite the fact that Conjecture is still open, some interesting results were ob-
tained in the past years. For instance N. Ghoussoub and C. Gui showed in [29] that, for
n = 4 and n = 5, the conjecture is true for a special class of solutions that satisfy an
anti-symmetry condition.

But the most important result was proved in 2009 by O. Savin that proved in [44] the
following theorem:

Theorem 1.2. Let u € C%(R") be a solution of:
Au=u®—u
i all R™, such that

lu| <1, Opu>0, lim wu(z, z,) ==+l (1.4)

Ty —100
If n < 8 then the level sets of u are hyperplanes.

Savin proved this result not only for the Allen-Cahn equation but for a more general
elliptic equation of the form:

Au(z) = hy(u(z)), = e€R", (1.5)

where hg is a “double well” potential, we will give the precise definitions in the next
section.

The technique used for proving Theorem and the technique used for proving The-
orem [[.2] are completely different. In Theorem [I.1] the flatness of the level sets is proved
using a Liouville-type theorem for elliptic equations and, in particular, the results achieved
in [28] and [3] do not use the regularity theory of minimal surfaces. For Theorem on
the other hand, the regularity theory of minimal surfaces plays a crucial role, and the proof
is based on the fact that wu, solution of with conditions , is a local minimizer of

the following functional:

ﬂ%m—xx;wM+mm0m.

Although the two Theorems [I.1] and [I.2] are similar, the ideas behind them are completely
different. In this thesis we will study in detail the results achieved by Savin in [44].

1.2 Phase transitions and minimal surfaces

We start by defining the typical phase transition functional. Given a domain 2 C R", we
define the following functional on H'(Q):

ﬂ%mzﬂx;w&+%w0m. (1.6)
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From now on we suppose ho(1) = ho(—1) = 0 and hg € C?([—1,1]). We assume that, for
some 0 < ¢ < 1< C and some 0* € (0,1),

ho(z) >0 for any x € (—1,1), (1.7)
for any 6 € [0,1], cf? < ho(—1 +6) < CH? and ch* < ho(1 — 0) < CH?, (1.8)
for any 6 € [0,60%), cf < hj(—1+ 0) and h{(1 —0) < —ch. (1.9)

We also assume a convexity property of hg near 1, namely that h{ is increasing in
(=1,—1+6%) and in (1 —6*,1).

As a model example for a potential hg satisfying the conditions stated above, one may
consider:

ho(u) = %(1 —u?)?. (1.10)

In the literature, hy is often reffered to as a “double well” potential, while its derivative hj,
is sometimes called a “bi-stable nonlinearity” and the funcitonal is called Ginzburg-
Landau type functional.

In light of the hypothesis above, with no loss of generality, possibliy reducing the size
of 6%, we may assume that

ho(§) > ho for any & € [-1+6%,1—0"]. (1.11)

max
[—1,—1+6*]U[1—0% 1]

Notice that, if u € HY(Q), |u| < 1, is critical for J(:,Q), then u satisfies in a weak
sense the following elliptic equation:

Au(z) = hy(u(z)) = € Q,

and if we choose the potential we obtain the Allen-Cahn equation Au = u? — u.

Let us briefly explain what is the physical meaning of the functional . Imagine
that we have a two-phase fluid in a domain 2, and we denote its density at a point x by
u(x). Assume its energy is given by a double well potential hg(u(z)) with minima at ug
and uo i.e.

ho(u1) = ho(ug) =0, ho(s) >0 if s # uy, ug.

The densities u; and uy correspond to the stable fluid phases, for simplicity in our model
we set u; = —1 and ug = 1. Then a candidate energy functional of the fluid is given by
the integral:

/Qho(u(:c)) dx.

But this is not a satisfactory physical model since any density function u(z), that takes
only the values u; and ue, minimizes the density energy. In particular the stable phases
u1 and wug could coexist along any complicated interface. This problem arises because we
ignored the interactions at small scales (such as friction) which penalize the formation of
unnecessary interfaces. In order to take into account this kind of interactions we add the
term |Vu|? to the functional. This term represents a penalization to the total energy, and
keeps under control the formation of interfaces (see ). The functional represents the
energy functional associated to phase transition phenomena, in particular it appears in
the Van Der Waals-Allen-Cahn-Hilliard and Ginzburg-Landau theories of phase transition
(see, for instance, [43],[10]).

We now discuss the close relation between minimal surfaces and level sets of minimizers
of J. We introduce now the definition of local minimizer,
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Definition 1.1. A function u € H'(Q) is a local minimizer of J in Q) if, for every open
set A C Q relatively compact in €,

J(u, A) < J(u+ 6, A), Vo e HL(A). (1.12)

Minimizers of the energy functional are also called “phase transitions”.

Now we want to study the behaviour of u in large domains (recall that De Giorgi’s
Conjecture is stated for solution in all R™), in order to do this we rescale with a parameter
€ a local minimizer in 2 and we study the behaviour of the rescaled minimizer when €
goes to zero. We define % = {% | » € Q} and we consider u local minimizer of J in the
domain %, the behaviour of w in large domains is given by the behaviour of the rescaled
functions u,. defined as:

Ue(x) 1= u(%), x €. (1.13)

If u is a local minimizer of J in the domain % then, performing a change of variable,
we can see that u. is a local minimizer of the rescaled energy J. in €2,

Je(v,Q) ::/S2<;|Vv|2+iho(v)> dz. (1.14)

Now we make an heuristic discussion about minimizers of J. which highlights a first
connection between minimal surfaces and level sets of phase transitions. For a given
function v with |v| < 1, the main contribution in J¢(v,(2), for € small, comes from the
potential energy which is minimized when v is equal either to 1 or —1. Instant jumps from
a region where v = 1 to a region where v = —1 are not allowed since the kinetic energy
[ §|Vv]? would becomes infinite.

From the elementary inequality a? + b> > 2ab we clearly obtain

/Q<§|VU|2+1ho(v)) d:nz/g\/MWde’ (1.15)

now we can use the coarea formula and we get

[ vz = [ ([ o )

-1

1
- /_ VR (v = })ds.

Finally the inequality ((1.15) becomes:

1

1
Je(v,Q) > /1 V2ho(s)H" 1 ({v = s})ds. (1.16)

The energy J, is minimized by functions for which the inequality ([1.16)) becomes an equal-
ity and for which the H"~! measure of the level sets is as small as possible.

We have an equality in (1.15) and (1.16]) if and only if
1
’vv’ = g \Y 2h0(’U),

this equality gives

v(z) = go(dr(x)), (1.17)

€
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where dr(x) represents the sign distance from the 0—level set I' := {v = 0} and g is the
solution to the ODE
{96 = v/2ho(g0)

go(0) = 0.

We want also to minimize the %"~ ! measure of the level sets, but in general the level sets
of the function v cannot be all with minimal perimeter. However, if for example the 0-level
set I' is minimal then the s-level sets are essentially minimal as long as s is not too close
to £1 and € is small. In fact, heuristically, we have that is a continuous increasing
function and depends only on dre(m), so if we consider the s-level set, we have that the
distance between these level sets and I' is small if € is small. On the other hand, when s is
close to =1 the weight \/2h¢(s) becomes negligible. All these heuristic discussions suggest
us that the level sets of minimizers of J. converge to a minimal surface as € — 0.

Now we want to make all these arguments rigorous. First of all we define the perimeter
of a set:

Definition 1.2. Given QQ C R™ open, let E be a mesurable set, the perimeter of E in )
1s defined as:

P(E,Q) = Sup{/ divepdr = € CHQRY), ||| < 1}. (1.18)
E
When 2 is the whole R™ we use the shorter notation
P(E) := P(E,R").
We introduce also the concept of minimal surface:

Definition 1.3. We say that E is a set with minimal perimeter in 2 or, shortly, OF is
minimal surface in Q if, for every A C Q relatively compact in €,

P(E,A) < P(F,A) (1.19)
whenever E and F' coincide outside a compact set included in A

The asymptotic behaviour of u. was first studied in a rigorous way by L. Modica and
S. Mortola in [38] and by L. Modica in [40] within the framework of I'-convergence.

All the heuristic arguments concerning the convergence of level sets of u. to minimal
surfaces are made rigorous by the results of Modica achieved in [40]. In particular he
proved the following Theorem

Theorem 1.3. (Modica) Given Q@ C R™ open, let ue be local minimizers for the energies
Je(+, ), then there exists a sequence u., such that,

Uey, — XE = XEe in Lip.(Q) (1.20)
where E is a set with minimal perimeter in §Q.

This result shows the deep connection between the minimizers of the Ginzburg-Landau
functional and minimal surfaces; roughly speaking minimal surfaces and minimizers of J,
should have similar property, at least for small e.

Our goal is to show that the convergence of u, in Theorem is stronger than Lllo (),
indeed in Section we will show that the level sets of u,, converge uniformly on compact
sets to minimal surfaces.

In order to reach this result we need density estimates for level sets of phase transi-

tions, the following section is devoted to the study of this density estimates.
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1.3 Density estimates for level sets of phase transitions

The goal of this section is to prove estimates for the Lebesgue measure of the superlevel
sets and sublevel sets of minimizers of . In the next section, we will see that these
estimates are crucial for proving that the Llla . convergence, given by Theorem can be
improved to a uniform convergence (in the sense of the Hausdorff distance) on compact
sets of the level sets of u. to minimal surfaces.

The following density estimates are proved by Caffarelli and Cordoba in [11]

Theorem 1.4. (Caffarelli-Cordoba) Given o > —1 and § < 1, if u is a minimizer of
J in Br(z) and u(x) > o, then there exist a constant ¢ depending only on n and hy and
a constant ro(«, 8) depending on o, 3, n, and hy such that:

L"{u> B} N Bp(x)) > cr", (1.21)
L'{u < ByNBy(x)) > er” (1.22)

forr > ro(a, B), provided that Byyo(x) C Bgr(x).

Before proving this theorem we highlights another analogy between phase transitions
and minimal surfaces: all the ideas behind the density estimates for phase transitions and
the improving of the convergence for level sets come from analogous results for minimal
surfaces.

We recall the standard compactness theorem for sets with minimal perimeter, a proof
can be found in the book of Giusti [32].

Theorem 1.5. If E, is a sequence of sets with minimal perimeter in () then there exists
a subsequence Ey, that converges to a set with minimal perimeter E, i.e.,

XEn, — XE i1 Lj.(2). (1.23)

Now we can pass from this LlloC convergence to a uniform convergence on compact sets

using the following density estimates

Theorem 1.6. Assume that E has minimal perimeter in By and 0 € OF. There exists a
constant ¢ > 0 depending only on the dimension n such that for all r € (0,1)

LYNENB,)>c", LME‘NBy)>cr.

We see a perfect analogy between Theorems and about phase transitions, and
Theorems and about minimal surfaces. It is clear that, in order to prove the
convergence results for phase transitions, we use the same strategy as in the theory of
minimal surface. First of all we prove a compactness result and then, with the density
estimates, we improve the convergence.

There is a huge literature regarding density estimates for phase transitions, see for
instance [111,[52],[42],[41], and [23]. In this section we present the results achieved in [I1]
and, in particular, we adapt the techniques used in [52] to our specific functional .

Theorem is a direct consequence of the following result:

Theorem 1.7. Let u be a local minimizer of J in ), then:
(i) there exist positive constants ¢, ro (depending only on n and hg) such that
J(u, By(z)) < er™! (1.24)

for any r > ro, provided that B,ya(x) C Q;
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(ii) for any 6y € [0,1), for any 0 € (—6,60) and for any po > 0, if there exists K > 0
such that L"({u > 0} N Bg(x)) > po, then there exist positive constants c*, ro
(depending only on n and hgy) such that

L'{u>0}NB.(x)) >c"r" (1.25)
for anyr > rg, provided that B,y2(x) C Q. Analogously if L ({u < 0}NBk(x)) > o,
then

LM'{u < 0} N B, (x)) > cr" (1.26)

for any r > ro, provided that Byia(x) C Q.

Proof. For simplicity of notation we introduce two constants C' and ¢, depending only on
n and hg, that can change from line to line.

(i) We start by noticing that, from standard energy inequality, we have J(u, Bi(xg)) < C
provided that Ba(zg) C © . Indeed, we define the following function w on Ba(xz)
that depends only on 7 := |z — x|,

—1ifr<i1
w(r) = .
2r—=3 if l<r <2

From the fact that |u| < 1 we obtain the inclusion Bj(zg) C {w < u} C Ba(xp) and,
by comparing w with u on the open set {w < u}, we obtain

J(u, Bi(zg)) < J(u,{w < u}) < J(w,{w < u}) < J(w, Ba(xp)) < C.

We now fix g € 2 and r > 0 sufficiently large. Let g be a radial smooth function
that is identically equal to —1 on B,_1(z¢) and identically to 1 on 9B, (xg). We
define v* = min{u,g}. Clearly, since hg is bounded and ho(—1) = 0 we obtain

fBT(mO) ho(u”) = fBr(mo)\Brfl(aco) ho(u*) < Crn1.

Since in the H!-sense Vu* is equal to Vu or Vg almost everywhere, we conclude
that Vu* = Vg =0 on B,_1(zg). Therefore we have

J(u,Br(:co))SJ(u*,BT(:cO))gC(/B( N
(20 r—1(Z0

C / (V> + |Vg]?} dx + 771 <
( Br(wo)\Brfl(IO){ ; )

< C(/ |Vu)? da:—f—r"_l).
Br(z0)\Br-1(20)

Let us now cover By(zg)\By—_1(zo) with balls Bi(z1), ..., B1(zx) with radius 1 and
with K < Cyr™" ! for some constant C;.

\Vu*|? da + r”_1> <

IN

Now we have z; € B.(x9)\By—1(zo) for all i = 1,..., K and, given the assumption
B,i2(z) C Q, we have that Ba(z;) C Q for all ¢ = 1,..., K; hence J(u, Bi(z)) < C
and in particular fBl(Zi) |[Vul? < O for all i = 1,..., K. Then, from the estimates
above, we obtain

J(u, By (o)) < c(i /]3
=1

<C(Cyr™ 4Tl < el (1.27)

\Vul|? dz + r”_1> <
)

1(2:

for some constant c¢. The estimate (1.27)) is true for every zy € € such that
B, 12(z0) C 2, and this proves (i).
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(ii) We prove the estimate , the proof of the estimate being analogous. We
fix z € Q and for simplicity we define B, := B,(z). First of all we notice that it is
enough to prove (i7) for 6 close to —1. Indeed, assume the result is true for 6* close
to —1, and let 6 € [—6p, Op] with 6* < —0), then

po < L({u > 0} N By) < £L({u > 6*} N B).

In general we have that,
/ ho(u)dx > L"({0* <u <0} N Bg) inf ho(u),
B,.n{0*<u<6} u€[0*,60]
and with the assumption (1.7) on hg we have inf, (g« g, ho(u) # 0. We obtain the

following estimate:

" <L {u>0INB) < L'({u>60}NB)+L'{0F <u<0}NB,) <
ol

- ho(u)dz <

inf e+ 9] ho(u) Jp, olu)

<L'({u>0yNB,)+cr"h (1.28)

In the last inequality we used (I.24)) for the estimate [ ho(u)dz < J(u, B;) < ern 1L
Then we finally obtain:

< £"({u>0}NB,) +

er — o™t < L"({u > 0} N B,),

and for r sufficiently large, for some constant ¢, we obtain that cr™ < L"({u >
0} N B,). From these considerations, in the rest of the proof, we can assume that 6
is close to —1.

We use suitable positive parameters © and T": the idea is that we will fix © small
enough and then choose T suitably large. Set k € N, we introduce a barrier function
g=gk € CQ(B(k+1)T) so that —1 < g <1 in B(j41)r, g = 1 on dB(;11)r and also g
verifies the following inequalities:

g+1<Ce®T in Byr (1.29)
|Ag| <CO(g+1) in Byyiyr (1.30)

From the last inequality and from our assumption ([1.9)) on the potential we have, for
© small enough:

|Agl < VORy(9) in Biyryr- (1.31)
An explicit construction of g can be found in [45] or in [52] .
Define ¢ = § — Ce=©T, if T is large enough we have that ' > —1. Define also
o = min{u, g} and B8 = min{u —o,1+6'}.

Since g = 1 on dBj41)r we have that 8 = 0 on 0B41)r so we can apply the

Gagliardo-Nirenberg-Sobolev inequality and, using the elementary inequality Aa? +
2

% > 2ab for all a,b € R and A > 0, we obtain

20\
(f, o=) <) wive= BIIV| <
B+ Bkt1)r BiynyrN{u—o<1+0'}
< AC IVul? + |Vol|? - 2|VUHVU|)+
B(g+1yrM{u—o<1+6'}
c 2
+— (u—o)“ (1.32)

B(k_'_l)Tﬁ{u—O'Sl-‘r@/}
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Hence from ((1.32)) we obtain

2n nT_l
(/ = SAC(/ Vul? ~ [Vof* ~ 21V (u — )| Vo) +
Bk+1)T BetnyrM{u—o<1+0'}
c

- (u— o). (1.33)
A Bkrnyrn{u—o<1+6'}

_l’_

Now from the minimality property of u we obtain

(Vuft - voP) < [ (hol@) — ho(w)).

Bp+1yrM{u—o<1+6'}

/;(k+1)Tﬁ{u—cr§1+9’}

Using this estimate and an integrating by parts in (|1.33]) we finally get:

n—1

(/ ﬂ%)T SAC</ ho(a)—hg(u)+2Ao(u—a))+
B+t BprnyrM{u—o<1+6'}

C
+— (u—0)?, (1.34)
Bpt1yrM{u—o<1+6'}

where A is a free parameter, to be chosen suitably large in what follows.
Let us now define
A(r) = LB, Nn{u > 6}).

We now estimate the left hand side of (1.34)). From ((1.29)) we obtain that if 7" is big
(1—60) 1—6o)

enough we get § —g > === in By, hence we have 8 > =5 > 0in By N{u > 0}.

Thus there exists a constant C' such that the left hand side of (1.34)) is bigger than
n—1

CA(KT) = .

Let us now estimate the right hand side of (1.34]). First of all, we consider the
contribution in {u < 8}. We observe that, since —1 <o <wu <1,

(u+1)2—(a+1)2—%(u—0)2:
= (u+0)(u—0) +2u—0) — 5 (u—0) =

1 3
:(u—o)(§u+§a+2) > 0;

accordingly, recalling (1.9)), in {o < u < 8} we have
u

ho(w) — ko) = [ Hol€)ds >

> o/uu L e)de = Of(ut 1) — (0 + 1) >
> C(u— o) (1.35)

Consequently, choosing A suitable large and recalling (|1.31]), the contribution of the
right hand side of ((1.34) in {u < 0} is controlled by

/ (ho(o) — ho(u) + CVO hy(a)(u — o). (1.36)
B ynyrn{o<u<o}
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We now show that this quantity is indeed negative. Since we can choose 6 to be close
to —1, we have that hy and h{, are monotone in (—1,6). Hence, in {o < u < 6},
ho(o) — ho(u) is negative and, furthermore,

k(o) (u = o)| < |ho() — ho(u)].

Since we assumed © to be small, we have shown that the quantity in ([1.36]) is negative
and clearly we can consider in our estimates only the contributions in {u > 6} .

Let us now bound the right hand side of (1.34) in {u > #}. First we notice that this
term has no contribution in Byp: indeed, from condition ((1.29)), we have:

U<o+14+0 <g+1+0 <Ce®T+0—-Ce®T =9,
and this means that
BirN{o<u—0<+1+4+6}C Bern{o <u<6}.

Thus, from all the estimates above and from condition ((1.30)), it follows that the
right hand side of (1.34)) is bounded by

/ (ho(o) — ho(u) + (0 + D(w—0) + (u—0)).  (L37)
(Bro+1)r \Brr)N{u>0}

Now the integrand is limited, so this term can be bounded by:
CE"({U > 9} N (B(k+1)T\BkT))~ (1.38)

Collecting all the estimates, we finally get

CAKT))" " < A((k + 1)T) — A(KT). (1.39)
Let us define oy, := A(KT) — A((k — 1)T). Notice that

> o =ARD) = A((k—D)T) + A((k — D)T) = A((k — 2)T) + ...

1<j<k
= A(KT),
and therfore from inequality (1.39) we get
n—1
C( 3 aj> "< g (1.40)

Now by induction we prove that there exists a constant ¢ such that aj > ck™'. The
first step of the induction is true by hypothesis, indeed if we take T" > K we have
a1 = A(T) > A(K) > po. Suppose a; > cj"~! for evey j < k. We show the same
estimate for k 4+ 1. Recalling the elementary inequality fok 2" tdx < > <j<k gL,
we get

n-l n—1
Qg1 = C o) Tzo( X )
1<j<k 1<j<k
n—1
>C / n- 1d9:> "> oE >
> - —(k+1)""
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This proves that o > ck™ 1 for some constant c.

Now we prove that A(KT) > ck™ for some constant c. From all the above estimates
we have

A(KT) = Z aj >c Z g >

1<j<k 1<j<k

k c
> c(/ zn ! dm) > —k™
0 mn

From the estimate above we obtain:
L"({u >0} N (Byr) > ck™,

performing the change of variable k1" = r we finally obtain
£r({u > 0y N (B,) > %rn, (1.41)

and this proves (7).

Theorem follows directly from Theorem

Proof of Theorem[1.4 For simplicity we define B, := B,(x). Since u is a solution of an
elliptic equation, from regularity theory for elliptic partial differential equations (see for
instance [2],[4],[30]) we have that u is Hélder continuous, so in particular £"(B; N {u >
$1) = po > 0. Thus by Theorem

LBy N {u > %}) > ",

for r large enough.
Now we have two cases, § < § or 8 > 5. In the first case the theorem follows
immediately. In the second case we use the same argument used in the proof of Theorem

where we were restricted to the case 6 near to —1 (estimates ((1.28))). We obtain

e < LM ({u > %} N B,) < £"{u> B} N B,) +m({% <u<BINB,) <
1

infye(a g ho(u) /T ho(w)dr <

<L'{u>pB}N B+ er™

< £"({u> B} NB,) +

and, for r large enough, we finally get
LB, N{u > g}) > er.
O

In the next section, using Theorem we improve the convergence of the level sets of
minimizers of J.. The density estimates allow us to pass from a convergence in measure
(L}, convergence) to a uniform convergence (in the sense of the Hausdorff distance).
Combining this result with the regularity theory of minimal surfaces we will obtain an
asymptotic flat behaviour of the level sets of u, at least in low dimension.
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1.4 Asymptotic behaviour of level sets

We prove that the convergence in Theorem is stronger than L} . convergence. In
the previous sections we say that the convergence is, actually, a uniform convergence
on compact sets. We now define what actually means that a sequence of sets converge
uniformly on compact set to another sets.

We introduce the Hausdorff distance in R™:

Definition 1.4. Let X and Y be two subset of R", the Hausdorff distance between X and
Y is:

dp(X,Y):=infle>0| X CY.andY C X.}. (1.42)
Where X, is:
Xei=J{zeR"||lz— 2| < ¢} (1.43)
reX

We now prove, using Theorem [1.4] that the convergence in Theorem is a conver-
gence in the Hausdorff distance.

Corollary 1.8. Given  C R™ open, let ue be local minimizers for the energies J.(-, <),
then there exists a sequence ue, such that {u., = 0} converge in Hausdorff distance to OF,
where E is a set with minimal perimeter in §Q.

Proof. We assume by contradiction that dy ({uc, = 0},0F) > 0 for every k > k, for some
k. We have two possible cases:

Ell

(i) There exists 6 > 0 such that for &k >
325(2’0) Cc F.

exists xp € {ue, = 0} N Bs(zp), with

el

(ii) There exists § > 0 such that for & >
325(20) C E-.

exists xp € {ug, = 0} N Bs(z0), with

We analyze the case (7). From the estimate ([1.22]) we obtain that:
L"({ue, <0} N Bs(20)) > cL"(Bs(20)).

We recall that Bys(z9) C E, in particular xg(x) = 1 for every = € Bg(zp), from this
consideration and the estimate above we obtain:

1
1 Sf 1 — e, |de < /
{ue, <0}NBs(20) ‘ k’ C‘Cn(B5(ZO>) {ute,, <0}NBs(20)
_ L /
cL™(B5(20)) J{ue, <03nBs(z0)

11 — e, |dx =
|XE - UGk‘d‘r ? 07
k—o0

that is a contradiction. The case (i7) is similar. O

Our purpose, in this section, is to obtain an asymptotic behaviour of the level sets of
phase transitions. We have just proved that the level sets of the rescaled phase transitions
converge uniformly on compact sets to a minimal surface.

In order to obtain more precise results we must investigate the geometry of minimal
surfaces in R®. We summarize in the following theorem some fundamental results about
minimal surfaces:

Theorem 1.9. Let E be a set with minimal perimeter in R™, then the following holds:
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(i) if n <7, then OF is a hyperplane.

(i) The Simons cone { 23 + 3 + 23 + 23 < 22 + 22 + 22 + 22 } is a set with minimal
perimeter in RS,

(iii) If n < 8 and if we also assume that OF is a graph in some direction, then OF is a
hyperplane.

(iv) If n > 9 there exist non-affine minimal graphs

This Theorem combine several classical results. The main contributions are the papers
of De Giorgi [16] and [I7], Simons [51] and Bombieri, De Giorgi and Giusti [6]. A detailed
proof of the Theorem can be found in the book of Giusti [32] and a short proof of (ii) can
be found in the paper of De Philippis and Paolini [I§].

We consider u, a local minimizer of the functional in R” with n < 7, and we
assume that u(0) = 0. From Corollary and Theorem we have that {u., = 0}
uniformly converge on compact sets to OF, where F is a set with minimal perimeter in
R™. We have that OF is an hyperplane, because n < 7. We also have that 0 € JF because
e, (0) = 0 for every k, so we can assume, without lost of generality, that OF = {z, = 0}.
Indeed, if it is not true, we can rotate the coordinates in such a way that the hyperplane
OF coincide with the hyperplane {z,, = 0}.

We finally obtain that there exists a sequence d; — 0 such that:

(e, = 0} N By(0) C {|zn] < 1} (1.44)

If we rescale back the minimizers we obtain:
0
{u=0}NB1(0)C {|za| < :’f}. (1.45)
Ek k

This asymptotic behaviour is still true also if we assume that n = 8 and 9,,u > 0.
Indeed, in this case, we have that the level sets of u,, are rescaling of the level sets of u,
that is a graph in the e,, direction. We obtain that OF is a minimal graph in R® and, from
point (#4i) in Theorem we conclude that OF is a hyperplane.

All the arguments above are true not only for the 0-level set but also for all the s-level
sets, with |s| < 1. In particular is true for {u = s} with |s| < 1.

We notice that the estimate gives us an asymptotically flat behaviour of the
level sets: from the limit k& — oo we obtain information on the level sets in all R®. The
level sets are trapped into cylinders, and, if k& — 0o, we obtain that €, — 0, so the basis of
these cylinders tends to all R”. But we don’t know the behaviour of the heights of these
cylinders. Indeed if £ — oo we know that d; — 0 and €, — 0, but we don’t know the limit
of the ratio ‘z—:.

We notice that, if we can prove that f—: — 0, we can conclude that the level sets
of phase transitions, for which holds, are hyperplanes and this proves De Giorgi’s
Conjecture for this minimizers. Savin in [44] gives precise estimates on the behaviour of
the heights of this cylinders, using these estimates he proves De Giorgi’s Conjecture for
phase transitions. In the next Chapter we present the results achieved by Savin in [44].
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Chapter 2

Proof of De Giorgi’s Conjecture
for Phase Transitions

For simplicity, in this section we consider only the O-level set of the phase transition w.
We prove that the O-level set is a hyperplane, but all the arguments can be adapted to
the s-level sets, with |s| < 1. From now on we frequently use the following notation:
x = (2 2n) = (21,22, o, Tn—1, Tpn) € R™.

2.1 Main results

In this section we present the statements of the main theorems proved by Savin in [44],
that prove De Giorgi’s Conjecture for phase transitions.

We have seen in Section that, if in the estimate ([1.45)) we prove that f—: — 0, then
we conclude that the 0-level set is a hyperplane. In order to obtain this result Savin proves
in [44] the following theorem for level sets of u:

Theorem 2.1. (Improvement of Flatness) Let u be a local minimizer of J in {|2'| <
1} x {]zn| < l}. Assume that u(0) =0 and assume that there exists 0 <1 such that:

{u=0} c{|2/| <1} x {|zn| < 0}.

Then there exist small constants 0 < n; < 12 < 1 depending on n and hg such that:
given 0y > 0 there exists €1(6p) > 0 depending on n, hy and 0y such that if

? < €1(0p), 6o <0,

then
{u=0} N {|mex| < nal} x {|z - & < nal}
1s included in o flatter cylinder
{Imex| <mal} x {|z - & <mb},
for some unit vector &, where mex = x — (x - §)E.

This theorem is valid for any s-level set, with |s| < 1, but it was stated for s = 0 for
simplicity. We will study in detail this theorem in Chapter

Theorem gives us a precise estimate on the decay of the heights of the cylinders
in the estimate . Indeed the theorem heuristically says that, if the 0-level set of u

15
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is included in a flat cylinder, then, up to a rotation of coordinates, in the interior it is
included in a flatter cylinder. This result is fundamental beacuse tells us that the cylinders
that trap the 0-level set of u in the estimate becomes flatter if k& — oo.

This deep geometric interpretation of Theorem is crucial in order to prove De
Giorgi’s Conjecture for phase transitions.

Theorem 2.2. Let u be a local minimizer of the Ginzburg-Landau functional (1.6)) in R™
and u(0) = 0, then the following holds:

(i) If n < 7 then the level sets of u are hyperplanes.

(i) If n =8 and Oy, u > 0 then the level sets of u are hyperplanes.

Obviously, Theorem does not imply the full De Giorgi’s Conjecture Indeed the
conjecture is stated for critical points of the funcional J, instead Theorem concerns
local minimizers.

A direct consequence of Theorem is the following theorem that gives us a solution
for a weaker version of De Giorgi’s Conjecture:

Theorem 2.3. Let u € C?(R") be a solution of the partial differential equation

Au = hg(u) (2.1)
in all R™ such that:
lu| <1, Oy,u>0, lgn uw(x', x,) = £1. (2.2)

Then, if n < 8, the level sets of u are hyperplanes.

2.2 Proof of Theorems 2.2 and 2.3

In this section we prove De Giorgi’s Conjecture for phase transitions. We use Theorem
to prove the following lemma:

Lemma 2.4. Let u be a local minimizer of J in R™ with u(0) = 0. Suppose that there
exist sequences of positive numbers Oy, i, and unit vectors &, with I, — oo, lelzl — 0 such
that

{u=0} N ({Imex| < e} > {|l - &l < l}) T {lz- &l < O} (2.3)

Then the 0-level set is a hyperplane.

Proof. We fix 6y > 0 and we choose k large such that lelzl < € < €1(0y), where €1(6p)
is the quantity involved in Theorem If 6 > 6y then we apply Theorem and we
obtain that {u = 0} is trapped in a flatter cylinder with height 7,6;. We apply Theorem
repeatedly until the height ¢ of the new cylinder becomes less than 6.

In some system of coordinates we obtain

({u=0} N ({ly') < &} % {lyal < &})) € {loal < 03} < {lal < 00} (24)

Let 0;; be the height of the cylinder before the last application of Theorem we have
0, = 7719;;. We notice that, if we apply Theorem repeatedly, the lowest value of the
height of the cylinder that we can obtain is 6y, so 6y < 6;”. From this consideration we
obtain
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0;, =m0y, > mbo. (2.5)

Suppose we have applied Theorem m times: we have that [ = [yn5" and ) = Opn".
Recalling that n1 < 72, we finally obtain

9;6 Qk mym™ 9k
v — L = < = < €. 2.
l;g Iy, (772) i ¢ ( 6)

Combining the inequalities (2.5) and ([2.6)) we obtain:

)
U > .
k= €

We let € — 0 and then, from (2.4), we conclude that {u = 0} is included in a strip of
width 6y. The lemma is proved since 6y is arbitrary. O

Theorem is a direct consequence of Lemma

Proof of Theorem[2.3. We have that u is a local minimizer of J in R™ and u(0) = 0. If
one between the two conditions (7) and (ii) is true then, as we have seen in Section
the estimate is true for the 0-level set.

We define 6, = ‘z—: and [, = é, clearly Il — oo and Hklgl — 0. Now u is a local
minimizer of J that satisfies the hypothesis of the Lemma 2.4, We conclude that the
0-level set is a hyperplane. All these arguments can be adapted to a general s-level set,
with |s| < 1, then the theorem is proved. O

We now prove Theorem [2.3] The proof consists in showing that a solution in all of R™
of the equation that satisfies conditions (2.2), is a local minimizer of the Ginzburg-
Landau functional J. The first proof of this result was given by Alberti, Ambrosio and
Cabré in [1]. In this proof they used a calibration method, which is quite involved. Another
proof can be found in [34]. In this Thesis we present an easier version of the proof that
we can find in [9].

Proof of Theorem [2.3. Without loss of generality we can suppose that «(0) = 0. Indeed
if it is not true, from conditions , we can easily see that there exists y € R™ such that
u(y) = 0. We define @(z) = u(x + y) and we see that @ satisifes the conditions and
(0) = 0. If we prove that the level sets of 4 are hyperplanes, then this result is also true
for u, because u is obtained by translating .

We want to show that w is a local minimizer of J in R™. Let us consider the functions:

u'(z) := u(2’, x, +1), for any t € R.
By the monotonicity assumption we have that
ut <ot inR", ift <t (2.7)

Thus by the conditions we have that the graphs of u!(z), t € R, form a foliation
filling all of R™ x (—1,1). Moreover, we have that for every t € R, u! are solutions of
Aul = h{(u) in R™.

Given a ball B we prove that there exists a minimizer v : Bg — (—1,1) of .J in Bg,
such that v = u on 0BR. Let vy be a minimizing sequence for J in Bgr, we have that
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vy, = u on OBpR for every h € N. We show that the sequence vy, is uniformly bounded in
H!(Bg). Indeed |v;| < 1 and we obtain

/ v? < L"(Bg) < C, for every h € N.
Br

We have that vy, is a minimizing sequence, so J(vy, Bg) — L with L € R, in particular
J(vp, Br) < C < oo for every h € N. With this estimate, recalling that ho(u(z)) > 0 for
every © € Bp, we obtain the bound of the norm of the weak derivative

1
/ —|Vup|? < J(vp, BR) < C for every h € N.
Bp 2

We have that vy, is bounded in H'(Bg), in particular {v;,} is a precompact set in the
weak topology of H'(Bg). Then there exist a subsequence vy, and an element v € H'(Bg)
such that vy, converge to v in the weak H'(Bpr) topology. The domain Bp has a regular
boundary and then by Rellich-Kondrachov theorem we have that H'(Bg) CC L?(Bg).
Then there exists a subsequence of vy, that converges to v strongly in L?(Bgr). If we
consider another subsequence we have an almost everywhere convergence. Redefining this
subsequence by vy, we finally obtain the following convergences:

vy, — v in L*(BR),
Vv, — Vo in L?(Bg),
vy — v in L*(BgR),

vp, — v a.e. in Bpy.

We prove that v € H'(Bg) is a minimizer for J(-, Bg). We use the lower-semicontinuity
of the L? norm with respect to the weak topology in order to estimate the kinetic part of
the functional and we use the Fatou Lemma for the potential part of the functional. We
obtain

1
J(v, Br) :/ §‘V1}’2 +/ lizninfho(vh) <
Bgr Br —0

h—0

1
< liminf/ = |Vl + ho(vp) =
Br 2

= lim J Bp).
Lim, (v, Br)

From the fact that v, is a minimizing sequence we conclude that v is a minimizer of J
in Bgr and, from the fact that v, = v on dBg, we have that v = u on 0Bg.
In particular, v satisfies

Av=1v®—v inBp
lv| <1 in Bg (2.8)
v=1u on 0BR.

We prove that u is the unique solution of . From this fact follows directly that u
is a local minimizer of J in R"™.

By conditions we have that the graph of u!, in the compact set Bp, is above the
graph of v for ¢ large enough (see Figure . If v # u, let us assume that v < u at some
point in Bp (the situation v > u somewhere in Bg is done similarly). It follows that,



2.2. Proof of Theorems and 19

Figure 2.1: The foliation {u'} and the minimizer v

starting from ¢ = —oo, there will exist a first ¢, < 0, such that u!"
P € Bg. This means that u!" < v in Bg and u!" (P) = v(P).

From and from the fact that v = u = u" on OBg, the point P cannot belong to
OBpg, because t, < 0.

But then we have that «! and v are two solutions of the same semilinear elliptic
equation, the graph of u!" stays below the one of v, and they touch each other at the
interior point (P,v(P)). This is in contradiction with the strong maximum principle (see
Appendix A Corollary ).

We have proved that u is a local minimizer of J in R™ and, by hypothesis 0,, u > 0, we
apply Theorem and we obtain that the level sets of u are hyperplanes if n < 8. ]

touches v at a point
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Chapter 3

Mean Curvature Properties for
Phase Transitions

3.1 Zero mean curvature for phase transitions

To state our results, we need to recall some standard conventions about the sign of the
mean curvature of a paraboloid. Let us consider a hyperplane m C R™ with normal vector
v. Let S be a hypersurface and P a paraboloid with vertex at some point z, and let us
assume that they are tangent to each other and to 7 at x.

We say that P touches S from below at x in B,(x) if, for any y € S and z € P with
Y,z € By(x) and y — z in the same direction as v, we have (y — z) - ¥ > 0. An analogous
definition can be given for a paraboloid touching from above.

Figure 3.1: P touches S from below at x

Of course, up to a suitable choice of coordinates, one may assume that ¢ = 0,7 =
{z, =0} and v = e,. In this set of coordinates, the paraboloid P takes the form

1
{(x’,xn) ER"IxR:xz, = ix’ -Mz', M € Mat((n —1) x (n— 1))}

21
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We say that P has non-negative mean curvature if Tr M > 0. Analogously, one may
define positive, negative, non-positive and zero mean curvature. Obviously, the sign of the
mean curvature depends on the orientation of v, i.e., changing v to —v turns a positive
mean curvature into a negative one, and so on. Similarly, changing v to —v turns touching
from below into touching from above.

Using the above conventions we define the concept of zero mean curvature in a viscosity
sense:

Definition 3.1. Let S = OF be a surface. S satisfies the zero mean curvature equation
in the viscosity sense if the following happens:
let x* € S be so that for any r > 0,

LY((RNY\ E)NB.(z*) >0 and L"(EN B,(z*)) >0
assume also that S admits a tangent hyperplane in x*, then:

e if a paraboloid with vertex at x* touches S from below at x*, then its mean curvature
at ¥ must be non-positive;

e if a paraboloid with verter at x* touches S from above at x*, then its mean curvature
at x* must be non-negative.

In particular, if S is C? in a neighborhood of z*, then the mean curvature of S at z*
is zero in the classical sense.

We state the main theorem of this chapter. This theorem is fundamental in order to
prove the Improvement of Flatness Theorem.

Theorem 3.1. Let u be a local minimizer of the Ginzburg-Landau functional (1.6)) in R™
such that u(0) =0 and |u| < 1. Let o € (0,1) and M € Mat((n — 1) x (n— 1)) with

Tr M > o||M]|| and ||M]|| < o~ .

Let 1
I':.= {(m',xn) ceR" ' xR:z, = 53:’ . M:J;'}.

Then there exist a universal constant o* > 0 and a function og : (0,1) — (0,1) such that
if e € (0,00(0)) and o € (0,0%), then T cannot touch {u. = 0} at O from below inside the
ball Bg\ﬁ/\/m7 where ue 1s the rescaled phase transition. More explicitly,

L, ’ NG
{ue O}ﬂ{xn< 5% Mx}ﬂ{|x| < m}#@

Theorem says that {u. = 0} satisfies the zero mean curvature equation in the
viscosity sense, in which we have to specify the size of the neighborhood around the
touching point. Indeed Theorem [3.1] roughly speaking, tells us that if we take a paraboloid
with non-negative mean curvature, then this praboloid cannot touch {u. = 0} from below
at 0 in a neighborhood of 0. This fact proves the first point of Definition

As we have said above the fact that P has non-negative curvature and the fact that P
touches {ue = 0} from below are matter of conventions. Indeed, if we consider the opposite
orientation, i.e., changing v to —v, non-negative curvature becomes non-positive curvature
and touches {u. = 0} from below becomes touches {u. = 0} from above. Using this fact
we can reformulate Theorem in the following way: if P has non-positive curvature,
then P cannot touch {u. = 0} from above at 0 in a neighborhood of 0. This fact prove



3.2. Barrier functions 23

the second point of Definition For a rigorous proof that Theorem implies that
{ue = 0} satisfies the zero mean curvature equation in the viscosity sense see [50].

We know that {u, = 0} uniformly converge, on compact sets, to a minimal surface. If
we recall that minimal surfaces are surfaces with zero mean curvature, we can say that
{ue = 0} uniformly converge, on compact sets, to a surface with zero mean curvature.
Roughly speaking Theorem tells us that {u. = 0} attains a weak version of zero mean
curvature property even “before” converging to the limit surface. This fact is crucial, as
we will see in Chapter {4} for proving the Improvement of Flatness result.

The main purpose of this chapter is to prove Theorem and, in order to do this, in
the next section we introduce some useful “barriers” functions.

3.2 Barrier functions

Before going into the details of the argument, we would like to point out some heuristic
ideas underlying the construction given below. The crucial idea, which goes back to
De Giorgi, is that one dimensional phase transitions are the ones which encode much
information on the system. Following this belief, we will construct two barriers, which are
suitable modification of one-dimensional solutions.

The first barrier, built in Lemma is radially symmetric. More precisely is flat in a
ball and then radially increasing. Clearly, since the solution we consider does not has such
symmetry, this barrier may provide good bounds in some directions, but poor bounds in
other directions. Therefore, in the following section, we will have to slide this barrier to
obtain information in all the domain we are interested in.

The second barrier we need is constructed in Lemma [3.3l This is a modification
of a one-dimensional solution which takes into account the distance from the level sets.
Equation will relate the second derivatives of this barrier with the mean curvature
of the level sets of our rescaled phase transitions, from this relation we will obtain some
useful estimates.

Y

Figure 3.2: The function g¢; introduced in Lemma

We now construct the first comparision function (sketched in Figure [3.2)) that will be
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used in the proof of Theorem In what follows universal constants are constants that
depend only on n and hyg.

Lemma 3.2. There exist universal constants { > 1 and 0 < & < % so that, if | > 1, we can
find T; € [dl, %] and a non-decreasing function

g1 € C%(—o0,T)) N CH (—00,0) N C*((—cl, Ty) \ {0})

which is constant in an interval I containing (—oo, fé], with g; > 0 outside I, satisfies
01(0) = 0, gu(T}) = 1, and if we define

\I’y’l(x) =gz —y|—1), (3.1)

then WY is a strict supersolution of in the viscosity sense in By 4i(y) \ 0Bi(y).
Namely, g; is constructed as follows. There exist constants 0 < ¢ < C1,Cy so that, if
we define

8y 1= e_cal,

{ho(s)—ho(sl—l)—Cl2((1+s)2—sl2) ifsi—1<s<0

huls) = ho(s) + ho(1—s1) + Z((1— )2+ s(1—5)) f0<s<1,

d¢, forany s e (—1,1),

§ 1
Hi(s) ‘:/o NEG)

$ 1
Hols) ‘:/o V/2ho(€)

then the following holds:

d¢, foranys e (—1,1),

(i) hi(s) >0 in s —1<s <1;in particular, H; is well defined and strictly increasing
for s — 1< s <1 and thus we may define g;(t) := Hlfl(t) forte (ss—1,1);

(ii) gi(t) is defined to be constantly equal to s; — 1 fort < Hy(s; —1);

(iii) the following estimates on H; hold:

H(1) < %; (3.2)

Hi(si—1) > —: (3.3)

Hy(s) < Hy(s) — % log(1—|s|) V|s| <1-— e_c_ll/z; (3.4)
Hj(1— e~ /2) > gl (3.5)

Hj(e=®Y2 1) < —al. (3.6)

Proof. We will focus first on proving , , and the viscosity supersolution
property of W¥l,

The proof will consider separately the cases s; —1 < s <0 and 0 < s < 1. Let us first
consider the case s; —1 < s < 0. From condition ,

hl(S) Z ho(e* - 1)/2 (37)
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if * —1 < s <0, provided [ is suitably large. Also, in light of Lemma we get
ho(s) — ho(s; — 1) > ¢((1 + 5)% — s7), (3.8)
for s; — 1 < s < 0* — 1, therefore
const(hg(s) — ho(s; — 1)) < hy(s), (3.9)

for s; — 1 < s < 6* — 1, provided [ is sufficiently large. Now, from the inequality (3.7)) and
from the conditions on the potential ((1.11)), we conclude that h;(s) > 0in s; —1 < s < 0.

This shows that H; is well defined and strictly increasing in this case. Also, from the
definition of H; and from (3.7]), || and (3.9)), we obtain

—Hj(s; — 1) = const

\/hzi
—const(/* 1\/}”75 / mdﬁ)

0*—1 1
< const (1 + df)
s1—1 hl(ﬁ)
0*—1 1
< const (1 —|—/ dﬁ)
w1+ 8?7 - st
0
1
< const(l n / dg),
w1497 - s

hence, from Lemma we get

l
H(s;—1) > —5

provided ¢; is suitably small. This proves estimate ([3.3)).
We now show that W¥! is a viscosity supersolution of (I.5) when |z —y| < (i.e., when
s = ¢i(t) < 0; here and in what follows, we often use the notation t = |x — y| — [ and

s =gi(t) = T ().

Of course, if [z —y| < %, then ¥¥%!(z) = s, — 1 by (3.3) and the definition of g;.

Therefore, by Lemma [B.7]
AU () <0 < hy(s; — 1) = hy(UY(z)), (3.10)

showing that the viscosity supersolution property of W¥! holds in {¥¥%! = s; — 1}, and, in
particular, if |z — y| < % Hence, we can now concentrate on the case é <l|lzr—y| <l In

view of Lemma
2hi(g 1(9u(t))-

Thus, by Lemma [B.4] we have
n—1
|z -y
1
< hi(qu(t)) + K(n —1) hl(g(t))m

< hifg(ry) + =V I0) (.11

AV (z) = g"(1) + '(¢)
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for |x — y > , provided K is suitably large.
Hence, by deﬁmtlon of h;, we get (using again the notation s = g;(t))

hi(s) < ho(s) — ho(si — 1) < ho(s)

and o
2
() = ho(s) = =2 (L +)
in s; —1 < s <0, hence

2K(n—1)

AUV (z) < hj(s) — l

—(1+s)+

2(;2 ho(s), (3.12)

for s; — 1 < s < 0. By condition (1.8)), we get, for C5 suitably large,

2 2K(n—1
2246 (’;) o (s) (3.13)
and therefore
A\Ify’l(x) < h()(\liy’l(:n)) (3.14)

for s — 1 < g;(t) and |z —y| > L.

Estimates (3.10) and (3.14)) show that W¥! is a strict viscosity supersolution of
at any point x so that |z — y| < I. This proves that ¥/ is a strict supersolution of
ins;—1<s<0.

Let us now prove for e=@11/2 _ 1 < 5 < 0. Observe that by definition of hj,

recalling condition (|1.8]),

ho(s) — uls) < holst — 1)+ (14 )? = 57) < Ot + (1 45— 57)
2 (1+s)% (3.15)
provided [ is sufficiently large. Furthermore, from , and , it follows that
hi(s) > const(1 + 5)2, (3.16)

if e=@11/2 1 < 5 <0 and [ is large enough. Also, using Lemma we obtain

Hy(s) — Hy(s) = const

01 1
/ Vi€ Vho(€ dg
— Ccons \/hO \/hl
B t/ e

< const /0 ho(f) M (5)
B s (Vho(€) + V(€)/ho(E)h(€)

cons O ho(€) — h(€)
= t/s GNIGI

Consequently, from condition (1.8) and from the inequalities (3.15)) and (3.16[), we obtain

const / O de < _ const
l s 1+&T l

dg

Ho(s) — Hi(s) <

log(1 + s)
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thus proving for e=€11/2 — 1 < 5 < 0. This completes the proof in the case s; — 1 <
5 < 0.

Let us now consider the case 0 < s < 1. In this case, h;y > 0 by definition, thus Hj is
well defined and strictly increasing in [0, 1). Setting t = |z —y| —1 and s = g;(t) = P¥!(x),
we notice that s > 0 corresponds to |z — y| > [, therefore, arguing as in , we have,

K(n —1)y/h(g(t))

ATV () < By (gi(t)) + ]

(3.17)

if |x —y| > [, provided K is large enough. Since, by definition of h; and (|1.8)),
hi(s) < const(ho(s) + ho(1 — s1))

for Cy large enough, it follows that

K(n—1)

G2
z z

AUV (z) < hj(s) —
< ho(s);

(2(1 =) +s1) + V (ho(s) + ho(1 — s1))

if Cy is suitably large, where, in the last estimate, has been used once more to-
gether with the simplest inequality va + b < /a + vb. Thus UYl(z) is a strict viscosity
supersolution of for |z — y| > I, provided ¥¥!(z) is well defined.

We now need to prove in thecase 0 < s <1— e~C1l/2 To this end, first notice
that, if 0 <s<1-— e‘c_ll/2, we have 1 — s > /5; and therefore

| —

st < s1(1—5)2< (1 —s)?, (3.18)

l
if [ is large enough. The definition of h;, (1.8) and (3.18) imply that

(1—s)? (3.19)

1—s)? t
hi(s) — ho(s) < const (s% + (1=3) ) < cons
l l

for 0 < s <1—e 2 On the other hand, the definition of h; and (1.8) lead to
hi(s) > ho(s) + ho(1 — s;) > const(1 — 5)?, (3.20)

for 0 < s<1—e U2 Also we have that

Hols) — His) = !

1
= const / \/ho @ — \/hl d¢

= Ccons \/hl \/ho
i / hu(€) i
. hl(f) — ho(€)
= t/o (vho(€) +¢hl<5>)¢ho<€>hl<f>d§

* hu(§) — ho(§)
< const/0 ho(€)/(®) dg. (3.21)

Then, from estimates (3.18)), (3.19)), (3.21), condition (L.8) and Lemma [B.1] we obtain

const [ df const
=— log(1 —
1S S s — )

H(](S) — Hl(S) S
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if 0 < s <1— e 2 This proves (3.4]) in the case 0 < s <1 — e—Cil/2,
Let us now prove (3.2). Using the definition of H;, h; and (1.8]), we get

1 df 1 df
Hi(1) < const/0 N GETET < const/0 \/m

bode 1
< const —— < const log(—).
o 1=&§+s 5

This proves (3.2) provided ¢; is chosen to be suitably small.
In particular estimate (3.3)) says that, by construction, g; is constant in (—oo, —%]

Also, estimates (3.4) and ([L.8]) imply that

B 176_61“2 é_
Hy(1 — e al/2) > const/ e const = const -l — 1 > ¢,
0 _
provided [ is large enough and ¢ is small enough, and, analogously,
Hy(e ' —1) < —al,
proving (3.5) and (3.6)). These estimates also imply that g; is strictly increasing al least
in (—¢l, cl).
Also, if T} := H;(1), by (3.2)) and (3.5)), we have that T} € [¢l,1/2]. We finally notice
that the extension in (i7) is Cb!, since by Lemma ift =Hi(s;— 1),

gi(t) = v/2hi(gu(t)) = /2l (s1 — 1) = 0.

This ends the proof of Lemma (3.2 O

We now introduce the second comparision function. This function is an appropriate
modification of the comparision function in Lemma in order to deal with distance
function:

Lemma 3.3. Let 0 <e<o<d<1,£€R"™! and M € Mat((n—1) x (n —1)). Let T
be the hypersurface defined as

I:= {xn = gx' . Mx'+a§-x'} Nn{lz'| < g}
€
and assume that
TrM >0, || M| <2/6, € <1/0.

Define dr(zx) to be the signed distance of x from T, with the assumption that dr is positive
above T'.

Then there ezist functions oo : (0,+00) — (0,1) and Cp : (0,400) — (0,1) and a
number T, 5 € [0,Co(6)log(1/€)] such that if e < o < 0¢(d) we can find a function gr with
the following properties:

® gr € Cl’l(—oo,Tg(;);
e gr is constant in (—oo, —Cp(9) log(1/e€)];
e gr(0) =0 and gr(Tes) = 1;

o gr is C? with g non vanishing outside the set where it is constant;
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e gr(dr(x)) is a strict viscosity supersolution of (1.5)) in its domain of definition (that
is, provided dr(xz) < T, ).

Namely, gr is constructed as follows. Let ¢; > 0 be suitably small and let p € C*(R)
be a non-decreasing function so that p(0) = 0, p(s) = —1 for s < —1/2 and p(s) =1 for
s >1/2. For any s € (0,1) we define

hr := max{0, ho(s) + c10ep(s)}. (3.22)

Let s5¢ be the point near —1 for which ho(sse) = ci10e. Define also

5 1
Hr(s) = / = e
0 +/2hr(£)
Then:
(i) There exists a constant ¢ € (0,1) so that

1
Ve <14 s5. < 7#\@ (3.23)
(i1) for any ss. < s <1,

hr(s) > 0; (3.24)

in particular, Hr is well defined and strictly increasing in [sse,1]. Thus we may
define gr(t) :== Hp_l(t) for any t € [Hr(ssc), Hr(1)] and extend gr to be constantly
ss.e for t < Hr(sse). In particular, if gr > ss., then gp(t) > 0.

Proof. First we observe that (3.23) follows from ([1.8): indeed, if ¢ and C are as in (|1.8§]),

then
(20112 (2)

1/2 1/2
and we can choose ¢ = min{ (%) , (é) }

Without loss of generality we may assume s;. < —1 + 6%, in order to use . Note
that since by , hg is increasing in [ss ¢, 0%), we get ho(s) > cide in (s5¢,0%). Moreover,
from , if ¢1 is small enough we may suppose ho(s) > c¢1de for s5 < s < 0. From the
above discussions, follows.

Notice that the constant extension of gr is C1! since, by Lemma if t = Hr(ss,),

gh(t) = V/2he (gr(£)) = \/2hr(s5) = 0.

To estimate the domain in which gr is strictly increasing we have therefore to estimate
Hr(ss,) and Hp(1). Using Lemma one obtains

hr(s) > ho(s) — c10e = ho(s) — ho(sse) > const\/(l +8)2 = (1+ s5.)2 (3.25)
for any s € [s5., —1 4+ 6*]. On the other hand, for any s € [-1+ 6*,0], implies that
hr(s) > ho(—=140*) — c10e > ho(—1 + 6%)/2. (3.26)
Therefore, using the definition of Hrp, (3.23)), (3.25), (3.26) and Lemma we get
0 1 0 1 —14+0* 1
—Hr(ss,) = / —==d{ = —F==d{ + —=—=d{
’ ss.c V/2hr(€) —1+6+ 1/ 2hp(§) e \/2hr(§)
( —1+06* d€ ) 5 1
< const 1+/ < Cp(9) log(-),
e VOO () = Qs



30 Chapter 3. Mean Curvature Properties for Phase Transitions

or, equivalently,
1
Hr(ss.0) > —Co(6) log<g>. (3.27)

This completes the desired estimate on Hr(ss).
Let us now estimate Hr(1): from the definition of Ar and (L.8]),

B 1 1 1/2£ 1 d€
)= /0 NG CODSt(/o 1—¢ /1/2 Jel 2+ 0156)

1/2 d¢ 1 d¢
gconst</0 15-1—/1/21_5_1_\/&)
< const(1 — log(de)) < —Cy(0) log(e),

or, equivalently,
1
Hr(1) < Cy(6) log(g). (3.28)

The claims on the domain of gr are consequences of (3.27)) and (3.28]).
Now we deal with the proof of the viscosity supersolution property of gr. First of all
notice that in an appropriate coordinate system we have

—kq —kp—1
1—drk;” 7 1 —drk,_1’

D?dp = diag( O) € Mat(n x n),

where the k;, with ¢ = 1,...,n — 1, are the principal curvatures of I' at the point where
the distance is realized (see [31] for further details). We also define P as the paraboloid
describing T, i.e.,

P(') = %x’ Mz’ + o€ -2

Notice that, by hypothesis on M and &, |[VP| < 1; thus, by the mean curvature equation
(see, for instance, equation (14.103) of [31]), it follows that

n—1 -1

Sk Z ( ) = AP (D®PVP)-VP
pri- \/W T VIT VPR (14 |VPP)2

1
> gAP — const|VPJ?||D?P]|.

Consequently, if x is so that |dp| < Cy(0) log(%), since, by hypothesis on the paraboloid
P, we have that |k;| < C1(0)e, we obtain

n—1 n—1

Adr = TI"(DQdF) Z 1 _ drk Z ki — Z 1 irclifrk

S—Zkﬁ? (C1(9)e)* log(~ )

1
< _§AP + const|VP%|D2P|| + C1(6)e/?

= _g + Ca(0)(e0® +¢¥/%) < %+03(5) 12, (3.29)

all these estimates are true for € small enough.
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Therefore, if dr(z) € (Hr(sse), Hr(1)) (and thus, by (3.27) and (3.27)), |dr(z)| <
Co(6)log(1/€) and g{.(dr(x)) > 0), by Lemma [B.5| we have

Algr (1)) = gi(t) + g (1) Adr (1)
< g (1) = 50— Cal6)0")gh 1), (3.30)

where we are using the notation ¢t = dp(z). Taking into account Lemma by (3.30]) we
get

€
Agr(t) < hi(s) = (8 = Ca(8)a'/?)y/2hr (s),
where we are using the notation s = gp(dp(x)).
Now we choose og(8) small such that § — C4(6)a/? > §/2 for 0 < 0¢(6). Thus, if
|dr(z)| < Cp(d)log(1/e€) (and so s = gr(dr(zx)) > s5.), we have (recall also (3.24)) that
Agr(t) < hi(s) — constder/hr(s)
< h(s) + c10ep/(s) — constder/ho(s) + c1dep(s). (3.31)

We now claim that

c1p/(s) — consty/ho(s) + c1dep(s) < 0 (3.32)

for any s € (ss¢, 1), provided ¢; is small enough. Indeed, if s < —1/2 or s > 1/2, then
p'(s) = 0 and therefore the left hand side of is under control. On the other hand,
if s € (=1/2,1/2), then setting c* := infsc|_1/,1/2] ho(s) (which is strictly positive by
condition (L.8)), we bound the left hand side of by

c1]lp| oo — constv/c*,

which is negative for ¢; small enough. This proves (3.32)).

Therefore, by (B-31) and (3:32), if dr(x) € (Hr(ss.), Hr(1)), we get
Agr(t) < ho(gr(t)).

If else dr(xz) < Hr(ss,), we have

Agr(t) = 0 < ho(sse) = holgr(t)),
thanks to Lemma O

To sum up we have introduced in Lemma [3.2| and Lemma two different families of
strict viscosity supersolution of and we have investigated in details their geometric
properties. Now the goal is to use the geometric information that we have abuot these
functions in order to understand the geometry of the level sets of phase transitions.

In the next section we introduce the techniques that allow us to compare these barriers
functions to phase transitions.

3.3 Sliding techniques

We now develop some slide techniques that allow us to compare phase transitions with the
barriers functions introduced in the previous section. The results below are quite general,
indeed the theorems are valid for weak Sobolev solutions of and not only for local
minimizers of the Ginzburg-Landau functional.
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Lemma 3.4. Let u be a weak Sobolev subsolution of (1.5) in some domain 2. Then u
and WY cannot coincide in any open domain.

Proof. To simplify the notation, we set ¥ := %! B := Br,1i(y) and B’ := By(y). Let
7(1) € [1/2, (1 —¢)l] be so that V¥ is flat in B” := B.(;y(y). Then B” C B’ C B, the domain
of definition of ¥ is B and ¥ is C? outside 0B’ U OB". Suppose by contradiction that
u = V¥ in some ball B8 C B. Possibly taking a smaller ball, we may assume that

B (2N B)\ (9B’ UIB").

Hence v = W is C? in B; therefore, for any non-negative smooth function ¢ supported in
B we have that

/Qho(‘l’)80>—/QV‘I"VSOZ—/QVU'VSOZ/Q%(U)SO
Z/Qho(‘l’)%

which is a contradiction. ]

Lemma 3.5. Fizy € R" and letl > 0 be suitably large. Let u be a weak Sobolev subsolution
of in some domain Q. Suppose that u € CY(Q) and that |u| < 1. Suppose that
WY touches u from above at z*, i.e., Ut > u in their common domain of definition
QN Bry(y), and ¥ (z*) = u(x*), with * in the closure of QN Bry,4i(y). Then either
z* € 9Q or WY (z*) = u(z*) = 0.

Proof. To simplify the notation, we set ¥ := W¥! B := Br,(y) and B’ := By(y). Assume
that
xz* & 0. (3.33)

We will show that then ¥ (z*) = 0. First we prove that
z* ¢ 0B. (3.34)
Indeed, suppose the contrary. Let us consider the radial direction

¥ —y

Colar =yl

Then, by the construction in Lemma U(z*) =1 and VU¥(z*)-w > 0. On the other
hand, v < 1 and, since u(z*) = ¥U(z*) = 1, we have Vu(z*) = 0. Let @ := u — V. From
the above discussion, @ < 0 in BN Q and u(z*) = 0, therefore

Via(z*) - w > 0.

But then
0<V(u—-9)(z") w=-V¥ (") w<0,

which is a contradiction. This proves .

Due to and , x* is in the interior of 2 N B. Also, by Lemma u and ¥
cannot agree in any open domain. Then from this fact and Corollary 2* may only lie
on OB’ where ¥ = 0 and it fails to be a supersolution. O

We have proved two results that allow us to investigate the contact points between
u subsolution of (1.5)) and the barriers U¥!. Now we introduce results which allow us to
bound subsolutions of (I.5)) by the barriers W¥!.
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Proposition 3.6. Let u be a weak Sobolev subsolution of (L.5)) in some domain Q2. Suppose
that u € C*(Q) and that |u| < 1. Let y € R™ and l > 0 be such that

Biim(y) C{z € Qru(x) < —-1+0"}1 (3.35)
Then u(z) < WYL(x) for any = € Biy1y(y), provided 1 is sufficiently large.

Proof. We use the notation ¥ := W¥%!. Notice that ¥ is defined on Bjir,(y) and that, if

z € By (y) \ Bi(y), then
U(z)>0>—-1+0">u(x).

Therefore, by (3.35)), if the claim of Propositionwere false, there would be an open set
31 such that
UC By) cnfu<—-1+6%}, (3.36)

and so that ¥ < v in U, and ¥ = u on 9.
Consequently, there exists £k > 0 so that v := v —k < U in U, v < ¥ in OU and
v(x*) = ¥(z*) for some z* € Y. Note also that

v(z*) =¥(z") € (—1,0), (3.37)

since x* € U C By(y), and therefore
z* e B :=uUn{lv| <1} (3.38)
Since hy, is increasing in By, (y) (thanks to and the assumptions on the potential),
Av = Au > h{(u) = hy(u + k) > hj(v), (3.39)

weakly in 8.

Consequently, from Lemma [3.5] we deduce that either z* € 9B or v(z*) = 0. The
first assertion would contradict @D and the second contradict . This provides the
contradiction which proves the desired result. ]

Proposition [3.6| can be easily sharpened, giving a strict inequality, in the following way:

Corollary 3.7. Let u be a weak Sobolev subsolution of (1.5) in some domain 2. Suppose
that u € C*(Q) and that |u| < 1. Let y € R™ and | > 0 be such that

By (y) C{z € Q:u(zr) < -14+6"}. (3.40)
Then u(z) < WYt (z) for any x € Byyr,(y), provided | is sufficiently large.

Proof. By Proposition we know that u < W¥!. If there exists 2* for which the equality
holds, then ([3.40) and Lemma (3.5) would imply that u(z*) = ¥¥%!(2*) = 0, which is a
contradiction to ([3.40]). O

A result analogous to Lemma holds for the barrier gr(dr) constructed in Lemma
We state the result and we sketch the proof, a more detailed proof can be found in
[50].

Lemma 3.8. Let u be a weak Sobolev subsolution of (1.5) in some domain Q. Suppose
that w € CY(Q) and that |u| < 1. Suppose that gr(dr) touches u from above at x*. Then
x* e 0N
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Sketch of the proof. First notice that w and gp(dr) cannot be identically equal in any
open set: this can be proved by an easy modification of the argument in Lemma By
Corollary we infer that interior contact points may only lie in the region where gr(dr)
is flat, but this is not possible, see for instance [50]. Thus, z* cannot be an interior point.
This proves that either x* € 99 or lies in the boundary of the domain of gr(dr). We now
show that the latter possibility cannot hold. Indeed, on the boundary of the domain of
gr(dr) we have gr(dr) = 1. On the other hand, if z* lies on that boundary, but in the
interior of €2, then
w1 = (@) = gr(dr(a)

would give Vu(z*) = 0. Let now e be any direction pointing from x* outside the domain
of gr(dr) and let @ := u — gr(dr). Then from the hypothesis that gr(dr) touches u from
above at x* we have that d.u(z*) > 0 for any outher derivative. If e is taken to be outer
normal, however, then

Oe(gr o dr)(x") = gr(dr(z*))dedr (2*) = gr(dr(z”)) > 0.
Collecting the above estimates, we have
0 > —0e(gr odr)(z*) = Oct(z*) — Deu(x™) = Deti(z*) > 0,
and this contra,diction shows that the contact point may only lie on 0f2. O

The assumptions on subsolution u in Lemma Lemma (3.8 Proposition [3.6] and
Corollary are, in particular, fulfilled in the case where u is a weak Sobolev solution of
(1.5) satisfying |u| < 1. Indeed the C'-regularity is given by the results in [21].

3.4 Proof of Theorem [3.1]

In this section we prove the main result of this chapter. In order to prove this result we
use the barriers introduced in Section [3.2] and we slide these barriers according to the
results achieved in Section and we finally obtain estimates on the trace of the touching
paraboloid.

Namely we will see that Theorem is a direct consequence of the following theorem.

Theorem 3.9. Letl,0,5 > 0 and My € Mat((n—1)x(n—1)). Let u be a local minimizer of
the Ginzburg-Landau funcional (1.6) in [—1,1]". Assume that |u] <1 in [=1,1]", u(0) =0
and u(z) < 0 for any v = (2',x,) € [=1,1]" such that

0 , 0
n —_— . / _— . /‘
Ty < TPk Mz + lf x

Then there exist a universal constant 9 > 0 and a function o : (0,1) — (0,1) so that, if
0€(0,80), 6<8, 0/1€(0,0(0)], ||[M]l <1/8, |€] <1/0,
then Tr My < 4.

Proof. We remark that, by our assumptions, [ > ¢/0(d) and we will assume [ to be a large
quantity. Let g; and ¥¥! be the functions defined in Lemma We recall that T; € [el, é]
and it increases if [ increases, so we choose ¢; > 0 (independent of [) be such that

Tyyy 2 ail. (3.41)
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Define also

0
I = {(wl’fvn) € [_lvl]n Fn = 2l2x Mlx + § r }

Let us make some elementary observations on the above parabolmd. First of all, by
construction, u is negative below I'y in [—[,[]". Now we introduce a constant co > 0 that
we will specify later in the proof, by assumption (if (§)l/¢ is small enough),

'y C{]zn| < const /0} C {|x,| < const a(6)l/d} C {|zn| < cal/8}. (3.42)

Therefore,
l

{
Tn — C2g <dp,(z) <zp+ c2g; (3.43)
for any = € [—1,1]".
Given X € I'7 let vx be the normal direction to I'; at X pointing downwards and we

define a constant @ > 0 such that c
a+ §2 =c. (3.44)

Let also l ;
¢:={|2] < Z} x {x, € [—i,al]}.

We claim that

l
¢C U Bryiu(X+ (Z)VX). (3.45)
Xely

To prove this, take any £ € € and let X = X (£) € I'; the point that realizes the distance

dr, (€). By (343) we have

[ l l
dl"l S |:—§ - CQg, al + CQ§:| . (346)
This says, in particular, that |dr,| < 3[/4. Then the definition of € implies that X lies in

the interior of [—[,1]™ and therefore { — X is orthogonal to I'; at X, that is,

&= X+ 1lvy,
for a suitable 7 € R. Hence,
dr,(§) = —7l (3.47)
and l
o= (et ()| == (3.48)
Then by (3.47) and (3.46[), we have
TE [—a—c ! 1—I—c 1]
287 9 28 ;

and so, recalling (3.43)), we obtain

he Db (D) - [a-tie)

This and (3.48) imply that £ € B¢, 41/4(X
We now observe that
oL _ 6 _ o)

2 - 12(5 l

(I/4)vx). This proves the claim ((3.45]).

(3.49)
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The bound on the curvature of I'; given in implies that, if 0(d)/d is sufficiently
small, then, given X € I'y, there exists a ball of radius [/4 which touches I'; from below
at X.

The following is the decisive step towards the proof of the desired result. We claim
that

u(z) < 91 (dr,(z)), Vzecd. (3.50)
To prove (3.50)), first notice that, from Lemma and Corollary we infer that
u(z) < WO0=U2DH4 () vz e Bl/4+Tl/4(07 ey 0,=1/2).

Then, for a given X € I'; we define

l
X =X'(X):=X+ 17X

where, as above, we denote by vx the normal direction to I'y at X pointing downwards.
In particular, from the above observation, B;/4(X ') touches T'y from below at X. We now

slide the surface W(0--0:=1/2)l/4 in the direction of the vector
v=v(X)=X"—-(0,..,0,-1/2),
i.e., we consider the surface
Pt o= PO 02 Ht0l/A - for g S .
We will show that
V(&) > u(€) Vtel0,1), VE€ Byayr,,((0,...,0,=1/2) + tv). (3.51)

Indeed, let t € [0,1) be the first time at which ¥ touches u. First of all, note that, since
t < 1, we have u < 0 on 9B;;4((0,...,0,=1/2) + tv), while Ut = 0 there. Therefore, u
cannot be equal to ¥, and no touching points occur on dB;/4((0, ...,0,—1/2) + tv). On
the other hand, Lemma says that touching points cannot occur anywhere else. This
proves (|3.51]).

We now prove . We deduce from that W' (&) > u(¢) forany € € Bl/4+Tl/4 (X")
and, thanks to (3.41), ¢ € B /a4¢)1(X'). Therefore, taking now any ¢ € € and letting X'
be so that = € By aqe ) (X’) (recall (3.45)), we have

(e = X'| - 1/4) = WX (2) = ' (2) > u(a).

gi(dr,(z)) =g

This proves ([3.50)).

We now complete the proof by supposing that Tr M7 > §; under this assumption, by
Lemma gr,(dr,) is a strict supersolution of (L.5), where

L
1

Note that
Ty CH{|an| <o(6)(04+1/6)1} C {|zn| < col/8}. (3.52)
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Now we claim that, if /] and § are small enough, then the following estimates hold

th(s) < hl/4(3) Zf S65,e <s< =1+ 591_27 (353)
hry(s) > hyja(s) if 1—vo0l=2 <s < 1. (3.54)

If hp, = 0, then ) follows from (i) in Lemma [3.2} If, on the contrary, hr, > 0 and
s € [sse,—1+ \/>] then by definitions of hr, and h;,, by conditions and -,

(1+s)? 51/4
l l

1—|—s 2
+8l/4)

(-3~
< const( 9 ¢ -+ 51/4)
(-7

7constl)
)

which is negative for sufficiently large [, completing the proof of (3.53)). To prove (3.54]), we
use condition (1.8)), (3.23)) and the definitions of hr, and h;/4 to deduce that, if 1—v/00]—2 <

s <1, we have

hry (5) — hyyals) < const(—ae n Y ho(—14 s /4))

< const

= const

hry(s) = hya(s) > ho(s) + const de — hy4(s)

1—38)%2+ g2
> const e — ho(1 — 5/4) — cons.t()ll/4
(1-— 5)2 + 5l2/4
—)

60
> const ((56 _ 7 efconstl>

> const ((56 — 3l2/4 —

I3
= const(jg — % — e‘conStl),

which is positive if l is large enough, completing the proof of (3.54]).

According to and (3.54), the function s — Hr,(s) — Hj/4(s) is increasing for
s < —1+Vdé0l=2 and decreasmg for s > 1 — v/00l~2, therefore its maximum occurs in

[—1+36001-2,1 — /3602, i. e

max (Hp,(s) — H;/4(8)) = max Hr.,(s) — H;4(8)). 3.55
56[5576’1]( ra() als)) se[—1+W,1—W]( ra() als)) (3.55)

Also, recalling the definition of Hy in Lemma if s €[0,1— V0172,

Hr, (s / \/W ¢ < / ﬁ — Ho(s), (3.56)
and analogously, if s € [-1 + Vd60172,0],
- HF2 / \/W { / W _HO(S)' (357)

Hence from (3.56]) and (| -,

Hr, < Ho(s), Vse[-1+V0172,1—V501-2].
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Consequently, from ([3.4), if s € [-1 + Vd01=2,1 — v/66I—2], then

const 12
Hry(s) < Hyya(s) + <2 10g L
l 56
Therefore, by (3.57)),
const 12
Hr,(s) < Hy/y(s) + l log 50 Vs € [sse, 1] (3.58)

Furthermore, by definitions of I'y and T's, if || = [/4, then
dr, (.’L‘) > dr, (.’L‘) + 6(5)7

for a suitable ¢(d) € (0,1). Hence, using (3.58) and taking [ appropriately large, with
s = gl/4(dF1 (.’L’)),

const 12

Hr, (g174(dr, (%)) < Hyya(gi/a(dr, (2))) + 5 log 50

const 12
=dp, (x) + cone log — < dr,(z),
! 50
provided g;/4(dr, (2)) > 55, and |2'| = /4. We apply HF_; at the inequality above and,
since Hr, is incresing in [s;, 1],

91/4(dF1 (x)) < gr, (dF2 (x))’ (359)

for any x so that g;/4(dr,(z)) > ss5 and |2'| = /4. Of course, if g;/4(dr, (z)) < 85 then
(3-59) hold since g, (dr,(x)) > ss, by construction (recall (i) of Lemma [3.3). Thus,

giya(dr, (z)) < gr,(dr,(z)), V¥V such that |z| =1/4, (3.60)

provided that dr, () is in the domain of g;/4 and dr,(7) is in the domain of gr,. Notice
that the first of these conditions is implied by the second:

if dr,(z) is in the domain of gr,, then dr, (v) is in the domain of g;/, . (3.61)

To prove this, take x so that dp,(z) is in the domain of gr,. Then, by Lemma (3.3)) and

our choice of parameters,
l2
dF2 (.’E) S 00(6) 10g g,

and thus by (3.41)), (3.44) and (3.52)) we deduce that

02l l2 Cgl CQl
dr, () < dr,(z) + 4 S Co(0) log gt S5 Sal<Tyu,
which says that dr, () is in the domain of g; /4.
Now (B-60), (B-50) and (B.61) imply that
u(z) < gr,(dry(z)) (3.62)

for any z so that |2'| =1/4 and dp,(x) is in the domain of gr,.

With these estimates we are now ready to deduce the contradiction that will finish the
proof. To this end, we slide gr,(dr,) in the e,—direction till we touch u in €. Namely, we
consider, for t € R,

g' (@) = gry(dr, (z — ten)), (3.63)
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and, first of all, we want to show that there exists a time ¢ < 0 such that g’ touches u
from above. If we denote Dy the domain of gr,(dr,), then Lemma shows that Dy is
the subgraph of a paraboloid, namely

l2
DO:{mb@)gT@}g{xHSCM®k%5}. (3.64)

and also by construction if dr,(z) = T, then gr,(dr,(z)) = 1. Notice that, with this
notation, g* is defined in D; := Dy + te, and g* = 1 on the top of D;. Thus, if ¢t << 0,
then g* > u in Dy N €, since u < 0 below I';. On the other hand,

90(0) = gry (dFQ (O)) = gr, (0) =0= U(O),

therefore, there is a time ¢t < 0 of first touch of g* and w in D; N €. Hence, in view of
Lemma, [3.8] contact points may only happend either on the lateral side of the cylinder €
(i.e. |2'| =1/4) or in its two basis (i.e x, = —1/2 or =, = al).

Now the touching points cannot occurs in x, = «l, because x,, = al is the upper face
of the cylinder € and ¢t < 0, hence, if [ is large enough, D; lies below x, = al, due to
(13.64)).

We exclude the possibility of touching at z,, = —I/2. By applying (3.50)), (3.43) and
the fact that g;/, is constant in (—oo, —1/8], we deduce that, if x,, = —1/2, then

u(x) < gya(dr, (z)) < gija (a:n + @é) =i/ (é 4 c%) < g <_é>

-1 +e—constl < S5.c < gt(x)’

which rules out the possibility of touching at x, = —1/2.
Therefore, a contact point z* € Dy N € between u and g* does occur when |z/| = /4.
Notice now that, from Lemma

dr,(x* —tey) > dp,(x").
But then, since gr, is non-decreasing, we deduce from (3.62)) that

gr,(dr, (2" —ten)) = g'(2*) = u(a™) < gr,(dr,(z")) < gry(dr, (¢ — teg)).
This contradiction concludes the proof. O

Now, using Theorem [3.9] we can prove Theorem that is the main result of this
chapter.

Proof of Theorem[3.1. We apply Theorem [3.9 with the following choice of parameters:

1
e , 6:=0:=0% M =

= —2 ——
eTr M Tr M

M, &:=0.

By contradiction, if the claim of Theorem were false, by scaling back the phase tran-
sition u. and using the above parameters, we obtain that I'; touches from below the zero
level set of u inside [—[,1]™, where

0 9
I' = {(xla-rn) € R xR: 27l21', . Mlxl—l— 75 . 3;‘/},

By Theorem [3.9) we conclude that 1 > ¢ > Tr M; = 1, which is the contradiction that
proves Theorem O
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Chapter 4

Improvement of Flatness

4.1 Improvement of Flatness and Harnack Inequality

In this Section we study the Improvement of Flatness Theorem, that is the key result that
allow us to prove De Giorgi’s Conjecture for phase transitions.
We now recall the Improvement of Flatness Theorem:

Theorem 4.1. (Improvement of Flatness) Let u be a local minimizer of J in {|2'| <
1} x {]zn| < l}. Assume that u(0) =0 and assume also that there exists 0 <1 such that:

{u=0} c {|2] <1} x {|z.| < 0}.

Then there exist small constants 0 < n; < n2 < 1 depending on n and hg such that:
given 6y > 0 there exists €1(6g) > 0 depending on n, ho and 0y such that if

? <e1(fo), 6o <9,

then
{u =0} N{|mex| < nol} x {|z - | < mal}
18 included in a flatter cylinder
{[mex| <mal} x {[x - ] <mb},
for some unit vector £, where mex = x — (x - §)§.

This Theorem is a consequence of the Harnack inequality that is a weaker version of
the Improvement of Flatness Theorem:

Theorem 4.2. (Harnack Inequality) Let u be a local minimizer of J in {|2'| < I} x
{lzn| < 1}. Assume that uw(0) = 0 and assume also that there exists 0 <1 such that:

{u=0} c{|2/| <1} x {|zn| < 0}.

Then there exists small constant ng depending on n and hg such that:
given 0y > 0 there exists €1(6g) > 0 depending on n, hg and 0y such that if

0
<ei(by), 60 <6,

then
{u=0} N {|mex| < mol} C {|z- & < (1 —no)l}

for some unit vector &, where mex = x — (x - §)E.

41
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We will not prove this result, a proof of this Theorem can be found in [49].

We now present the mean ideas of the proof of the Harnack inequality. First of all we in-
troduce suitable barriers functions constructed from the one dimensional phase transitions,
and we introduce slide techniques in order to compare this barriers with the minimizer wu.
Then we need some very precise estimate on the measure of the contact points between the
minimizer v and the barriers. Very roughly, we can say that the final target of the proof
consists in deducing measure estimates in the above mentioned contact points, which, if
the statement of Theorem where false, would contradict the minimality of w.

Before proving the Improvement of Flatness Theorem we highlights another analogy
between phase transitions and minimal surfaces. A result similar to the Improvement
of Flatness Theorem holds for minimal surfaces. Indeed we have the following Harnack
inequality for minimal surfaces:

Theorem 4.3. Assume E is a set with minimal perimeter in By and
OE N By C {|zn] < €}.
Then there exist two constants €1 and 0 < n < 1 such that if € < €1 we have

@EHB% C {lzn] <e(l—n)}.

Now from this theorem we can prove the Improvement of Flatness Theorem for minimal
surfaces

Theorem 4.4. Assume E is a set with minimal perimeter in B1, 0 € OF and
OE N By C {|zn] < €}.
Then there exist two constants €1 and ro and a unit vector v such that if € < €1 we have
OEN By, C {|z-11] < %7‘0}.

We notice that the geometric interpretation of Theorem [4.4]is similar to the geometric
interpretation of Theorem Indeed Theorem says that if a minimal surface is
included in a cylinder then, in its interior, it is included in a flatter cylinder. Theorem [£.4]
is deeply used in order to prove smoothness and analytic regularity of minimal surfaces
(see for insatnce [32])

4.2 Proof of the Improvement of Flatness

We assume by contradiction that Theorem does not hold. This imply that, if we fix
Oy > 0, there exist uy, 0, and I, for which:

C1 uy is a local minimizer of the Ginzburg-Landau functional in {|z| < I} x {|xn| < Ik}
with u(0) = 0.

C2 {uj, =0} C {|2'| < Ik} x {|n| < 64}, with 6 > 6p and & — 0 when k — oo,
but the thesis of Theorem does not hold. Let us consider the following rescaling:

, T Tp
- = 4.1
y=00 =g (4.1)
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We define T'(2/, x,) = (v, yn). We also define

A =AW yn) st T yn) € {ur = 03} = T({ug = 0}).

STEP 1: There exists a Holder continuous function w : R®~! — R such that if we
define

1
Avo = {y, w(¥)), v < 5
then, for any € > 0, A N{|y/| < %} lies in a e—neighborhood of A, for k sufficiently large.

Proof of Step 1. Let us suppose that

. 1
Yo = (¥ yon) € Ap, with |yg| < o

Then ug(lkyg, Okyon) = 0, and so, by means of (C2), |0xyon| < O;therefore, using again
(C2), we infer that

{ug = 0} C {|zy — Okyon| < 20k}
We can exploit Theorem [£.2]in the cylinder
l
{|2" — lyyp| < 5’“} X {|Zn — Oryon| < 20} C (4.2)
C {l2"] <t} x {lanl < U}

and get that there exists a universal constant 1y > 0 such that

l
{ur, = 0} N {]2" — eyl < 7705} C {|n — Okyon! < 2(1 —n0)bk},

provided

@ S 60(290),
Uk

where €((+) is the one given by Theorem Rescaling back, we get

7o
A {ly = yol < 5} C {|yn — yon| < 2(1 —mno)}-

By iterating, we get

Ak {ly = vl < 5} € Ly — woul < 20— m0)"™}, (43)
provided
40 _ .
T: < eo(2(1 = 10)™6p). (4.4)

We now fix my € N and consider m < myg (later on, during a limit procedure performed
later, we let my — 00). Notice that in this setting, (4.3 (and therefore (4.4))) is fulfilled
for k suitably large, say k > k*(myg). We claim that Ay N {]y’| < 1/2} is above the graph
of
\Ilymk(y,) = Yon — 2(1 — o)™ — O‘|y, - y(,)|67 (4.5)
where « and 8 depend only on 7).
In order to prove this, let (v, yn) € Ar N {|y'| < 1/2}. Since |yp| < 1/2 we have that
mQ
|y — yy| < 1. Now, we consider three different cases: the case |y — yj| < 2, the case

mQ
%T <l|y —y| < %, and the case % <y —yp| < 1.
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mo
In case |y’ — yo| < 20—, ([&5F) follows immediately from (4.3)), with m = my. If, on the

m

0
other hand, UOT <l|y —yp| < %, then we argue as follows. We first note that, in this case,
there exist m with 0 < m < mg and p with 0 < p < 1, such that

+1 D
W < 16
<l vl < (4.6)
Consequently, from (4.3), we have that
2(1 = 10)" > [yn — Yonl- (4.7)
By (4.6) and the fact that 0 < 79 < 1, we also get
_ AN |
comeW i
In(--)
10

In particular, it follows that

*ln(Qlyi*y/ol) 1
A-m)"<(-m) "W =
L ey — Y —v0D)”

(1 —mo) (1 —mo)

!

where 1= — =02 1n(2|y1/_y0|).
0
Therefore, recalling (4.7)), it follows
96+1
o < 2 B
|yn yO’rL‘ = (1 _ no)‘y yO‘ )

which is the desired result, with « := (fﬁ;). Finally, adding a constant to «, the result

also follows for the case |y — yg| € [1/2,1].

Note now that, as yg varies, ¥, . are Holder continuous functions with Holder modulus
of continuity bounded by the function at? (recall that my is fixed for the moment, and
that o and /8 depending only on 79). Therefore, if we set

Ur(y') = sup Wy k(y),
lyhl< 2, yo€A,

then vy, is a Holder continuous function (with Hélder modulus of continuity bounded via
the function at?), and A, N {|y’| < 1/2} is above the graph of vy.

Arguing in the same way, possibly taking « and ( larger (depending only on 1), we
also get that, if we define

Oy 5 (V) = Yon +2(1 —10)™ + aly’ — yh|?,

then A N {|y’| < 1/2} is below the graph of ®,, . Arguing as above we define

oe(y) = sup Dy k(y),
lysl< 3, yo€AL

so that ¢ is Holder continuous function (with Hélder modulus of continuity bounded via
the function at?), and A, N {|y’| < 1/2} is below the graph of ¢.
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In particular Ax N {|y’| < 1/2} lies between ¥, (y') and ¢x(y') for any k > k*(my) and,
by construction,

0 < ¢r(y') — Yr(y') < 4(1 —mo)™. (4.8)

Also, for mg fixed, by Ascoli-Arzela Theorem, letting k — oo, it follows that ¥ (y')
uniformly converges in |y/| < 1/2 to a Holder continuous function which depends only on
mop, Say
wk(y,) k—> w?’_no (y/)
— 00

Analogously, we find an Holder continuous function w:,CLO, such that

Dr(y') —— w, (y)

k—o0
uniformly.
Also, by construction, we have that w;,, < w;}, and that AxN{]y’| < 1/2} lies between
the graphs of w,, — § and w,‘;O + 5 for k large.

Let now mg — co. In this case, by Ascoli-Artzela Theorem, (we remark that, by con-
struction of @ and 5 above, the Holder constants of wio depend on 79, but are indipendent
of mg ) we get that there exists a Holder continuous function w such that w,, uniformly
converges to w. By , also w;go uniformly converges to w. This conclude the proof. [J

STEP 2: The function w constructed in the first step is harmonic.

Proof of Step 2. We prove that w is harmonic in the viscosity sense. Then it follows that
it is harmonic in the classical sense (see for instance [g]).
Let P be the quadratic polynomial

1,
P(y) = 5y My +¢-y.

Assume, by contradiction, that AP > 0, that P touches the graph of w, say at 0, and that
P stay below it in |y/| < 2r, for some r € (0,1). Let now dy > 0 be the universal constant
of Theorem [3.9 and let us define

) A 1 5 1
0:= mm{(zef) E 290|1]M||’ 292\@’ (2700) 2“”}'

Thus, J is such that

1 1
AP > 252 M| < — <
626y < %0. (4.9)

Note that, eventually replacing § with 26 and P(y’) with P(y') —4§|y/|2, we may assume,
with no lose of generality, that P touches the graph of w at 0 and stays strictly below it
in |y'| < 2§ < 2. Therefore, since A N {|y’| < 1/2} uniformly converge to the graph of w,
it follows that, for k large, we find points yi = (Y}, Ykn) close to 0, such that P(y") — K,
touches Ay at (Y., ykn) and stays below it in |y’ — ;| < J, for an appropriate K, € R. In
particular, we have

1,
Y+ Ki = 5y My +€-y/. (4.10)

Let us now consider the following translation

/

z :y/_y;ca Zn = Yn — (ykn+Kk)'
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Exploiting (4.10)) we find a surface

1.
Zn = §zTMz’+£k-z',
with
&= My, +¢

that touches Ay at the origin and stays below it in |2/| < §. Notice also that, by construc-
tion,
&l < o (4.11)
M= 50, '

Rescaling back, we get that the surface

O 1 T 0, Ok /
= Tk Ty :
Tn, l;% 2:17 r + I ST
touches {ur = 0} at the origin and stays below it, if |2/| < dl;. We write now the above

surface in the form , ,
0“0k 1 , 070 1 ,
v (6lk)22$ v Oly, 5§k v

and we exploit Theorem [3.9] we obtain that
AP < 520,

against the assumption. This contradiction shows that AP < 0. By arguing in the same
way, one may prove that AP > 0 if P touches w by above, so Step 2 is proved. O

CONCLUSION: Since w is harmonic, by standard elliptic estimates (see for instance
[31]) we have that ||D?w|| is bounded on compact sets. Therefore, since by construction
w(0) = 0, by Taylor’s formula, it follows that

w(y') = Vw(0) - | < C'3,
for |y'| < 2m2. In particular, for 79 sufficiently small, setting
¢ = Vw(0),

we get that there exist positive constants 0 < n; < n2 < 1, for which

lw(y') — ¢ -y < % (4.12)

for |y'| < 2ns.
Now let us consider

(¢ -1)

ﬁ 112 1

Consider the rescaling given by (4.1]) we obtain

& = (4.13)

{’ng:liy < T]QZk} X {|€k . :13| < nglk} C {‘3}/’ < 27]2lk} C {]a:’| < lk/2} (4.14)
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Since Ap N {|y'| < 1/2} uniformly converges to the graph of w, for k sufficiently large
(thanks to Step 1), we may suppose that A, N{]y'| < 1/2} is in a % —neighborhood of the
graph of w. Consequently, by (4.12]), taking into account the rescaling, it follows that

0 3
{ue = 0} 0 {l2’| < 1/2} C {lan — ff’ '] < 10k}
From (4.13)), we have that

{ur = 0} 1 {12'] < /2} € {le &l < S0um),

which, toghether with (4.14)), is a contradiction with the fact that u; does not satisfies the
statement of Theorem [£.1] This end the proof of Theorem 4.1}
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Appendix A

PDE Tools

In this appendix we recall the basic concepts we need about the theory of viscosity solutions
for partial differential equations and we present some classical comparision results. The
references for a more detailed presentation of the theory of viscosity solutions for second
order partial differential equations are for instance [35] or [13].

We will first consider a general degenerate elliptic second order partial differential
equation, and then we will focus on the particular equation ([1.5).

Let © C R™ be an open set and let F': Q x R x R™ x R™ — R be a continuous function
such that for any two symmetric matrices X and Y such that Y — X is positive definite and
any values z € , u € R and p € R" we have the inequality F(z,u,p, X) > F(z,u,p,Y).
We consider the following partial differential equation

F(x,u, Vu,D?u) =0, in Q. (A.1)

This equation is called degenerate elliptic. We now introduce the definition of viscosity
solution for a degenerate elliptic equation

Definition A.1. Let u € C°(), we say that u is a viscosity supersolution of if,
whenever xg € Q and ¢ € C*(Q) are such that u(xg) = ¢(x0) and u(z) > ¢(x) in Q, we
have

F (20, ¢(0), Vo(o), D*(x0)) > 0. (A.2)

Analogously, we say that u is a viscosity subsolution of (A.1) if, whenever xo € Q and

¢ € C*(2) are such that u(zo) = ¢(x0) and u(x) < ¢(x) in 2, we have
F (w0, ¢(x0), Vo(xo), D*(x0)) < 0. (A.3)
u s called viscosity solution if it is both viscosity subsolution and viscosity supersolution.

During Chapter 3, in order to show that the barriers functions are strict supersolution
of the equation , we have not used Definition We have used another charac-
terization of viscosity supersolution for second order partial differential equations. Now
we want to explain the characterization that we used in order to prove that the barriers
functions are viscosity supersolutions. First of all we introduce the superjects and the
subjects of a function wu.

Definition A.2. Let u: 2 — R be a continuous function, we define

e the superject of u at x € Q is denoted by J>+u(x) C R™ x Sym(n) and it is defined
in the following way

(p. X) € J*Fu(z) <= uly) <ul@)+p-(y—2)+ %X(y—x) (y—a)+olly — )
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e the subject of u at x € Q is denoted by J> u(x) C R™ x Sym(n) and it is defined in
the following way

_ 1
(p, X) € J*Tu(@) == uly) > u(@) +p-(y—2)+ ;X (y—2) - (y —2) +olly — 2*)
We now present the result that gives us an equivalent definition of viscosity subsolution

and viscosity supersolution:

Proposition A.1. Let u: Q — R be a continuous function, then the following are equiv-
alent:

(i) wu is a viscosity subsolution (resp., supersolution) of (A.1))

(ii) for every x € Q and (p, X) € J*>Fu(z) (resp., J> u(x) ) we have F(x,u(z),p, X) <
0 (resp., >)

Proof. The proof of this theorem can be found in [I3]. O

In the Lemmas|3.2] and we have used the characterization of viscosity supersolution
given by the Proposition In our case the function F has the following form:

F(x,u, Vu, D*u) = —Au + hj(u),
and, during the proof of Lemmas and we have proved that
— Au(z) + hy(u(z)) =0, (A.4)

when x was in a region where u was C?.

This proves that u is a viscosity supersolution because, in the region where u is C?, we
have that J%~u(z) = {(Vu, D?u)} and the estimate proves (ii) of the Proposition
If the inequality in is strict we call u strict viscosity supersolution.

Now we state two comparision principle that are useful during the proof of the main
results.

Theorem A.2. (Strong Comparision Principle 1) Let Q be an open subset of R™, let
A €R and let u,v € CH(Q) satisfy (in a weak sense) the following inequalities

—Aut+Au< -Av+Av, u<wv inf.

If there exists xog € Q such that u(xzg) = v(xg) then u = v in the connected component of
Q containing g

Proof. We can find a proof of a more general result in [2I]. This theorem is a particular
case of Theorem 1.4 in [2]] O

An easy consequence of the above result is the following one, which is very useful for
our applications

Corollary A.3. (Strong Comparision Principle 2) Let 2 be an open subset of R™,
and let u,v € CY(Q) satisfy (in a weak sense) the following inequalities

—Au+ f(u) < -Av+ f(v), u<wv inQ,

with f locally Lipschitz continuous. If there exists xg €  such that u(zg) = v(xg) then
u = v in the connected component of § containing xg.



o1

Proof. Let € > 0 be so that B.(zp) C 2 and let

My, = maX{HuHLOO(BE(xO))a ||U||L°°(B€(xo))}a

e @) - 1)1

sup
(ULVI<Muw, U2V} U= V]|

Then

—Au~+Au < —Av+ f(v) — f(u) + Au < —Av+ Alv — u| + Au
=—-Av+A(v —u) + Au= —Av + Av,

hence the result follows from Theorem [A2] O
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Appendix B

Technical Lemmas

In this appendix we collect some elementary lemmas and technical lemmas that are useful
during the proofs of the main results. The proofs of this lemmas can be found in [50].

Lemma B.1. There exists a positive constant C such that

a—>b
Va-VbsCo=—o

foranya>b>0, a#0.
Lemma B.2. For any 0 < s <t < 6%,

ho(—141t) — ho(—1 + 5) > c(t? — %)
for a suitable constant ¢ > 0

Lemma B.3. There exists a positive constant C, so that

0 ~
. \/(Hd;iz_cp <01 Hog(%))

forany0<a<b<1

Lemma B.4. Let U be an open subset of R. Let g € C*(U) and assume that g has no
critical points. Define

() = g(|a —y| = 1).
Then, fort = |z —y|—1€ U and x # y, we have
n—1

(@) = (1) + 9 (O~

Lemma B.5. Let U be an open subset of R. Let g € C*(U) and assume that g has no
critical points. Let T' be a smooth hypersurface in R™ and let dp(x) be the distance function
to I'. Suppose that if x € Q, then dr(xz) € U. Then

Ag(dr(x)) = ¢"(dr(x)) + ¢'(dr(z))Adr(z)

Lemma B.6. Let I 3 0 be an interval of R and let h € CY(I) satisfy h(s) > 0 for any
sel. Let
d¢, foranys € 1.

8 1
H(s) .:/0 7*2}1(5)
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Define also g as the inverse of H, that is, g(t) = H~'(t), for any t € H(I). Then
g€ C*(H(I)) and

g'(t) = V2h(g(1), ¢"(t) =N (g(1)),
foranyt e H(I).

Lemma B.7. Let Q be an open domain in R™ and let xg € Q. Let w € CYQ) and
v:= Vw(zg). Assume that there exists w € R™\ {0} such that

w(zg+z) <v-z+w(xp)

for any x € R" so that v + 29 € Q and @ -x > 0. If P € C?(Q) is a quadratic function
touching w from below at xo, then AP < 0 in the viscosity sense. Analogously, if

w(xo+x) > v-x+ w(xo)

for any x € R™ so that v + 29 € Q and @ -x > 0. If P € C*() is a quadratic function
touching w from above at xg, then AP > 0 in the viscosity sense.

Lemma B.8. Let M € Mat((n — 1) x (n— 1)) and V € R"'. Define the paraboloid
1
I:.= {(:U',:En) ER"I xR:z, = 51" M2+ V- af;'}.
Let dr be the signed distance to . then for any T >0

dr(z + 7en) > dr(z).

Lemma B.9. Let u be a local minimizer of the Ginzburg-Landau functional in [—1,1]".
Then, if | is large enough, the following happend: given w € S~ ', there exist a universal
constant L so that, for any k > L,

e if {fu=0}N{lz - (w- 2w <k} C{w-z>—L}, then u < =1+ 6" for any
= (2',2,) € R" ! x R satisfying

ol

k
w'atg—g and |z — (W 2)w|eo < =;

[\

o ifflu=0n{lr— (W 2wl <k} C {w-z < L}, then u > —1+ 0% for any
r = (2',2,) € R" ! x R satisfying

k

w-ng and |z — (W T)w|eo < =

_2'



Bibliography

1]

G. Alberti, L. Ambrosio, X. Cabré: On a long-standing conjecture of E. De Giorgi:
simmetry in 3D for general non linearities and a local minimality property, Acta Appl.
Math., 65 (2001), 1-3, 9-33.

L. Ambrosio: Lectures Notes on Elliptic Partial Differential Equations, http://cvgnt.
sns.it/media/doc/paper/1280/PDEAAA.pdf

L. Ambrosio, X. Cabre: Entire solutions of semilinear elliptic equations in R3 and a
conjecture of De Giorgi. J. American Math. Soc. 13, (2000), 725-739.

L. Beck: Flliptic Regularity Theory - A first course, Lecture Notes of the Unione
Matematica Italiana 19, Springer, (2016)

H. Berestycki, L. Caffarelli, L. Nirenberg: Further qualitative properties for elliptic
equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997),
no. 1-2, 69-94.

E. Bombieri, E. De Giorgi, E. Giusti: Minimal cones and the Bernstein problem. Invent.
Math. 7 (1969), 243-268.

G. Bouchitté: Singular perturbations of variational problems arising from a two-phase
transition model. Appl. Math. Optim. 21, 289-314 (1990)

X. Cabré, L. A. Caffarelli: Fully Nonlinear Elliptic Equations. Colloquium Publications
43, American Mathematical Society, Providence, RI, (1995)

X. Cabré, G. Poggesi: Stable solutions to some elliptic problems: minimal cones, the
Allen-Cahn equation, and blow-up solutions. https://arxiv.org/pdf/1802.01992.
pdf

[10] J. Cahn, J. Hillard: Free energy of a non uniform system I. Interfacial free energy.

J. Chem. Phys 28 (1958), 258-267

[11] L. A. Caffarelli, A. Cordoba: Uniform convergence of a singular perturbation problem.

Comm. Pure Appl. Math., 48 (1995), no. 1, 1-12.

[12] H. Chan, J. Wei: On De Giorgi’s conjecture: recent progress and open problems, Sci.

China Math. 61 (2018), no. 11, 1925-1946.

[13] M. G. Crandall, H. Ishii, P.L. Lions: Users’s Guide to Viscosity Solutions of Second

Order Partial Differential Equations Bulletin (New Series) of the American Mathe-
matical Society Volume 27, Number 1, (1992)

95


http://cvgmt.sns.it/media/doc/paper/1280/PDEAAA.pdf
http://cvgmt.sns.it/media/doc/paper/1280/PDEAAA.pdf
https://arxiv.org/pdf/1802.01992.pdf
https://arxiv.org/pdf/1802.01992.pdf

56 Bibliography

[14] L. Damascelli: Comparison theorems for some quasilinear degenerate elliptic opera-
tors and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré
Anal. Non Linéaire 15, 493-516 (1998)

[15] E. De Giorgi: Convergence problems for functionals and operators. Proc. int. Meeting
on Recent Method in Nonlinear Analysis (Rome, 1978) Pitagora, Bologna (1979), 131-
188

[16] E. De Giorgi: Frontiere orientate di misura minima (Italian). Seminario di Matemat-
ica della Scuola Normale Superiore di Pisa, 1960-61 Editrice Tecnico Scientifica, Pisa
(1961)

[17] E. De Giorgi: Una estensione del teorema di Bernstein (Italian). Ann. Scuola Norm.
Sup. Pisa (3) 19 (1965), 79-85.

[18] G. De Philippis, E. Paolini: A short proof of the minimality of Simons cone. Rend.
Sem. Mat. Univ. Padova, 121, 233-241, (2008)

[19] D. De Silva, O. Savin: Symmetry of global solutions to a class of fully nonlinear
elliptic equations in 2D Indiana Univ. Math. J. (2009), 58 (1), 301-315

[20] M. Del Pino, M. Kowalczyk, J. Wei: On De Giorgi’s conjecture in dimension N > 9.
Ann. Math. 174 (2011), 1485-1569.

[21] E. Di Benedetto: C'** local reqularity of weak solutions of degenerate elliptic equa-
tions. Nonlinear Anal. 7, 827-850 (1983)

[22] Y. Du, H. Ishii and W. Y. Lin: Recent progress on reaction-diffusion systems and
viscosity solutions. World Scientific Publishing Co. (2009)

[23] A. Farina, E. Valdinoci: Geometry of quasiminimal phase transitions, Calc. Var.
Partial Differential Equations 33 (2008), no. 1, 1-35

[24] A. Farina, E. Valdinoci: The state of the art for a conjecture of De Giorgi and related
problems. Recent progress on reaction-diffusion systems and viscosity solutions, World
Sci. Publ., Hackensack, NJ, (2009), pp. 74-96

[25] A. Farina, E. Valdinoci: 1D symmetry for solutions of semilinear and quasilinear
elliptic equations. Trans. Amer. Math. Soc. 363 (2011), no. 2, 579-609

[26] A. Farina, B. Sciunzi, E. Valdinoci: Bernstein and De Giorgi type problems: new
results via a geometric approach. Annali della Scuola Normale Superiore di Pisa -
Classe di Scienze, Serie 5, Volume 7 (2008) no. 4, pp. 741-791

[27] A. Figalli, J. Serra: On stable solutions for boundary reactions: a De Giorgi
type result in dimension 4+1. Preprint https://people.math.ethz.ch/~afigalli/
cv-pdf/cv-pdf.pdf

[28] N. Ghoussoub, C. Gui: On a conjecture of De Giorgi and some related problems.
Math Ann. 311 (1998), 481-491

[29] N. Ghoussoub, C. Gui: On De Giorgi’s conjecture in dimensions 4 and 5. Ann. of
Math. (2) 157 (2003), no. 1, 313-334.


https://people.math.ethz.ch/~afigalli/cv-pdf/cv-pdf.pdf
https://people.math.ethz.ch/~afigalli/cv-pdf/cv-pdf.pdf

Bibliography 57

[30] M. Giaquinta, L. Martinazzi: An Introduction to the Regularity Theory for Elliptic
Systems, Harmonic Maps and Minimal Graphs, 2nd Edition, Edizioni della Normale,
Pisa (2012)

[31] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.
Classics in Math. Springer, Berlin (2001)

[32] E. Giusti: Minimal Surfaces and Functions of Bounded Variation, Birkhauser Verlag,
Basel-Boston (1984).

[33] M. E. Gurtin: On a theory of phase transitions with interfacial energy. Arch. Rat.
Mech. Anal. 87, 187-212 (1985)

[34] D. Jerison, R. Monneau: The ezistence of a symmetric global minimizer on R"~!
implies the existence of a counter-example to a conjecture of De Giorgi in R™. C. R.
Acad. Sci. Paris Sér. I Math. 333 (2001), no. 5, 427-431.

[35] S. Koike: A Beginner’s Guide to the Theory of Viscosity Solutions. http://www.
math.tohoku.ac. jp/~koike/evis2012version.pdf

[36] Y. Liu, K. Weng, J. Wei: Global minimizers of the Allen-Cahn equation in dimension
n > 8. Preprint https://arxiv.org/pdf/1606.05315.pdf

[37] F. Maggi: Sets of Finite Perimeter and Geometric Variational Problems: an Intro-
duction to Geometric Measure Theory. Cambridge Studies in Advances Mathematics
135, Cambridge University Press, (2012)

[38] L. Modica, S. Mortola: Un esempio di I'—convergenza, Boll. Un. Mat. Ital. B (5), 14
(1977), no. 1, 285-299.

[39] L. Modica: The gradient theory of phase transitions and the minimal interface crite-
rion. Arch. Rat. Mech. Anal. 98, 123-142 (1987)

[40] L. Modica: I'—convergence to minimal surfaces problem and global solutions of Au =
2(u® — u). Proc. Int. Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978),
Pitagora, Bologna, 1979, 223-244.

[41] M. Novaga, E. Valdinoci: The geometry of mesoscopic phase transition interfaces.
Discrete Contin. Dyn. Syst. 19 (2007), no. 4, 777-798

[42] A. Petrosyan, E. Valdinoci: Density estimates for a degenerate/singular phase-
transition model. STAM J. Math. Anal 36 (2005), no. 4, 1057-1079

[43] J. S. Rowlinson: Translation of J. D. van der Waals’ “The thermodynamic theory of
capillarity under the hypothesis of a continuous variation of density”. J. Statist. Phys.
20, 197-244 (1979)

[44] O. Savin: Regularity of flat level sets in phase transitions. Ann. of Math (2) 169
(2009), no. 1, 41-78

[45] O. Savin: Phase Transition: Regularity of Flat Level Sets. PhD. Thesis, University of
Texas at Austin, (2003)

[46] O. Savin: Phase transitions, minimal surfaces, and a conjecture of De Giorgi. Current
Developments in Mathematics, (2009)


http://www.math.tohoku.ac.jp/~koike/evis2012version.pdf
http://www.math.tohoku.ac.jp/~koike/evis2012version.pdf
https://arxiv.org/pdf/1606.05315.pdf

58 Bibliography

[47] O. Savin: Minimal surfaces and minimizers of the Ginzburg-Landau energy. Contem-
porary mathematics (American Mathematical Society), v. 528, (2009)

[48] O. Savin: Small perturbation solutions for elliptic equations, Comm. Partial Differ-
ential Equations, 32, 557-578, (2007)

[49] O.Savin, B. Sciunzi, E. Valdinoci: Flat level set regularity of p-Laplace phase transi-
tions. Mem. Amer. Math. Soc. 182 (2006), no. 858, vi+144pp.

[50] B. Sciunzi, E. Valdinoci: Mean curvature properties for p-Laplace phase transitions.

J. Eur. Math. Soc. (JEMS) 7 (2005), no. 3, 319-359,

[51] J. Simons: Minimal varieties in Riemannian manifolds. Ann. of Math. 88 (1968),
62-105.

[52] E. Valdinoci: Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-
type functionals. J. Reine Angew. Math. 574 (2004), 147-185

[53] K. Wang: A new proof of Savin’s theorem on Allen-Cahn equations. Preprint https:
//arxiv.org/pdf/1401.6480 .pdf


https://arxiv.org/pdf/1401.6480.pdf
https://arxiv.org/pdf/1401.6480.pdf

	Introduction
	De Giorgi's Conjecture and Minimal Surfaces
	De Giorgi's Conjecture
	Phase transitions and minimal surfaces
	Density estimates for level sets of phase transitions
	Asymptotic behaviour of level sets

	Proof of De Giorgi's Conjecture for Phase Transitions
	Main results
	Proof of Theorems 2.2 and 2.3

	Mean Curvature Properties for Phase Transitions
	Zero mean curvature for phase transitions
	Barrier functions
	Sliding techniques
	Proof of Theorem 3.1

	Improvement of Flatness
	Improvement of Flatness and Harnack Inequality
	Proof of the Improvement of Flatness

	Appendix PDE Tools
	Appendix Technical Lemmas
	Bibliography

