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Abstract. In this thesis, we prove two new approximation results
of H-perimeter minimizing boundaries by means of intrinsic Lipschitz
functions in the setting of the Heisenberg group Hn with n ≥ 2. The
first one is an improvement of a recent result of Monti [50] and is the
natural reformulation in Hn of the classical Lipschitz approximation
in Rn. The second one is an adaptation of the approximation via
maximal function developed by De Lellis and Spadaro [24,25].





minio: How do you select a problem to study?

atiyah: I think that presupposes an answer. I don’t think that’s the
way I work at all. Some people may sit back and say, “I want to
solve this problem” and they sit down and say, “How do I solve this
problem.” I don’t. I just move around in the mathematical waters,
thinking about things, being curious, interested, talking to people,
stirring up ideas; things emerge and I follow them up. Or I see some-
thing which connects up with something else I know about, and I try
to put them together and things develop. I have practically never
started off with any idea of what I’m going to be doing or where it’s
going to go. I’m interested in mathematics; I talk, I learn, I discuss
and then interesting questions simply emerge. I have never started off
with a particular goal, except the goal of understanding mathematics.

(An interview with Michael Atiyah, [48])
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Introduction

The general framework. The study of Geometric Measure Theory in the Heisen-
berg group Hn started from the pioneering work [37] and today the literature in this
area has become rather wide. Among the open problems in this field, the regularity
of sets that are minimizers for the horizontal perimeter has gained bigger and bigger
attention, since its solution would play a key role in the development of this research
area, especially in the resolution of the Heisenberg isoperimetric problem.

The n-dimensional Heisenberg group (Hn, ∗), n ∈ N, is the manifold Hn = Cn × R
endowed with the group law (z, t)∗(w, s) = (z+w, t+s+P (z, w)) for (z, t), (w, s) ∈ Hn,
where z, w ∈ Cn, t, s ∈ R and P : Cn × Cn → R is the (antisymmetric) bilinear form

P (z, w) = 2 Im
(

n∑
j=1

zjw̄j

)
, z, w ∈ Cn.

The Lie algebra of left invariant vector fields in Hn is spanned by the vector fields

Xj = ∂

∂xj
+ 2yj

∂

∂t
, Yj = ∂

∂yj
− 2xj

∂

∂t
, T = ∂

∂t
, j = 1, . . . , n,

and for any p = (z, t) ∈ Hn the horizontal sub-bundle H of THn is given by

(0.1) Hp = span{X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p)} ≡ R2n.

The H-perimeter of a Lebesgue measurable set E ⊂ Hn is the total variation of its
characteristic function χE in the horizontal directions (0.1).

At the present stage of the theory, most of the known regularity results assume
some strong a priori regularity and/or some restrictive geometric structure of the
minimizer, see [11, 12, 14, 58]. On the other hand, examples of minimal surfaces in
the first Heisenberg group H1 that are only Lipschitz continuous in the Euclidean
sense have been constructed, see, e.g., [55,56], but no similar examples of non-smooth
minimizers are known in Hn with n ≥ 2.

The most natural approach to develop a general regularity theory for H-perimeter
minimizing sets in the Heisenberg group Hn is to reformulate the classical De Giorgi’s
regularity theory for perimeter minimizers in Rn in this context.

De Giorgi’s regularity theory for perimeter minimizers in Rn was developed in the
revolutionary series of papers [18–20] and was later codified in [21,42]. During the last
fifty years, De Giorgi’s ideas have been improved and generalized by several authors,
see, e.g., [1,2,9,32–35,57] and the recent monograph [46]. In particular, one of the
most important achievements of this field is the powerful Almgren’s regularity theory
of area minimizing integral currents in Rn of general codimension, [2]. We also refer to
the long term program undertaken by De Lellis and Spadaro to make Almgren’s work

xi



xii INTRODUCTION

more readable and exploitable for a larger community of specialists, [23–30,59], and
to the recent extension of the theory to infinite dimensional spaces, [4,5].

De Giorgi’s scheme. Nowadays De Giorgi’s regularity theory has a well-defined
underlining scheme which is divided in four main steps. Below we outline this scheme
in the context of the Heisenberg group Hn, summarizing the state of the art on the
regularity of H-perimeter minimizing boundaries.

Step 1: Lipschitz approximation. The first step in the regularity theory of perimeter
minimizing sets in Rn is a good approximation of minimizers.

In De Giorgi’s original approach, the approximation is made by convolution and
the estimates are based on a monotonicity formula, see [42]. In the Heisenberg group,
the validity of a monotonicity formula is not completely clear, see [17].

A more flexible approach is the approximation of minimizing boundaries by means
of Lipschitz graphs, see [57]. This scheme works also in the Heisenberg group. The
boundary of sets with finite H-perimeter is not rectifiable in the standard sense and,
in fact, may have fractional Hausdorff dimension, [44]. Nevertheless, the notion of
intrinsic graph in the sense of [38] turns out to be effective in the approximation and
leads to the following result, see [50, Theorem 5.1]. Here e(E,Br, ν) is De Giorgi’s
excess in the fixed direction ν = −X1, that is, the L2-averaged oscillation from the
direction ν in the ball Br of νE, the inner horizontal unit normal to E; the set W =
R × Hn−1 is the hyperplane passing through the origin orthogonal to the direction ν;
the ball Br and the s-dimensional spherical Hausdorff measure Ss are both induced by
the box norm in Hn (see Chapter 1 for precise definitions).

Theorem 0.1. Let n ≥ 2. For any L > 0, there are constants k = k(n) > 1 and
c = c(n, L) > 0 with the following property. For any set E ⊂ Hn that is H-perimeter
minimizing in the ball Bkr with 0 ∈ ∂E, r > 0, νE(0) = ν, there exists an L-intrinsic
Lipschitz function ϕ : W→ R such that

S2n+1
(
(∂E 4 gr(ϕ)) ∩Br

)
≤ cr2n+1e(E,Bkr, ν).

Theorem 0.1 holds also for n = 1 but, in this case, the Lipschitz constant L has to be
suitably large.

Step 2 : Harmonic approximation. The second step in the regularity theory in Rn

is the existence of a harmonic function: the minimal set can be blown-up at a point of
its (reduced) boundary by a quantity depending on the excess and the corresponding
approximating functions weakly converge in W 1,2 to a harmonic function.

In the Heisenberg group Hn, the intrinsic Lipschitz functions {ϕl}l approximating
the corresponding rescaled sets {El}l weakly converge in a suitable intrinsic Sobolev
class W 1,2

H to a limit function ψ, see [51, Theorem 2.5]. This holds when n ≥ 2 thanks
to the Poincaré inequality valid on the vertical hyperplane W proved in [16]. Moreover,
the limit function ψ is independent of the variable y1 of the factor R in the hyperplane
W = R × Hn−1, see the first claim of [51, Theorem 3.2]. This fact seems to have
no counterpart in the classical theory and is a consequence of the first order Taylor
expansion of H-perimeter proved in [36]. However, it is a completely open problem
to prove that this limit function ψ is harmonic for the natural linear sub-Laplacian of
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the hyperplane W, because it is not clear how to control the linearization of the non-
linear intrinsic gradients ∇ϕlϕl during the limit procedure under the sole H-perimeter
minimizing property.

Step 3: Decay estimate for excess and Hölder regularity. The third step in the
regularity theory in Rn is the decay estimate for the spherical excess,

Exc(E,Br(x)) = min
|v|=1

e(E,Br(x), ν).

Indeed, the crucial result of De Giorgi’s regularity theory for perimeter minimizers in
Rn is the following excess decay lemma: there exists a critical threshold ε0 > 0 such
that, if E is a perimeter minimizer in an open set Ω ⊂ Rn and x ∈ ∂E, then

(0.2) Exc(E,Br(x)) < ε0 =⇒ Exc(E,Bαr(x)) ≤ 1
2 Exc(E,Br(x)),

for some α ∈ (0, 1) sufficiently small. In fact, by Step 2, the renormalized Lipschitz
approximations tend to a harmonic function, and the well-known decay property of
harmonic functions leads to (0.2).

By a standard iteration scheme, the excess decay (0.2) shows that the unit normal
νE is Hölder continuous, which in turn implies that the boundary ∂E is locally the
graph of a C1,γ function for some γ ∈ (0, 1).

At the present stage of the theory, the decay estimate (0.2) is not available for
H-perimeter minimizers in the Heisenberg group, since the harmonic nature of the
limit function ψ in Step 2 has not been established yet. However, it is known that the
continuity of the normal νE implies that the boundary of the H-perimeter minimizer
is a C1

H-regular surface in the sense of [37], see [53, Theorem 1.2].
Step 4: Schauder-type regularity. The fourth and last step in the regularity theory

for perimeter minimizers in Rn is the smoothness of the minimal boundary. Indeed,
by Step 3, the boundary of a perimeter minimizer in Rn is locally the graph of a C1,γ

function g. Since, by the minimality of E, g solves the minimal surface equation in
the weak sense, one eventually gets the smoothness of g by the regularity theory for
quasilinear elliptic equations (Schauder’s estimates).

In the context of the Heisenberg group, it is an open problem to deduce further
regularity properties for an intrinsic Lipschitz function ϕ : D → R on an open set
D ⊂W under the sole hypothesis that ϕ minimizes the intrinsic area functional,

A(ϕ) =
∫
D

√
1 + |∇ϕϕ|2 dL2n.

In fact, it is not even clear how to prove that ϕ solves the intrinsic minimal surface
equation

(0.3) ∇ϕ ·

 ∇ϕϕ√
1 + |∇ϕϕ|2

 = 0 in D ⊂W.

Indeed, the first variation of the area functional can be performed only if ϕ is suffi-
ciently regular, see [52]. In addition, formulas for the first and second variation of the
H-perimeter have been recently established, see [36], but they can be computed only
along special contact flows, which cannot be used to variate the area functional in the
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usual way. On the other hand, Euclidean Lipschitz continuous vanishing viscosity so-
lutions of the minimal surface equation (0.3) are known to be Hölder continuous in H1

and smooth in Hn for all n ≥ 2, see [11,12].

Content of the thesis. In this thesis, we prove two new intrinsic Lipschitz ap-
proximation theorems for H-perimeter minimizers in the setting of the Heisenberg
group Hn with n ≥ 2.

Improved Lipschitz approximation. The first result is an improvement of Theo-
rem 0.1 and is the natural reformulation in Hn of the classical Lipschitz approximation
in Rn, see [46, Theorem 23.7]. Here the disk Dr ⊂ W is induced by the restriction of
the box norm of Hn to W and the cylinder Cr(p), p ∈ Hn, is defined as Cr(p) = p ∗Cr,
where Cr = Dr ∗ (−r, r) (see Chapter 1 for precise definitions).

Theorem 0.2. Let n ≥ 2. There exist positive dimensional constants C1(n), ε1(n)
and δ1(n) with the following property. If E ⊂ Hn is an H-perimeter minimizer in the
cylinder C642 with 0 ∈ ∂E and e(E,C642, ν) ≤ ε1(n) then, setting for brevity

M = C1 ∩ ∂E, M0 =
{
q ∈M : sup

0<s<64
e(E,Cs(q), ν) ≤ δ1(n)

}
,

there exists an intrinsic Lipschitz function ϕ : W→ R such that

sup
W
|ϕ| ≤ C1(n) e(E,C642, ν)

1
2(2n+1) , LipH(ϕ) ≤ 1,

M0 ⊂M ∩ Γ, Γ = gr(ϕ|D1),

S2n+1(M 4 Γ) ≤ C1(n) e(E,C642, ν),∫
D1
|∇ϕϕ|2 dL2n ≤ C1(n) e(E,C642, ν).

Theorem 0.2 holds also for (Λ, r0)-minimizers of H-perimeter, see the more general
formulation of this result given in Theorem 2.2 of Chapter 2.

The proof of Theorem 0.2 is based on the ideas outlined in [46, Section 23.3] and
goes as follows.

The first step is to prove that the natural projection π : Hn → W is invertible
on the set M0 ⊂ ∂E. This is a consequence of a recent result established in [54,
Theorem 1.3], which gives a uniform control on the flatness of the boundary of the
minimizer depending on the smallness of the excess. The inverse of π defines an intrinsic
Lipschitz function on π(M0) that can be extended to the whole W.

The second step is the approximation in measure of the boundary. This is done
by estimating the terms M \ Γ and Γ \M separately: the first can be controlled by a
covering argument, while the second is a consequence of the area formula for intrinsic
Lipschitz functions.

Finally, the third step is to prove that the intrinsic L2-energy of the approximating
function is controlled by the excess. This follows from the approximation in measure of
the boundary and again from the area formula estimating the L2-norm of the intrinsic
gradient on the two sets π(M ∩ Γ) and π(M 4 Γ) separately.
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Approximation via maximal functions. The second result is an adaptation of the
ideas developed in [24, 25] by De Lellis and Spadaro for area minimizing integral
currents to the setting of H-perimeter minimizers in Hn.

Theorem 0.3. Let n ≥ 2 and α ∈ (0, 1
2). There exist positive constants C2(n),

ε2(α, n) and k2 = k2(n) with the following property. Let E ⊂ Hn be an H-perimeter
minimizer in the cylinder Ck2 with 0 ∈ ∂E and e(E,Ck2 , ν) ≤ ε2(α, n). Then there
exist a set K ⊂ D1 such that

L2n(D1 \K) ≤ C2(n) e(E,Ck2 , ν)1−2α

and an intrinsic Lipschitz function ϕ : W→ R with the following properties:

gr(ϕ|K) = ∂E ∩
(
K ∗ (−1, 1)

)
,

LipH(ϕ) ≤ C2(n) e(E,Ck2 , ν)α,

S2n+1
(
(∂E 4 gr(ϕ)) ∩ C1

)
≤ C2(n) e(E,Ck2 , ν)1−2α,∫

D1
|∇ϕϕ|2 dL2n ≤ C2(n) e(E,Ck2 , ν).

Theorem 0.3 holds also for (Λ, r0)-minimizers of H-perimeter, see the more general
formulation of this result given in Corollary 3.2 of Chapter 3.

The proof of Theorem 0.3 essentially follows the scheme outlined in [24, 25], al-
though with a different starting point.

The first step in [24,25] is to establish a so-called BV estimate on the vertical slices
of the area minimizing integral current, see [24, Proposition 2.1] and [25, Lemma A.1].
The proof of this estimate heavily uses several fundamental results of the theory of
integral currents in Rn. At the present stage of the theory, the development of a
general theory for integral currents in Hn is a completely open problem, see [39], and
a similar estimate for the slices of the boundary of an H-perimeter minimizer cannot
be easily implemented.

However, in the special case the minimizer is the intrinsic epigraph of an intrin-
sic Lipschitz function, the BV estimate becomes an easy consequence of the Cauchy–
Schwarz inequality and of the area formula. Therefore, in the general case E is an
H-perimeter minimizer, we can overcome this initial problem with the following trick:
first, by Theorem 0.2, we can approximate the boundary of E with the intrinsic graph
of a suitable intrinsic Lipschitz function; second, up to an error which is comparable
to the excess, we can replace the BV estimate on the slices of the boundary of E with
the BV estimate on the slices of the approximating graph.

This idea allows us to recover De Lellis and Spadaro’s approach in the setting of
the Heisenberg group Hn with n ≥ 2. The proof of Theorem 0.3 thus goes as follows.

The first step is to define the coincidence set K and to estimate the Lebesgue
measure of D1 \K. This is done by a standard argument (see Claim #1 in the proof
of [31, Theorem 6.12]), proving an estimate for the (local) maximal function of a
suitable measure µ.

Because of our initial trick for the BV estimate, the measure µ depends both on the
excess of E and on the excess of the graph of the approximation given by Theorem 0.2.
Thus our estimate on the Lebesgue measure ofD1\K is weaker than the one established
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in [24,25], although it catches the correct power of the excess. However, the initial trick
for the BV estimate is not necessary when E is the epigraph of an intrinsic Lipschitz
function. In fact, in this particular case, our estimate on the Lebesgue measure of
D1 \K is the exact counterpart of the one established in [24,25].

The second step is to estimate the intrinsic Lipschitz constant. At this point, the
relevant part of ϕ is the one defined on the set K. Therefore, up to redefine the
approximation given by Theorem 0.2 outside K, it is enough to control the Lipschitz
constant only on the set K. But this is a standard fact (see Claim #2 in the proof
of [31, Theorem 6.12]), up to some technicalities due to the intrinsic ϕ-balls appearing
in the Poincaré inequality of [16].

The third and last step is to prove the approximation in measure of the boundary
and the estimate on the intrinsic L2-energy. This is done similarly as before, taking
into account the information on the coincidence set K and on the Lipschitz constant.
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CHAPTER 1

Preliminaries

1. The Heisenberg group

1.1. Group structure. Let n ∈ N and let (Hn, ∗) be the n-dimensional Heisen-
berg group. The group Hn is the set Hn = Cn × R with group law ∗ : Hn ×Hn → Hn

defined as

(z, t) ∗ (w, s) = (z + w, t+ s+ P (z, w)) ∀(z, t), (w, s) ∈ Hn,

where P : Cn × Cn → R is the (antisymmetric) bilinear form

(1.1) P (z, w) = 2 Im
(

n∑
j=1

zjw̄j

)
∀z, w ∈ Cn,

see [60, Chapter 12, 13] and [13].
The automorphisms δλ : Hn → Hn, λ > 0, of the form

δλ(z, t) = (λz, λ2t), (z, t) ∈ Hn,

are called dilations. We use the abbreviations λp = δλ(p) and λE = δλ(E) for p ∈ Hn

and E ⊂ Hn. We also define the left translations τq : Hn → Hn

τq(p) = q ∗ p, p, q ∈ Hn,

and the rotations

(z, t) 7→ (Rz, t), (z, t) ∈ Hn, with R ∈ U(n).

1.2. Lie algebra. We identify an element z = x+ iy ∈ Cn with (x, y) ∈ R2n. The
Lie algebra of left invariant vector fields in Hn is spanned by the vector fields

(1.2) Xj = ∂

∂xj
+ 2yj

∂

∂t
, Yj = ∂

∂yj
− 2xj

∂

∂t
, T = ∂

∂t
, j = 1, . . . , n,

and the only non-trivial commutator relations are

[Xj, Yj] = −4T, j = 1, . . . , n.

We denote by H the horizontal sub-bundle of THn. Namely, for any p = (z, t) ∈ Hn,
we let

Hp = span{X1(p), . . . , Xn(p), Y1(p), . . . , Yn(p)} ≡ R2n.

1



2 1. PRELIMINARIES

1.3. Metric structure. For any p = (z, t) ∈ Hn, we let ‖p‖∞ = max
{
|z|, |t|1/2

}
be the box norm. The box norm satisfies the triangle inequality

‖p ∗ q‖∞ ≤ ‖p‖∞ + ‖q‖∞ ∀p, q ∈ Hn.

Moreover, the function d∞ : Hn × Hn → [0,∞), d(p, q) = ‖p−1 ∗ q‖ for all p, q ∈ Hn,
is a left invariant distance on Hn equivalent to the Carnot–Carathéodory distance. In
particular, left translations and rotations are isometries of Hn with the distance d∞.
Using the distance d∞, we define the open ball centred at p ∈ Hn and with radius r > 0
the set
(1.3) Br(p) = {q ∈ Hn : d∞(q, p) < r} = p ∗ {q ∈ Hn : ‖q‖∞ < r}.
In the case p = 0, we let Br = Br(0).

For any s ≥ 0, we denote by Ss the spherical Hausdorff measure in Hn constructed
with the left invariant metric d∞. Namely, for any E ⊂ Hn we let

Ss(E) = lim
δ→0
Ssδ (E)

where

Ssδ (E) = inf

∑
n∈N

(diamBi)s : E ⊂
⋃
n∈N

Bi, Bi balls as in (1.3), diamBi < δ


and diam is the diameter in the distance d∞. By the Carathéodory’s construction,
E 7→ Ss(E) is a Borel measure in Hn. When s = 2n + 2, S2n+2 turns out to be the
Lebesgue measure L2n+1 up to a multiplicative constant. Thus, the correct dimension
to measure hypersurfaces is s = 2n+ 1 (see also Theorem 1.2 below).

1.4. Sub-Riemmanian structure. Let g be the left invariant Riemannian met-
ric on Hn that makes orthonormal the vector fields X1, . . . , Xn, Y1, . . . , Yn, T defined
in (1.2). The metric g induces a volume form on Hn that is left invariant. Also the
Lebesgue measure L2n+1 = dzdt on Hn is left invariant and thus, by the uniqueness
of the Haar measure, the volume induced by g is the Lebesgue measure L2n+1 (with
proportionality constant 1). For tangent vectors V,W ∈ THn, we let

〈V,W 〉g = g(V,W ) and |V |g = g(V, V )1/2.

Let Ω ⊂ Hn be an open set. A horizontal section V ∈ C1
c (Ω;H) is a vector field of

the form
V =

n∑
j=1

VjXj + Vj+nYj,

where Vj ∈ C1
c (Ω) for any j = 1, . . . , 2n, that is, each coordinate Vj of the vector field

V is a continuously differentiable function with compact support contained in Ω. The
sup-norm with respect to g of a horizontal section V ∈ C1

c (Ω;H) is
‖V ‖g = max

p∈Ω
|V (p)|g.

The horizontal divergence of V is

divH V =
n∑
j=1

XjVj + YjVj+n.
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2. Locally finite perimeter sets

2.1. H-perimeter, inner normal. A L2n+1-measurable set E ⊂ Hn has locally
finite H-perimeter (or is an H-Caccioppoli set) in an open set Ω ⊂ Hn if there exists
a H-valued Radon measure µE on Ω, called Gauss–Green measure of E, such that∫

E
divH V dL2n+1 = −

∫
Ω
〈V, dµE〉g

for all V ∈ C1
c (Ω;H). We denote by |µE| the total variation of µE. If |µE|(Ω) < ∞,

we say that E has finite H-perimeter in Ω. We also use the notation

PH(E;B) = |µE|(B),

for any Borel set B ⊂ Ω, to denote the H-perimeter of E in B. When B = Hn, we
write PH(E) = PH(E;Hn). We have

PH(E; Ω) = sup
{∫

E
divH V dL2n+1 : V ∈ C1

c (Ω;H), ‖V ‖g ≤ 1
}
.

By the Radon-Nykodim Theorem (or, equivalently, by the Riesz representation
Theorem), there exists a |µE|-measurable function νE : Ω → H such that |νE|g = 1
|µE|-a.e. and µE = νE |µE|. Moreover, the Gauss–Green formula∫

E
divH V dL2n+1 = −

∫
Ω
〈V, νE〉g d|µE|

holds for any V ∈ C1
c (Ω;H). We call νE the horizontal inner normal of E in Ω.

2.2. Reduced boundary. Themeasure theoretic boundary of a L2n+1-measurable
set E ⊂ Hn is the set

∂E =
{
p ∈ Hn : L2n+1(E ∩Br(p)) > 0 and L2n+1(Br(p) \ E) > 0 for all r > 0

}
.

Let E be a set with locally finite H-perimeter. Then the H-perimeter measure µE
of E is concentrated on ∂E and, actually, on a subset ∂∗E of ∂E, called the reduced
boundary of E, see [37, Definition 2.17]

Definition 1.1 (Reduced boundary). The reduced boundary of a set E ⊂ Hn with
locally finite H-perimeter is the set ∂∗E of all points p ∈ Hn such that the following
three conditions hold:

(1) |µE|(Br(p)) > 0 for all r > 0;
(2) we have

lim
r→0

1
|µE|(Br(p))

∫
Br(p)

νE d|µE| = νE(p);

(3) there holds |νE(p)| = 1.

We always have the inclusion ∂∗E ⊂ ∂E; this follows from the Structure Theorem
for sets with locally finite H-perimeter, see Theorem 1.2 below. Actually, the difference
∂E \ ∂∗E is S2n+1-negligible, see [50, Lemma 2.4]. Moreover, up to modifying E on a
Lebesgue negligible set, one can always assume that ∂E coincides with the topological
boundary of E, see [58, Proposition 2.5].
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2.3. Structure Theorem. The following theorem is a deep result concerning the
structure of the reduced boundary of a set with locally finite H-perimeter in Hn. It
is the natural counterpart in Hn of the classical De Giorgi’s Structure Theorem in
the Euclidean setting (we refer to [46, Theorem 15.9], [31, Theorem 5.15] and [3,
Teorema 3.7]) and was proved in [37]. It asserts that the reduced boundary has the
structure of a ‘generalized’ H-regular hypersurface.

Theorem 1.2 (Structure Theorem). If E is a set with locally finite H-perimeter
in Hn, then ∂∗E is H-rectifiable, that is, there exist countably many H-regular hyper-
surfaces Mh in Hn, compact sets Kh ⊂ Mh and a set F with S2n+1(F ) = 0, such
that

∂∗E = F ∪
⋃
h∈N

Kh,

and, for every p ∈ Kh, νE(p)⊥ = THp Mh, the H-tangent space to Mh at p. Moreover,
the Gauss-Green measure µE of E satisfies

µE = νE |µE|, |µE| =
2ω2n−1

ω2n+1
S2n+1 ∂∗E,

and the generalized Gauss–Green formula holds true:∫
E

divH V dL2n+1 = −2ω2n−1

ω2n+1

∫
∂∗E
〈V, νE〉g dS

2n+1,

for any V ∈ C1
c (Hn;H).

3. Perimeter minimizers

3.1. Minimizers, scaling, density estimates. Let Ω ⊂ Hn be an open set and
let E be a set with locally finite H-perimeter in Hn.

Definition 1.3 ((Λ, r0)-minimizer). We say that the set E is a (Λ, r0)-minimizer
of H-perimeter in Ω if there exist two constants Λ ∈ [0,∞) and r0 ∈ (0,∞] such that

P (E;Br(p)) ≤ P (F ;Br(p)) + ΛL2n+1(E 4 F )

for any measurable set F ⊂ Hn, p ∈ Ω and r < r0 such that E 4 F ⊂⊂ Br(p) ⊂⊂ Ω.
When Λ = 0 and r0 =∞, we say that the set E is a locally H-perimeter minimizer

in Ω, that is, there holds
P (E;Br(p)) ≤ P (F ;Br(p))

for any measurable set F ⊂ Hn, p ∈ Ω and r > 0 such that E 4 F ⊂⊂ Br(p) ⊂⊂ Ω.

Remark 1.4 (Scaling of (Λ, r0)-minimizer). If the set E is a (Λ, r0)-minimizer of
H-perimeter in the open set Ω ⊂ Hn then, for every p ∈ Hn and r > 0, the blow-up
Ep,r = δ 1

r
(τp−1(E)) of E is a (Λ′, r′0)-minimizer of H-perimeter in Ωp,r, where Λ′ = Λr

and r′0 = r0/r. In particular, the product Λr0 is invariant under blow-up. Thus it is
convenient to assume that Λr0 ≤ 1, as we shall always do in the following.

The following result is in [54, Appendix A]. Its proof is a straightforward adaptation
of that for (Λ, r0)-minimizers in Rn, see [46, Chapter 21].
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Theorem 1.5 (Density estimates). There are positive dimensional constants k1(n),
k2(n), k3(n) and k4(n) with the following property. If E ⊂ Hn is a (Λ, r0)-minimizer
of H-perimeter in an open set Ω ⊂ Hn with

Λr0 ≤ 1, p ∈ ∂E ∩ Ω, Br(p) ⊂ Ω, r < r0,

then

k1(n) ≤ L
2n+1(E ∩Br(p))

r2n+2 ≤ k2(n), k3(n) ≤ P (E;Br(p))
r2n+1 ≤ k4(n).

In particular, S2n+1(Ω ∩ (∂E \ ∂∗E)) = 0.

4. Cylindrical excess

4.1. Height function, disks, cylinders. The height function h : Hn → R is the
group homomorphism defined by h(p) = x1 for every p = (x, y, t) ∈ Hn. We let W be
the (normal) subgroup of Hn given by the kernel of h,

W := ker h =
{
p ∈ Hn : h(p) = 0

}
.

The open disk in W of radius r > 0 centred at the origin induced by the box norm
is the set Dr = {w ∈W : ‖w‖∞ < r}. For any p ∈ W, we let Dr(p) = p ∗ Dr ⊂ W.
Note that, for all p ∈W and r > 0,

(1.4) L2n(Dr(p)) = L2n(Dr) = κnr
2n+1,

where we set κn = L2n(D1).
The open cylinder with central section Dr and height 2r is the set

Cr = Dr ∗ (−r, r) := {w ∗ se1 ∈ Hn : w ∈ Dr, s ∈ (−r, r)},

where se1 = (s, 0, . . . , 0) ∈ Hn. For any p ∈ Hn, we let Cr(p) = p ∗ Cr.
We let π : Hn →W be the projection on W defined, for any p ∈ Hn, by the formula

(1.5) p = π(p) ∗ h(p)e1.

By (1.5), for any p ∈ Hn and r > 0, we have

p ∈ Cr ⇐⇒ π(p) ∈ Dr, h(p) ∈ (−r, r) ⇐⇒ ‖π(p)‖∞ < r, |h(p)| < r.

We thus let ‖·‖C : Hn → [0,∞) be the map

(1.6) ‖p‖C := max
{
‖π(p)‖∞, |h(p)|

}
for any p ∈ Hn, so that Cr = {p ∈ Hn : ‖p‖C < r}. The map ‖·‖C is a quasi norm and,
by (1.5), we have

(1.7) ‖p‖C ≤ ‖p‖∞, ‖p‖∞ ≤ 2‖p‖C ∀p ∈ Hn.

We let dC : Hn × Hn → [0,∞) be the quasi distance induced by ‖·‖C . By (1.7), the
cylinder Cr(p) is comparable with the ball Br(p) induced by the box norm for any
p ∈ Hn. Namely, we have

(1.8) Br(p) ⊂ Cr(p) ⊂ B2r(p) for all p ∈ Hn, r > 0.
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4.2. Cylindrical excess. A concept which plays a key role in the regularity theory
of (Λ, r0)-minimizers of H-perimeter is the notion of excess.

Definition 1.6 (Cylindrical excess). Let E be a set with locally finite H-perimeter
in Hn. The cylindrical excess of E at the point p ∈ ∂E, at the scale r > 0 and with
respect to the direction ν = −X1, is defined as

e(E, p, r, ν) : = 1
r2n+1

∫
Cr(p)

|νE − ν|2g
2 d|µE|(1.9)

= δ(n)
r2n+1

∫
Cr(p)∩∂∗E

|νE − ν|2g
2 dS2n+1

= δ(n)
r2n+1

∫
Cr(p)∩∂∗E

(
1− 〈νE, ν〉g

)
dS2n+1

where µE is the Gauss-Green measure of E, νE is the horizontal inner normal and the
multiplicative constant is δ(n) = 2ω2n−1

ω2n+1
as in Theorem 1.2.

In other words, e(E, p, r, ν) is the L2-averaged oscillation from the given direction
ν of the inner unit normal to E over the cylinder Cr(p). We shall need to quantify the
geometric consequences of the smallness of the cylindrical excess on (Λ, r0)-perimeter
minimizers. For the sake of brevity, we will often set e(p, r) = e(E, p, r, ν) and, in the
case p = 0, e(r) = e(0, r).

We recall some basic properties of the cylindrical excess. Their proofs are easy
adaptations of those for the classical excess, see [46, Chapter 22].

Lemma 1.7 (Elementary properties of excess). Let E is a set with locally finite
H-perimeter in Hn and let p ∈ ∂E. If r > s > 0, then

(1.10) e(E, p, s, ν) ≤
(
r

s

)2n+1
e(E, p, r, ν).

Moreover, the excess is invariant under blow-up, i.e.,
(1.11) e(E, p, r, ν) = e(Ep,r, 0, 1, ν),
where Ep,r = δ 1

r
(τp−1(E)).

5. Height bound

5.1. Main result. The following result is a fundamental estimate relating the
height of the boundary of a (Λ, r0)-minimizer ofH-perimeter with the cylindrical excess,
see [54, Theorem 1.3].

Theorem 1.8 (Height bound). Given n ≥ 2, there exist positive dimensional con-
stants ε0(n) and C0(n) with the following property. If E is a (Λ, r0)-minimizer of
H-perimeter in the cylinder C16r0 with

Λr0 ≤ 1, 0 ∈ ∂E, e(16r0) ≤ ε0(n),
then

(1.12) sup
{
|h(p)|
r0

: p ∈ Cr0 ∩ ∂E
}
≤ C0(n) e(16r0)

1
2(2n+1) .
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Remark 1.9. The estimate (1.12) does not hold when n = 1. In fact, there are
sets E ⊂ H1 such that e(E, 0, r, ν) = 0 but ∂E is not flat in Cεr for any ε > 0, see the
conclusion of [50, Proposition 3.7].

5.2. Lemmata on the excess. The proof of Theorem 1.8 relies on a slicing for-
mula for intrinsic rectifiable sets and on two lemmata on the excess.

The slicing formula is rather technical and has a non-trivial character, because the
domain of integration and its slices need not to be rectifiable in the standard sense. We
do not state the result here and we refer the interested reader to [54, Theorem 1.5].

The two lemmata on the excess are the natural reformulation of the corresponding
lemmata in the Euclidean setting, see [46, Chapter 22].

The first lemma shows that, if the excess of a (Λ, r0)-minimizer of H-perimeter E is
sufficiently small, then its reduced boundary ∂∗E lies in a strip with controlled thickness
and, possibly modifying E on a L2n+1-negligible set if necessary, E is positioned under
that strip.

Lemma 1.10 (Small-excess position, [54, Lemma 3.3]). Let n ≥ 2. For any s ∈
(0, 1), Λ ∈ [0,∞) and r0 ∈ (0,∞] with Λr0 ≤ 1, there exists a constant ω(n, s,Λ, r0) > 0
with the following property. If E is a (Λ, r0)-minimizer of H-perimeter in the cylinder
C2, 0 ∈ ∂E and

e(2) ≤ ω(n, s,Λ, r0),

then

|h(p)| < s for any p ∈ C1 ∩ ∂E,(1.13)

L2n+1
({
p ∈ C1 ∩ E : h(p) > s

})
= 0,(1.14)

L2n+1
({
p ∈ C1 \ E : h(p) < −s

})
= 0.(1.15)

The second lemma combines the divergence theorem with the geometric information
gathered in the previous result. To state it, we need some preliminary notation.

For any set E ⊂ Hn and for any s ∈ R, we define

Es = E ∩ h−1(s)

the vertical slice of E at height s ∈ R and

Es := π(Es) = {w ∈W : w ∗ se1 ∈ E}.

the projection of E on W.

Lemma 1.11 (Excess measure, [54, Lemma 3.4, Corollary 3.5]). Let n ≥ 2. Let
E be a set of locally finite H-perimeter in Hn with 0 ∈ ∂E and such that, for some
s0 ∈ (0, 1), (1.13), (1.14) and (1.15) of Lemma 1.10 hold. Then, for a.e. s ∈ (−1, 1)
and for any ϕ ∈ Cc(D1), setting for brevity M = C1 ∩ ∂∗E and Ms = M ∩ {h > s}, we
have ∫

Es∩D1
ϕ dL2n = −

∫
Ms

ϕ ◦ π 〈νE, X1〉g dS
2n+1.
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In particular, for any Borel set G ⊂ D1, we have

L2n(G) = −
∫
M∩π−1(G)

〈νE, X1〉g dS
2n+1,(1.16)

L2n(G) ≤ S2n+1
(
M ∩ π−1(G)

)
.(1.17)

Moreover, for a.e. s ∈ (−1, 1), there holds
0 ≤ S2n+1(Ms)− L2n(Es ∩D1) ≤ e(1), S2n+1(M)− L2n(D1) = e(1).

6. Intrinsic Lipschitz functions

6.1. Intrinsic graphs. We identify the vertical hyperplane
W = Hn−1 × R = {(z, t) ∈ Hn : x1 = 0}

with R2n via the coordinates w = (x2, . . . , xn, y1, . . . , yn, t). The line flow of the vector
field X1 starting from the point (z, t) ∈W is the solution of the Cauchy problemγ̇(s) = X1(γ(s)), s ∈ R

γ(0) = (z, t),

that is,
(1.18) γ(s) = exp(sX1)(z, t) = (z + se1, t+ 2y1s), s ∈ R,
where e1 = (1, 0, . . . , 0) ∈ Hn and z = (x, y) ∈ Cn ≡ R2n.

Let W ⊂W be a set and let ϕ : W → R be a function. The set
(1.19) Eϕ = {exp(sX1)(w) ∈ Hn : s > ϕ(w), w ∈ W}
is called intrinsic epigraph of ϕ along X1, while the set

gr(ϕ) = {exp(ϕ(w)X1)(w) ∈ Hn : w ∈ W}
is called intrinsic graph of ϕ along X1.

By (1.18), we easily find the identity
exp(ϕ(w)X1)(w) = w ∗ ϕ(w)e1 for any w ∈ W,

thus the intrinsic graph of ϕ is the set
gr(ϕ) = {w ∗ ϕ(w)e1 ∈ Hn : w ∈ W}.

We will use the following notation. We let Φ: W → Hn, Φ(w) = w ∗ ϕ(w)e1 for all
w ∈ W , be the graph map of the function ϕ : W → R, W ⊂ W. For any A ⊂ W , we
let gr(ϕ|A) = Φ(A).

6.2. Intrinsic Lipschitz functions. As above, we let e1 = (1, 0 . . . , 0) ∈ Hn.
Recall that, for any p ∈ Hn, we have p = π(p) ∗ h(p)e1 as in (1.5). We recall the
definition of intrinsic cone introduced in [38, Definition 3.5]. The notion of cone is
relevant in the theory of H-convex sets, see [8].

Definition 1.12 (Intrinsic cone with axis e1). The open cone with vertex p ∈ Hn,
axis e1 ∈ Hn and aperture α ∈ (0,∞], is the set

C(p, α) = p ∗ C(0, α) := p ∗
{
q ∈ Hn : ‖π(q)‖∞ < α|h(q)|

}
.
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We can now give the definition of intrinsic Lipschitz function. The notion of intrinsic
Lipschitz function was introduced in [38, Definition 3.1].

Definition 1.13 (Intrinsic Lipschitz function). Let W ⊂W and let ϕ : W → R be
a function. The function ϕ is L-intrinsic Lipschitz, with L ∈ [0,∞), if

gr(ϕ) ∩ C(p, 1/L) = ∅ for any p ∈ gr(ϕ),

or, equivalently, if

(1.20) |ϕ(π(p))− ϕ(π(q))| ≤ L‖π(q−1 ∗ p)‖∞ for any p, q ∈ gr(ϕ).

We let LipH(W ) and LipH,loc(W ) be the sets of globally and locally intrinsic Lips-
chitz functions on the set W ⊂W respectively. If ϕ ∈ LipH(W ), we let LipH(ϕ,W ) be
the intrinsic Lipschitz constant of ϕ onW (we will omit the set if there is no confusion).

A detailed analysis of the set LipH(W ) can be found in [15,40]. It is important to
note that LipH(W ) is not a vector space, see [58, Remark 4.2]. However, the set of the
intrinsic Lipschitz functions on W is a thick class of functions, for it holds

Liploc(W ) ( LipH,loc(W ) ( C
1/2
loc (W ),

where Liploc and C
1/2
loc are the spaces of locally Lipschitz and 1

2 -Hölder functions in the
classical Euclidean sense respectively, see [40, Propositions 4.8 and 4.11].

6.3. Extension property. An extension theorem for intrinsic Lipschitz functions
was proved for the first time in [40, Theorem 4.25]. The following result gives an
explicit estimate of the Lipschitz constant of the extension. The first part is proved
in [50, Proposition 4.8], while the second part follows from an easy modification of the
proof of the first one.

Proposition 1.14. Let W ⊂ W and let ϕ : W → R be an L-intrinsic Lipschitz
function. There exists an M-intrinsic Lipschitz function ψ : W→ R with

(1.21) M =
√1 + 1

L+ 2L2 − 1
−2

such that ψ(w) = ϕ(w) for all w ∈ W . Moreover, if ϕ is bounded, then we can define
the extension ψ such that ψ is bounded and ‖ψ‖L∞(W) = ‖ϕ‖L∞(W ).

Note that, in (1.21), we have M ≤ 2L for all L ≤ 0, 07.

6.4. Graph distance. The notion of intrinsic Lipschitz function can be equiva-
lently reformulated on bounded open sets introducing a suitable notion of graph dis-
tance, see [15, Definition 1.1] or [16].

Definition 1.15 (Graph distance). Let W ⊂ W be set and let ϕ : W → R be a
function. The map dϕ : W ×W → [0,∞) given by

(1.22) dϕ(w,w′) = 1
2

(∥∥∥π(Φ(w)−1 ∗ Φ(w′)
)∥∥∥
∞

+
∥∥∥π(Φ(w′)−1 ∗ Φ(w)

)∥∥∥
∞

)
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for any w,w′ ∈ W , where Φ(w) = w ∗ ϕ(w)e1 for all w ∈ W , is the graph distance
induced by ϕ. Explicitly, for any w = (z, t), w′ = (z′, t′) ∈W, we have

dϕ(w,w′) = 1
2 max

{
|z − z′|, σϕ(w,w′)

}
+ 1

2 max
{
|z − z′|, σϕ(w′, w)

}
,

where
σϕ(w,w′) = |t− t′ + 4ϕ(w)(y1 − y′1) + P (w,w′)|1/2

and P is as in (1.1).

Comparing (1.20) with (1.22), it is easy to see that, if W ⊂ W is a bounded open
set and ϕ : W → R is a continuous function, then ϕ is an intrinsic L-intrinsic Lipschitz
function if and only if

|ϕ(w)− ϕ(w′)| ≤ Ldϕ(w,w′) ∀w,w′ ∈ W.
If ϕ is an intrinsic L-Lipschitz function on W , then dϕ turns out to be a quasi-

distance on W , that is, dϕ(x, y) = 0 if and only if x = y for all x, y ∈ W , dϕ is
symmetric and, for all x, y, z ∈ W ,
(1.23) dϕ(x, y) ≤ cL(dϕ(x, z) + dϕ(z, y)),
where cL ≥ 1 depends only on L and
(1.24) lim

L→0
cL = 1,

see [15, Section 3].

6.5. Intrinsic gradient. We now introduce a non-linear gradient for functions
ϕ : W → R with W ⊂ W an open set. We let B : Liploc(W ) → L∞loc(W ) be the
Burgers’ operator defined by

Bϕ = ∂ϕ

∂y1
− 4ϕ∂ϕ

∂t
.

When ϕ ∈ C(W ) is only continuous, we say that Bϕ exists in the sense of distributions
and is represented by a locally bounded function if there exists a function ϑ ∈ L∞loc(W )
such that ∫

W
ϑψ dw = −

∫
W

{
ϕ
∂ψ

∂y1
− 2ϕ2∂ψ

∂t

}
dw

for any ψ ∈ C1
c (W ). In this case, we let Bϕ = ϑ.

Note that the vector fields X2, . . . , Xn, Y2, . . . , Yn can be naturally restricted to W
and that they are self-adjoint.

Definition 1.16 (Intrinsic gradient). Let ϕ : W → R be a continuous function on
the open set W ⊂W. We say that the intrinsic gradient ∇ϕϕ ∈ L∞loc(W ;R2n−1) exists
in the sense of distributions if the distributional derivatives Xiϕ, Bϕ and Yiϕ, with
i = 2, . . . , n, are represented by locally bounded functions in W . In this case, we let
(1.25) ∇ϕϕ = (X2ϕ, . . . , Xnϕ,Bϕ, Y2ϕ, . . . , Ynϕ),
and we call ∇ϕϕ the intrinsic gradient of ϕ. When n = 1, the intrinsic gradient reduces
to ∇ϕϕ = Bϕ.
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We note that the intrinsic gradient (1.25) has a strong non-linear character. This
partially motivates the fact that LipH(W ) is not a vector space.

The following result shows that the L∞-norm of the intrinsic gradient is controlled
by the intrinsic Lipschitz constant, see [15, Proposition 4.4].

Proposition 1.17. Let W ⊂ W be a bounded open set and let ϕ : W → R be an
intrinsic Lipschitz function. There exists a positive dimensional constant C(n) such
that

‖∇ϕϕ‖L∞(W ) ≤ C(n) LipH(ϕ)(1 + LipH(ϕ)).

6.6. Area formula for intrinsic Lipschitz functions. Let W ⊂W be an open
set and let ϕ : W → R be a locally intrinsic Lipschitz function. Then the intrinsic epi-
graph Eϕ of ϕ defined in (1.19) is a set with locally finite H-perimeter whose horizontal
inner normal νEϕ depends on the intrinsic gradient ∇ϕϕ. Moreover, the H-perimeter
of Eϕ admits an area formula similar to the classical one in the Euclidean setting.

Theorem 1.18 (Area formula). Let W ⊂W be an open set and let ϕ : W → R be
a locally intrinsic Lipschitz function. Then the intrinsic epigraph Eϕ ⊂ Hn has locally
finite H-perimeter in the cylinder

W ∗ R = {w ∗ se1 ∈ Hn : w ∈ W, s ∈ R},
and for L2n-a.e. w ∈ W the inner horizontal normal to ∂Eϕ is given by

(1.26) νEϕ(Φ(w)) =
 1√

1 + |∇ϕϕ(w)|2
,
−∇ϕϕ(w)√

1 + |∇ϕϕ(w)|2

 .
Moreover, for any W ′ ⊂⊂ W , the following area formula holds:

(1.27) PH(Eϕ;W ′ ∗ R) =
∫
W ′

√
1 + |∇ϕϕ(w)|2 dL2n.

Formula (1.26) for the inner horizontal normal to ∂Eϕ and the area formula (1.27)
are proved in [15], respectively in Corollary 4.2 and in Theorem 1.6. The area for-
mula (1.27) can be improved in the following way

(1.28)
∫
∂Eϕ∩W ′∗R

g(p) d|µEϕ | =
∫
W ′
g(Φ(w))

√
1 + |∇ϕϕ(w)|2 dL2n,

where g : ∂Eϕ → R is a Borel function.
To avoid long equations, in the following we will often omit the variables and the

flow map Φ when we will apply the area formula (1.27) and its general version (1.28).
A result related to Theorem 1.18 can be found in [53, Theorem 1.1], where it is

proved that if E ⊂ Hn is a set with finite H-perimeter having controlled normal νE,
say 〈νE, X1〉g ≥ k > 0 µE-a.e. for some k ∈ (0, 1], then the reduced boundary ∂∗E is
an intrinsic Lipschitz graph along X1.





CHAPTER 2

Intrinsic Lipschitz approximation

1. Main results

1.1. Monti’s approximation. The starting point of De Giorgi’s regularity theory
for perimeter minimizers in Rn is a good approximation of minimizing boundaries by
means of Lipschitz graphs, see [57].

In the Heisenberg group, the boundary of sets with finite H-perimeter is not rec-
tifiable and, in fact, may have fractional Hausdorff dimension, [44]. Nevertheless, the
notion of intrinsic graph in the sense of [38] (recall Definition 1.13) turns out to be
effective in the approximation and leads to the following result, see [50, Theorem 5.1].

Theorem 2.1 (Monti). Let n ≥ 1 and let L > 0 be a constant suitably large when
n = 1. There are constants k = k(n) > 1 and c = c(n, L) > 0 with the following
property. For any set E ⊂ Hn that is H-perimeter minimizing in Ckr with 0 ∈ ∂E,
r > 0, νE(0) = −e1, there exists an L-intrinsic Lipschitz function ϕ : W→ R such that

(2.1) S2n+1
(
(∂E 4 gr(ϕ)) ∩ Cr

)
≤ cr2n+1e(kr).

The proof of Theorem 2.1 is based on the ideas outlined in [3, Sections 4.3, 4.4] and
goes as follows. The starting point is to analyse the pairs of points of the boundary of
the minimizer E with small horizontal excess (see [50, Propositions 4.1, 4.2]). The set
G ⊂ ∂E of such points is compact and the projection π : Hn → W defined in (1.5) is
injective on G and satisfies
(2.2) |h(q−1 ∗ p)| ≤ L ‖π(q−1 ∗ p)‖∞ for all p, q ∈ G.
Thus, recalling (1.20), the inverse of π restricted to G defines an intrinsic Lipschitz
function on G that can be extended to the whole W (Proposition 1.14). The approx-
imation (2.1) is obtained by estimating the terms ∂E \ gr(ϕ) and gr(ϕ) \ ∂E in the
cylinder Cr separately: the first can be controlled by a covering argument, while the
second is a consequence of the area formula (Theorem 1.18).

We remark that the case n = 1 is quite delicate. Indeed, as we already observed in
Remark 1.9, the smallness of the excess for an H-perimeter minimizer in H1 in general
does not ensure that its boundary is flat. This partially motivates the fact that the
estimate (2.2) is proved to hold only when L > 2 for n = 1, see [50, Proposition 4.2].

On the other hand, examples of minimal surfaces in the first Heisenberg group H1

that are only Lipschitz continuous in the standard sense have been constructed, see,
e.g., [55, 56], but no similar examples of non-smooth minimizers are known in Hn

with n ≥ 2. Thus, in the following, we will restrict our attention to the case n ≥ 2.

1.2. Improved approximation. The first step towards an improvement of Theo-
rem 2.1 is a better control both on the intrinsic Lipschitz approximating function ϕ and

13
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on its intrinsic gradient ∇ϕϕ. In order to do so, we need to improve the estimate (2.2).
The idea is to take advantage of the height bound (1.12) given in Theorem 1.8, which
gives a uniform control on the flatness of the boundary of the minimizer depending on
the smallness of the excess. Our result is the following and we will prove it in Section 2.

Theorem 2.2 (Intrinsic Lipschitz approximation). Let n ≥ 2. There exist positive
dimensional constants C1(n), ε1(n) and δ1(n) with the following property. If E ⊂ Hn

is a (Λ, r0)-minimizer of H-perimeter in C642r(p0) with

Λr0 ≤ 1, r0 > 642r p0 ∈ ∂E,

and if we set

M = Cr(p0) ∩ ∂E, M0 =
{
q ∈M : sup

0<s<64r
e(q, s) ≤ δ1(n)

}
,

then, provided e(p0, 642r) ≤ ε1(n), there is an intrinsic Lipschitz function ϕ : W → R
with

(2.3) sup
W

|ϕ|
r
≤ C1(n) e(p0, 642r)

1
2(2n+1) , LipH(ϕ) ≤ 1,

such that a suitable translation Γ of the graph of ϕ over Dr contains M0,

M0 ⊂M ∩ Γ, Γ = τp0(gr(ϕ|Dr)),

and covers a large portion of M in terms of e(p0, 642r),

S2n+1(M 4 Γ)
r2n+1 ≤ C1(n) e(p0, 642r).

Moreover, the L2-norm on Dr of the intrinsic gradient of ϕ is controlled by e(p0, 642r),

1
r2n+1

∫
Dr
|∇ϕϕ|2 dL2n ≤ C1(n) e(p0, 642r).

Remark 2.3 (Almost harmonicity). Theorem 2.2 is the natural reformulation inHn

of the classical Lipschitz approximation of (Λ, r0)-perimeter minimizers in Rn, see [46,
Theorem 23.7], but with a relevant difference. At the present stage of the theory, it is
not clear how to prove that the intrinsic Lipschitz approximating function ϕ is almost
harmonic (see (23.26) in [46, Theorem 23.7]), that is, it satisfies

(2.4) 1
r2n+1

∣∣∣∣∫
Dr
〈∇ϕϕ,∇ϕ∗ψ〉 dL2n

∣∣∣∣ ≤ C1(n) sup
Dr

|∇ϕϕ|
(
e(p0, 642r) + Λr

)
for every ψ ∈ C1

c (Dr). Here ∇ϕ∗ is the (formal) L2-adjoint of the intrinsic gradient
∇ϕ, see [52, Section 3]. The almost harmonicity property (2.4) is closely linked to
the problem of computing the first variation of the area formula (1.27) and, more
generally, of the H-perimeter; we refer the interested reader to [36, 52] and to the
references therein for an account on these problems.
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2. Proof of Theorem 2.2

In this section, we prove Theorem 2.2. The proof follows the ideas outlined in [46,
Section 23.3]. Up to replacing E with its blow-up Ep0,r and, correspondingly, ϕ with
ϕr = 1

r
ϕ ◦ δr, we can simplify Theorem 2.2 to the following statement. Note that ϕr is

intrinsic Lipschitz if and only if ϕ is intrinsic Lipschitz by (1.20) and, moreover, it can
be easily verified that ∇ϕrϕr = ∇ϕϕ ◦ δr.

Theorem 2.4. Let n ≥ 2. There exist positive dimensional constants C1(n), ε1(n)
and δ1(n) with the following property. If E ⊂ Hn is a (Λ′, r′0)-minimizer of H-perimeter
in C642 with

Λ′ = Λr, r′0 = r0

r
, Λ′r′0 ≤ 1, r′0 > 642, 0 ∈ ∂E,

and if we set

M = C1 ∩ ∂E, M0 =
{
q ∈M : sup

0<s<64
e(q, s) ≤ δ1(n)

}
,

then, provided e(642) ≤ ε1(n), there exists an intrinsic Lipschitz function ϕ : W → R
such that

(2.5) sup
W
|ϕ| ≤ C1(n) e(642)

1
2(2n+1) , LipH(ϕ) ≤ 1,

(2.6) M0 ⊂M ∩ Γ, Γ = gr(ϕ|D1),

(2.7) S2n+1(M 4 Γ) ≤ C1(n) e(642),

(2.8)
∫
D1
|∇ϕϕ|2 dL2n ≤ C1(n) e(642).

Proof. The proof is divided in three steps.
Step 1: construction of ϕ. Let ε0(n) and C0(n) be the constants given in Theo-

rem 1.8. Then, by Theorem 1.8, we have

(2.9) sup
{
|h(p)| : p ∈ C1 ∩ ∂E

}
≤ C0(n) e(16)

1
2(2n+1) ,

provided that e(16) ≤ ε0(n); this follows from (1.10) if ε1(n) ≤ ε0(n) is suitably small.
Let q ∈ M0 and p ∈ M be fixed. Then p, q ∈ C1, so dC(p, q) < 4 by (1.8), where

dC is the quasi distance induced by the quasi norm ‖·‖C defined in (1.6). We consider
the blow-up of E at scale dC(p, q) centred in q, that is, F = Eq,dC(p,q). By Remark 1.4,
F is a (Λ′′, r′′0)-perimeter minimizer in (C642)q,dC(p,q), with

Λ′′ = Λ′ dC(p, q), r′′0 = r′0
dC(p, q) > 1.

Since
C16 ⊂ (C642)q,dC(p,q), Λ′′r′′0 ≤ 1, 0 ∈ ∂F

and, by (1.11) and by definition of M0,
e(F, 0, 16, ν) = e(E, q, 16dC(p, q), ν) ≤ δ1(n),
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then, provided we assume δ1(n) ≤ ε0(n), by Theorem 1.8 we have

sup
{
|h(w)| : w ∈ C1 ∩ ∂F

}
≤ C0(n) δ1(n)

1
2(2n+1) .

In particular, choosing
w = 1

dC(p, q) q
−1 ∗ p ∈ C1 ∩ ∂F,

we get

(2.10) |h(q−1 ∗ p)| ≤ C0(n) δ1(n)
1

2(2n+1)dC(p, q).
We now set
(2.11) L(n) := C0(n) δ1(n)

1
2(2n+1)

and we choose δ1(n) so small that L(n) < 1. Then, by (2.10), we conclude that
dC(p, q) = ‖π(q−1 ∗ p)‖∞ and we get
(2.12) |h(q−1 ∗ p)| ≤ L(n)‖π(q−1 ∗ p)‖∞ for all p ∈M, q ∈M0.

In particular, (2.12) proves that the projection π is invertible onM0. Therefore, we can
define a function ϕ : π(M0) → R setting ϕ(π(p)) = h(p) for all p ∈ M0. From (2.12),
we deduce that

|ϕ(π(p))− ϕ(π(q))| ≤ L(n)‖π(q−1 ∗ p)‖∞ for all p, q ∈M0,

so that ϕ is an intrinsic Lipschitz function on π(M0) with LipH(ϕ, π(M0)) ≤ L(n) < 1
by (1.20). Since M0 ⊂M , by (2.9) we also have

|ϕ(π(p))| ≤ C0(n) e(16)
1

2(2n+1) for all p ∈M0.

Therefore, by Proposition 1.14, possibly choosing δ1(n) smaller accordingly to (1.21),
we can extend ϕ from π(M0) to the whole W with LipH(ϕ,W) ≤ L(n) < 1 in such a
way that

M0 ⊂M ∩ Γ, Γ = gr(ϕ|D1) and |ϕ(w)| ≤ C0(n) e(16)
1

2(2n+1) for all w ∈W.

We thus proved (2.5) and (2.6) for a suitable C1(n) ≥ C0(n).
Step 2: covering argument. We now prove (2.7) via a covering argument. By

definition of M0, for every q ∈M \M0 there exists s = s(q) ∈ (0, 64) such that

(2.13)
∫
Cs(q)∩∂E

|νE − ν|2g
2 dS2n+1 >

δ1(n)
δ(n) s

2n+1,

with δ(n) = 2ω2n−1
ω2n+1

as in (1.9) and ν = −X1 as usual. The family of balls

{B2s(q) : q ∈M \M0, s = s(q)}
is a covering of M \ M0. By the 5r-covering Lemma (see [31, Theorem 1.24] for
example), there exist a sequence of points qh ∈ M \M0 and a sequence of radii sh =
s(qh), h ∈ N, with qh and sh satisfying (2.13), such that the balls B2sh(qh) are pairwise
disjoint and

{B10sh(qh) : h ∈ N}
is still a covering of M \M0. Note that B10sh(qh) ⊂ C642, because if p ∈ B10sh(qh) then,
by (1.7),

‖p‖C ≤ ‖p‖∞ ≤ d∞(p, qh) + ‖qh‖∞ < 10sh + 2‖qh‖C < 642.
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Therefore, by Theorem 1.5, we get

S2n+1(M \M0) ≤
∑
h∈N
S2n+1

(
(M \M0) ∩B10sh(qh)

)
≤
∑
h∈N
S2n+1

(
M ∩B10sh(qh)

)
≤ C(n)

∑
h∈N

s2n+1
h ,

with C(n) a positive dimensional constant. Since Csh(qh) ⊂ B2sh(qh) by (1.8), the
cylinders Csh(qh) are pairwise disjoint and contained in C642, so we have

(2.14) S2n+1(M \M0) ≤ C(n)
∑
h∈N

∫
Csh (qh)∩∂E

|νE − ν|2g
2 dS2n+1 ≤ C(n) e(642),

with C(n) a positive dimensional constant. Therefore, sinceM \Γ ⊂M \M0, by (2.14)
it follows that
(2.15) S2n+1(M \ Γ) ≤ C(n) e(642),
which is the first half of (2.7).

We now bound the second half of (2.7). We choose ε1(n) so small that
e(2) ≤ ω(n, 1

2 ,
1

642 , 642).
This is possible by (1.10). Then, by (1.17) in Lemma 1.11, we have

L2n(G) ≤ S2n+1
(
M ∩ π−1(G)

)
for any Borel set G ⊂ D1. Therefore, by the area formula (1.27) in Theorem 1.18, we
can estimate

δ(n)S2n+1(Γ \M) =
∫
π(Γ\M)

√
1 + |∇ϕϕ(w)|2 dL2n

≤
√

1 + ‖∇ϕϕ‖2
L∞(D1) L

2n
(
π(Γ \M)

)
≤
√

1 + ‖∇ϕϕ‖2
L∞(D1) S

2n+1
(
M ∩ π−1

(
π(Γ \M)

))
.(2.16)

Since ϕ is intrinsic Lipschitz on D1 with LipH(ϕ) < 1 by construction, by Proposi-
tion 1.17 there exists a positive dimensional constant C(n) such that

(2.17) ‖∇ϕϕ‖L∞(D1) ≤ C(n) LipH(ϕ)
(

LipH(ϕ) + 1
)
< 2C(n).

Thus, by (2.16) and (2.17), there exists a positive dimensional constant C(n) such that

(2.18) S2n+1(Γ \M) ≤ C(n)S2n+1
(
M ∩ π−1

(
π(Γ \M)

))
.

Since we have
M ∩ π−1

(
π(Γ \M)

)
⊂M \ Γ,

by (2.15) and (2.18) we conclude that, for some positive dimensional constant C ′(n),
(2.19) S2n+1(Γ \M) ≤ C(n)S2n+1(M \ Γ) ≤ C ′(n) e(642),
which is the second half of (2.7). Combining (2.15) and (2.19), we prove (2.7).
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Step 3: L2-estimate. Finally, we prove (2.8). We first notice that, by Theorem 1.18,
Theorem 1.2 and by [6, Corollary 2.6], for S2n+1-a.e. p ∈ M ∩ Γ there exists λ(p) ∈
{−1, 1} such that

(2.20) νE(p) = λ(p)

(
1,−∇ϕϕ(π(p))

)
√

1 + |∇ϕϕ(π(p))|2
.

Taking into account that, for S2n+1-a.e. p ∈M ∩ Γ,

(2.21)
|νE(p)− ν(p)|2g

2 = 1− 〈νE(p), ν(p)〉g ≥
1− 〈νE(p), ν(p)〉2g

2 ,

by (2.20) and by the general area formula (1.28) we find that

e(1) ≥
∫
M∩Γ

1− 〈νE(p), ν(p)〉2g
2 d|µE|

= 1
2

∫
M∩Γ

|∇ϕϕ(π(p))|2

1 + |∇ϕϕ(π(p))|2
d|µE|

= 1
2

∫
π(M∩Γ)

|∇ϕϕ(w)|2√
1 + |∇ϕϕ(w)|2

dL2n.

Recalling (2.17) and (1.10), we conclude that there exists a positive dimensional con-
stant C(n) such that

(2.22)
∫
π(M∩Γ)

|∇ϕϕ(w)|2 dw ≤ C(n) e(642).

Moreover, again by the general area formula (1.28), there exists a positive dimensional
constant C(n) such that∫

π(M4Γ)
|∇ϕϕ(w)|2 dL2n =

∫
M4Γ

|∇ϕϕ(π(p))|2√
1 + |∇ϕϕ(π(p))|2

d|µE|

≤ C(n)‖∇ϕϕ‖2
L∞(D1) S

2n+1(M 4 Γ).

By (2.17) and (2.7), we find a positive dimensional constant C(n) such that

(2.23)
∫
π(M4Γ)

|∇ϕϕ(w)|2 dw ≤ C(n) e(642).

Combining (2.22) and (2.23), we prove (2.8). �

Remark 2.5 (σ-representative). Let 0 < σ ≤ 1 and I = (−1, 1). We let A(σ) be
the family of sets A ⊆ Dσ such that

|h(q−1 ∗ p)| ≤ L(n)‖π(q−1 ∗ p)‖∞ for all p ∈M ∩Dσ ∗ I, q ∈M ∩ A ∗ I,

where L(n) is the dimensional constant considered in (2.11). Note that the family A(σ)
is partially ordered by inclusion and is closed under union. Thus A(σ) has a unique
maximal element A?σ. Then, by (2.12), we have that

|h(q−1 ∗ p)| ≤ L(n)‖π(q−1 ∗ p)‖∞ for all p, q ∈M0 ∪ (M ∩ A?σ ∗ I).
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Therefore, in Step 1 of the proof of Theorem 2.4, it is not restrictive to assume that
the intrinsic Lipschitz approximation ϕ : W→ R is defined in such a way that

ϕ(π(p)) = h(p) for all p ∈M0 ∪ (M ∩ A?σ ∗ I).
We define such an intrinsic Lipschitz function a σ-representative of Theorem 2.4.

A (σ; r)-representative of Theorem 2.2 is defined in the same way, where r > 0 is
as in the statement of Theorem 2.2 and this time 0 < σ ≤ r, I = (−r, r).





CHAPTER 3

Approximation via maximal functions

1. Main results

In this chapter, we develop the ideas contained in [24, Section 2] and in [25, Appen-
dix A] to prove the following result. The proof is in Section 3. Note that Theorem 2.2
has to be applied with a suitable scaling factor.

Theorem 3.1 (α-improvement). Let n ≥ 2 and α ∈ (0, 1
2). There exist positive

constants C2(n), ε2(α, n) and k2 = k2(n) with the following property. Let E ⊂ Hn be a
(Λ, r0)-minimizer of H-perimeter in Ck2r(p0) with

Λr0 ≤ 1, r0 > k2r p0 ∈ ∂E, e(p0, k2r) ≤ ε2(α, n).

Let ϕ : W → R be a suitably chosen approximation given by Theorem 2.2. Then there
exists a set K ⊂ Dr such that

L2n(Dr \K) ≤ C2(n) e(p0, k2r)1−2α.

Moreover, the function ϕ has the following additional properties: up to a translation,
the intrinsic graph of ϕ coincides with ∂E over K,

τp0(gr(ϕ|K)) = ∂E ∩ τp0(K ∗ (−r, r)),

and the intrinsic Lipschitz constant of ϕ over K improves,

LipH(ϕ,K) ≤ C2(n) e(p0, k2r)α.

Theorem 3.1 leads to the following result. The proof is in Section 4.

Corollary 3.2. Let n ≥ 2 and α ∈ (0, 1
2). There exist positive constants C3(n),

ε3(α, n) and k3 = k3(n) with the following property. Let E ⊂ Hn be a (Λ, r0)-minimizer
of H-perimeter in Ck3r(p0) with

Λr0 ≤ 1, r0 > k3r p0 ∈ ∂E, e(p0, k3r) ≤ ε3(α, n).

Then there exist a set K ⊂ Dr and an intrinsic Lipschitz function ϕ : W→ R with the
following properties:

L2n(Dr \K) ≤ C3(n) e(p0, k3r)1−2α,

τp0(gr(ϕ|K)) = ∂E ∩ τp0(K ∗ (−r, r)), LipH(ϕ) ≤ C3(n) e(p0, k3r)α,

S2n+1
(
(∂E 4 gr(ϕ)) ∩ Cr

)
r2n+1 ≤ C3(n) e(p0, k3r)1−2α,

1
r2n+1

∫
Dr
|∇ϕϕ|2 dL2n ≤ C3(n) e(p0, k3r).

21
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2. Local maximal functions

2.1. Maximal function on disks. Given s > 0 and a non-negative measure µ
on D4s, with D4s ⊂W, the local maximal function of µ is defined as

(3.1) Mµ(x) := sup
0<r<4s−‖x‖∞

µ(Dr(x))
κnr2n+1 for all x ∈ D4s,

where κn = L2n(D1) as in (1.4).

Lemma 3.3. Let s > 0 and let µ : D4s → [0,+∞) be as above. Assume that θ > 0
is such that

(3.2) µ(D4s) ≤
θ

52n+1κns
2n+1

and define
Jθ = {x ∈ D4s : Mµ(x) > θ}.

Then

(3.3) L2n(Jθ ∩Dr) ≤
52n+1

θ
µ(Jθ/22n+1 ∩Dr+ s

5
) ∀r ≤ 3s.

Proof. Let r ≤ 3s be fixed. Note that if x ∈ Jθ ∩ Dr, then there exists rx > 0
such that

µ(Drx(x)) > θκnr
2n+1
x .

By the 5r-covering Lemma applied to the family {Drx(x) : x ∈ Jθ ∩ Dr}, we find a
sequence of pairwise disjoint balls {Dri(xi)}i∈N, with xi ∈ Jθ ∩ Dr and ri > 0, such
that

Jθ ∩Dr ⊂
⋃

x∈Jθ∩Dr
Drx(x) ⊂

⋃
i∈N

D5ri(xi), µ(Dri(xi)) > θκnr
2n+1
i .

In particular, by (3.2), we get that

ri <
2n+1

√
µ(Dri(xi))

θκn
≤ 2n+1

√
µ(D4s)
θκn

≤ s

5

and so, for any i ∈ N, we have

Dri(xi) ⊂ D‖xi‖∞+ri ⊂ Dr+ s
5
.

We claim that
Dri(xi) ⊂ Jθ/22n+1 ∩Dr+ s

5

for any i ∈ N. Indeed, on the contrary, let y ∈ Dri(xi) be such that Mµ(y) ≤ θ
22n+1 .

Then Dri(xi) ⊂ D2ri(y) and

4s− ‖y‖∞ ≥ 4s− r − s

5 ≥ 4s− 3s− s

5 = 4
5s > 2ri.
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Hence
θ

22n+1 ≥Mµ(y) = sup
0<δ<4s−‖y‖∞

µ(Dδ(y))
κnδ2n+1

≥ sup
2ri<δ<4s−‖y‖∞

µ(Dδ(y))
κnδ2n+1

≥ sup
2ri<δ<4s−‖y‖∞

µ(Dri(xi))
κnδ2n+1 = µ(Dri(xi))

κn(2ri)2n+1 >
θ

22n+1 ,

a contradiction.
We can finally estimate

L2n(Jθ ∩Dr) ≤
∑
i∈N
L2n(D5ri(xi)) = 52n+1 κn

∑
i∈N

r2n+1
i

≤ 52n+1 κn
∑
i∈N

µ(Dri(xi))
θκn

= 52n+1

θ

∑
i∈N

µ(Dri(xi))

= 52n+1

θ
µ

⋃
i∈N

Dri(xi)
 ≤ 52n+1

θ
µ(Jθ/22n+1 ∩Dr+ s

5
)

and (3.3) follows. �

2.2. Maximal function on ϕ-balls. We need some preliminaries. In the setting
of the Heisenberg group, the Poincaré inequality is the natural analogous of the Eu-
clidean one and was established in [16, Theorem 1.2] for functions which belongs to an
intrinsic Sobolev class, see [16, Definition 1.1].

To our purpose, it is enough to recall the following Poincaré inequality for Lipschitz
intrinsic functions, which is a consequence of [16, Theorem 1.2] (see also [16, Corol-
lary 1.3] for the case p = 1).

Theorem 3.4 (Poincaré inequality). Let W ⊂ W be a bounded open set, n ≥ 2,
and let 1 ≤ p < ∞. Let ϕ : W → R be an L-intrinsic Lipschitz function. Then there
exist two constants CL

1 , C
L
2 > 0 with CL

2 > 1, depending on L, such that

(3.4)
∫
Uϕ(x,r)

|ϕ− (ϕ)x,r|p dL2n ≤ CL
1 r

p
∫
Uϕ(x,CL2 r)

|∇ϕϕ|p dL2n

for every Uϕ(x,CL
2 r) ⊂ W , where

(3.5) Uϕ(x, r) = {y ∈ W : dϕ(x, y) < r}
and

(ϕ)x,r = −
∫
Uϕ(x,r)

ϕ dL2n = 1
L2n(Uϕ(x, r))

∫
Uϕ(x,r)

ϕ dL2n.

The constants CL
1 , C

L
2 depend continuously on L and n. For future convenience, we

define
(3.6) γ2(n) = lim

L→0
CL

2 ≥ 1.

The L2n-measure of the ball Uϕ(x, r) defined in (3.5) is comparable to r2n+1, see [16,
Section 2.3] and the references therein.
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Lemma 3.5. Let W ⊂ W be a bounded open set, n ≥ 2, and let ϕ : W → R be an
L-intrinsic Lipschitz function. There exist two constants cL1 , cL2 > 0, depending on L,
such that, for all Uϕ(x, r) ⊂ W , we have

(3.7) cL1 ≤
L2n(Uϕ(x, r))

r2n+1 ≤ cL2 .

We can now introduce the local ϕ-maximal function. Let n ≥ 2, s > 0 and let
ϕ : W→ R be an L-intrinsic Lipschitz function. By (1.24) and by (3.6), there exists a
dimensional constant `(n) > 0 such that
(3.8) L ∈ [0, `(n)] =⇒ cL ≤ 2 and CL

2 ≤ 2γ2(n),
where cL is as in (1.23) and CL

2 is as in Theorem 3.4. For all L ∈ [0, `(n)], we define
the local ϕ-maximal function of µϕ as

(3.9) [µϕ](x) := sup
0<r<rϕ(x,s)

µϕ(Uϕ(x, r))
L2n(Uϕ(x, r)) ∀x ∈ Uϕ(0, s),

where we set

(3.10) rϕ(x, s) = ρ(n)
cL

s− dϕ(x, 0) for all x ∈ Uϕ(0, s),

the dimensional constant is
(3.11) ρ(n) = 64γ2(n) + 2
and the non-negative measure µϕ on Uϕ(0, ρ(n)s) is given by

dµϕ = |∇ϕϕ| dL2n.

The maximal function introduced in (3.9) is well-defined, since
x ∈ Uϕ(0, s), r < rϕ(x, s) =⇒ Uϕ(x, r) ⊂ Uϕ(0, ρ(n)s)

by the quasi triangular inequality (1.23).
We use the Poincaré inequality (3.4) to prove the following result on [µϕ], following

the ideas of [24, Proposition 2.2] and [25, Lemma A.2].

Lemma 3.6. Let n ≥ 2, s > 0, ϕ : W→ R, µϕ, [µϕ], L ∈ [0, `(n)] be as above. Let
θ > 0 and define
(3.12) Jϕθ = {x ∈ Uϕ(0, s) : [µϕ](x) > θ}.
Then there exists a constant C = C(n, L) such that
(3.13) |ϕ(x)− ϕ(y)| ≤ Cθ dϕ(x, y) ∀x, y ∈ Uϕ(0, s) \ Jϕθ .

Proof. Let x ∈ Uϕ(0, s) \ Jϕθ and let CL
2 r < rϕ(x, s). Then, by Theorem 3.4 with

p = 1, we have∫
Uϕ(x,r)

|ϕ− (ϕ)x,r| dL2n ≤ CL
1 r
∫
Uϕ(x,CL2 r)

|∇ϕϕ| dL2n = CL
1 r µϕ(Uϕ(x,CL

2 r)).

By (3.9) and by (3.12), we have
µϕ(Uϕ(x,CL

2 r)) ≤ θL2n(Uϕ(x,CL
2 r)).
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Therefore, by (3.7), we have∫
Uϕ(x,r)

|ϕ− (ϕ)x,r| dL2n ≤ CL
1 θc

L
2 (CL

2 r)2n+1,

and so, again by (3.7), we get

−
∫
Uϕ(x,r)

|ϕ− (ϕ)x,r| dL2n ≤ cL2
cL1
CL

1 (CL
2 )2n+1θr,

for all x ∈ Uϕ(0, s) \ Jϕθ and CL
2 r < rϕ(x, s).

In particular, for all j = 0, 1, 2, . . . , we have∣∣∣(ϕ)x, r

2j+1
− (ϕ)x, r

2j

∣∣∣ ≤ −∫
Uϕ(x, r

2j+1 )

∣∣∣ϕ(u)− (ϕ)x, r
2j

∣∣∣ dL2n(u)

≤ 22n+1 c
L
2
cL1
−
∫
Uϕ(x, r

2j
)

∣∣∣ϕ(u)− (ϕ)x, r
2j

∣∣∣ dL2n(u)

≤ 22n+1

2j

(
cL2
cL1

)2

CL
1 (CL

2 )2n+1θr.

Since ϕ is continuous, we get

|ϕ(x)− (ϕ)x,r| ≤
+∞∑
j=0

∣∣∣(ϕ)x, r

2j+1
− (ϕ)x, r

2j

∣∣∣ ≤ 22n+2
(
cL2
cL1

)2

CL
1 (CL

2 )2n+1θr,

for all x ∈ Uϕ(0, s) \ Jϕθ and CL
2 r < rϕ(x, s).

Finally, let x, y ∈ Uϕ(0, s) \ Jϕθ , r = dϕ(x, y) and cL3 = 2cL. Then, by the quasi
triangular inequality (1.23), we have

Uϕ(x, r) ∪ Uϕ(y, r) ⊂ Uϕ(x, cL3 r) ∩ Uϕ(y, cL3 r).
Notice that, again by (1.23), we have

x, y ∈ Uϕ(0, s), r = dϕ(x, y) =⇒ Uϕ(x, cL3 r) ∪ Uϕ(y, cL3 r) ⊂ Uϕ(0, ρ(n)s),
because, by (3.8) and (3.11),

cL(2cLcL3 + 1) = cL(4c2
L + 1) ≤ ρ(n).

Therefore∣∣∣(ϕ)x,cL3 r − (ϕ)y,cL3 r
∣∣∣ ≤ −∫

Uϕ(x,cL3 r)∩Uϕ(y,cL3 r)

∣∣∣ϕ(u)− (ϕ)x,cL3 r
∣∣∣+ ∣∣∣ϕ(u)− (ϕ)x,cL3 r

∣∣∣ dL2n(u)

≤ cL2
cL1

(cL3 )2n+1
(
−
∫
Uϕ(x,cL3 r)

∣∣∣ϕ(u)− (ϕ)x,cL3 r
∣∣∣ dL2n(u)+

+−
∫
Uϕ(y,cL3 r)

∣∣∣ϕ(u)− (ϕ)y,cL3 r
∣∣∣ dL2n(u)

)
.

Since x, y ∈ Uϕ(0, s) \ Jϕθ , by (3.9) and by (3.12) we have
µϕ(Uϕ(x, cL3CL

2 r)) ≤ θL2n(Uϕ(x, cL3CL
2 r))

and, analogously,
µϕ(Uϕ(y, cL3CL

2 r)) ≤ θL2n(Uϕ(y, cL3CL
2 r)),
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provided that
cL3C

L
2 dϕ(x, y) < min{rϕ(x, s), rϕ(y, s)}.

By (3.8), since x, y ∈ Uϕ(0, s), we have

min{rϕ(x, s), rϕ(y, s)} > ρ(n)s
cL
− s ≥

(
ρ(n)

2 − 1
)
s

and
cL3C

L
2 dϕ(x, y) < 4c2

LC
L
2 s ≤ 32γ2(n)s,

so it is enough to check that

32γ2(n) ≤ ρ(n)
2 − 1,

but this is true thanks to the definition of ρ(n) in (3.11).
We can now conclude the proof. Let x, y ∈ Uϕ(0, s) \ Jϕθ and r = dϕ(x, y). Then

|ϕ(x)− ϕ(y)| ≤ |ϕ(x)− (ϕ)x,cL3 r|+ |(ϕ)x,cL3 r − (ϕ)y,cL3 r|+ |ϕ(y)− (ϕ)y,cL3 r|

≤
(
2(cL3 )2n+2 + 22n+3cL3

)(cL2
cL1

)2

CL
1 (CL

2 )2n+1θr

= C(n, L) dϕ(x, y)

and (3.13) follows. �

3. Proof of Theorem 3.1

In this section, we prove Theorem 3.1 following the ideas outlined in [24,25]. As we
already did for the proof of Theorem 2.2, up to replacing E with its blow-up Ep0,r and,
correspondingly, ϕ with ϕr = 1

r
ϕ ◦ δr, we can simplify Theorem 3.1 to the following

statement.

Theorem 3.7. Let n ≥ 2 and α ∈ (0, 1
2). There exist positive constants C2(n),

ε2(α, n) and k2 = k2(n) with the following property. Let E ⊂ Hn be a (Λ′, r′0)-minimizer
of H-perimeter in Ck2 with

Λ′ = Λr, r′0 = r0

r
> k2, Λ′r′0 ≤ 1, 0 ∈ ∂E, e(k2) ≤ ε2(α, n).

Let ϕ : W → R be a suitably chosen approximation given by Theorem 2.2. Then there
exists a set K ⊂ D1 such that

(3.14) L2n(D1 \K) ≤ C2(n) e(k2)1−2α,

(3.15) gr(ϕ|K) = ∂E ∩
(
K ∗ (−1, 1)

)
,

(3.16) LipH(ϕ|K) ≤ C2(n) e(k2)α.

We need some preliminaries. The following result is an easy consequence of Cauchy–
Schwarz inequality, see [25, Lemma A.1] and [24, Proposition 2.1].
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Lemma 3.8. Let W ⊂ W be an open set and let ϕ : W → R be an L-intrinsic
Lipschitz function. For any Borel set A ⊂⊂ W , we have

(3.17)
(∫

A
|∇ϕϕ| dL2n

)2
≤
√

1 + ‖∇ϕϕ‖L∞(W ) L
2n(A)

∫
gr(ϕ|A)

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|.

Proof. Let A ⊂⊂ W be fixed. Then, by the general area formula (1.28),
∫
A
|∇ϕϕ| dL2n =

∫
gr(ϕ|A)

|∇ϕϕ|√
1 + |∇ϕϕ|2

d|µEϕ|

≤
(∫

gr(ϕ|A)
d|µEϕ |

) 1
2
(∫

gr(ϕ|A)

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|

) 1
2

=
(∫

A

√
1 + |∇ϕϕ|2 dL2n

) 1
2
(∫

gr(ϕ|A)

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|

) 1
2

≤ 4
√

1 + ‖∇ϕϕ‖L∞(W ) L
2n(A) 1

2

(∫
gr(ϕ|A)

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ |

) 1
2

and (3.17) follows squaring both sides. �

The following lemma compares the distance dϕ with the distance of points of the
graph of an intrinsic Lipschitz function ϕ, see [15, Proposition 3.6].

Lemma 3.9. Let W ⊂W be an open set and let ϕ : W → R be an intrinsic Lipschitz
function. Then, for all x ∈ W , r > 0 and 0 < C < 1/(1 + LipH(ϕ)), we have

(3.18) Uϕ(x,Cr) ⊂ π
(
Br(Φ(x)) ∩ gr(ϕ)

)
⊂ Uϕ(x, r),

where Uϕ(x, r) is as in (3.5) and Φ(x) = x ∗ ϕ(x)e1.

Finally, the following result compares the distance dϕ with the distance d∞ in W .
Its proof easily follows from Definition 1.15 and is left to the reader.

Lemma 3.10. Let W ⊂W be an open set and let ϕ : W → R be a bounded intrinsic
Lipschitz function. Then, for all x ∈ W and r > 0, we have

Uϕ(x, r) ⊂ DR(x) and Dr(x) ⊂ Uϕ(x,R),

where R = r + 2‖ϕ‖1/2
L∞(W )r

1/2.

Proof of Theorem 3.7. The proof is divided in three steps.
Step 1: construction of ϕ, K and proof of (3.15). Let α ∈ (0, 1

2) be fixed. We
assume ε2(n, α) ≤ ε1(n) and k2 > 642. We let ϕ : W → R be a (1; k2

642)-representative
of Theorem 2.2, see Remark 2.5. Choosing ε2(n, α) sufficiently small, by (2.3) we can
assume that supW|ϕ| < 1.
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Let I = (− k2
642 ,

k2
642) and let A ⊂ D k2

642
be a Borel set. By (2.20) and (2.21), we have

∫
gr(ϕ|A)

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ| = δ(n)

∫
gr(ϕ|A)

|∇ϕϕ|2

1 + |∇ϕϕ|2
dS2n+1 =

= δ(n)
(∫

gr(ϕ|A)∩∂E∩A∗I

|∇ϕϕ|2

1 + |∇ϕϕ|2
dS2n+1 +

∫
(gr(ϕ|A)\∂E)∩A∗I

|∇ϕϕ|2

1 + |∇ϕϕ|2
dS2n+1

)

≤ 2
∫
∂E∩A∗I

|νE − ν|2g
2 d|µE|+

∫
(gr(ϕ|A)\∂E)∩A∗I

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ |,

where δ(n) = 2ω2n−1
ω2n+1

as in Theorem 1.2. We let the non-negative measure µ on D k2
642

be
defined as

(3.19) µ(A) = 2
∫
∂E∩A∗I

|νE − ν|2g
2 d|µE|+

∫
(gr(ϕ|A)\∂E)∩A∗I

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|,

for any Borel set A ⊂ D k2
642

, where ν = −X1 as usual.
Let 0 < η < 1 to be fixed later. We let

Kη =
{
x ∈ D k2

642
: Mµ(x) ≤ η

}
,

whereMµ is the local maximal function of µ defined in (3.1) with s = k2
2568 . We assume

k2 > 2568 and we define

K = Kη ∩D1.

We now prove (3.15). Since ϕ is a (1; k2
642)-representative of Theorem 2.2, by Re-

mark 2.5 it is enough to prove that K ∈ A(1; k2
642). To this end, let us fix p ∈M ∩D1∗I

and q ∈ M ∩ K ∗ I. We proceed as in Steps 1 of the proof of Theorem 2.4. Indeed,
by (1.13) in Lemma 1.10 we have

(3.20) |h(ξ)| < 1 ∀ξ ∈ C k2
642
∩ ∂E,

since E is a ( 1
k2
, k2)-minimizer of H-perimeter in C k2

321
and, by (1.10), we can estimate

e( k2
321) ≤ 3212n+1e(k2) ≤ 3212n+1ε2(n, α) ≤ ω(n, 1

2 ,
1
k2
, k2),

provided we assume

ε2(n, α) ≤ 321−2n−1ω(n, 1
2 ,

1
k2
, k2).

Thus we have p, q ∈ C1 and dC(p, q) < 4, where dC is the quasi distance given by
the quasi norm ‖·‖C defined in (1.6). Moreover, q = π(q) ∗ h(q)e1 with π(q) ∈ K and
|h(q)| < 1. Since

(3.21) Cs(ξ) ⊂ π(Cs(ξ)) ∗ (−s− h(ξ), h(ξ) + s) ⊂ D2s(π(ξ)) ∗ I
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for any ξ ∈ C1 and 0 < s < k2
642 − 1, we can estimate

e(q, s) = 1
s2n+1

∫
Cs(q)∩∂E

|νE − ν|2g
2 d|µE|

≤ 1
s2n+1

∫
∂E∩D2s(π(q))∗I

|νE − ν|2g
2 d|µE|

≤ 22n+1κn sup
0<ρ< k2

642−‖π(q)‖∞

1
κnρ2n+1

∫
∂E∩Dρ(π(q))∗I

|νE − ν|2g
2 d|µE|

≤ 22nκnMµ(π(q)) ≤ 22nκnη

for any 0 < s < k2
1284 , where κn = L2n(D1) as in (1.4).

We consider the blow-up of E at scale dC(p, q) centred at q, that is, F = Eq,dC(p,q).
By Remark 1.4, F is a (Λ′′, r′′0)-perimeter minimizer in (Ck2)q,dC(p,q), with

Λ′′ = Λ′ dC(p, q), r′′0 = r′0
dC(p, q) > 1.

Now
C16 ⊂ (Ck2)q,dC(p,q), Λ′′r′′0 ≤ 1, 0 ∈ ∂F

and, by (1.11) and by definition of M0,

e(F, 0, 16, ν) = e(E, q, 16dC(p, q), ν) ≤ 22nκnη,

since we can choose k2 > 82176. Therefore, provided we assume

22nκnη ≤ ε0(n),

by Theorem 1.8 we have

sup
{
h(ξ) : ξ ∈ C1 ∩ ∂F

}
≤ C(n)η

1
2(2n+1) ,

where C(n) is a dimensional constant. In particular, choosing

ξ = 1
dC(p, q) q

−1 ∗ p ∈ C1 ∩ ∂F,

we get

(3.22) |h(q−1 ∗ p)| ≤ C(n)η
1

2(2n+1)dC(p, q).

We now set
L′(n, η) = C(n)η

1
2(2n+1)

and we choose η so small that L′(n, η) ≤ L(n), where L(n) < 1 is as in (2.11). Then,
by (3.22), we conclude that dC(p, q) = ‖π(q−1 ∗ p)‖∞ and we get

(3.23) |h(q−1 ∗ p)| ≤ L(n)‖π(q−1 ∗ p)‖∞ for all p ∈M ∩D1 ∗ I, q ∈M ∩K ∗ I,

so K ∈ A(1; k2
642). Thus, by (3.20) and (3.23), equality (3.15) follows.
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Step 2: proof of (3.14). We now apply Lemma 3.3 with s = k2
2568 and measure µ as

defined in (3.19). By Theorem 2.2, we have

µ(Dk2/642) = 2
∫
∂E∩Dk2/642∗I

|νE − ν|2g
2 d|µE|+

∫
(gr(ϕ)\∂E)∩Dk2/642∗I

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ |

= 2
∫
∂E∩Ck2/642

|νE − ν|2g
2 d|µE|+

∫
(gr(ϕ)\∂E)∩Ck2/642

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|

≤ 2
(
k2
642

)2n+1
e( k2

642) + C(n)S2n+1
(

(∂E 4 gr(ϕ)) ∩ Ck2/642

)
≤ C ′(n) e(k2),(3.24)

where C(n) and C ′(n) are dimensional constants. We now choose η = e(k2)2α. In order
to apply Lemma 3.3, we need to check that

µ(Dk2/642) ≤
η

52n+1κn

(
k2

2568

)2n+1

.

By (3.24), this follows if we assume that

ε2(n, α) ≤
 κn
C ′(n)

(
k2

12840

)2n+1
 1

1−2α

.

We remark that this condition on ε2(n, α) is the only one that depends also on the
parameter α. Thus, by (3.3) in Lemma 3.3 and by (3.24), we conclude that

L2n(D1 \K) = L2n(Jη ∩D1) ≤ 52n+1

η
µ
(
Jη/22n+1 ∩D1+ k2

12840

)

≤ 52n+1

e(k2)2α µ
(
Dk2/642

)
≤ 52n+1C ′(n)e(k2)1−2α,

which proves (3.14).
Step 3: proof of (3.16). By Lemma 3.8 and by Proposition 1.17, we have

µϕ(A)2 =
(∫

A
|∇ϕϕ| dL2n

)2

≤
√

1 + ‖∇ϕϕ‖L∞(Dk2/642) L
2n(A)

∫
gr(ϕ|A)

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|

≤ C(n)L2n(A)
∫

gr(ϕ|A)

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|
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for all Borel sets A ⊂ D1, where C(n) is a dimensional constant. Moreover, for any
x ∈ K and 4r < k2

642 − ‖x‖∞, by (3.18) in Lemma 3.9, by (1.8) and by (3.21), we have∫
Φ(Uϕ(x,r))

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ | ≤

∫
Γ∩B2r(Φ(x))

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|

≤
∫

Γ∩C2r(Φ(x))

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ|

≤ 2
∫
M∩D4r(x)∗I

|νE − ν|2g
2 d|µE|+

∫
(Γ\M)∩D4r(x)∗I

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ |

= µ(D4r(x)).

Therefore, for any x ∈ K and 4r < k2
642 − ‖x‖∞, we get

(3.25) µϕ(Uϕ(x, r))2 ≤ C(n)L2n(Uϕ(x, r))µ(D4r(x)).

We now apply Lemma 3.6. We choose the parameter s > 0 in Lemma 3.6 such that

D1 ⊂ Uϕ(0, s) and Uϕ(0, ρ(n)s) ⊂ Dk2 ,

where ρ(n) is the dimensional constant defined in (3.11). Since LipH(ϕ) ≤ L(n) < 1,
where L(n) is the dimensional constant defined in (2.11), possibly choosing ε2(n, α)
smaller, we can directly assume that L ≤ `(n) as in (3.8). In particular, the constant
c(n, L) appearing in (3.13) of Lemma 3.6, is controlled from above by a dimensional
constant. Since supW|ϕ| < 1, by Lemma 3.10 we can choose s = 3 provided that we
also choose

k2(n) ≥ 3ρ(n) + 2
√

3ρ(n).
We then have

rϕ(x, 3) = 3ρ(n)
cL
− dϕ(x, 0) ≤ 3ρ(n),

where rϕ(x, s) was defined in (3.10). By (3.25) and by Lemma 3.5, for any x ∈ K we
have

[µϕ](x)2 = sup
0<r<rϕ(x,3)

µϕ(Uϕ(x, r))2

L2n(Uϕ(x, r))2 ≤ C(n) sup
0<r<3ρ(n)

µ(D4r(x))
L2n(Uϕ(x, r))

≤ C(n)42n+1κn
cL1

sup
0<r<3ρ(n)

µ(D4r(x))
κn(4r)2n+1

≤ C ′(n) sup
0<ρ<12ρ(n)

µ(Dρ(x))
κnρ2n+1

where C ′(n) is a dimensional constant. Now we can choose

k2 > 7704ρ(n) + 642,

so that 12ρ(n) ≤ k2
642 − ‖x‖∞ for any x ∈ D1. Therefore, for any x ∈ K, we get

[µϕ](x) ≤
√
C ′(n) η = C ′′(n) e(k2)α,
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where C ′′(n) is a positive dimensional constant. Thus K ⊂ Uϕ(0, 3) \ Jϕθ , where J
ϕ
θ is

as in (3.12) and θ = C ′′(n) e(k2)α. Therefore, by (3.13) in Lemma 3.6, we conclude
that

|ϕ(x)− ϕ(y)| ≤ C(n) e(k2)α dϕ(x, y) for all x, y ∈ K.
This proves (3.16) and the proof of Theorem 3.7 is complete. �

4. Proof of Corollary 3.2

In this section, we prove Corollary 3.2. As we already did for the proof of The-
orem 3.1, up to replacing E with its blow-up Ep0,r and, correspondingly, ϕ with
ϕr = 1

r
ϕ ◦ δr, we can simplify Corollary 3.2 to the following statement.

Corollary 3.11. Let n ≥ 2 and α ∈ (0, 1
2). There exist positive constants C3(n),

ε3(α, n) and k3 = k3(n) with the following property. Let E ⊂ Hn be a (Λ′, r′0)-minimizer
of H-perimeter in Ck3 with

Λ′ = Λr, r′0 = r0

r
> k3, Λ′r′0 ≤ 1, 0 ∈ ∂E, e(k3) ≤ ε3(α, n).

Then there exist a set K ⊂ D1 and an intrinsic Lipschitz function ϕ : W→ R with the
following properties:

L2n(D1 \K) ≤ C3(n) e(k3)1−2α,

(3.26) gr(ϕ|K) = ∂E ∩K ∗ (−1, 1),

(3.27) S2n+1
(
(∂E 4 gr(ϕ)) ∩ C1

)
≤ C3(n) e(k3)1−2α,

LipH(ϕ) ≤ C3(n) e(k3)α,

(3.28)
∫
D1
|∇ϕϕ|2 dL2n ≤ C3(n) e(k3).

Proof. Let α ∈ (0, 1
2) be fixed and assume that ε3(n, α) ≤ ε2(n, α) and k3 = k2.

Let K and ϕ be as in Theorem 3.7. Recall that, by construction, LipH(ϕ) < 1 and
supW|ϕ| < 1. Moreover, by (3.16), we have

LipH(ϕ|K) ≤ C2(n) e(k2)α.

Thus, according to Proposition 1.14, choosing ε3(n, α) ≤ ε2(n, α) sufficiently small, we
can extend ϕ outside K to the whole W in such a way that supW|ϕ| < 1 and

LipH(ϕ) ≤ C(n) e(k3)α,

where C(n) is a dimensional constant. Thus we only need to prove (3.27) and (3.28).
We prove (3.27). Let J = D1 \K, I = (−1, 1) and note that, by (3.26), we have

S2n+1
(
(∂E 4 gr(ϕ)) ∩ C1

)
= S2n+1

(
(∂E 4 gr(ϕ)) ∩ J ∗ I

)
= S2n+1

(
(∂E \ gr(ϕ)) ∩ J ∗ I

)
+ S2n+1

(
(gr(ϕ) \ ∂E) ∩ J ∗ I

)
≤ S2n+1(∂E ∩ J ∗ I) + S2n+1(gr(ϕ) ∩ J ∗ I).



4. PROOF OF COROLLARY 3.2 33

On the one hand, by definition of excess 1.9 and by equality (1.16) in Lemma 1.11, we
have
S2n+1(∂E ∩ J ∗ I) =

∫
∂E∩J∗I

1 + 〈νE, X1〉 dS2n+1 −
∫
∂E∩J∗I

〈νE, X1〉 dS2n+1 =

= δ(n)−1
∫
∂E∩J∗I

|νE − ν|2g
2 d|µE|+ L2n(J)

≤ δ(n)−1e(1) + L2n(J),(3.29)
thus, by (1.10) and by (3.14), we can estimate
(3.30) S2n+1(∂E ∩ J ∗ I) ≤ δ(n)−1 k2n+1

3 e(k3) + C2(n) e(k3)1−2α ≤ C(n) e(k3)1−2α,

where C(n) is a dimensional constant. On the other hand, by the area formula (1.27),
we have

S2n+1(gr(ϕ) ∩ J ∗ I) = δ(n)−1
∫
J

√
1 + |∇ϕϕ|2 dL2n

≤ δ(n)−1
√

1 + ‖∇ϕϕ‖2
L∞(D1) L

2n(J),(3.31)

thus, by Proposition 1.17 and again by (3.14), we can estimate
S2n+1(gr(ϕ) ∩ J ∗ I) ≤ C(n) e(k3)1−2α,

where C(n) is a dimensional constant. Combining (3.29) with (3.30) and (3.31), we
prove (3.27).

We prove (3.28). Since D1 = K ∪ J with disjoint union, we can split

(3.32)
∫
D1
|∇ϕϕ|2 dL2n =

∫
K
|∇ϕϕ|2 dL2n +

∫
J
|∇ϕϕ|2 dL2n.

On the one hand, by Proposition 1.17 and by (3.15), we have∫
K
|∇ϕϕ|2 dL2n =

∫
gr(ϕ|K)

|∇ϕϕ|2√
1 + |∇ϕϕ|2

d|µEϕ|

≤
√

1 + ‖∇ϕϕ‖2
L∞(D1)

∫
gr(ϕ|K)

|∇ϕϕ|2

1 + |∇ϕϕ|2
d|µEϕ |

≤ C(n)
∫
M∩K∗I

|νE − ν|2g
2 d|µE| ≤ C(n) e(1) ≤ C ′(n) e(k3)(3.33)

where C(n) and C ′(n) are dimensional constants. On the other hand, again by Propo-
sition 1.17 and by (3.16), we have∫

J
|∇ϕϕ|2 dL2n ≤ ‖∇ϕϕ‖2

L∞(D1) L
2n(J)

≤ C(n) LipH(ϕ)2L2n(J) ≤ C ′(n) e(k3).(3.34)
Combining (3.32) with (3.33) and (3.34), we prove (3.28). �
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