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Introduction

In the Euclidean space R?, the Steiner rearrangement of functions or sets is defined as
follows. Fix a direction v € R? and let T' = {7:}scr be the group of translations of
direction v. Namely, for any = € R, 74(z) = x + tv. Clearly, the Lebesgue measure is
I-invariant. We identify the quotient R?/T" with the hyperplane H C R? through the
origin and orthogonal to v. Moreover, for each x € H, we can define the orbit I';, of x,
ie. I'y = {z +tv: t € R}. Then we define the rearrangement E* of a set £ C R? as
the set whose sections £ = E* NIy, € H, are symmetric intervals with respect to H
and have the same measure of the sections of E. The rearrangement f* of a function
f:R% - R, is then defined rearranging the upper-level sets of f.

The Steiner rearrangement produces functions and sets which more symmetric than
the starting ones. In [Giob8] De Giorgi proved that the perimeter of sets does not
increase under Steiner rearrangement.

The purpose of this thesis is to develop a general theory of rearrangements in the
context of metric measure spaces. The first question is to give a reasonable definition
of quantities as the perimeter or the LP-norm of the gradient of a function without
using any differentiable structure. Then we identify the structure required to define a
rearrangement, thus defining the two-points rearrangement and the Steiner and Schwarz
rearrangements. Finally, for these rearrangements, we prove several results.

There is an increasing literature on the subject of Sobolev and bounded variations
functions in metric measure spaces. At least two counterparts of Sobolev spaces in
metric measure spaces are studied: the Hajlasz spaces ([Haj96] and [HeiOl]) and the
Newtonian spaces ([Sha00]), while a definition of functions of bounded variation (and
hence of perimeter) is given in [Mir03].

In this thesis, however, we choose a different approach which is motivated by the
characterization of the Euclidean Sobolev and BV norms in the works [BBMO1] and
[Dav02]. In this spirit, we prove Theorems [1.2.4] and [1.3.14] Here, we prove the equiva-
lence between some norm of the gradient of functions f : R* — R, or its total variation,
and the limit of a sort of “averaged incremental quotient”. This quantity can be de-
fined in any metric measure space. Here we state the result obtained in the case of the
Euclidean Sobolev and BV norms.
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Theorem 1. Let f € LP(R?), for 1 < p < oo, then it holds:

(i) Ifp > 1, then f € WHP(R?) if and only if

hmmf/ ][ f(y)P dy dz < 4o0. (1)
rl0 R4 ()

Moreover, in this case the liminf is in fact a lim and it holds

1m/f’ F@)IP dydz = Ky al| V£l g )
Rd ()

(i) If p =1, then f € BV(R?) if and only if

lim inf — / ][ (y)| dy dx < +00. (3)
R4 r(

rl0

Moreover, in this case the liminf is in fact a lim and it holds

_ d
lim — /]Rd][B(z (y)|dy dz = K, 4|V fI(R?). (4)

rl0 T

Here, K 4 is a geometric constant depending only on the dimension d and the exponent

p, defined in (1.3).

We use this Theorem as a blueprint to define the notion of “length of the gradient” in
a metric measure space. Indeed, in the first part of chapter [3] we define Sobolev and BV
functions in a metric measure space (X,d, u) in the following way. Let f € L (X, pu)
and 1 < p < oo, then we let

wmm)lmﬂff W) du(y) du(a). 5)

We point out that in the above definition the lL.h.s. is a number, possibly 4+o0o. Then,
we say that a function f is a Sobolev function with exponent p > 1 if f € LP(X, u)
and HVfHZp(X,#) < +00 and that f is a function of bounded variation if f € L'(X, u)
and HVfHZl x < Too. We also let the lower perimeter of a set E to be P~ (E) =
IVxell; LX) where xg denotes the characteristic function of E.

To Justlfy definition (| . the first two chapters of this thesis are devoted to prove
results analogous to Theorem [1| in specific non-Euclidean spaces, where it is possible to
define naturally Sobolev and BV spaces. In particular, in chapter |l we study the case of
a finite dimensional Banach space, where we can make use of the differential structure of
R?, while in chapter [2| we study the case of the Heisenberg group, where the horizontal
Sobolev and BV spaces can be easily defined. We do not consider the case of an infinite
dimensional Banach space.
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More in detail, the core of the first chapter are Theorems |1.2.4] and [1.3.12] In these
Theorems the r.h.s. of and is expressed in terms of what we call the p-mean
norm associated to the norm of the Banach space. In the Euclidean case, the p-mean
norm reduces to K, 4| - |, where K, 4 is the geometric constant defined in . The
proof of Theorem uses some ideas from [Bré02], while the one of Theorem
some techniques of [Dav02] and some results regarding the total variation with respect
to non-Euclidean norms, found in [AB94].

Chapter [2| deals with the Heisenberg group H?. The first part is devoted to a short
introduction to this space and to the definition of the horizontal Sobolev and BV spaces.
For this part we refer to [CDPTO07]. In the second part we prove Theorem for
horizontal Sobolev functions. Theorem 2.1.11] deals with horizontal bounded variation
functions. The latter is fairly weaker than statement (ii) in Theorem 1} In fact, for
to hold we need to assume that the function is both of horizontal bounded variation and
of bounded variation in the sense of R2¢+1,

In chapter |3| we study the two-points rearrangement, or polarization, with respect
to a reflection system R, consisting of a partition {H~, H, H"} of the metric space X
and of a reflection with respect to H. This technique is central in the proofs of results
regarding more general rearrangements. The two-points rearrangement of a function f
is a function fr “polarized” such that on each couple of points x and gz the function
attains the maximum value in H' and minimum value in H~. For a set we simply
rearrange its characteristic function. This procedure does not increase ||V f||, (X0) and
the lower perimeter. This is proved in Theorem |3.3.18

Next we define a rearrangement system, the minimal structure needed to rearrange
functions or sets. As in the Euclidean case, we need a group of isometries I', such that
p is T-invariant, identifying a quotient space X/I' C X, and orbits 'y, z € X/I". An
essential condition is the existence of a so-called disintegration of u along I'. Namely,
we need a sort of non-orthogonal Fubini theorem, in the sense that there exist measures
() zex v over 'y and a measure ji over X /T such that

w(E) = / e (ENTy)dp(z), for any Borel set E C X.
X/T

We call a 3-tuple (I, (41z)zex/r; /1) consisting of a group of isometries and a disintegra-
tion of p along I' satisfying some structural assumptions, a rearrangement system (see
Definition .

Section [3.5] is devoted to the problem of the existence of a disintegration. Here,
we prove that such a disintegration is always possible in separable metric spaces, if
the measure p is finite. This proof is an adaption of the arguments in [AFP00] and
[DMT78]. In Proposition we extend this result to all I-invariant measures, if I' is
a l-parameter group.

In the last part of chapter [3] section we prove the main Theorems on the re-
arrangement. Given a reflection system R that behaves coherently with respect to a
1-parameter group of isometries T, we will call the tuple (R,T) a Steiner system. In-
troducing a compact group of isometries GG, we can consider the group I' = I'(T, G),
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generated by T' and G. If the reflection system R behaves coherently with respect to
the group T, the 3-tuple (R, T, G) is called a Schwarz system. We remark that a Steiner
system is just a Schwarz system where the group G consists only of the identity.

Coupling a Schwarz system with a rearrangement system we are able to prove the
following Theorem.

Theorem 2. Let (X, d) be a proper metric space endowed with a Schwarz system (R, T, G).
Let i be a non-degenerate and diffuse Borel measure, in the sense of and , that
is invariant with respect to the Schwarz system and let (T, (pz)zex/r, 1) be a regular re-
arrangement system of (X, u), where I' = I'(T, G). Finally, let the metric measure space
(X, d, p) have the Lebesque property . Then the rearrangement f* of any compactly
supported and non-negative function f € LP(X, ), 1 < p < oo, satisfies

1 i = Mllcem and IV 5 5 < IV o0 (6)

This is Theorem [3.6.37] and is the main result of the thesis. For the proof, we use
some ideas introduced in [Bae94].

The last chapter of the thesis is devoted to develop a theory of rearrangements in
the Heisenberg group. Indeed, in H? endowed with the Carnot-Carathéodory metric,
the natural way to define a reflection system does not yield a reflection system in the
sense of the previous chapter. It yields, however, a reflection system for H? with respect
to the Euclidean metric. Given the particular structure of the Heisenberg group, it is
then possible to bypass this problem working only with functions and sets with certain
symmetries. In particular we define the horizontal and vertical reflection systems with
symmetry o (see Definitions [4.1.1] and [4.1.2). Exploiting the characterization of the
norm of the horizontal gradient given in chapter [2| and using the approximation result
in [ESC96], we then prove Theorem a result on the monotonicity of the norm
of the horizontal gradient analogous to Theorem [3.3.18] Then we define the Steiner
rearrangement and the cap rearrangement, related to the horizontal and the vertical
reflection systems with symmetry, respectively (see sections and . We conclude
the chapter proving, in Theorems and [£:3.9] the following result on the monotonicity
of the norm of the horizontal gradient.

Theorem 3. Let f € erl’p(Hd), 1 < p < o0, be a non-negative, o-symmetric function
and let f* be the Steiner or the cap rearrangement of f. Then f* € Wlli’p and

1 oy = | fllLpaay  and  (|Vaf || poe) < [IVafll Lo @e)- (7)

We did not investigate Theorem [I| in the Riemannian case, nor the connection be-
tween our definition of Sobolev and BV functions in metric measure spaces and the
Hajtasz or the Newtonian spaces. We did not study the equality case in @ and in
@, either. For a discussion of the Euclidean case we refer to [CCF05]. Finally we
did not study applications of this theory. Whenever possible, however, we enriched the
discussion with examples.

The topics of this thesis are part of a forthcoming paper, [MP]. Chapters (1| and
are the result of the work of the author under the supervision of the thesis advisor R.



Monti. In the last two chapters the contribution of the candidate was mainly a revision
work, with the exception of sections[3.5] and [£.3] that contain original work of the author.
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Chapter 1

The case of a finite dimensional
Banach space

In this chapter we give a characterization of the length of the gradient of W1P(R%)
functions, 1 < p < 400, and of functions of bounded variation, for finite dimensional
Banach spaces.

Let (V,| - ||) be a real Banach space of dimension d. For a basis {v;}¢, of V, we
can define the standard isomorphism ® : V — R? as ®(v) = @(Zle Q;v;) = Zgzl Q;e;.
Here, {e;}¢; is the standard orthonormal basis of R%. With abuse of notation we let
||| = ||®~*(2)|. All the results obtained for (R?, || - ||) will be valid for (V|| - ||).

From now on, let z - y denote the standard inner product on R¢, |z| = \/x "~y the
Euclidean norm, dz or dw the Lebesgue measure £%, and let B, = {y € R%: |jy| < r},
B.(x) = {y € R?: ||y — 2| < r} be the open balls of radius r with center in the origin
and in x € R? respectively. For v € R%, v # 0 and » > 0, the half balls B (v) with
respect to v of radius r and centered at x € R? are defined as

Bl (wi) = {y € Byla) : (y— )0 >0} .

B, (z;v) ={y € Br(2) : (y—=)-v <0}
Obviously, B,(z) = B} (z;v) U B (z;v) for any x,v € R and » > 0. As above, if
the center is the origin, we let B(v) = B:F(0;v). We recall also the notation for the

averaged integral
f t@do = o [ s
A |A /4

where |A| = £4(A) denotes the Lebegue measure of A.

For the sake of simplicity, we work in W1P(R%) and BV (RY), but similar results
hold in the case of WP(Q) and BV (2) for a smooth bounded domain € of R”. Our
arguments are an adaption of the ones used in [Bré02, BBMO0I] in the case of W1P(R%)
and in [D4v02] in the case of BV (R%).



2 CHAPTER 1. THE CASE OF A FINITE DIMENSIONAL BANACH SPACE

1.1 The p-mean norm

Let || - || be a norm on R%. We define the p-mean norm || - ||«p, 1 < p < 00, as

l/p
lollep = (é yv-wypdw> . veRr- (1.2)
1

Let v € R? and define g, : w — |v-w|, w € R%. Then we have ||v]|«, = \B1|_1/p|’9vHLP(Bl).
Since gyu < gu + gu, this proves that || - ||+, is a norm on R,

Any vector space of dimension d is isomorphic to (R?, |- |). Hence, for any p > 1
there exist two constants C'y ,, Ca ) such that for all x € R4

Cipll

wp < 2| < Copll]]sp.
Remark 1.1.1. Using the Coarea Formula it is easy to show that |- |, = K, 4| - |, where

K, 4 is a constant depending only on the dimension d and the exponent p. Namely, if e
is any unit vector of R%, it holds

d T
K, 4= ][ e w|Pdw ) 1.3
pd <d+p \w\:l‘ | ) (1.3)

We write || - |l«,1 = || - ||+, as the case p = 1 is special. In fact, using the symmetry
with respect to the origin of the norm, we can compute,

||v||*:%v' / wdw—/ w dw
2| By (v) B (v) By (v)
1
=v | —/—— w dw
<|B1+(U)| Bf (v) )

=v- ][ w dw,
B{ (v)

Let E : R? — R% be defined as

E(v) = ]{Bj(v) w dw. (1.4)

It is trivial that:
i. E(cv) = E(v) for any ¢ > 0;
ii. E(—v) =—E(v);
iii. |lvlls =v- E(v).

If |- ]| =], the computations in Remark yields E(v) = K qv.
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Lemma 1.1.2. Let p € CH(RY) and v € RY, then for all x € R? it holds

t f (ply) — o) dy = Vpla) - (). (15)
r B (z;v)
Proof. Since ¢ € CH(R?) we can write
p(y) — () = Ve(z) - (y — ) + R(z,y)
R(z,y)

where Tyl 0 uniformly as y — x. Hence we get

1][ 1][
- oy) —p(x))dy = - Vo(z) - (y —x) + R(z,y)) dy
o P e@)ay=f (Vo) -2+ Ry)
1][ 1
=- Vo(z) - w dw+][ R(z,y)dy (1.6
r B;F(U)( ( ) ) r B;"(x;v) ( ) ( )
1
=Voe(z)- E(v)+ T]{;Jr( . )R(:c,y) dy.
From
1 1 R
][ R(z,y)dy| < sup —|R(z,y)| < sup M
T J B (xw) yeBn(z) T veB (@) [y —|’
we get "
lim B@y) g o,
rl0 Bf(:r;v) r
Hence, letting r | 0 in (1.6 yields (|1.5]). O

1.2 Sobolev spaces

Definition 1.2.3. Let f € Lloc(Rd), we say that g; € LIOC(Rd), 1=1,...,d, is a weak
partial derivative of f with respect to x; if

0

f P e = / gi pdx, for all ¢ € CH(RY).
Rd ax, d

The weak partial derivative, if it exists, is uniquely defined £%a.e. . We denote the
weak partial derivative with respect to x; of f as df/0xz;. If f admits a weak partial
derivative for any i = 1,...,d we write

_ (9f of
o= (2 2.

The Sobolev space WP(R?) for 1 < p < oo is the space of all f € LP(R?) such that
the weak partial derivative 0f/0x; exists and belongs to LP(R?) for any i = 1,...,d. It
is a Banach space, when endowed with the norm

oy = W gy + [ 1951 do.
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1.2.1 Length of the gradient of W?(R?) functions, 1 < p <

Theorem 1.2.4. Let || - || be a norm in R? with balls B.(x) and let || ||«p, 1 < p < 00,
be the associated p-mean norm defined in (1.2). Let f € LP(RY). Then f € WHP(RY) if

and only if

hmlnf/ ][ (y)|P dy dz < +o0. (1.7)
rl0 Rd ' (

Moreover, in such case the limit mferzor is i fact a limit and it results

im = [ ][ ~ )l dyde = [ V@I, (1.8)

Proof. Let f € WIP(R?). We claim that there exists a constant C' > 0 independent of
f, such that for any r» > 0

/R][ >lpdydw<0/ IVF(@)IE, (1.9)

This will imply (1.7). In order to prove (1.9), we recall that it is a well established fact
(see Proposition I1X.3 in [Bré83]) that, for any f € W'P(R?%) and any h € R?,

/If(x+h)—f(x)|pdhgh|p/ IV F(2)|P da.
R4 Rd

From this we get
/ @+ h) — f@)Pdh < |hp / IVi(@)|E, dr. (1.10)
R4 Rd

Here ¢ > 0 is a constant such that |z| < ¢||x||«, for any x € RY. Integrating inequality
(1.10)) in the ball with radius r > 0 centered in the origin and dividing by |B,|, yields

][ \f(x+h)—f($)lpdfﬁdh§6”][ I dh / IV (@), d
B, JR4 By Re (1.11)

<o [ V@I, do.
Rd

Hence, claim (|1.9) is proved.
We now want to prove that if f € WHP(R?) then (T.8) holds. This is equivalent to

prove that
i LA / IVi@)E, (1.12)

where

T [f1(z,y) =

1= 0 (- x>>vp_
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The triangle inequality implies that the operator 7T, is subadditive. This, together with
(1.9), implies that, for any ~ > 0 and f,g € WHP(R9), it holds

‘HTT[f]HLP(RdXRd)_HTT[Q]HLP(RdXRd)| < HTr[f—g]HLp(Rded) < C/Rd HD(f—g)(@”Q,p du.

Therefore we only need to establish in some dense subset of W1P(R?), e.g. in
C%(RY).

In order to prove that holds for g € C’CZ(Rd), it suffices to prove it pointwise.
Namely we claim that for any z € R it holds

tim o)~ gl)l dy = [Vo(a) 2, (113)
B (x)

Identity (|L.8]) then follows from ([1.13)) by dominated convergence. In fact, if L is a
Lipschitz constant for g (i.e. |g(x) — g(y)| < L|z — y| for any z,y € R?), then

1
s l9(z) — g(y)|P dw < LP.
T By (x)
To prove (1.13)), we fix » > 0 and 2 € R?. Then, for any y € B,(z), we have
g9(x) = g(y) = Vg(2) - (y — 2) + R(z,y), |R(z,y)| < clz—yl*. (1.14)

Here, ¢ is independent of z and y. Thus we have that

l9(z) —g(W)[P = [Vg(z) - (y — 2)[" + L(z, y),

where we let
L(z,y) = |Vg(z) - (y —z) + R(z,y)[" — |[Vg(z) - (y — 2)[".

Therefore we can write

: 1 L(z,
" l9(x) = g(y)I” dy = p][ V() - (y_x)|pdy+][ #dy
R B @) Bix) T (1.15)
L(z,y) ‘
= p
Doz, + f  F Py
Now we show that ,

|0 B, (z) rP

In fact, letting ¢(t) = tP, by the mean value theorem we get that for any 0 < s < ¢ it
holds ¢(t) — ¢(s) = ¢'(s*)(t — s), where s* € [s,t]. Hence we have that

L(z,9)| < (IVg(x) - (y — 2)| + [R(z.)])" = [Vg(@) - (y — 2)P = p(s")P~ [R(z,y)],
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where s* € [[Vg(z) - (y — z)|,|Vg(a) - (y — )| + |R(z,y)|]. By the fact that ov — P,
a > 0, is non-decreasing and by (1.14]), we get

|L(z,y)| < ep(s*)P~ o — y|?
< ep(|Vg(@) - (y — 2)| + |R(z,y))" o — y)?
< ep(|Vg(@)| + el — y)P o -y

Here we used the Cauchy-Schwarz inequality. This implies that, for y € B,(z) and r < 1,
there exists a constant C' > 0 independent of y, such that |L(z,y)| < CrP*!. Thus (T1.16])

follows from
L
][ (z,y) dy
w(x) TP

By (1.16)), letting » | 0 in (1.15)) we get (1.13]). This proves the claim and hence that
(1.8) holds for any g € C%(R?). By the previous considerations, this implies that (I.8)

holds for any f € WHP(RY).

In order to complete the proof of the Theorem, it remains to prove that if f € LP(R?)
satisfies (L.7), then f € WP (R4). For such an f, by the definition of lim inf, there exists
a sequence (1, )peny with lim,_,o 7, = 0, such that

<Cr.

lim A,[f] —hmmf— (y)|P dy do < +o0.
n—00 rl0 Rd ' (

1 p
alfl= g [ f W@ = sy

Then there exists a constant M > 0, such that,

Here we let

Aplf] < M, for any n € N. (1.17)

Let fs € C2°(RY) be a smooth approximation of f, where (75)s>0 is a family of mollifiers.
Namely we let

f3(x) = [ *ys(a /f Vs (e — ) dh.

We recall that the convolution is associative and that it commutes with the translation
operator T, f(z) = f(z +w), w € R?, in the sense that 7,,(f * g) = Twf * g = f * Twyg.
Therefore

[fs(x) = Twfs(@)] = [f *v(@) = (ruf * w)(@)] = |(f = 7wf) * (@) (1.18)

Moreover for any f € LP(R?), 1 < p < oo, and g € L*(R?) it holds that || f * 9l (ray <
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191l L1 (may [l f1| Lp(ray (see [Bré83, Theorem IV.15]). This and (1.18) imply that

sl =g [, 1) = gt dys
:/Rd][ | fo(x) — 7w fos(2)|P dw dz

-=f /Rd!(f—mf)*%(x)lpdwdw

1
o I = ) 620l gy (1.19)

Tn

™n

< ][ ||75H Rd)”f wa”Lp Rd)

:/ ][ flz+w)P dwdx
Tn Rd -~

= A,

Here, we used the Fublnl theorem and the fact that [|vs|| 1 (gey = 1 for any 6 > 0.
Therefore, inequality (1.17)) is satlsﬁed exchangmg f with f5, with the same constant

M. Since C’OO(Rd) - Wl’p(Rd ), by (L.8) and (L.17), we get
lim A, [fs] :/ IV f5]1%, do < M. (1.20)
n—oo Rd ’

Finally we claim that (T.20) implies that Vf € LP(R?;R?). This, by the definition of
Sobolev space, proves that f € W'P(R?). Since f € LP(RY) C Lloc(Rd), we can define
Vf as a distribution, i.e. Vf € (CSO(Rd,Rd)) , defining, for ¢ € C°(R%; RY),

(Vo) ==}, Vo).

Moreover V fs = V(f*v5) = (Vf)#*7s, and hence V fs — V f in the sense of distributions.
Namely,

lim/ Vis(x)p(z)de = (Vf, ) for any ¢ € C°(R%LRY). (1.21)
010 Jrd

On the other hand, by (1.20)), using the equivalence of || - ||, and | - | we get that
{Vfs € LP(R%;R?) : § > 0} is bounded in LP(R%; R?). Hence, a well known result on the
weak compactness of LP spaces, 1 < p < 00, (see for example Theorem 1.36 in [AFP00])
states that, up to subsequences, Vf5 — g for some g € LP(R% R?). Equivalently,

lim | Vs(@)i(n) de = / g(@)y(x)de = (g,¢) for any ¢ € LP (R RY).  (1.22)
Rd Rd

Here /p + Uy = 1. Since C°(R%R?Y) ¢ L¥ (R% RY), combining (T.21) and (L.22) we
get that (Vf,¢) = (g,¢) for any ¢ € C°(R%R?). Hence Vf can be represented as a
function of LP(R% R?). This proves the claim and the Theorem. O
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Remark 1.2.5. Using the same arguments as above, we can prove that for f € LP(R%),
1 < p < o0, it holds

_ p
lim/ ][ 1@ = FOIP e — / IV (@), da. (1.23)
rl0 Jra JB. o) [z —yllP Rd ’
Where y
w p P
oo = ( £ Jo- | dw)
B | wl
In the case of the Euclidean norm |- |, we have || - [|;,, = Kj | - |, where, for any unit

vector e of RY,
K, = ][ le - w? dw.
|w|=1

We observe that (1.23)) is a special case of the results in [BBMO1), [Bré02]. In these papers
the authors consider a sequence (p,)nen of radial mollifiers such that

pu(@) = pallal),  pn >0, /R pnle)dr =1, (1.24)
and -
lim pn(r)ré=tdr =0 for any § > 0. (1.25)
n—oo 6

Then they prove(see [BBMO1], Theorem 2) the following theorem:

Theorem 1.2.6. Let Q be a smooth bounded domain of R? and let (py)nen e a sequence
of radial mollifiers satisfying (1.24) and (1.25). Assume f € LP(Q), 1 < p < co. Then

R 0 s
i [ [ L0, - ayaydn = i, [ (95@) de,

n—oo

with the convention that [ |V f(z)|P dz = oo if f ¢ WHP(Q).

Our result (1.23)) follows by choosing p,(z) = |Bl/n|_1XBl/n (z).

1.3 Functions of bounded variation

Let Q be an open subset of R%. A measure p in Q C R? is said to be a Radon measure
if u(K) < +oo for any K C Q compact. A vector measure p = (u1, ..., ug) is said to be
a vector Radon measure if p; is a Radon measure for ¢ =1,..., k.

Definition 1.3.7. Let i be a vector Radon measure in Q taking values in R?. We define
the total variation measure of p with respect to the norm || - || of a Borel set A C Q as

l£]|(A) := sup {Z l£(A:)]] = {Ai}ier is a finite Borel partition of A} .
i€l

We denote with |u| the total variation measure of p with respect to the euclidean norm.
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Since all norms on R? are equivalent, two total variation measures of y with respect to
different norms are always mutually absolutely continuous. It is also clear that u < |pul,
hence by the differentiation theorem for Radon measures we get the existance for |ul|-a.e.
x € Q of the Radon-Nykodim derivatives

A z) = lim B (z)) d|lu x) = imM
20 "B @ dg @ B e e O

The following Theorem intertwines these two functions.

Theorem 1.3.8. Let i a R%-valued Radon measure on €2, then

|l pell(B / Hd | H d|u|  for any Borel set B C Q.

Proof. By the differentiation theorem for Radon measures (see [EG92]) we get that

) = [ WH!

To prove the assertion, by (|1.26)), it is enough to show that for |u|-a.e. x € € it holds

i LB I Bes)
rlo |p[(Br(x))  rlo [pl(Br(z))
which is equivalent to
o Im(B H H
it ||u|| dHMH
By the definition of ||u|| it is obv10us that ||u(By(2))| < ||pl|(Br(z)). To prove the
other inequality we first fix a Borel set A C Q and a finite Borel partition {4;};c; of A
and compute

D ll(A II—

el

nw
|w
il

dHuH H

zEI

dllull H

Taking the supremum over all such partitions yields

mwmzﬂwm$ﬂhﬁwww

Since the previous inequality holds for all Borel set of €2, we get that for ||u-a.e. x € Q
holds

dp
@) =1
dirg|

that, since |u| < ||p||, proves the claim. O
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We recall that we write || - ||, for the 1-mean norm || - ||«,1, defined in ([1.2]).

Definition 1.3.9. Let f € L'(Q), we say that f is a function of bounded variation in
Q if the distributional derivative Vf of f is representable by a finite R%-valued Radon
measure in €, i.e. if

/f-chdx——/wd(Vf), Ve € O (O RY).
Q Q

In such case we will call ||V f||. the total variation measure of the function f with respect
to | - [l

It is possible to show that the operator f +— ||V f||« is lower semicontinuous, in the
sense that if (f,)nen is a sequence in BV (§2) such that f, — f in L{ (), then

IV F11+(€2) < liminf ||V £ (2). (1.27)

In [AB94] it is shown that |V f|[.(A) for A C Q open can also be characterized in the
following variational way:

IVF+(A) = sup {/Af divpdz: ¢ € Co(ARY), oIl < 1}7 (1.28)
where || - || denotes the polar norm of || - ||«, defined as
[o]l3 = sup |v-wl. (1.29)
lwl«<1

The vector space of functions of bounded variation in Q will be denoted as BV (2).
Endowed with the norm

I fllBv) = Ifllzr@) + V()

it is a Banach space. However the topology induced by the norm is too strong for our
purposes (in fact it can be shown that C'(f2) is not dense in BV(2), see [AFPO0)).
We will use the following convergence result, an adaption of Theorem 2 Section 5.2.2 in
[EG92].

Theorem 1.3.10 (Local approximation by smooth functions). Let || - ||« be a norm on
R%, Q an open subset of RY and f € BV (Q). Then there exist functions (fp)nen C
BV ()N C*=(Q), such that

1. fo— fin LY(Q) and

2. IV full«(A) = IV fll«(A) as n — oo for any A C 2 open.
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Proof. Fix € > 0. Given k € N, define the open sets

. 1
Qp = {x € Q: dist(x,00) > el k} N Biim-

Here m is a fixed integer such that

IVl ) <e. (1.30)
Set 2o = @ and define, for any k € N,

Vie = Qg1 \ Qe

Let then ({x)ken be a partition of the unity subordinated to the open cover {Vj }ren of
), i.e. a sequence of smooth functions such that (x € C°(Vy), 0 < ( <1 for any k € N
and

i(k =1 on{,
k=1

where only a finite number of terms of the sum is non-zero at any given point. Let
(n:)e>0 be the family of radial mollifiers defined as 7. (x) = ¢~ "n(z/<), with n a standard
convolution kernel (see for example [EG92, p. 122]). Then, for each k € N select ¢ so
small that

supp(7e, * (fCk)) C Vi (1.31)
[ i+ (1) @) = fGuta)| do < 57, (1.32)
/ [0, * (FDG) (@) = F DG ()| de < 3. (1.33)
Define
Znek (fCk)- (1.34)

The function f. is of class C* on ). In fact for any = € 2 there exists a neighborhood
in which only finitely many terms of the sum in ([1.34]) are non-zero.
We claim that f. — f in L}(2). In fact by (1.32) and the fact that

F=>"fG&
k=1

we get

1=l <3 / ey * (FC) (@) — féu(a)| dar < .
k=1"%
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Now we claim that ||V f:][«(4) — [[Vf]l«(A), as € | 0. We will use the variational
characterization (1.28). Fix ¢ € C1(A;RY), |[¢||2 < 1. For any g : Q — R such that
suppg C A and for any j =1,...,d we get

Oy _ i 879037 )

Lj

= /Ag(h) (nek *g::;) (h) dh

0
:Amma%m%wm@wm

Hence we can compute
[t divpds =37 [ e (76) divipds
A = /A
=Y [ 6 divin, v oo
k=174
= [/ i (Gl 9) do = [ DG e ) d
1 LA A
= Z/ [ div (Cu(ne, * @) dx — Z/ @+ [e, * (fDC) — fDG] da
k=174 k=174
- 115,
where 7§, 75 are defined in the last equality. Here we used the fact that Y > D¢, =0

in A.
If w € R? is such that ||w|. < 1 we get

uww%*@thmAx+MW%ﬂmwwij%@+hﬂh=L (1.35)

Here we used the definition of polar norm ((1.29)), and the fact that ||¢||; < 1. Inequality
(1.35) proves that ||Cx(ne, * ¢)||S < 1. Since each point of A belongs to at most three of
the sets (Vi)ren and using (|1.28)), we estimate

71| = '/Af div (C1(7e, *@))dﬂer;/Af div (Ck(ne, * @) da

< |V AIL(A) + D IV IV N A)
k=2

< IVF1+(A) + 3IVEl ((2\ 1) N A)
< V1l (A) + 3e.
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On the other hand by (1.33)) we get that |Z5| < e. Therefore we have proven that
[ fedivipds < [V 71.4) + e
A

and so, by (1.28]), that

IV fell«(A) < [V f[|+(A) + 4e. (1.36)
The claim, and hence the Theorem, follows by ((1.36)) and the lower semicontinuity
of the total variation as in ((1.27)). O

Proposition 1.3.11. If f € WHL(Q) then, for any measurable set A,
IV51.04) = [ 195l de (1.37)
Proof. Integrating by parts in we get
IV f]l+(A) = sup {/Avf pdr: € Co (AR, [lol2 < 1}- (1.38)
Since sup| o<1 [Vf - ol = [[VF]2° = [[Vf]l+, from it follows that

IVS1(4) < [ 19 5@l de (1.39)
Let f € C2°(A) and choose

ola) = {“Vf @i V@) #0

0 otherwise

If ¢ is a constant such that ||[v]|. < c|v| for any v € R?, we get

IVf(@)ll«
dr = dx = d .
/Q ’80(1:)‘ v /Qﬂsuppf |()0(‘7:)‘ ! ~/Qﬂsuppf |Vf( )| s C| Suppf’ =0

This implies that ¢ € L'(Q). Moreover it holds also that ||||S < 1. In fact if Vf(x) # 0
we get

Vif(z)
[VF@)?|

Hence, calling (¢n) C C&(A) a sequence such that ¢, — ¢ in Ll(A), lenlls < 1 and
lon ()] < |p(x)], it holds

le(@)[2 = sup |v-[[Vf(z)]-

[[oll«<1

IV51(4) 2 ti [ Vi pudo= [ VFpdo= [ [95@). de,
n—oo J A A A
which together with ((1.39) proves (1.37).
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If f € WHH(A) there exists a sequence (fn)nen C C°(A) such that f, — f in
WH1(A). Since (1.37) holds for each f,, and

/A IV o) o i — /A IV (@) da,

in order to prove that (1.37)) holds for f, it is enough to prove that ||V f, |« — ||V f]|« in
the sense of Radon measures. This claim follows from the obvious fact that

/fndivgodxﬁ/fdivcpdx.
A A

To conclude the proof we need only to observe that if f € W11(Q) then f € WH1(A).
O

We recall that if £ C R? is a Borel set, we say that E is a set of finite perimeter in
Qif xg € BV (). Here xg denotes the characteristic function of the set E. In such
case we define the perimeter of E in Q with respect to || - ||« as P(E;Q) = || Dxg|«(Q).

1.3.1 Total variation of functions in BV (R9)

The following Theorem is the core of Theorems [1.3.14] and [1.3.15]

Theorem 1.3.12. Let Q C R? be an open set, f € BV(Q) and let p, be defined as

1
iy =+ | ( ARG R0 dy> da.

for any A C R? Borel. Then i, — ||V fl|l« as | 0 weakly in the sense of Radon measures
in €.

The first step of the proof of Theorem [1.3.12]is the following

Lemma 1.3.13. Under the assumptions of Theorem [I.5.13, let E be a Borel subset of
Q and E, = E+ B,(z). If E, C Q) then

pr(E) < IV Fl+(Er). (1.40)

Proof. We start by proving the inequality for f € C°°(Q) N Wh(Q).
Since, in this case, for y € E and = € B,(y) it holds that

1
f(z) — fy) = /0 V(4 (1— 1)) - (x — y) dt,



1.3. FUNCTIONS OF BOUNDED VARIATION 15

we can apply Fubini theorem and get

(B = [
< i/E][T(y)/Ollvf(thr(l—t)y)-(x—y) dt da dy

—i][r/ol/E\Vf(ertw)-w] dy dt duw
<1 ].[w”q / VSG) - d

:/ ][ IVf(z) w| dwdz
o wl<1

— /E IV f(2)|l« dz = ||V fl|«(Ep),

where in the last equality we used Proposition |1.3.11
If f € BV(Q) by Theorem [1.3.10| there exists a sequence (fy)neny C BV (22)NC*(Q)
such that f, — f in L'(Q) and for all A C Q open it holds

IV full«(A) = [V fll+(A).

Therefore, to complete the proof it is enough to apply the results obtained above to such
a sequence, observe that F, is open and let n — oc. ]

Proof of Theorem[1.3.13, We claim that for any sequence (ry)nen such that r, N\, 0
when n — oo we have u,, — ||V f]«. Let us choose any such (7,)nen.

A well known compactness result for Radon measures (see for example [AFPQ0.
Theorem 1.59]) states that if given a sequence (r,), is such that for each compact set
K C Q it holds that

sup fir,, (K) < o0,
n

then there exists a subsequence (ry,); and a Radon measure p such that (defining u; :=
Mrni)
Hi — [
This follows from , in fact the compactness of K ensures the existance of ng
such that K, ~C £ and this, together with the facts that for all n we have K, ,, C K,
and that ||V f||. is a Radon measure over Q2 , leads to

sup fir,, (K) < sup [|Vf[l«(Kr,) = [V f]l+(Kr,,) < oo,

n>ng n>ng

from which follows sup,,ey i, (K) < 0.
Now we show that, for all Borel subsets B of €, this holds:

p(B) < IV f[|+(B). (1.41)
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In fact, if K is a compact subset of 2 and R > 0 is small enough, there exists ng
such that ¥n > ng holds Kgry,, C Q. Then, by (1.40),

W(K) < p(Kp) < liminf g, (Kg)

< i IV £l (Kpir,) = [V £ (ﬂ KRm)

= Vfl« (K&).

Here we used the continuity from above of measures and the lower semicontinuity on
open subsets of the weak convergence of Radon measures (see, for example, [EG92]).
Letting R | 0, since K = [z, KR, we obtain

IVl (Br) NNV (K.

Thus our claim ({1.41)) holds for compact subsets of 2 and therefore for all Borel sets.
Finally, to complete the proof, it suffices to show that, for all Borel subsets B of €2,
there holds

w(B) = [[Vfl«(B). (1.42)
This, together with (1.41)), proves that p = ||V f||«. Because of the uniqueness of the
limit, the whole family (p, )0 converges to p as r | 0.

To prove (1.42)) let us fix v € R? and ¢ € C2°(Q) such that ¢ > 0. We extend f with
0 outside of 2 and define

Zi(p;v) =

1
P /Rd /B*n (m)f(:v)(so(y) — o(x)) dy dz|.

It is clear that o(z,y) = xB,, (y — x) satisfies the hypotheses of Lemma [1.3.18} proven
at the end of the chapter. By such Lemma and the Minkowsky inequality, we get

|Brni |

1 1
Tie) + o) < e [ [ INCES BV A

Choosing 7 > 4y, where 7y is such that Tng, < dist(supp ¢, 02), we can rewrite the
right hand side of ([1.43)) as

L 1
W/Rd ]irni(yﬂf(ﬂ?)—f(y)lsa(y)dardy—Tm Supww(y)]{B y)\f(x)—f(y)!dxdy

Tni(
= / © din,.
Q

By the weak convergence in the sense of Radon measures of (u% )i, this implies

Zlggo%/Rd]{B = fWle) dwdy:/Qsodu- (1.44)
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As for the left hand side of ((1.43)), passing to the limit for i — oo and observing that
|Br| =2|B, N{w : w-v >0} leads to

1
lim Z;(p;v) = lim —

1—00 i—o0 2

1
L f L s@ew eyl )

Observe now that by the Dominated Convergence Theorem we can take the limit into
the integral in (1.45)). In fact, since there exists ¢ > 0 such that for any v € R? it holds
that ||[v||. < c|v], for i large we have
o(y) — oz 2/f(x)] 1
[ s, Aol
By, ()

| Brni | Tni

<
T,

7

/ o(y) — o) dy
By, (@)

= 2| ()| ]{3 L (96) - =)+ IR dy

Tn,

=2|f<x>|(]{3 V() - w|dw + ]{9 ()’RZ’_y”dy)

=2[f (@) (IVe(@)]l« + 1) < 2|f(@)|(c|Ve(z)| + 1),

which is in L'(R%). By Lemma we obtain

f(z) lim (1 ][ (p(y) - w(x))dy> da
R4 =00\ T, Bry,, (z3v)

/ f(2) Vp(a) - B(v) da
]Rd

lim Z;(p;v) =

1—00

(1.46)

I

= N N =

/ pd(Vf-E))
Q

where we applied the integration by parts formula for BV functions. By the fact that
E(—v) = —E(v) it follows that

1
lim Z;(p; —v) = =

1— 00 2

Passing to the limit as i — oo in ([1.43)) yields, by (1.44), (1.46]) and ((1.47]),

/ngd(Vf-E(v))‘. (1.47)

/Qsod(VfE(v))‘S/Qsodu

for all vectors v € R? and for all ¢ € C2°(R?), or equivalently
VI - E()(A)] < p(4) (1.48)

for all v € R and A open.



18 CHAPTER 1. THE CASE OF A FINITE DIMENSIONAL BANACH SPACE

As observed before, the total variation measures with respect to different norms are
always mutually absolutely continuous. Then, by the differentiation theorem for Radon
measures we have

1(Bg(z)) Vf(Br())
o) = B ey ™ 70 = B S B

for |[Vfl-a.e. z € Q and |o| =1 a.e. .
Taking such an x, for any R > 0 small and vector v we have, by ([1.48|),

V/(Br(x) - E() _ _p(Ba())
VABr) NV Ba@)

Taking the supremum for v € R? and applying ||v||« = v - E(v), this leads to

| SLte) | < o VBt Ble)  _piBnta)
VABrE) |, = e NABe@) T VA Br@)

By the continuity of the norm, letting R | 0 we obtain g(z) > |lo(z)||,. Then, by
Theorem we get

M(B):/BgdWﬂ Z/BHJII* AV fI = IVF«(B).

This proves the inequality p > ||V f]|« and so Theorem [1.3.12 O

We state now the two consequences of Theorem [1.3.12] giving the characterization
we were looking for the total variation of functions in BV (R?) and for sets of finite
perimeter in R%.

Theorem 1.3.14. Let ||-|| be a norm in R? with balls B, (x) and let |||« be the associated
1-mean norm defined in (1.2). Let f € LY(RY). Then f € BV (R?) if and only if

lim inf — / ][ (y)| dy dx < +o0. (1.49)
r10 Rd 2 (

Moreover in such a case the limit inferior is in fact a limit and results

lim ~ / ][ y)| dy dz = ||V f]|(R?). (1.50)
rl0 T JRd

Proof. Thanks to Theorem |1.3.12]it suffices to prove that if f € Ll(Rd) satisfies ,
then f € BV (R?). We will proceed as in the proof of Theorem In fact for such an
f, by the definition of liminf, there exists a sequence (7, )nen w1th hmn_m rn, = 0, such
that

lim A,[f] = liminf — / ][ (y)| dy dz < +o0.
R4 r(

n—oo ""lO
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Here we let

1
alfl= o [ f @ - sl

r

Then there exists a constant M > 0, such that
Aplf] < M, for any n € N. (1.51)

Let fs € C2°(R?) be a smooth approximation of f, where (7s)s>0 is a family of mollifiers
such that 0 < «5 < 1. With the same computations as in we can prove that
Anlfs] < Aplf]. Therefore, inequality yields A,[fs] < M. Since C®(R?) C
BV (R%), by Theorem [1.3.12/ and (T.51]), we get

lim Ay (/] _/ I £l da < M. (1.52)
n—00 R4

Finally we claim that (T.52) implies that V f is a finite vector Radon measure on R
This will prove that f € BV (R%). Since f € L'(RY) c L. (R%), we can define V£ as a

loc

distribution, i.e. Vf € (Cgo(Rd;Rd)),, defining, for ¢ € C°(R%RY),

Moreover V fs = V(fxvs) = (Vf)*7s, and hence V f5 — V f in the sense of distributions.
Namely

m | Vis@)e(r)de = (Vf,p) forany p e C>(RGRY). (1.53)
]Rd

On the other hand we can associate to every V fs a finite vector Radon measure by

Vf5(A) = /AVf(;(x) da.

Using the equivalence of || - ||s, and | - | and (L.52), we get that sups [V f5|(R?) < 4o0.
Hence, a well known results on the weak compactness of Radon measures (see for example
[AFP00, Theorem 1.59]) states that, up to subsequences, V fs — p weakly in the sense
of Radon measures, for some finite vector Radon measure p on R?. Equivalently,

lim/ Y dV fs = / Ydp = () for any ¢ € C.(RGRY). (1.54)
R4 R4

610

Since C°(R%;R?Y) C C.(R%R?), combining (1.53) and (1.54) we get that (Vf,¢) =
{p, ) for any ¢ € CX (R RY). Hence Vf can be represented as a finite vector Radon
measure on RY. This proves the claim and the Theorem. O

Theorem 1.3.15. Let E be a Borel subset of R%. Then E is a set of finite perimeter if
and only if

1
liminf/ ][ IxE(x) — xE(Y)|dy do < +00.
rl0 T Jgrd ()
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Proof. Tt follows directly by the definition of set of finite perimeter and Theorem [1.3.14
O

Remark 1.3.16. Let v, be defined as

_ )~ 5],
”“”iﬁ(éwmlwm—m d>d”

Using the same arguments used in the proof of Theorem [1.3.12] it is possible to show
that v, — ||V f||+ as 7 | 0 weakly in the sense of Radon measures in ). Here we defined

ol = f
lw||<1

In the case of the Euclidean norm |- [, we have || - [l; = K| - |, where, for e any unit

Ké“:][ le - w]| dw.
' lw|=1

We observe that ((1.50)) is a special case of a result in [Dav02]. In his work, Davila, fol-
lowing [BBMOI], considers a sequence (py,)nen of radial mollifiers satisfying the following
assumptions:

v'w‘dw.
[Jw]|

vector of RY,

pu(@) = pulla. pu =0, [ pufa)da =1, (1.55)
and -
lim pn(r)r?tdr =0 for any § > 0. (1.56)
n—oo S

Then it is proved (see [Dav02, Theorem 1]) the following

Theorem 1.3.17. Let Q C R¢ be open, bounded with a Lipschitz boundary, and let
f € BV(Q). Consider a sequence (pp)nen satisfying (1.24) and (1.25)). Then

. x)—
i [ [ HOZION, (- oy ayae = 53,1919,
n—eeJa /o |z —y|

Our result (1.50|) follows by choosing p,(z) = |B1/n|71XBl/n (z) and Q = R4

Lemma 1.3.18. Let v € R? with v # 0, ¢ € C.(RY), f € LY(R?), and let o : RT x RY —
R be a function such that:

i) o(x,y) = o(y,x) for all x,y € R? the following integral exist and

/ o(z,y)dx = / o(z,y) dx (1.57)
(z—y)w>0 (z—y)w<0

for all y € R%;
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ii) o € L®(R? x RY) and z — [pq o(x,y) dy is locally bounded.

Then we have
L[ r@ew) - ela)e.y) dyds =
Rd J (y—z)-v>0
L[ @ - ra)eweley) dedy. (155)
Re J (y—z)-v>0
Proof. Let T denote the left hand side of ((1.58) and define Z; and Zs such that

/ / o(y)o(x,y) dy de— / / (x)o(z,y)dydx = T1 —1Lo.
Rd J(y—z)- v>0 Rd J(y—z) U>O

By the change of variable (z,y) — (y,z) in Za, o(z,y) = o(y,z) and (1.57)), we obtain

n [ ] S ety

=/ f(y)sO(y)/ o(z,y) dy dx.
R4 (z—y)-v<0

Summing up we get identity ((1.58)). O
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Chapter 2

The case of the Heisenberg Group

Let H? = C% x R be endowed with the non-commutative group law
(z,t) * (w,s) = (z + w,t + s + 2Im(z - w)).

H¢ with this group law is a Lie group known as the Heisenberg group. The identity of
the group is the origin 0, while (z,¢)~! = (-2, —t). The Heisenberg Lie algebra can be
realized as a (2d+1)-dimensional algebra of left invariant differential operator, namely,
letting z = x + 1y,
0 0 0 0 0
T:a, ijafmj+2yja and Yj:a—yj—ija j=1,....d.

Let A be the 2d-dimensional left invariant distribution spanned by X;, Y; j =1,....,d.
A is called horizontal distribution. Using the horizontal distribution it is possible, via
Lie bracket, to generate all of THY, in fact [X;,Y;] = &;j4T. Let m : HY — C? be the
projection m(z,t) = z.

A Lipschitz curve v : [0,1] — H" is horizontal if 4(s) € A(7y(s)) for all s € [0,1], i.e
if there exist a;, 3; : [0,1] — R such that

d
= (o ¥(s)) + Bi(5)Y;(7(s)))-

Jj=1

We denote |¥(s)| the length of 4(s) with respect to the left invariant metric on A that
makes X1,..., Xy, Y1,...,Y; orthonormal, namely

1/2

i )2+ Bj(s)?)

Jj=1

1
~ [ hiwls (2.1)
0

The lenght of v is then defined as
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We set the distance between two points p,q € H? to be
d(p,q) = inf {L(7) : v € Lip([0, 1]; H") is horizontal and v : p — ¢}. (2.2)

Here v : p +— ¢ means 7(0) = p and (1) = ¢. The function d turns out to be a left-
invariant metric on H?, usually called the Carnot-Carathéodory metric. The Carnot-
Carathéodory metric is rich of isometries (although not as rich as the Euclidean one),
in particular any translation 7, : (2,t) — (2z,t + «) is an isometry. The metric d is
homogenous of order 1 with respect to the non-isotropic dilations 6y(z,t) = (Az, A%t),
A > 0. Namely, d(6xp, 0xq) = Ad(p, q) for any p, q € H?.

Let p € H? and r > 0, in the following we will denote by B,(p) = {¢ € H% : d(p,q) <
r} the open ball of radius r with center in p and with B, = {¢ € H? : d(0,q) < r} the
one centered in 0. Let v € C? and r > 0, the half balls B (v) with respect to v of radius
r and centered in x € H? are defined as

B} (550) = {y € Bo(a) : 7(a" xy) -0 2 0},

- -1 B (2.3)
B, (z;v) ={y € By(x): m(x™ " *y)-v < 0}.

Here, for u,v € C?%, we let u - v be the usual scalar product in C* = R2?. Obviously
B.(z) = Bf(z;v) U BZ (2;v) for any x € HY v € C? and r > 0. As above, we let
B (v) = B (0;v).

Proposition 2.0.1. Let

(2, 0)||gg = l2] + V2, (2,t) € HY

1

Then the metric dg(p, q) = ||[p~ " *q||a, p, ¢ € HY, is equivalent to the Carnot-Carathéodory

metric.

Proof. By the left invariance of both || - |z and the Carnot-Carathéodory metric, we
have to prove that there exist two constants C;,Cs > 0 such that for any p € H? it
holds

C |lplle < d(0, p) < Cy [|plla- (2.4)

Both d and || - || are homogeneous of order 1 with respect to the dilations ). Hence to
prove it suffices to show that, for C1,Cy > 0 and for any p € {¢g € H? : ||q|lz = 1},
it holds

C1 <d(0,p) < Co.

This follows from the Weierstrass theorem, since d is continuous, positive and locally
finite and the set {¢ € H? : ||q||g = 1} is compact. O

Proposition implies that a ball B, centered in the origin of radius r > 0, behaves
like the box
Box(0,7) = {(z,t) e CY xR : |z| <, |t| <r?}.

It is possible to prove that the infimum in (2.2)) is in fact a minimum. The curves
realizing such minimum are called geodesics. Thanks to the left-invariance of the metric
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d, the geodesics joining two points p,q € H? can be written as left translations of
geodesics joining the origin with p~! % ¢q. For any p € H? we will denote by vp the
geodesic joining 0 to p. Such geodesic is not unique if p lies on the ¢ axis, but our
arguments will not be affected by this fact. The curve 7, is of class C*° and we may
assume it is parametrized with constant speed:

|T(Yp(s))| = d(p,0) for all s € [0,1]. (2.5)

The left invariant Haar measure on H? is the Lebesgue measure £2471. With such
measure we construct the usual LP(H?) spaces of p-integrable functions.

Definition 2.0.2. Let Q € H? be an open set and let ¢ € C'1(Q2). Then, for any p € Q,
we let the horizontal gradient of ¢ at p to be

VH¢(p) = (Xl ¢(p)a Y1 ¢(p)’ R Xd ¢(p)a Yd QZ)(p)) - (Cd‘ (26)

In the following Lemma we prove a Taylor development formula in the Heisenberg
group.

Proposition 2.0.3. Let Q be an open subset of H?, such that for any p,q € §Q, the
geodesic p * v, is entirely contained in Q. If ¢ € C?(SY), then there exist a constant
C > 0 such that for any p,q € Q it holds

¢(p* q) = d(p) + Vuo(p) - 7(q) + R(p,q), |R(p,q)| < Cd(g,0)*. (2.7)
Proof. By the fundamental theorem of calculus we get
1 d 1
00 0) = 00) = | Lo ea()ds = [ Taolpea () wl)ds @)

Adding and subtracting Vi¢(p) inside the integral in (2.8)) yields

1

1
P(p*q) —o(p) = VH¢(I?)'/0 W(*Yq(S))dsﬂL/o (Vao(p*74(5)) — VEO(D)) - T(F4(5)) ds.

(2.9)
The projection 7 is linear and continuous, hence
d _ o T(g(8)) —mlyg(s +h) Ya(s) —v(s+h)\ _ .
Tr((s)) = Jim ; = lim 7 - = 7(3(s)).
Using again the fundamental theorem of calculus, this implies that
1 1 d
| mGuonds = [ Sonta(s)) ds = n(a). (210)
0 o as

Combining (2.9) and (2.10|) and defining

1
R(p.q) = /0 (Vid(p* 74(5)) — Viro(p)) - 7(3(s)) ds,
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we get
d(p*q) — d(p) = Vao(p) - n(q) + R(p, q).

To complete the proof, it suffices to show that there exists a constant C' > 0 such
that for any p,q € Q it holds that |R(p,q)| < Cd(q,0)%. By ¢ € C?(Q) follows that
Vuo is a Lipschitz function. Let L be a Lipschitz constant for Vg¢. Since there exists
a constant M > 0 such that for any z,y € supp ¢ there holds |z — y| < Md(z,y), by the
Cauchy-Schwarz inequality and we get

[R(p, @)l < sup [Va(p* v4(s)) — Vad(®)|[m(14(s))]

s€[0,1]

< sup LMd(p *~4(s),p)d(q,0)
s€[0,1]

< LMd(q,0)%
This proves the claim with C' = LM, and hence the Lemma. 0

In the following sections, in analogy with the Euclidean case studied in the previous
chapter, we use the geometric constant

Cpa = ][ v - m(w)|P dw, (2.11)
B

where v € C? is any vector with |v| = 1. We remark that, due to the dilation invariance,
for any r > 0 we have

1
Cha— ][ v 7 (w)? duw. (2.12)
) Tp Br
The following Lemma is an adaption to H? of Lemma m

Lemma 2.0.4. Let p € C?(H?) and v € C%, |v| = 1. Then for all p € H? we have

1
lim — (¢(q) — w(p)) dg = C1a VaP(p) - v, (2.13)
0T JBE (pv)

where B;F (p;v) is the half ball of radius r > 0 and centered at p defined in (2.3).

Proof. Making the change of variables ¢ — p * w and using the Taylor formula (2.7) we
get

1 1
F o —eo = f (ol = o)

r r

1 R(p,w
_VH<P(p)'T]lB+( )7r(w)dw—|— ]ng( )(Z)dw.

Here the last term tends to 0 as r | 0.
We claim that

(2.14)

1
][ m(w)dw = Cy qv. (2.15)
B (v)

r
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The Lemma will then be proved letting » | 0 in (2.14]). Let {v,ea,...,eq} be a orthonor-
mal basis of C?. Hence we can write

d
3
— m(w) dw = ][ m(w) dw = v][ v-m(w)dw + ei][ e; - m(w) dw.
" J B (v) By (v) By (v) ; B (v)

For:=2,...,d we get

/ e; - m(w) dw = / e - m(w) dw + / e - m(w) dw
By (v) By (v)NB{ (e:) B (v)NBy (e:)

= ei - m(w) dw — / e - m(w) dw
B (v)NBY (e:) By (v)NB{ (e:)

where we made the change of variables w — h = w — 2(e; - T(w))w.

Validity of (2.13]) follows from

][ v-m(w)dw = ][ |v-7(w)|dw = C 4.
B (v) By
O

The arguments of the following section are adaptions of the ones used in [BBMOI]
for the Sobolev case, and in [Dav02] for the bounded variation case.

2.1 The horizontal Sobolev and BV spaces

Let f € Ll () we say that g € (CCOO(Q)), is a distributional derivative of f with respect
to Xj if

/Qfijdz dt = —(g,¢), Y e CX(Q).

In such case we write g = X; f. The distributional derivatives Y} f are defined in the same
way. If f admits distributional derivatives with respect to any X; and Y;, j =1,...,d,
we define the distributional horizontal gradient Vg f as in (2.6)).

Definition 2.1.5. The horizontal Sobolev space Wfll’p(Hd) is the set of all functions f €
LP(H?) such that all the horizontal distributional derivatives X1 f,..., Xqaf, Y1 f,...,Yaf
are in LP(H?).

We set 1
fHd ’VHf|P dzdt if f € WH’p(Hd)

. bl
400 otherwise

HVHfHZp(Hd) = {

where we used
d

/Hd Ve f[P dzdt :/ > OlXif(z 1)) + (ij(z,t))2]p/2 dz dt.

d
HY T
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The space Wél’p (Hd) is a Banach space, when it is endowed with the norm

1/p
£l egey = 17 Loy + ( /H (VafP dzdt> |

Definition 2.1.6. Let f ¢ L'(HY). We say that f is a function of bounded horizontal
variation in HY, if the distributional horizontal gradient Vi f of f is representable by a
finite R2%-valued measure in H.

In such case we will call |V f| the horizontal total variation measure of the function
f and denote with BVsz(HY) the vector space of the functions with bounded horizontal
variation.

We recall the following characterization of Wfll’p (H?) for 1 < p < oo and BV (HY).

Theorem 2.1.7. Let f € LP(HY) with 1 < p < oo and let p’ such that U/p + 1)y = 1.
The following are equivalent:

i. p>1and f € Wlli’p(Hd) (resp. p=1 and f € BVg(H?));

ii. there exist a constant C' > 0 such that for all p € C°(HY) it holds

IRCCLE <Ol G=1.-rd
Hd

(2.16)

< Clollvu. | [, F 00

Proof. We follow closely the proof of Proposition VIII.3 in [Bré83].

We start by proving that If f e Wlli’p (H?), 1 < p < oo, follows by Holder
inequality, with C' = sup{||X; f |l .o (ay, IY; fll(may : 5 =1,...,d}. On the other hand, if
f € BV (H?) it clear that

[ i

Hence holds with C' = |Vg f|(HY).

To prove the other implication, we claim that if f € LP(H?) is such that holds,
then X;f,Y;f € (Lp/(Hd))/, j=1,...,d. We prove the claim for X;f, j=1,...,d, but
the same argument applies to ;. Let ¢ € C°(H?) and define

< ij(Hd)HSOHLoo(de

< X;f (HY) 0]l oo (120 ’/de(YJ"P) du

Tyo) =~ | FXjpde (2.17)

The linear functional T} is defined on a dense subset of LP (H?) and by is con-
tinuous. Therefore, by the Hahn-Banach theorem, Ty can be extended to a continuous
functional on L (H?), i.e. Ty € (Lp/ (Hd)),.

Recall that (Lp/(Hd))/ C (C’SO(H‘Z)),, since C°(H?Y) < LP(HY). Hence Tj €
(Cgo(Hd)), and we can write

Tr(p) = (T}, p), forany ¢ € C’é’o(Hd).
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Confronting this identity with , we get that T’ is a representation of the distribu-
tional derivative X f. Hence X, f € (Lp/(Hd)), and the claim is proved.

If 1 < p < o0, by the Riesz representation theorem (see [Bré83, Theorems IV.11 and
IV.14]) we get that (Lp/(Hd))/ = LP(H%). Hence, by the previous claim, X;f,Y;f €
LP(H?), j =1,...,d, and then f € W"(H).

If p = 1, one can prove (see [Yos80, p. 118]) that (L‘X’(Hd))/ is the set of all Radon
measures on H?, £29+1_absolutely continuous and of bounded total variation. Therefore
X;f,Y;f,j=1,...,d, are Radon measures of bounded total variation. Hence Vg f is a

vector Radon measure of bounded total variation and so f € BV (HY).
O

Finally we state a density theorem, proved in [FSC96] in a more general framework.
In particular we refer to [ESC96, Theorem 1.2.3] in the horizontal Sobolev case and to
[FSC96l, Theorem 2.2.2] in the BVyy case.

Theorem 2.1.8. Let f € Wlli’p(Hd), 1 < p < oo. Then there exists a sequence (fp)nen C
C'HY N Wfll’p(Hd), such that

nh_{{)lo lfr — fHLP(Hd) = nh_{go Ve fn — vHfHLza(Hd) =0.

On the other hand, if f € BVia(HY), then there exists a sequence (fy)neny C CH(HY) N
BV (HY), such that

Tim || fo = fllpigaa =0 and  lim [V f,|(HY) = [Vef|(HY).

2.1.1 Length of the gradient of Wg"(H?) functions, 1 < p < oo
Theorem 2.1.9. Let f € LP(H?), 1 <p < oo. Then f € Wfll’p(Hd) if and only if

lim inf / ][ (y)|P dy dz < +o0. (2.18)
10 e

Moreover, in such case the limit inferior is in fact a limit and it results

i [ f, 1)~ SO dyde = Coal VS s, (219

rl0 P

where Cy, 4 is defined in (2.12)).

First of all we need the following

Lemma 2.1.10. Let f € Wfll’p(Hd), 1 <p<oo. Then it holds

. f W) dyde < Vi1 o) (2.20)
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Proof. Let g : H* — R. Thanks to the left translation of the distance, it holds

1 _
][ g(y) dy = 9(W)xs, (" *y)dy.
r(x) |BT‘ Hd

Hence a change of variables in ([2.20)) yields

5 f >|pdyd:c—rp|B| [ 1@ = s P, () dhds

][ / |f(z) — f(z * h)[P da dh.

Since fBr d(h,0)? dh < rP to complete the proof it suffices to show that

Fo 10@) = s WP da < dh. 0P Vs e (2.21)

If f € WP(HY)NC(H?), we can use the integral Minkowski inequality and the Cauchy-
Schwarz inequality to get

|1t = fasmpar= [

:/Hd

1
< [ [ waste s mGue)l deds

p

L g
/Odtuo(xw))(s)ds dx

p

1
/0 Vi f (o ym(s)) - w(in(s)) ds| da

1
< [ RGP [ Vit ()P dods
- d(h‘ 0 HVHfHLp Hd)

In the last equality, we used (2.5)) and the right invariance of the Lebesgue measure.
The general case follows by a standard approximation argument using Theorem [2.1.8

O
Proof of Theorem[2.1.9, Let f € Wg"(H?), we need to prove that
i I3 11 10200, = o195 gy (2.22)

where

x) — x 1 x Ve

The triangle inequality implies that the operator T, is subadditive. This, together with
([2.20) in Lemma [2.1.10} implies that, for any » > 0 and f, g € WHP(H?), it holds

T L1 2o rrascnay = T 9] po a ey | < NTeLf =91l o aascmay < Cpal Vi (f —9)ll pea)-
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Therefore we only need to establish in some dense subset of Wll{’p (HY), e.g. in
C2(H).

In order to prove that holds for g € C2(HY), it suffices to prove it pointwise.
Namely we claim that for any = € R? it holds

tn - lgl@) ~ 9P dy = Cpal Vg, (2.23)

where C), 4 is defined in (2.12). Identity (2.19) then follows from (2.23) by dominated
convergence. In fact, if L is a Lipschitz constant for g (i.e. |g(z) — g(y)| < L|z — y| for

any z,y € H%) and if M > 0 is a constant such that for any x,y € suppg there holds
|z —y| < Md(z,y) then

1
- lg(x) — g(y)|P dow < LPMP.
P JB,(x)

To prove , we fix 7 > 0 and € H% Then, for any w € B,, by we have
9w < w) - g(x) = Vag(a) - w(w) + R(z,w), |R(z,w)| < Cd(w,0)%.  (2.24)
Here, C is independent of z and w. Thus we have that
19(z) — g(z * w) P = [Varg(z) - m(w)lP + Lz, w),
where we let
L(z,w) = |Vug(z) - m(w) + Rz, w)|” — [Vag(z) - m(w)’.

Therefore we can write

1 1
_ _ p —— _ p
7 o l9(2) =gyl dy = . lg(x) — g(z * w)|” dw
1 L
- Ve mwpaes {20 o)
™ B, (x) Be(x) T
Lz, w
:cp,d|ng(x)|P+][ (Tp)dw.
Now we show that
T I CT) Y (2.26)

rl0 B, rP

In fact, letting ¢(t) = tP, by the mean value theorem we get that for any 0 < s < ¢ it
holds ¢(t) — ¢(s) = ¢'(s*)(t — s), where s* € [s,t]. Hence we have that

Lz, w)] < (IVag(@)  7(w)| + Rz, w)])" = [Vag(z) - m(w)|” = p(s")" Rz, w)],
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where s* € [|[Vag(z) - w)],|Vag(z) - w| + |R(x,w)|]. By the fact that o — o~!, o >0,
is non-decreasing and by , we get
|L(z,y)| < Cp(s*)P~'d(w,0)?
< Op(|Vrg(x) - w| + | R(z,w)[)" d(w, 0)*
< Op(|Vag(@)| + Cd(w,0))" d(w, 0)"".

Here we used the Cauchy-Schwarz inequality. This implies that, for w € B, and r < 1,
there exists a constant ¢’ > 0 independent of w, such that |L(z,w)| < C'rP*!. Thus

(2.26)) follows from
][ M dw‘ < C'r.

rp

By (2.26), letting r | 0 in (2.25) we get (2.23). This proves the claim and hence
that (2.19) holds for any g € C?(H?). By the previous considerations, this implies that

([2.19) holds for any f € WHP(H). This completes the first part of the proof.
Finally, we prove that, if f € LP(H?) and

l/p

1

Al =tmint ([ f @) - S dyds ) <o 2n
rl0 TP [y - (z)

then f € Wlli’p (H?) and hence (2.19) holds. We claim that for such an f, for any v € C%

with |v] = 1 and for any ¢ € C2°(H?) we have

Cua [ 7(0) Virpla) -vda| < Ayl el aae

where 1/p + 1/p’ = 1. By Theorem m, this will imply that f € Wlli’p (H?), completing
the proof.
For any r > 0, v € C with |[v| =1 and o € C°(HY), let

1
L) =) [ 1@ f (o) - pw)dyds). (229)
T Jad B (zv)
By Lemma we have
mZ,(p;v) =limZ,(p; —v) = C1 4 / f(z) Vap(z) - vdx|. (2.29)
r]0 10 Hd

Observe that, identifying v € C? with (v,0) € H?, we have that 7(z~! %) -v > 0 if and
only if (y —x)-v > 0. Since for any r > 0, the kernel o(x,y) = x, (v~ *y) satisfies the
assumption of Lemma [1.3.18| for H? = R?¥*! we get

1
o) =5 [ U@ =T et drdy
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Using Holder inequality we obtain

L)+ Lo -0 <2 [ 17w - fWllew)|dedy
Hd r(y)
1/p (2.30)
< 1l o ey - ( / f >|pdydx> |
By (2.29)), letting r | 0 in (2.30)) proves the claim. O

2.1.2 Length of the gradient of BV (HY) functions
Theorem 2.1.11. Let Q C H? be an open set, f € BVu(H?) N BV (HY) and let u, be

defined as
1
) =1 [ ( f,o i@ = dy> o

for any A ¢ HY Borel. Then j, — Cr.alVuf| as r | 0 weakly in the sense of Radon
measures in Q. Here Cy q is the geometric constant defined in (2.11)).

The following Lemma is the equivalent of Lemma [1.3.13|in H¢.

Lemma 2.1.12. Under the assumptions of Theorem |2.1.11), let & be a Borel subset of
H¢ and let E, = Uyer Br(y) be the r-neighborhood of E. Then there exists a geometric
constant k > 0 depending only on the dimension d, such that

pr(E) < Cra|VaT|(Er) + 5|V f|(E), (2.31)
where Cy q is defined in (2.11) and |V f| is the Euclidean total variation measure of f.

Proof. We prove (2.31)) in the case of f € C'(H?), the general case will follow by a
density argument using Theorem
By the triangle inequality we have, identifying 7(w) € C* with (7(w),0) € H, that

|fly*w) = f)] < |fy*xw) = fly*m(w))|+|f(y*n(w)) = f(y)l

Hence we get the estimate

/][T (y)| dy dx
—T/E][T\f(y*w)—f(yﬂdwd:v
<o [ f s = senpldwds [ g - ) dods

(2.32)
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To estimate the second term in the r.h.s. we use the fundamental theorem of calculus
and the fact that 7(¥;(,)(s)) = m(w) for any s € [0,1]. Therefore we get

L vy - savae =1 [
< T /0 (Ve (% o (5)) - 7)) dis o
1 ][ ], V@) ww)ldz d

r

1
| T = gy 9)) - w0 |

IN

= CLd/E |VHf(Z)|dZ

= Cra|Vaf|(E:).
(2.33)

For w = (m(w), ) for some 7 € R, we let @ = (0,¢). Hence we can write y x w =
y * (m(w) + ) and get

s = et = | [ 5 £ (rlw) + 0.5 s

Observe that if w € By, then w(w) + sw € B, for any s € [0,1] and that by Proposi-
tion follows that |7| < kr? for some geometric constant £ > 0. Then, with the
same computations as in (2.33)), we can estimate the first term in the r.h.s. of (2.32)) as

1 0
/ ][ \f(y*w)—f(y*w(w))]dwd:vgﬁr/ 9 | az < erwr(E).  (230)
" JE - E, at
The thesis follows using the estimates (2.33]) and (2.34)) in (2.32). O

Proof of Theorem[2.1.11 Let (uy,)nen be any subsequence of (py)r>o, with r, — 0
as n — 00. As in the proof of Theorem [1.3.12 by (2.31]) follows that there exists a

subsequence (i, Jnen, with lim,_ o r, = 0, of (iy)r>o which converges weakly to a
Radon measure p in 2. We show that, for all Borel subsets B of €, this holds:

w(B) < C1q|Vaf|(B). (2.35)

In fact, if K is a compact subset of Q and R > 0 is small enough, there exists ng
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such that ¥n > ng holds Kr4,, C §2. Then, by (2.31)),
u(K) < p(Kg) < liminf o, (Kp)

< Jimy |CoalVuaf| (i) + 0l DF| (K,

=Cligq

Va/f| (ﬂ KRJrrn) + nhj& &1 | D f| (K Rr,)

n=1

<Cia

o0

n=1
= C1,4|Vuf| (Kg) -

Here we used the continuity from above of measures and the lower semicontinuity on
open subsets of the weak convergence of Radon measures (see, for example, [EG92]).
Letting R | 0, since K = [z, KR, we obtain

CralVufI(Kr) \. C14|VuS|(K).

Thus our claim ([2.35) holds for compact subsets of {2 and therefore for all Borel sets.
To complete the proof, due to the uniqueness of the limit, it suffices to prove that

p > ChalVufl. (2.36)

To prove ([2.36)), let v € C? be such that [v| = 1 and let ¢ € C°(H?) be non negative,
¢ > 0. As in Theorem [2.1.9] we can show that

Cid

/de(y)VHsO(y)-vdy‘ S/Hdsodu-

Integrating by parts in the L.h.s. and approximating the characteristic function of an
open set with non negative C°(H¢) functions, yields

Cra|Vaf(A) v < u(A), (2.37)

for any v € C? with |v| = 1 and A open.
Let g and o denote the Radon-Nykodim derivatives with respect to |Vgf| of the
measures i and Vg f, respectively. Namely

= lim M an o(x) = Iim w
g(x)_IL“HMVHf‘(UR(x)) d olz)= i, Vaf|(Ur(z))’

for Vi f|-a.e. * € H? and |o| = 1 a.e. . Here Ug(x) is the euclidean ball of radius
R > 0 centered in 2. On the other hand g(z) > Cy 4 for |[Vu fl-a.e. z € HZ In fact by
(2.37)) follows that pu(Ugr(z)) > C1|Vuf(Ur(z))| for any = and R > 0. Therefore we get

H(A) =/Agd|var > C1|VifI(4),

that proves ([2.36)) and hence the theorem. O
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Theorem 2.1.13. A function f € L'(H?) belongs to BV (HY) if and only if

lim inf — / ][ (y)| dy dx < +o0. (2.38)
rl0 Hd 2 (

Moreover, if f € BVg(H?) N BV (HY) then we have

i [ 1) = Sl dyde = €l Vs, (230
rl0r Hd r

where Cy 4 is defined in (2.12).

Proof. The proof of the first statement is done as in Theorem thanks to Theo-

rem 2.1.7
The second statement follows directly from Theorem [2.1.11] with Q = H¢,



Chapter 3

Rearrangements in metric spaces

Let (X,d) be a metric space with balls B.(z) = {y € X : d(z,y) < r} for any x € X
and 7 > 0. We also let 0B, (z) = {y € X : d(z,y) = r}. When the ball is centered at
the origin we let B, = B,(0) and 0B, = 0B,(0). A metric space is proper if closed balls
are compact. For any set F C X we let the diameter of E to be

diam E = sup {d(w,y) DX,y € E} (3.1)

For any function f : X — R and for any open set U C X, we define the Lipschitz
constant of f in U as

|f(z) = f(y)l
d(z,y)

We let Lip(f; X) = Lip(f). If Lip(f) < 400, we say that f is a Lipschitz function and

write f € Lip(X). We say that f is locally Lipschitz if for any x € X there exists a

neighborhood U of x such that Lip(f;U) < oo. In this case, we write f € Lip,,.(X).
Given a continuous path v : [0, 1] — X, we define the length of «y as

Lip(f;U):sup{ : x,yEU,x;éy}. (3.2)

n—1
L(v) = sup{Zd(ﬂy(ti),'y(tiH)) 0=ty <ta<---<t,=1,ne N} )
=0

If L(y) < oo we say that + is rectifiable. We let the intrinsic metric d; on X to be
di(z,y) = inf {L(7) : 7 is a rectifiable curve s.t. v: z +— y}, (3.3)

where with v : z — y we mean that y(0) = z, y(1) = y. If d(z,y) = di(z,y) for any
x,y € X we say that X is a length space.

Let u be a Borel measure on (X,d). The triple (X,d, ) is then called a metric
measure space. Using the measure p we construct the usual LP(X, u) and L} (X, p)
spaces. For any function f € L{ (X, u) and for any Borel set B C X with positive and
finite measure, let

1
]i @) dsa) = —z= /B f(@) dy(z)
7

3
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denote the averaged integral of f over B.
We say that the measure u is non-degenerate if for any x € X and r > 0

0 < p(By(x)) < 00, (3.4)

and diﬁusdﬂ if
1(0By(x)) = 0. (3.5)

Finally we say that the metric measure space (X,d, 1) has the Lebesque property if
for any Borel set A C X we have that u-a.e. x € A is a point of density for A, i.e.

iy AN By (2))
rl0 p(By(2))

We remark that if (X, d, 1) is doubling, in the sense that there exists a constant D > 0
such that p(Bar(z)) < pu(Br(x)) for any r > 0 and x € X, then it has the Lebesgue
property. For a proof of this fact we refer to [HeiOll p. 4].

Given a Borel function ¢ : X — Y between the metric measure space (X,d, ) and
the metric space (Y, ), we define the push-forward of p with respect to ¢ as

~1. (3.6)

os1(B) = u(¢~1(B)), for any Borel set B C Y.

If X =Y and ¢y = p, we say that the Borel measure p is ¢-invariant.

3.1 Function spaces in a metric measure space

The results of the previous chapters (Theorems [1.2.4] [1.3.14] [2.1.9| and [2.1.13)) suggest
the following definition of length of the gradient of a real valued function.

Definition 3.1.1. Let (X, d, ) be a metric measure space and let f € L] (X,p). For
1 <p<oowelet

l/p
IV 19 = lim nf ( Jof, 1= s )du(w)> SNCE

1/p
IV 515549 = imsup ( [ £, 15 = rwranty )du(oo) BNEE)

If HVij{p(X 0 = HVfHZp(X > then we let the their common value to be
1/p
19 v = T ( 5 1) = P dnt )du(iv)) 69)
r By (x)

! The term diffuse is used sometimes to refer to non-atomic measures.
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Let 1 <p <oo. If f € LP(X, p) and ||V f|| r(x,u) < +00 we say that f is a p-Sobolev
class function. Similarly, if f € L'(X, ) and IVfllei(x,u < +oo, we say that f is a
function of bounded variation. We point out that it is not clear wether, if f and g are two
p-Sobolev class function, f+ g is also a p-Sobolev class function or not. In particular the
limit in could not even exists. The same is true for functions of bounded variation.

Having defined what a function of bounded variation is, we can define the notion of
perimeter in a metric measure space.

Definition 3.1.2. For any Borel set £ C X let the lower perimeter and upper perimeter
of E be defined as

PRE: X do ) = [VXBl g and - PR X o) = VBT (x

Here xg is the characteristic function of the set F, namely

() 1 ifxek,
xTr) =
B 0 ifzreX)\E.

If the lower and upper perimeter coincide, then we let

P(E; X, d, p) = [VxelL (x p)- (3.10)

3.2 Compactness

In this section we prove a compactness result for families of functions in LP(X, u). The-
orem [3.2.5] below is needed in section [3.61

Definition 3.2.3. Let (X,d, ) be a metric measure space and let ® be a family of
functions in Lf (X, p).

p
loc

(i) We say that ® is locally uniformly bounded in L
K C X it holds

(X, p) if for any compact set

sup/ |fIP dp < +o0. (3.11)
fedJK

(i) We say that ® is locally uniformly absolutely continuous in L} (X, p) if for any
compact set K C X and for any € > 0 there exists § > 0 such that for all Borel

sets B C K with p(B) < ¢ it holds

sup/ |fIPdu <e. (3.12)
fe®JB

Lemma 3.2.4. Let (X,d, ) be a proper metric measure space such that the measure
is non-degenerate and diffuse, in the sense of ([3.4) and (3.5). Let ® C L} (X, u) be a

loc
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locally uniformly bounded and locally uniformly absolutely continuous family of functions.
Then letting

fr(z) = ]{w) fdp, (3.13)

it follows that the family ®, = {f, : f € ®} C C(X), r > 0, is locally uniformly bounded.
Moreover, all f. € ®,., r > 0, are uniformly continuous on compact sets.

Proof. Because the balls B,(x) are precompact, the functions f, in are well de-
fined. We now prove that f, € C(X) for any r > 0 and f € . In fact, since u(9B,(z)) =
0 for any r > 0 and = € X, we have that, for any zo € X, XB,(x) — XB, (z,) H-a-€. as
x — xg. Thus the dominated convergence theorem yields, for any g € L (X, p),

loc
lim gdu = / gdpu.
0 J Br() By (z0)

Since this proves, in particular, that x — u(B,(x)) is continuous, we are finished.

We claim that ®, is locally uniformly bounded. In fact, if K C X is a compact set
and if we let K, = {x € X : dist(z, K) < r} to be the compact r-neighborhood of K,
we have that |f.(z)| < C1Cs. Here

1
Ci =max ——— and C :sup/ du. 3.14
LS (B, @) 27 i (319

We remark that it is Cy < 400, since @ is locally uniformly bounded.
Finally we show that f, is uniformly continuous on compact sets for any r > 0 and
f € ®. To this aim, let K be a compact set, as above, and let z,z9 € K. We have

1 1
M(BT(x)) ’ /‘I’(BT‘(:L‘O)) } /BT(JJ)ABT(wO) ‘f| dut
\u(Br(2)) — (B (x0))]

T (B @) (B, (x0)) BT(x)nBr(xo)\fldu (3.15)

< / \fldu+ C2Calu(By(z)) — u(Br(zo))].
By (z)ABy(z0)

(0) = )| < e {

Here the constants C; and Cy are the ones defined in (3.14). The function m : X x X —
[0, +00), m(z, z0) = p(Br(z)AB,(x0)), is continuous and hence absolutely continuous
on K x K. Since m(xzg,z9) = 0, for any 6 > 0 there exists an > 0 such that, if
d(x,z9) <n, m(z,z9) < . This, together with the local uniform absolutely continuity
of ®, implies that for a given € > 0 there exists an > 0 such that, if d(x,z¢) < n, we

have
Sup/ |f]dp < e. (3.16)
fe® J By (z)ABy(x0)

Using (3.16)) in (3.15)) we complete the proof. O

Now we prove the main result of this section.
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Theorem 3.2.5 (Compactness). Let (X,d,pu) be a proper metric measure space such
that the measure p is non-degenerate and diffuse, in the sense of (3.4) and (3.5). Let
1 <p <400 andlet & C LY (X, ) be a family of functions such that:

(1) @ is uniformly locally bounded in L} (X,p). Moreover, if p =1 we assume ® to
be locally uniformly absolutely continuous in Lloc(X, ).

(ii) there exists ¢ € LP(X, ) with
(196152xc,0)" =timipt 5 [ 196 —v )P dn) o) < o0, (317

such that for all r € (0,1) we have

sy [t » ()P ) ) < [ f () ? du(y) dp(z).

(3.18)

Then ® is precompact in Lj (X, ).

Proof. The family ® satisfies the assumptions of Lemma [3.2.4] If p = 1 this is trivial.
Otherwise let K C X be a compact set and let ¢ such that 1/p + 1/¢ = 1. Then for any
Borel set B C K, the Holder inequality yields

p
[ 1f1dn < i ( / !f\”du> < o e ia(B) .
B B

This implies that @ is locally uniformly absolutely continuous.

By Lemmal[3.2.4] ®, = {f, : f € ®} C C(K) is equibounded and equicontinuous. By
Ascoli-Arzela theorem, &, is totally bounded with respect to the max norm, and hence
with respect to the LP(K, ) norm.

Next we claim that
- B —0. 3.19
1r7{1l%)n ?‘lelg Il fr fHLP(K#) ( )

This follows from (3.18)):
P

[t sran= | ]{M (F9) — F(@) du(y)| dpu(a)

</ ][ ) (@) duly) dyu()
</ ][ ) (@) dply) du(z),

the inequality holding for r € (0,1). By assumption (3.17)), this implies (3.19).
Finally, from (3.19) follows that ® is totally bounded in LP(X, ;1) and hence precom-
pact. ]
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3.3 Two-points rearrangement in metric spaces

In this section we study a technique that is very useful in proving the central theorems
regarding rearrangements: the two-points rearrangement.

We say that P = {H~, H, H"} is a partition of X if H~, H, H" are pairwise disjoint
subsets of X and X = H - UHUHT.

Definition 3.3.6. A reflection system R = {P, o} of the metric space (X, d) is a parti-
tion P ={H ,H,H"} of X such that H~ and H" are open, together with a mapping
o : X — X such that:

(R1) the map p is an involutive isometry of X (i.e. d(oz, oy) = d(z,y) for any xz,y € X
and o? = Id) such that pHT = H~;

(R2) for all z,y € HU H™, we have d(z,y) < d(z, oy).

For the sake of brevity, here and henceforth we write px = o(z) and oF = o(FE) for
reXand EF C X.

Proposition 3.3.7. Let (X,d) be a length space. Let P = {H~,H,H"} be a partition
such that H= and H are open and OH~ = OHT = H. Moreover let o : X — X be a
mapping satisfying|(R1) and such that Q‘H = Id. Then R = {P, o} is a reflection system
of (X,d).

Proof. It suffices to prove that condition holds. Since g is an isometry and Q| y =1d,
we only need to check that for any x,y € H™ it holds that d(z,y) < d(z, oy).

Let «+ be a rectifiable curve joining x with py. By oy € H™ and hence vy
intersects H = 0H~ = OH* at some point z € H. Then we can split v = vz, + Y2y,
where the sum is a concatenation of curves and v,. : © — 2, v,y : 2 — py. Let
v = Yzz + 072y. Since g} 5 = 1d, 7' is continuous, and since ¢ is an isometry, L(y') =
L(v). By the arbitrariness of v and since X is a length space (see (3.3))) we get that
d(z,y) < d(z, oy). O

We describe some examples of reflection systems.

Example 3.3.8. Let X = Z®V be a vector space, where V is a 1-dimensional subspace
of X. We may then decompose z € X as x = z + v, for uniquely determined z € Z and
v € V. We fix a total ordering on V.

We define the partition P = {Z~, 7, Z1} where Z- ={z+v e X : z€ Z, v <0}
and ZT = {z+v € X : z € Z,v > 0}. Moreover let p : X — X be defined as
o(z) = p(z4+v)=2z—wv for any z € X. Let || - || be a norm on X with respect to which
o0 is isometric. Then R = {P, o} is a reflection system of the metric space X endowed
with the distance induced by the norm. Condition is trivially satisfied. We now
prove

Let v € V be such that v > 0. We start by claiming that for any x € X, the function
¢z : t — ||z + tv|| is non-decreasing for ¢ > 0. In fact, if 0 < ¢ < s we have

-1
z+tv=oc(or —tv)+ (1 —0o)(z+sv), whereo = S+t € (0,1),
s
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and therefore
¢2(t) = |z + tv]| = ollox — tv]| + (1 — o)|lz + sv|| = 0dx(t) + (1 — 0)¢a(s).

This implies ¢(t) < ¢, (s) and proves the claim.
Writing y = 2z 4 tv and using the claim just proved, we get

[ = yll = dp2—y(0) < d2—y(2t) = [z — 0y,
that implies that [(R2)|is satisfied.

The previous example applies to the Euclidean space. In fact we can always split
R =R @R.

Example 3.3.9. Let ¢ : R? — R? be the mapping o(x,y) = (z,—y) and let || - || be a
norm on R? such that ||gz|| = ||z|| for any z € R.

Let ¢ € Lipy,.(R) be a locally Lipschitz function that is not identically zero and
consider the vector fields 5 5

A Lipschitz curve 7 : [0,1] — R? is admissible if §(t) = h1(£)X (v(¢)) + ha(t)Y (y(t)) for
hi,hy € L*(0,1). We define the length of an admissible curve ~ as

1
Ly) = /D ()] dt,

where h = (h1, hz). We can then define a distance d on letting, for x,y € R
d(z,y) = inf {L(7) : v € Lip([0, 1], R?) is admissible and s.t. 7y :z — y}.

Then (R?,d) is a length space and the mapping p is an isometry. In fact, v : 2 +— y
is an admissible curve if and only if p o v : oz — py is admissible and moreover L(v) =
L(go7).

Let P = {H~,H, H*} be the partition of R? such that H~ = {(z,y) € R? : y < 0},
H={(z,y) € R?: y =0} and H" = {(z,y) € R? : y > 0}. Then R = {P,p} is a
reflection system of (R?, d) by Proposition m

If ¢ is an even function, the standard reflection with respect to the y-axis also defines
a reflection system of (R2,d).

Example 3.3.10. Let (X, dx) be a metric space with reflection system R = {P, o} and
let (Y, dy) be any metric space. The product Z = X x Y is still a metric space, when
endowed with the metric dz = (d% + dQY)l/ 2. The reflection system R can be extended
to a reflection system on Z. Namely, if 7 : Z — X is the standard projection on X,
Rz = {n7 1P, 0 x Idy} is a reflection system on Z.

Next we introduce the notion of two-points rearrangement for functions and sets in
a metric space.
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Figure 3.1: A function f : R — R and its two-points rearrangement with respect to the
reflection system R = {P,z — —x}, where P = {R_, {0}, R, }.

Definition 3.3.11. Let (X,d) be a metric space with reflection system R = {P, o},
P={H ,H,H'}. Let f: X — R, then the function fg : X — R defined by

min{ f(z), f(ox)} ifx e H™
fr(z) =4 f(z) if e H |, (3.20)
max{f(z), f(oxr)} ifxe H"

is called the two-points rearrangement of f with respect to R.

The definition of two-points rearrangement for sets can be obtained specializing ([3.20)
to the case of characteristic functions. Namely, for any F C X we can define the set EFr
via the identity xg, = (xg)r. This is equivalent with the following definition.

Definition 3.3.12. Let (X, d) be a metric space with reflection system R = {P, o}. Let
E C X, then the set Ex defined by

Er=(ENeENH )U(ENH)U((EUeE)NH™"), (3.21)
is called the two-points rearrangement of E with respect to R.

The importance of the two-points rearrangement is that it “regularizes” the rear-
ranged function or set. Henceforth we prove various theorems regarding this fact.

Proposition 3.3.13. Let (X,d) be a metric space with reflection system R = {P,o}.
For any f: X — R, it holds that

Lip(fr) < Lip(f),
where Lip(f) is the Lipschitz constant of f, as defined in (3.2).
Proof. Let x,y € X, x # y. To prove the assertion it suffices to show that

|fr(7) = fr(Y)]
d(z,y)

< Lip(f).

We have three cases:
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L fr(z) = f(z) and fr(y) = f(y);
2. fr(z) # f(z) and fr(y) # f(y);
3. fr(z) = f(x) and fr(y) # f(y), or viceversa.

In the first case the claim is clear. In the second case, since g is an isometry and by

(3.20)), we have

[fr(@) = [ _ 1 fex) = fley)| _ |f(ex) = fley)l _ .
Wy dwy) ey S PU)
We are left with the third case. Here, since fr(z) = f(x), it must be that f(x) >
f(ox) and since fr(y) # f(y), it must be that f(y) < f(oy). Then we distinguish three
subcases

3a. x,y€ H", or z,y € H™;
3b. x € H" and y € H™, or viceversa;
3c.. z€e Hyorye H.

Assume that we are in case [3al Thus the claim follows from

fr(x) = fr(y) = f(z) — floy) < f(x) — fy) < |f(x) — f(y)| < Lip(f)d(z,y),
fr(y) — fr(x) = f(oy) — f(=) < f(oy) — f(ox) < Lip(f)d(ox, oy) = Lip(f)d(z,y).

Consider now the case Letting z = py € H' we get, by and that
[fr(@) = fr@)l _ [£(@) = Fley)] _ |f) = )] _ |f (@) = fley)]

< Lip(f).

d(z,y) d(z,y) d(z, 02) d(z, z)
The same computation holds for the case O

Proposition 3.3.14. Let (X,d) be a metric space with reflection system R = {P, o}.
For any set £ C X, it holds that

diam Fr < diam F,
where diam E is defined in (3.1)).

Proof. Let x,y € Ex. If x,y € E or x,y € oF, then d(x,y) = d(oz, py) < diam E.

Now we claim that for all x,y € Ex such that x € E'\ oF and y € oF \ FE, it holds
that d(x,y) < diam E. This will finish the proof. From it is clear that x € HUH ™
and y € H~. Therefore gy € E'\ oF and, by we have

d(z,y) < d(z,oy) < diam E.
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We now investigate the monotonicity property of the two points rearrangement re-
garding quantities like (3.9)). To this aim, let ¢ : [0, +00) +— [0, +00) be a function such
that:

(P1) ¢ is strictly increasing;
(P2) ¢ is convex.
The basic inequality we need concerning ¢ is described in the following Lemma.

Lemma 3.3.15. Let ¢ : [0,4+00) — [0,+00) be a function satisfying [(P1) and [(P2)
Then for all real numbers o, 3,7v,0 € R such that v < o and § < @ there holds

¢l = B]) + o(ly — d]) < d(la = 8]) + ¢(|v — BI). (3.22)
If, in addition, ¢ is strictly convex then the inequality in (3.22)) is strict.

Proof. Possibly interchanging « with § and v with §, we can assume 3 < «. We have
three cases:

1. y<6<B <o
2. 0 < fB<a<y;

3.6<y<pB<a.
In the first case, by we get
Plo—B) + ¢(y = 6) < ¢l —0) + o(y = ).

In the second case, the convexity of ¢ yields

Ppla— ) = o(tla —0)+ (1 —t)(y = B)) < td(a —0) + (1 —t)p(y — B), (3.23)

where 55
o —y —

t= d 1-t= .

at+B-(r+o) at+B-(+0)

Since a > 7 and (> 6, then ¢t € (0,1). In the same way
¢(v—08) = o((1 = t)(a = 8) +t(y = B)) < (1 = t)g(a — &) + td(y — B). (3.24)
Summing up inequalities (3.23|) and (3.24]) we get (3.22]). If ¢ is strictly convex, then

the inequality is strict.
Finally, in the third case we get, by |(P1)

¢pla—pB) < pla—v) and ¢y —9) < (8 —0).

Then we conclude as in the second case. O
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Let 11 be a Borel measure on X and let B(X) denote the set of all Borel functions
from X to R. For any r > 0 let @, : B(X) x B(X) — [0, +00) be the functional

Qu(f.9) = /X f TG = 9(0)) da) d). (3.25)

We omit reference to ¢ in our notation. For ¢(t) = P with 1 < p < oo, by (3.7) we have
that HVfHZp(X .y = liminfy o Qr(f, f). In this case we let

Quplf.0) = /X ][ 1)~ o) duty) dpta), (3.26)

and Qr7p(f) - Qr,p(f’ f)

Theorem 3.3.16. Let R = {P, o} be a reflection system of the metric space (X,d).
Let v be a non-degenerate, o-invariant Borel measure such that pn(H) = 0 and let ¢ :

[0,4+00) — [0,+00) be a function satisfying and|(P2). Then for any r > 0 and all
functions f,g € B(X) we have

Qr(fr,9r) < Qr(f,9). (3:27)
Moreover, if ¢ is strictly convex,
pfz e H" = f(z) > f(ox)} > 0 and p{y € H : g(y) < g(oy)} >0, (3.28)

then the inequality (3.27) is strict, as soon Q,(f,g) < +oo.

Proof. Let x, : X x X — R be the function

Xr(z,y) = iy dy) <
7 0 otherwise.

As p is p-invariant, we have u(B,(ox)) = w(oBy(z)) = p(Br(z)). Then also x, is
o-invariant. Namely, since g is an involutive isometry, it holds

xr(0%, 0y) = xr(x,y) and x.(z, 0y) = x»(07,¥). (3.29)

Then, writing

Q-(f,9) = /XXx o(1f(z) — gW))xr (2, y) dp @ p(z,y),

we may replace the integration domani X x X with

(X\H)x (X\H)=H"xHYUHT"<H ) )UH xHNYUH xH).
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In fact we are assuming H to be a p-negligible set. By (3.29)) and osu = p, we obtain

/ o(1f(x) — g(w))xr(z,y) dp @ p(z,y) =/ o(1f(x) — g(ey) ) xr(, 0y) dp @ p(, y),
HtxH—

H+txH+

/ o(1f(x) — g(w))xr(z,y) dp @ p(z, y) =/ o(1f(0x) — g(W))xr(, 0y) dpp @ pu(, y),
H—xHt

HtxH+

/ o(|f(x) — gW))xr(z,y) du @ p(z, y) =/ o(1f(ex) — gley))xr (2, y) dp @ p(w, y).
H—xH—

H+txH+

Summing up we obtain

Q(ra)= [ QUgydne ),

where we let

QUf, gz, y) = [0(1f(x) — g(y)]) + &(If(ex) — g(ey)|
+ [o(If(x) — g(ey)

We claim that for all x,y € H' we have

(2, y)+
)+ o(1f (ex) — gW)])] xr (, 0y)-

Q(fr,gr;z,y) < Q(f, 95, y). (3.30)
This implies . There are only three cases:
1. d(z,y) > r and d(z, gy) > r;
2. d(z,y) < d(z,oy) <r;
3. d(z,y) <r <d(z,y).

In fact, by [(R2)] the case d(z,y) > r and d(z, gy) < r cannot occur.
In the first two cases it holds x,(x,y) = x»(z, oy). Hence in caseit holds Q(f, g;x,y) =
Q(fr,gr;r,y) = 0. In the second case, we have

Qf.g:2,y) = M 6017 () — 9w + 61 (ex) — glow) )+

+ (| f(x) — gloy)]) + o(If (0x) — g(y)])]
= Q(fr,gr;2,Y).

Finally we consider the third case. In such case it holds x,(z,0y) = 0 and thus
inequality (3.30]) is equivalent to

o(|fr(x) —grW)]) +o(| fr(0x) —gr(ey)]) < &(|f(x) —g(y))+ (| f(0x) —g(ay)]). (3-31)

If f(x) = f(ox) or g(y) = g(oy), inequality (3.31)) holds as equality. We are then left
with the following cases:
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3a. f(x) > f(ox) and g(y) > g(oy
3b. f(z) < f(ox) and g(y) < g(oy
3c. f(xz) > f(ox) and g(y) < g(oy
3d. f(z) < f(ox) and g(y) > g(oy

In the first case we have fr(z) = f(x) and gr(y) = g(y), and hence (3.31) holds as

equality. The same is true in case since fr(z) = f(ox) and gr(y) = g(oy).
Possibly interchanging f and g it is enough to consider only one of case [3d and case

We consider case Here, inequality (3.31]) reduces to
o(la = B1) + o(|y —d]) < d(le = 6]) + d(Iy — BI), (3.32)

with a = f(z), B = g(oy), v = f(ox), 6 = g(y). Since we are in case we have v < «
and § < . Hence inequality (3.32)) holds by Lemma [3.3.15

To prove the last part of the Theorem, we first observe that, if ¢ is strictly convex,

by Lemma 3.3.15| we get that (3.32)) is strict. Then if (3.28)) holds and if @, (f, g) < +o0,
on integrating (3.30) we get a strict inequality. O

Remark 3.3.17. In the case ¢(t) = t2 there is a precise version of inequality (3.27)). Let
Z}F ={x e H: f(x) > f(or)} and Yy ={zeH : f(z)> flox)}, (3.33)

denote the sets appearing in cases [3aH3d|

In the proof of Theorem [3.3.16| inequality (3.27) is an equality possibly but for the
cases [3c| and In such cases, for ¢(t) = t?, we can replace inequality with the
identity

(@ =B+ (v =8)* = (a =8>+ (v = B)* + 2(a =)0 - B).

Now, on integrating the resulting identity, we obtain

Qr2(fr.gr) = Qra(f, 9)+

2 oo e s () = £e0)(9(0) — 9(en)xr (o) s © ). (330
d(z,0y) 27

Now we state two corollaries of Theorems [3.3.16] regarding the Sobolev norms and

the perimeter of a set, defined in (3.9)) and (3.10).

Theorem 3.3.18. Let R = {P, 0} be a reflection system of the metric space (X,d). Let
u be a non-degenerate, o-invariant Borel measure such that p(H) = 0. Then for any
function f € B(X) and 1 < p < oo there holds

Wrllroem = Il and IV frlTn < IVFl . (3:35)
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Moreover, if we have ||V frllp2(x ) = IV fllz2x,u) < +oo, then

im — (f(z) — flox))(9(y) — 9(0y)) 2
! /E+ /E N(By(z)\Br(oz)) (B, (x)) du(y) dp(z) =0, (3.36)

where Z}' and X, are defined in (3.33). The same conclusion holds in (3.36)) interchang-
mng E}F and 2]7.

Proof. The identity in (3.35) is trivial. By Theorem [3.3.16| we have
1 1
2 @rp(fR) < S Qrp(f) (3.37)

for any r > 0. Taking the liminf in (3.37)) as r | 0, we get the inequality in(3.35).
Assume that both [V fr|r2(x ) and [V fllr2(x ) exist, are equal and finite. Then,

by for f = g, we get
lim /E;Xzf (f (@) = fex))(f(y) = fley))xr(x, y) dp @ p(z, y) = 0,

rl0 72
d(z,0y)>r

where x, is the function defined in (3.29). By the Fubini theorem, this is equivalent to
(3.36)) or to the same limit with interchanged E? and X O

For the perimeter we have the following theorem.

Theorem 3.3.19. Let R = {P, 0} be a reflection system of the metric space (X, d) and
let p be a non-degenerate, o-invariant Borel measure such that u(H) = 0. Then for any
Borel set E C X there holds

pw(Er) =p(E) and P~ (Er) < P (E). (3.38)

Moreover if P(ER) = P(E) < +00, then

1 n((E\NE)NH* 0 (Br(@)\ Br(ow)))

Hi H+N(B\oE) H(Br(@)) e (3.39)
. p((E\ oB) NHY 0 (By(@)\ Brlex))) g |
10 1 Jg+n(eE\E) p(Br(7)) .

Proof. As above, the identity in (3.38) is trivial, while the inequality follows from The-

orem [3.3.16l Identities (3.39)) follows from (3.34) with f = g = xg, observing that
Ixe(@) = xeW)| = Ixe(@) — xBW)* O

We end this section presenting a simplified version of Theroem |3.3.16| Here we do
not require the mapping o to be an isometry.
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Theorem 3.3.20. Let P = {H,H,H"} be a partition of the metric space (X,d), let
0: X — X be an involutive Borel map such that oHT = H~ and let 1 be a o-invariant
Borel measure on X such that u(H) = 0. Finally let ¢ : [0, +00) — [0, +00) be a function

satisfying [(P1)] and[(P2) Then for all f,g € B(X) we have
/ o(Ifr(z) — gr(2)|) du(z) < / o(|f(x) = g(2)]) du(z). (3.40)
X X
Moreover, if ¢ is strictly convexr and

pfz € H = f(x) > f(ox) and g(z) < g(ox)} >0, (3.41)
then the inequality (3.40) is strict, as soon as the right hand side of (3.40) is finite.

Proof. Using p(H) = 0 and the p-invariance of p, we obtain
/ o(|f(z) — g(z)]) du(x) = / o(|f(x) — g(@)]) du(x) +/ o(|f(z) — g(z)]) du(x)
X H- H+
= [ ]ets@) = g0 + se0) - gtea)) | auto)

Since the same computation holds for the r.h.s of (3.40)), to complete the proof it suffices
to establish the pointwise inequality

o(lfr(x) — gr(@)]) + ¢(|fr(0x) — gr(02)]) < ¢(|f(2) — 9(2)]) + &(|f (ex) — g(ox)])-

This is inequality (3.31)) in the proof of Theorem [3.3.16, The argument is then concluded
as in the final part of that proof. In fact, if f(x) > f(ox) and g(z) < g(ox), or viceversa,
the inequality is strict, provided that ¢ is strictly convex. ]

3.4 Rearrangement systems

Let S(X, ) denote the set of all non-negative Borel functions f : X — R, such that
p{f >t} < +oo, for any ¢t > 0. Here and henceforth, we let {f >t} ={z € X : f(z) >
t} denote the t-superlevel of f. For any f € S(X, 1) we have the representation formula

400
f(z) = /0 X{f>u(z)dt, =€ X (3.42)

To any f € S(X,u) we can associate 17 : (0,400) — (0,+00), defined as 9¢(t) =
p{f > t}, t > 0, called distribution function of f. Such function is non-increasing and
lower semicontinuous. In fact, for any s > 0 we have

lim g (t) = lm p{ f > t} = p (U{f > 8}> =p{f > s} =1y(s). (3.43)

t>s
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A function g € S(X, u) is said to be a rearrangement of f € S(X,u) if it has the
same distribution function of f (i.e. ¥y = 1¢). In such case we write g ~ f. It is clear
that ~ defines an equivalence relation on S(X, ).

If f € LP(X, ), 1 < p < +oo, then it is in S(X, yt). In such case, by (3.42), it holds

+00
[ r@rdnta) = [ s > ey (3.44)
b'e 0
This implies that if g € S(X, ) is a rearrangement of f (i.e. g ~ f), then also g €
LP<X7/'L> and HgHL”(X,,u) = ”f”LP(X,u)-

3.4.1 The Euclidean Steiner rearrangement

We start by defining the Steiner rearrangement of sets and functions in the d-dimensional
Euclidean case.

Figure 3.2: An example of Steiner simmetrization in R2. Image taken from [EG92].

Fix a € R?, |a| = 1. Let I = (7¢)1er be the family of the translations with direction
a, namely 74(z) = = + ta, x € R The orbit of a point = € R? is the line through = of

direction a:
Lyog={z+ta: tecR}.

The orbit relation,  ~ y if and only if y € L;,, is an equivalence relation. We can
identify R?/I" with the plane through the origin perpendicular to a:

P,={zecR%: z-a>0}.

Given a Borel set A € R%, we define its 2-section in the direction a as A, = AN Lyq.
By the Fubini theorem we have

/ dz = [ H(AL) Lt (a). (3.45)
A P,
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Here, H! denotes the 1-dimensional Hausdorff measure. We let A* = B,(z)N L, , where
s € [0, 400) is such that H'(A,) = H'(Bs(z)NLy ). Here By(x) = {y € R?: |y—z| < s}
is the ball of radius s > 0 centered at 2 € R%. Such an s exists and is unique for any
x € P,. In fact, for any € R s — H'(Bs(z) N Ly,) is a strictly increasing function
that maps [0, +00) in itself.

Definition 3.4.21.

(i) Let A C R? be a Borel set, with |A| < +o0o. The Steiner rearrangement of A with
respect to the direction a is defined as

A=) 45

xGPa

(i) Let f € S(RY L?). The Steiner rearrangement of f with respect to the direction
a is defined as

+o0
f*(z):/o Xipory(2)dt, = eRC

The main results on the Steiner rearrangement are the following Theorems.

Theorem 3.4.22. (i) Let f € WEP(R?, LYNS(RE, £4) be compactly supported. Then
the Steiner rearrangement f* of f satisfies

”fHLP(Rd,ﬁd) = ”f*HLP(Rd,Ld) and ”Df*HLP(]Rd,Ld) < ||Df||Lp(Rd,z:d)-

(ii) Let A C R? be a bounded Borel set of finite perimeter. Then the Steiner rearrange-
ment A* of A satisfies

|A| = |A*| and P(A*) < P(A).

We do not prove this theorem. Indeed it is a particular case of Theorems and
3.6.38l We only remark that the translations {7 }:~o play a great role in the proofs.

3.4.2 The general case

In order to generalize the above concepts to a metric measure space (X,d, i), we need
some additional structure.

Let I be a group of isometries of X. Let I'y = {yz : v € I'} be the orbit of a point
x € X. The orbit relation, x ~ y if and only if y € 'y, is clearly an equivalence relation.
Let the quotient space X/I" be identified with some subset of X. Finally, for any Borel
set F, we let £, = ENT,; be the z-section of E.

Definition 3.4.23. Let p be a Borel measure on the metric space (X, d) and let T be
a group of isometries of (X, d). We say that u is disintegrable along T" if there are Borel
measures i, on I'y, for all x € X/I', and a Borel measure i on X/T" such that for any
Borel set E C X we have:
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(D1) the function x +— p,(E,) is Borel measurable from X/T" to [0, 4+00);

(D2) we have u(F) = fX/F t(Ey) di(x).

The existence of a disintegration satisfying [(D1)} holds under general assump-
tions. We will address this question later, in Section [3.5

For any =z € X/T" let the number so(z) > 0 be the minimum number, possibly +oo,
such that the sets B,.(z) NT'; are stable for r > so(z).

Definition 3.4.24. Let (X,d, ) be a metric measure space and let I" be a group of
isometries of (X, d). Let (y1z)ycx/r be Borel measures on the orbits I'; and let /i a Borel
measure on the quotient X/I". We say that the triple (T, (t) e x/r, f1) is a rearrangement
system of (X, d, p) if

(RS1) u is disintegrable along I in the measures (fiz) e x,r and fi, as in Definition [3.4.23

(RS2) the function s — pu,(Bs(x) NT,) from [0, so(z)) to [0,4+00) is strictly increasing
and continuous.

Condition [(RS2)|is needed to define E} for any z € X/I'. In fact, in analogy with
the Euclidean case, possibly letting E = @ on a 1 negligible set, we define

E} = Bs(x) NT'y, for s such that p,(E;) = pz(Bs(xz) NTy). (3.46)
If (RS2)[ holds such an s exists and is unique for p-a.e. x € X/I', while in general it

might not even exists.

Definition 3.4.25. Let (I, (142)zex/r, /1) be a rearrangement system of the metric mea-
sure space (X, d, 11).

(i) For any Borel set E C X such that p(E) < 400 let the rearrangement of E in
(T, () wex/rs 1) be
E = ] E; (3.47)
zeX/T
where E} is defined in (3.46)).

(ii) For any f € S(X,u) let the rearrangement of f in (I, (tz)zex/r, i) be
+oo
Fi(@) = /O s (@) dt,  ze X (3.48)

Moreover, we say that the rearrangement system (', (11z),ex/r, 1) is regular if for any
Borel set E C X, the rearrangement E* is a Borel set.

The problem of determining wether a rearrangement system is regular or not is in
general very subtle. However, in most of the relevant examples, the system is indeed
regular.

Notice that the definition of rearrangement depends on the choice of the representa-
tive of X/T"in X. In we will fix such a representative by a reflection system.

In the following Lemma we prove some properties of the rearrangements £* and f*.



3.5. DISINTEGRATION OF A MEASURE 55

Lemma 3.4.26. Let (I', (pz)zex/r, 1) be a rearrangement system of the metric measure
space (X,d,p). For any f € S(X,u) the rearrangement f* of f enjoys the following
properties:

(i) {f* >t} ={f>t}*, t >0, and in particular f* € S(X, u);
(i)
(iii) f*(y) = f*(2) ify,z € 'y for some x € X/T' and d(x,y) = d(z, z);
(iv) f

Proof. We start by proving statement We show that {f* >t} C {f > t}* for any
t > 0. Notice that the family ({f > t}*);~¢ is non-increasing in ¢. For any x € {f* > ¢}
we have

pa{f* > the = pa{f > t}e, t >0, for fi-a.e. x € X/T' and, in particular, f ~ f*;

“(y) = [*(2) ify,z € Ty for some z € X/T and d(x,y) > d(z, z).

—+o00
t<ﬁ@%{é Xiyosp () ds,

and thus z € {f > s}* for any 0 < s <t and the claim follows.
To show the converse inclusion {f > t}* C {f* > t}, we start by noticing that

{f >ty = J{f>s (3.49)

s>t

In fact, by the lower semicontinuity of the distribution function (see (3.43))), we have
that for any = € X/T" it holds

lin pae({f > s} NTy) = limn pa({f > s} NTg)

= pa({f >t} NTy) (3.50)
=p({f >t} NTy).

Moreover, by assumption, the function r +— p,(B,(x) N T,) is strictly increasing for
r > 0. Thus, if z € {f > t}* NIy = B.(z) NIy, then for some 7 < r we have z € By(x)
and, by (3.50), there exists s > 0 such that z € {f > s}*. This completes the proof of
(349).

Finally, by (3.49), z € {f > t}* implies z € {f > s}* for some s > ¢, that, by the
definition of f*, implies f*(z) > s > t.

The statement follows from Using the definition of rearrangement f*, state-

ments and are clear.
O

3.5 Disintegration of a measure

In this section we address the problem of the existence of a disintegration of a Borel
measure p along I', an isometry group of the metric space (X,d). We recall that pu is
disintegrable along I if there are Borel measures p, on I', for all z € X/T', and a Borel
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measure fi on X/I' such that [(D1)| and |(D2)] in Definition are satisfied for any
Borel set E C X. We observe that for to hold, it suffices that y — p,(A4) is a
Borel map for any open set A C X. We now state a general measure theoretic fact: the
Monotone Class Theorem. For a proof we refer to [DMT78], I-21]. We recall that, given a
family C of real-valued functions defined on a set X, we denote with ¢(C) the smallest
o-field of subset of X with respect to which all of the functions in C are measurable.

Theorem 3.5.27 (Monotone Class Theorem). Let X be a set. Let F be a vector space
of real valued and bounded functions on X, which contains the constants, is closed with
respect to uniform convergence and such that for any increasing and uniformly bounded
sequence (fp)nen C F of non-negative functions it holds that f = lim, 1o fr, € F (i-e.
F is closed with respect to monotone convergence). Let C C F be a vector space closed
with respect to multiplication. Then F contains all the o(C)-measurable functions.

When X/I' = {z} consists of only one element, i.e. if I' acts transitively on X,
choosing p;, = p and i to be the Dirac mass on X/T" yields a trivial disintegration. In a
general setting, the disintegration is provided by the following disintegration theorem for
probability measures. The proof we present is essentially the one in [DMT78|, II1.70-73],
integrated using the one of [AFP00, Theorem 2.28]. We recall that a Borel measure p
on a topological space is inner regular if pu(B) = sup{u(K): K C B compact} for any
Borel set B C X.

Theorem 3.5.28. Let (X,dx),(Y,dy) be separable metric spaces, let p be an inner
regular Borel probability measure on X and let w: X — Y be a Borel map. Then, letting
f = myp, there ewist Borel probability measures p,, y € Y, supported in 7 1(y) such
that, for any Borel set E C X, the function y — py,(E) is a Borel map and

u(B) = [ () dito) (3.51)

Proof. Assume for simplicity that X is compact. In this case we can drop the assumption
for 1 to be inner regular. For a proof of the general case we refer to [DMT78| II1.70-73].
We start by showing that we can associate to any f € C(X) a finite signed measure
Blf] < ponY: simply let a[f] = my(fp). In fact, for any Borel set B C Y,

LA(B)| < /

T

") [fldu < | flloon(n™H(B)) = || fllscit(B),

and so i[f] < .

By the Radon-Nikodym differentiation theorem (see [Bar66, Theorem 8.9]), for any
[ € C(X) there exists a function dy € L*°(Y, i) such that ||df|loc < ||f]lco and a[f] =
dy¢fi. This construction is additive, i.e. for any f,g € C(X),

plf + gl = plf]+ plgl = dpp+ dgp = (dy +dg) .

Since X is separable, there exists a countable dense set D C X. Let D = {g € C(X) :
g(x) € Q for any z € D}. It is clear that D C C(X) is a countable vector space over
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Q which is closed with respect to the maximum and the minumum operations, dense in
C(X) and such that 1 € D. Then we can find N C Y such that g(N) =0, di(y) =1
and Ty : f — dg(y) is a Q-linear functional over D for any y € Y \ N. By the inequality
Ty (f)| = |ds(y)] < ||fllc and applying Hahn-Banach Theorem, we can extended T}, to
a continuous linear functional of norm 1 defined on the whole C'(X). Then, by the Riesz
representation theorem, there exists a unique measure p, over X such that

Ty(f):/deuy, fecx).

We can extend the map y +— p, to all of Y by setting u, to be any probability
measure over X if y € N. By construction and since y +— df(y) is Borel measurable
by the Radon-Nikodym theorem, the function y — [y fdpu, is Borel measurable for
any f € D. By uniform convergence, the same property is still true if f € C(X). Since
C(X) is closed with respect to multiplication, by the Monotone Class Theoremthe
vector space F = {f : X — R : fis bounded and y — [ fdp, is Borel measurable}
contains all the Borel functions. This proves that y — [ f du, is Borel measurable if f
is a bounded Borel measurable function, in particular if f is the characteristic function
of an open set A C X.

Now we claim that holds. In fact, for any Borel set B C Y and f € D, it holds

[ sau= e @) =ale) = [ aaa) = [ ([ ra) i)
©=1(B) B B \JXx
(3.52)

where the last equality is justified since for g-a.e. y € Y, ds(y) = [ + [ duy. By approxi-
mation and Theorem again, identity is true for f a bounded Borel function
and hence if f = x4 with A C X open. If B =Y, this proves .

Finally we prove that y, is supported in 7=1(y) for ji-a.e. y €Y. Let G = X x Y,
endowed with the product metric, and let ¢ : X — G be the mapping ¢(x) = (z,7(z)).
We claim that for any Borel set A C G it holds

By(A) = /Y (1y © 6,)(4) dii(y), (3.53)

where 4, is the Dirac measure concentrated in y, 6, (B) = xg(y). In fact, if ExB C X XY
is a Borel rectangle of G, it holds that

y(E x B) = u(v "1 (E x B)) = u(E N =~ '(B)).

Then, by (3.52)), we get

[ o6 x By ant) = [ w(E)ant) = [ ([ xedy) dnto
-/ gy K= HEOTTB) = vy < B).
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Since the rectangles are a basis for the Borel subsets of G, this proves the claim.

Let now E C X be a Borel set, we claim that ¢yu(E x n(E)) = p(E). In fact,
since E C 7~ }(n(E)), we have that v~ Y(E x 7(E)) = ENna~Y(n(E)) = E. Therefore
Ysp(E x m(E)) = u(p~YE x n(E))) = u(E). By (3.53) and (3.51)), the previous claim
implies that

[ (93,8 x (B dnt) = | ny(E)dity)
Y Y
This yields

| B 0) ) = [ () dito).

Y Y

Hence, for fi-a.e. y € Y and for any Borel set £ C X, we have that p,(EF) # 0 only if
y € m(E), or equivalently if EN7~!(y) # &. This implies that y, is supported in 7~1(y)
for i-a.e. y € Y, completing the proof of the Theorem. O

In the following section we assume the measure p to be invariant with respect to
some l-parameter group of isometries of the space X. In this case we can relax some of
the assumptions of Theorem We recall that a topological space X is said to be
o-compact if there exists a countable covering of X consisting of compact sets.

Proposition 3.5.29. Let (X,d) be a o-compact metric space. Let P = {H ,H,H"}
be a partition of X, and let T' = {1 }1er be a 1-parameter group of isometries such that:

(i) the projection w: X — X /T is continuous;
(ii) for any t € R the map (x,t) — 1 (x) is continuous from H x R to X;
(iil) H= =U,com(H) and H" = J, o 7 (H), with disjoint union.

Moreover, let u be a T-invariant, locally finite and inner reqular Borel measure on X.
Then the measure p is disintegrable along T in measures p, on Ty, for all x € X/T,
and i on X/T, where u,, x € X/T, is locally finite and fi-a.e. mnon-atomic. Here
T, ={mn(x): t € R} is the orbit of x € X under the action of the group T

Proof. Under the previous assumptions, H = X/T and H is o-compact. Without loss
of generality we can assume H to be compact. In fact, if {K,},en is a covering of H
consisting of compact sets, we have that

x=J (U Tt(Kn)> :
neN \teR

and hence it suffices to disintegrate the measure p on each set | J,cp ¢ (Kn).
We claim that there exists R > 0 such that if t1,t5 € R and 0 < to — t; < R, then

p U (H) | < o0. (3.54)

te[tl,tg)
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In fact, by the local finiteness of p, for any = € H there exists r(z) > 0 such that
p(By(z)(z)) < 0o. Let now {z1,...,7,} be a finite set of points in H such that H C
C = Byz)(®1) U... U By(g,,)(@m). This set exists by the compactness of H. The
map x — sup{t > 0: 75(x) € C for all |s| < t} is continuous from H to (0,+0c0), since
(x,t) — 1¢(x) is continuous from H xR to X and C'is open. By the Weierstrass theorem,
it attains a minimum R > 0 on H. Therefore, for any s < R, the monotonicity of the
measure implies

pl U mH) | <u(C) <D p(Br,)())) < +oo.
t€l0,s) j=1

The claim (3.54)) follows by the T-invariance of .
For any k € Z, let
Xp= |J n(a).

[trstrt1)

Here t; = k. The Borel sets {X}}rez are bounded, since (z,t) — 7(z) is continuous
from H x R to X, and they form a partition of X. The measure pp = p| X is then
finite by and moreover the measure i = myuy, is independent of k, because u is
T-invariant. By Theorem there are probability measures p*, 2 € X/T, supported
in T, N X}, such that

ME%jAﬁuﬂEﬂﬂﬁm@%

for any Borel set E C Xj. Here T, is the orbit of a point x € X/T under the action
of T, ie. T, = {r(z) : t € R}. Letting py = Y7 4% we obtain a disintegration of
along T'. The measure p, are then locally finite, by definition.

Finally we prove that u, is non-atomic ji-a.e. . Let £ C H be a Borel set and, for
—00 <1 <s<+oo, let

E..= |J n(B). (3.55)
te(r,s)

Since p is T-invariant we have pu(E,s) = p(Erits4¢) for any ¢t € R. The disintegration
formula implies that

[ 1a(Be @) = [ polErisass) i),
E E
By the arbitrariness of E it follows that, for fixed r, s, ¢, there holds

Nm(Er,s) = Nm(Er+t,s+t) (3.56)

for p-a.e. x € H. Finally, this implies that there exists N C H with i(/N) = 0 such
that holds for any z € H \ N and for all r,s,t € Q with r < s. We claim that
this implies that p, is non-atomic for all x € H \ N, i.e. for any z € T, there holds
pz{z} = 0. In fact, if py{z} = 6 > 0 for some z € T, then by this holds for all
z € T, and the measure p, is not locally finite. O
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3.6 Steiner and Schwarz rearrangements

Let R = {P, 0} be a reflection system of X with P = {H~,H,Ht}. Let T be a 1-
parameter group of isometries endowed with the natural topology. Finally, let 7 : X —
X/T be the natural projection.

Definition 3.6.30. We say that (R,T) is a Steiner system of the metric space (X, d)
if we have:

(St1) X/T C H and 7 : X — X/T is continuous;
(St2) 77 'x = o7z for any € X/T and 7 € T;
(St3) (x,7) +— 7a is continuous and proper from X/T x T in X.

By X/T C H we mean that any equivalence class of X/T is determined by one single
element of H.

In order to rearrange functions and sets, we need a rearrangement system associated
with the family 7. In general the existence of such a system is a separate assumption.
However, we have the following proposition.

Proposition 3.6.31. Let (X,d) be a o-compact metric space. Let (R,T) be a Steiner
system of (X,d), with R = {{H ,H,H"}, 0}, and T = {7: }1er such that

Ht = U 7t(H), with disjoint union.
>0

Finally let p be a T-invariant, locally finite, inner regular and non-degenerate Borel
measure on X. Then we have that:

(i) H=X/T;

(ii) the measure u is disintegrable along T in the Borel measures (ux)IGX/T and [, as
per Definition 3.4.23;

(iii) g is locally finite for any x € X/T and non-atomic for fi-a.e. x € X/T;

Moreover, if for ji-a.e. © € X/T the orbit T, intersects the spheres OBs(x), s > 0, in
isolated points, (T, (z)zex /15 1) 5 a rearrangement system of (X, d, pu), in the sense of
Definition |5.4.25,

Proof. The fact that H = X/T is clear, while statement (ii) and (iii) follow from Propo-
sition To complete the proof it suffices to show that, if for g-a.e. x € X/T the
orbit T intersects the spheres 0Bs(x), s > 0, in isolated points, then, for f-a.e. z € H,
the function s +— p,(Bs(x) NT,) is strictly increasing and continuous for s > 0. This
will prove that (7T (tz)zex/7, /1) is a rearrangement system of (X, d, ).

We claim that for p-a.e. x € X/T the function s — py (Ute((},s) Tt(H)> is either
identically zero or continuous and strictly increasing. We let £ C H to be a Borel set
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and, for r,s € R, » < s, we define E, ; as in . Then, by identity , it follows
that if p,(Ey ) = 0 for some z € E and r < s, then p, = 0. This and the fact that for
p-a.e. x € X/T the measures p, are non-atomic, proves the claim.

By the non-degeneracy of the measure u, the previous claim implies that the function
s+ pz(Bs(x) NT,) is strictly increasing. Moreover we have that p,(0Bs(x) N T,) = 0,
for any s > 0 and for g-a.e. x € X/T. This follows by the fact that for p-a.e. z € X/T
the orbit T intersects the spheres 0Bs(z), s > 0, in isolated points and the measures
g are non-atomic. This proves that the function s — p,(Bs(z) NT,) is continuous for
s > 0, thus completing the proof. ]

The Steiner system is enough for many applications, as the one seen in Section [3.4.1
However, by enriching the family of isometries acting on X we can obtain a more refined
and general result. Namely, let G be a compact group of isometries acting on X and
let ' = I'(T,G) be the group generated by 7' and G. With abuse of notation, let
7m: X — X/T be the natural projection.

Definition 3.6.32. We say that (R, T, G) is a Schwarz system of the metric space (X, d)
if we have:

Scl) X/T C H (and thus X/T' C H) and 7 : X — X/T is continuous;
Sc2) 7 'x = orx for any x € X/T and 7 € T}

Sc3) I'y ={yrx: y€ G,7 € T} and yx =z for any v € G and = € X/T

(
(
(
(Sc4) (x,v,7) — 7z is continuous and proper from X/T' x I' x T'in X.

It is clear that when G consists only of the identity, condition automatically
holds true, thus reducing the Schwarz system to a Steiner system. Therefore, from now
on, we will always refer to the former.

For a Schwarz system we do not have a result analogous to Proposition How-
ever the following Proposition will be enough for our purposes. In fact, in Theorem
the functions are supposed to have compact support. Then we could localize the rear-
rangement in some compact set and restrict the measure to this set.

Proposition 3.6.33. Let (X,d) be a compact metric space. Let (R,T,G) be a Schwarz
system of (X,d). Then any finite, inner reqular Borel measure p is disintegrable along
I' =T(T, G) in the Borel measures (iz)zex/r and fi, as in Deﬁnition. Moreover if
for p-a.e. x € X/T the function s — p,(Bs(x)NTy) is strictly increasing and continuous
for s >0, then (T, (j1z)zex/rs it) i a rearrangement system of X.

Proof. It suffices to prove that the measure p is disintegrable along I'. This follows from
Theorem [3.5.28| with Y = X/T' = 7(X). In fact Y is compact, and hence separable, due
to the continuity of . O

Condition |(Sc3)| in the definition of Schwarz system, is used only to prove the fol-
lowing Lemma. Indeed, one could replace |(Sc3)| with the thesis of this Lemma, which is
more general.
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Lemma 3.6.34. Let (R,T,G) be a Schwarz system of the metric space (X,d). Then
for any x € X/T and for any z4,z_ € Ty there exists a reflection system R = {P, o}
such that pz4y = z_,

Proof. By [(Sc3)| there exist vy,v— € G and 74,7— € T such that z; = v, 72 and
z_ =y_7_x. Since y474+y_T_x € 'y, there exist v € G and 7 € T such that

VTL = Y4 T4 Y- T—X. (3.57)

Let /7 € T be such that 7 = \/7/7. Such a /7 exists because T is a 1l-parameter
group. Let us define « = y_7_~4/7 €T, and let

H =uH"), H=uH), H " =uH"), o=10".
We claim that gz = z_. In fact, by (3.57)), [(Sc2)|and the second part of |(Sc3), we have
Gy = V-T_WTONTE = Y_T_AWTVT & = 1_T_yx = 7_T_T = 2_.

Finally we claim that, letting P = {H~, H,H*}, R = {P, ¢} is a reflection system

of (X,d). By the definition of g it is clear that 0°> = 1d and that gH+ = H~. Moreover,
for x,y € H', we have

d(z,0y) = d( ™ e, o7 ly) > d( L, ly) = d(z,y).

Here we used the fact that I' is a group of isometries. Thus the axioms |(R1)| and |(R2)|
of Definition [3.3.6] are satisfied and the claim is proved. O

Now we give a criterion for condition |(Sc3)]

Proposition 3.6.35. Let T,G be two groups of isometries of the metric space (X,d)
and let I' = T'(T, G) be the group generated by them. If we have that:

(i) vex==x forallz € X/T' and v €T, (3.58)
(i) it holds TGT C GTG; (3.59)

then for any x € X/T and y € T, there exist v € G and T € T such that y = y7x.

Proof. Let x € X/T and y € T';. Then there exists £ € T" such that y = {z. By (3.59)
we have that & = y74/ for some 7,7 € G and 7 € T. To complete the proof it suffices
to observe that by (3.58]) we have 7'2 = z, and thus y = y7z. O

Using Proposition [3.6.35| we present an example of Schwarz system: a generalization
of the Euclidean Steiner rearrangement presented in Section [3.4.1]

Example 3.6.36. Let us factorize R = R™ x R4™ for some 1 < m < d. If m =d
we agree to set R™™ = {0}. Let G = O(m) C O(d) be the group of orthogonal
transformation of R? fixing the R~ factor. Let || - || be a norm on R¢ such that
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|v(x)|| = ||z|| for any # € R? and v € G. We endow R? with the metric d). induced by
this norm.

Let v € R™, v # 0. With abuse of notation we identify v and (v,0) € R™ x
RI™_ Let H = 7, be the hyperplane orthogonal to v. We have a natural partition
P = {H ,H,H"} of RY and a natural reflection o with respect to H. As noted in
Example R = {P, o} is a reflection system.

Let T = (7¢)ter be the 1-parameter group of the isometries 7 : R? i R?, 74(z) =
x +tv. Finally let I' = I'(T, G) be the group generated by T' and G. We have X/T = H
and X/T" = R™.

We show that condition holds: for any v € G and s,t € R, there exist ¢,9 € G
and r € R such that 73y = £r9. In fact, we have 7yymix = vz + tyv + sv and
Er0x = E0x + rév, for any = € R%. Thus we have to solve the system

§0 =1,

rév = tyv + sv.
From the second equation we determine r up to the sign, |r| = |[tyv + sv||/||v]]. If r =0
we are finished. If r # 0, we choose £ € O(m) such that

t S
Ev = —yv+ —v.
r r

Such a £ does exists, because v = (v,0) € R™ x R¥™™ and the same holds for yv. Finally
we determine ¢ by the first equation, ¥ = ¢~!54. This proves that holds, thus
proving that condition holds, since is trivially satisfied.

Therefore (R, T, G) is a Schwarz system of (R, dj.||), since it is clear that conditions
|(Sc1)l [(Sc2)| and [(Sc4)| holds.

Now we present the main result on the Schwarz rearrangement of functions. We
say that a Borel measure p is invariant with respect to the Schwarz system (R, T,G),
R ={{H ,H,H"}, o}, if p(H) = 0, p is g-invariant and p is T'(T, G)-invariant, i.e.
Y = p for any v € I'(T, G).

Theorem 3.6.37. Let (X,d) be a proper metric space endowed with a Schwarz sys-
tem (R,T,G). Let p be a non-degenerate and diffuse Borel measure, in the sense of
and , that is invariant with respect to the Schwarz system (R,T,G) and let
(T, (z)zex/rs 1) be a regular rearrangement system of (X, ), where I' = (T, G). Fi-
nally, let the metric measure space (X, d, pu) have the Lebesgue property . Then the
rearrangement f* of any compactly supported and non-negative f € LP(X,u), 1 < p <
00, satisfies

1 e = Iflscxgy and IVF N5 < IVF G (360)

Proof. The identity || f*||zr(x,u) = IIflzr(x ) follows from identity (3.44) and statement
m in Lemma 3.4.26, We assume ||V £,y < +oo. In fact, if [V}, ) = +00
the inequality in (3.60)) is trivial and we are finished.
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Now we claim that there exists a compact set X' C X, such that (supp f)U(supp f*) C
K. In fact, by assumption [(Sc4)] the action o : X/T' x ' x T — X, a(z,7,7) = 772 is
proper, and thus o !(supp f) € X/I' x I' x T is compact in the product topology. It
follows that there exists a compact set Ty C 1" such that, letting

K = {rYTx; v e G7T S TO,(E € 7T(Suppf)}’

we have supp f C K. The set K is compact because K = a(w(supp f) x G x TO), and
hence it is the continuous image of a compact set. Here, we used the fact that G is
compact. Possibly enlarging Tj, we may assume it to be symmetric (i.e. 7 € T if and
only if 77! € Tp), connected and such that Id € Tp. Then we also have supp f* C K,
proving the claim. By we may also assume that K = oK.

Let us recall the notation introduced in , Section

wawiéf*@mm—f@wwwmmn

Let Ay be the family of all non-negative functions g € LP(X, i1) such that:
(A1) pg{g > t}e = pa{f >t} for prae. © € X/I' and for all ¢ > 0;

(A2) g(z)=0forall z € X \ K;

(A3) Qrp(g) < Qrp(f) for all 7 € (0,1).

The set Ay is non-empty, since f € Ay. Now we show that Ay is compact in LP(X, p).
To this aim we apply Theorem|3.2.5|to As. Here is where the properness of X is required.

By identity (3.44) and [(A1l), exploiting assumption on the disintegration of
along I', we have, for any g € Ay,

/g”du=/ plg > t7} dt
X 0

:/ / Holg > 19}, dp(a) dt
o Jx/r

N /oo/ palf > 17}y dp(z) dt
0o JX/T

:/wa>Wﬂﬁ
0

- [ 1au

Thus, Ay is uniformly bounded in LP(X, 1). The uniform bound holds by
By Theorem Ay is then precompact in LP(X, u). Finally we prove that Ay is also
closed in LP(X, ;) and thus compact. Let (g;)jen C Ay be a sequence such that g; — g
in LP(X, ) and p-almost everywhere. Then g € Ay.
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In fact, by the Fatou Lemma, ¢ satisfies [(A2)| and |[(A3)l We check [(A1)l We first
claim that for a function g € LP(X, u), the set Z = {t > 0: p{g =t} > 0} is at most
countable. In fact we have

(%S) 1 )
k=0
For any k£ € N, it holds
1 1
He9> gy ¢ 2 D o =t} = #(Tn) g (3.61)
teTy

This implies that 7 is of finite cardinality for any k& € N, indeed LP(X, pu) C S(X, p)
and hence p{g > t} < oo for all t > 0. Since 7 is a countable union of finite sets, the
claim is proved.

Using the previous claim, for fi-a.e. x € X/T" and for £!-a.e. t > 0 we have

Jim pio({g > the 0 {g; < the) =0,

Jim p({g < 1320 {g; > 1)) = lim p({g < 1} 0 {g > 1)) = 0. (3.62)

This implies 5 ({g; > t}sA{g > t},) — 0 as j — oo, and |(Al)| follows for L -a.e.
t > 0. By right continuity |(A1)| follows for all ¢ > 0.
The functional J : Ay — [0, 400), defined as

J(g) = /X lg — [P dp,

is continuous in LP(X,u). In fact J(g) = [lg — f*|lzr(x,u)- Since Ay is compact in
LP(X, 1), the Weierstrass theorem guarantees the existence of f € Ay such that

J(f) = min J(f). (3.63)

If J(f) = 0 we are finished. In fact, this imply that f = f* p-a.e. and hence, by
(A3)| that

/ f (@) — Fr@)IP du(y) dpu(z) < / f (@) — F@)P duly) dp(z),
X () X r(x)

for any r € (0,1). Dividing this inequality by rP and taking the liminf as r | 0 we get

IVl o) < IV FllLexw- )
Now we show that the case J(f) > 0 cannot occur by contradicting the minimality

of f. If J(f) > 0, by the representation formula ([3.42)) and the disintegration of y along
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I', we have

[ ()P du(e >] "
X{f>t} X{f*>t}(95)) dt ’ du(x)] "

+OO 1/p
[/ ‘X{f>t} — Xy \du ] dt

- /0 w({F > AL > 1)) 7 d

Therefore there exists ¢ > 0 such that, letting A = {f >t} and B = {f* > t}, it holds
u(AA B) > 0. This implies that u(A\ B) = u(B\ A) > 0. In fact by follows
that both f and f* are rearrangements of f, and thus u(A) = u(B). By the Lebesgue
property , p-a.e. z € A\ B is a point of density of A\ B, i.e.

i MUAN B) 0 By (2))
im

B uB@)

For any Borel set £ C X, let

=1.

Ap ={z € X/T : there exists z € I'; point of density of E}.

We claim that i(A 4\ p N Ap\4) > 0. Since both f and f* satisfies [(A1)] we have that
po(Az \ Bz) = pg(By \ Az) for fi-a.e. x € X/T'. Therefore

/ 1o (Bo \ Ay) dji(a) = / o Ag\ By) di(x) = p(A\ B) > 0
Aa\B Aa\B

and thus there exists a set A C A\ p such that fi(A) > 0 and ju, (B, \ Az) > 0 for any
x € A. This implies that A C Ap\ 4 and proves the claim.

By the previous claim, there exists z € X/T" and z_,z; € I'; such that z_ is a
point of density for A\ B and z, is a point of density for B\ A. Let R = {P, o},
P = {H,H,H"}, be the reflection system given by Lemma and let n > 0 be
such that

[t

1

p(By(z) N (A\B)) = Su(By(=-)) and p(By(z:) (B A) = Su(By(24)). (3.64)

Possibly choosing a smaller 7 we may also assume that By (2-) C H™ and By(24) C HT.
From (B.64) we deduce that u(HT N (B\ ANg(A\ B))) > 0. In view of

(B\A) N g(A\B)=(B\¢gB) N (¢A\ B),
we eventually obtain

p{r € HY : f(x) > f(px) and f*(z) < f*(ox)} > 0. (3.65)
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This is assumption (3.41)) in Theorem|3.3.20L As ¢(t) =P, 1 < p < o0, is strictly convex,
by the statement concerning the strict inequality in Theorem [3.3.20| we have

t/%rfww=/ﬂﬁ—%?w</u>ﬂww (3.66)
X X X

Here we used the fact that f5 = f* by statement m and m in Lemma B

We claim that fz € Ay. Since inequality (3.66) can be rewritten as J(fz) < J(f),
this contradicts the minimality of f, thus completing the proof of the Theorem. To
prove the claim, observe that the function ffa is supported in K, hence satisfying
This follows from the fact that if f(z) > 0 for some z € H~ then gz € K. The function
fr satisfies since p, is 0 and T-invariant. This follows from the fact that for any
Borel set E C X and 7 € T, it holds

/m@me@wwb@wmwm»

Finally (A3)| follows from Theorem |3.3.16

We have an analogous Theorem for the rearrangements of sets.

Theorem 3.6.38. Let (X,d) be a proper metric space endowed with a Schwarz sys-
tem (R,T,G). Let p be a non-degenerate and diffuse Borel measure, in the sense of
and , that is invariant with respect to the Schwarz system (R,T,G) and let
(T, (2 )zex/rs i1) be a regular rearrangement system of (X, ), where I' = T(T, G). Fi-
nally, let the metric measure space (X, d, ) have the Lebesgue property . Then the
Schwarz rearrangement E* of any bounded Borel set E C X, satisfies

w(E*) =p(E) and P (E*) < P (E). (3.67)

Proof. The proof is analogous to the one of Theorem and we only sketch it. First
we fix a suitable compact set K, as in the above proof. Then we introduce the set Ag of
all Borel subsets F' of X such that [(A1)H(A3)| hold with ¢ = xp, f = xg and p = 2 (or
equivalently p = 1). The functional J(F) = p(FAE*) attains the minimum on Ag at
some F. The compactness Theorem does apply to this situation. As in the above
proof, we show that it must be F' = E* and the proof is finished. O
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Chapter 4

Rearrangements in the
Heisenberg Group

Let H? be the Heisenberg Group defined in Chapter In this chapter we develop a
rearrangement theory specifically for H?. In fact the natural reflection systems in H? do
not satisfy condition in Definition with respect to the Carnot-Carathéodory
metric. However, these systems are indeed reflection systems with respect to the Eu-
clidean metric. Then it is enough to require the functions or sets we rearrange to have
some symmetry.

4.1 Two-points rearrangements with symmetry

In this section we introduce what we may call the horizontal and the vertical reflection
system with symmetry on H?. Let o : H* — H? denote the mapping

o(z,t) =(z,—t), (z,t) € H. (4.1)

Here, let Z be the complex conjugate of z, namely, if z = x + iy, then Z = x — iy. The
mapping o is an involutive isometry of (H¢, d). This follows from the fact that a curve
~y is horizontal if and only if g o 7 is horizontal and, moreover, L(vy) = L(p o). In fact,
for any (x,y,t) € H? the differential of ¢ at (z,y,t) is

1 0 0
dQ(x,y,t) = 0 —1 0 . (4.2)
0 0 -1

We remark that do(,, ) is independent of the point (z,y,t), thus henceforth we omit
the dependence of the point. By have that, for any j = 1,...,d, do X;(z,y,t) =
Xj(xz,—y,—t) = Xj(g(x,y,t)) and doYj(x,y,t) = =Yj(z,y,t) = =Y; (Q(a:,y,t)). Here
we used the fact that Yj(z,y,t) = Yj(o(z,y,t)) for any (v,y,t) € H? and for any j.
Hence, if o; and 3;, j = 1,...,d, are the components of § with respect to the horizontal

69
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vector fields, the chain rule yields

d
L(007)(s) = dols) = 3 (a(s)do X;(1(5)) + 55()de 5 (+(s)
j=1
d
=" (aj(5)X;(007(s)) = B(s)Yj(207(5)))-
j=1

This proves that v is horizontal if and only if g o v and that L(y) = L(p o 7).

Definition 4.1.1. The horizontal reflection system with symmetry o of H? is the 3-tuple
R = {P,o0,0}, where P = {H—,H, H*} is the partition of H? composed by the sets
H ={(z,t) e H?: t <0}, H={(2,t) cH?: t =0} and H" = {(2,t) e H: ¢t > 0};
the mapping ¢ : H? — H? is defined in (4.1} and the symmetry o : H* — H? is defined
by

o(z,t) = (3,t), (z,t) € H. (4.3)

It is clear that the reflection o maps H' in H~. However p does not satisfywith
respect to neither the Carnot-Carathéodory metric nor the Euclidian metric. Choosing
x = (z,0) and y = (z,0) gives a counterexample.

On the other hand, the mapping poo : (z,t) — (2, —t) satisfies both and
with respect to the partition P and the Euclidean metric. Thus (P, po o) is a reflection
system of (H?, |-|). However, goo is not an isometry of (H%, d) and is not satisfied
with respect to the Carnot-Carathéodory metric. In fact, for (z,t), (¢, 7) € H?, we have
that

d((2,1), (¢, 7)) = d(0,(z,) 7" (¢, 7)) = d(0,(C — 2, —t + 7 — 2Im(z - ())),  (4.4)

while

d(ooo(z,t),000(¢, 7)) =d((2,-t),(¢,—7T)) = d((), (( —z,t—7 —2Im(z - QT)))

This proves that for ¢ # 7 the reflection ¢ o o is not an isometry with respect to d.

To prove that is not satisfied with respect to d, let (z,t),(¢,7) € HU H™
(i.e. t,7 > 0) be such that 0 < —(t + 2Im(z - ¢)) < 7. In this case, we claim that it
holds d((z,t), (¢, 7)) > d((2,t), 00 (¢, 7)). This is equivalent to d(0, (z,t)~' * ({,7)) >
d(0,(z,t)" % (¢, —7)). Let h : HY — R be defined by h(z,t) = |t| for any (z,t) € H%
By and the choice of (z,t) and (¢, 7), we get

h((z,t)*l*(g, 7)) =|—-t—7—2Im(z-Q)| < |—t+7—2Im(z-()| = h((z,t)fl*(g,r)).

Since m((z,t) ™ * (¢,—7)) = 7((2,t)~* = (¢, 7)), this proves the claim. Therefore g oo
does not satisfy [(R2)| with respect to the Carnot-Carathéodory metric.

Definition 4.1.2. The vertical reflection system with symmetry o of H%, is the 3-tuple
R = {P,o0,0}, where P = {H~,H, H"} is the partition of H? composed by the sets
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H~ ={(z,t) € H: Tm(z1) < 0}, H = {(2,t) € H?: Im(z;) = 0} and H* = {(z,1) €
H? : Tm(z;) > 0}; the mapping o : H® — H? is defined in (4.1 and the symmetry
o : H? — H? is defined by

o(z,t) = (21,22, ..., Zn, —t)  (2,t) € HY. (4.5)

The same consideration as above apply to this situation. We show that neither in
this case poo : (2,t) — (Z,t) = (21, 22, ..., Zn, 1) is an isometry of (H?, d) nor it satisfies
In fact, for any (z,t), (¢, 7) € H? we have that

n

(Qoo(z,t))_l * (,Qo U(C,T)) = CN— Z,—t4+71+2Im(z - () — QZIm(zj . éj)

Jj=2

The above identity implies that the reflection ¢ o o is not isometric if 21,3 # 0. In a
similar manner (z,t)"! % (000 (¢, 7)) = (f —2,T((z,t), (C,T))), where we let

T((2,t),(¢,7)) = —t+7—2Im(z; - (1) — 2 ) _Im(z; - ).

=2

Henceif (z,t) € HUH" and (¢,7) € H" (i.e. Im({1) > 0) are such that T'((z, t), (¢, 7)) >
0 and Re(z1) < 0 or T((z,t),(¢,7)) < 0 and Re(z1) > 0, then d((z,t),(¢, 7)) >
d((z,t),000(¢, 7)) and hence condition is not satisfied.

Having defined a rearrangement system with symmetry of H?, we let the two-points
rearrangement of functions or sets to be as in Definitions [3.3.11] and [3.3.12]

Definition 4.1.3. Let R be either a horizontal or vertical rearrangement system with
symmetry o of HZ.

(i) Let f:H? — R, then the function fr : H? — R defined by
min{f(), f(ox)} i € H-

fr(z) =4 f(x) if e H |, (4.6)
max{f(z), f(or)} ifxe H"

is called the two-points rearrangement of f with respect to R.

ii) Le e either a horizontal or vertical rearrangement system with symmetry o o
ii) Let R be either a horizontal tical t syst ith t f
(H?,d). Let E C H, then the set Fr defined by

Er=(ENgENH J)U(ENH)U((EUgE)NHT), (4.7)
is called the two-points rearrangement of E with respect to R.

Here we give the analogous of Theorem [3.3.18| in this setting. We recall that f :
H? — R is o-symmetric if f = foo.
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Theorem 4.1.4. Let R = {P,p,0} be either a horizontal or vertical rearrangement
system with symmetry o of (H%,d) and let 1 < p < co. For any o-symmetric function
f € CL(H?) we have that fr € Wlli’p(Hd) N BVl (H?) and moreover it holds

IVESR (2 )| o g1a) < VRS (20 8)]] 2o g10), (4.8)
Vi fr|(HY) < |[Vaf|(H?). (4.9)

Here |Vu f| denotes the horizontal total variation of f.

Proof. For any r € (0,1) let

Qo) = [ 1F@) = F)lPxsla) do dy

where
1

Bay i d(z,y) <7,
Xr(7,y) = {'Br( ) :
0 otherwise.

Here B,(z) denote the Carnot-Carathéodory ball centered at z of radius r > 0. No-
tice that, by the left-invariance of the metric d and using the dilations 0y, |B,(z)| =
724+2| B1(0)|. Moreover, as the Lebesgue measure £24F! is invariant with respect to the
reflection p, we have that

xr(0z, 0y) = Xr(2,y) and x»(x, 0y) = xr(0x,y), x,y € H”. (4.10)
Let L denote the Lipschitz constant of f with respect to the Euclidean metric.
Namely
x’yGHd |ﬂf - y|

T#Y

Let K ¢ H? be a compact cube centered at 0, with axes parallel to the coordinate axes
and such that
disty (HY \ K, supp f) > 1. (4.11)

Here we let distyy be the Carnot-Carathéodory distance. By a well-known estimate,
there exists a constant Cx > 0 such that

|z —y| < Ckd(zx,y) for any z,y € H? (4.12)

Finally let H be the reflection hyperplane of R = {P, 0,0} and let (H N K), denote the
Ck r-neighborhood of H N K in the Euclidean metric, namely

(HNK), ={z e H?: dist(z, HNK) < Cjr}.

By Theorems [2.1.9 and [2.1.13] if

o1 e
hr?l%)nf ﬁQr’p(fR) <oo and liminf ;Qr,l(fR) < 00,

rl0
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then fr € Wél’p (H%) N BV (H?). Moreover, the first liminf is in fact a limit and

hﬁ)l Qr,p(fR) p,dHVHfR(Zat)”LP(Hd)-

If fr € BV(HY) then also the second liminf is a limit and it holds

1
l;ﬁ)l ;Qr,l(fn) = Cl,d|vaR|(Hd)~

Here C), 4 is the geometric constant, depending only on the dimension d and the exponent
p, defined in (2.11). Then in order to complete the proof, it suffices to prove that
fr € BV(H?) and that, for any € (0,1) and 1 < p < oo, it holds

Qrp(fr) < Qrp(f) + 2LPCr? [(H N K |. (4.13)

In fact f € CH(H?) ¢ W (HY) N BV (H?Y) N BV (HY) and lim, ¢ |(H N K),| = 0.
As in the proof of Theorem [3.3.16} by (4.10|) we get that

@l = [ [ A1)~ £)P +1ex) = Fen)l b (o 9) dody
+ [ ] A1) = HenP + 17 en) ~ F@)P b (o ov) do d.
H+ JH+
By the symmetries f(ooy) = f(oy) and f(oy) = f(y) we obtain

Qrplf) = /H | et pdeay,

where we let

Q(fiz,y) = {|f(x) )|p+ | f(ox) — floy)P b xr(2,y)
+ {!f fley)lP + If(Qﬂ:) F@)PYxr (2, 00y).

Let x,y € H". We have the following four cases:
1. d(z,y) > r and d(z, poy) > r;
2. d(z,y) < d(z,00y) <5
3. d(z,y) <r <d(z, poy);
4. d(z,poy) <r <d(z,y).
In the proof of Theorem [3.3.16, we had no case[dl In the cases and [3] we have
Q(fr;z,y) < Q(f;,y). (4.14)
The proof is the same as in Theorem We study case [ Let

E.={(z,y) € H" x HT : d(z, 00y) <7 < d(z,y)}.
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If (x,y) € E,, we have

Q(fsx,y) = {If(x) = fley)lP + | f(ox) — F(W)IP }xr(, 00).

The function fr is o-symmetric. Moreover, fr is the Euclidean two-points rearrange-
ment of f with respect to the reflection system {P, 0o o}. By Proposition [3.3.13 we
have Lip(fr) < Lip(f) = L, and hence fg € BV (H?), since supp fr C K. By (4.12),
we have

|fr(z) = fr(0y)| = |fr(2) — fr(0oy)| < Llx — goy| < LCkd(z, 0oy) < LCkr

Analogously, we get also that |fr(0x) — fr(y)| < LCkr.
By (#.11)), we may assume z,y € K. In fact, if 2 € HY\ K, or y € H?\ K, and
r < 1, by the fact that (z,y) € E, we have

f(z) = f(y) = flox) = f(oy) =0,

and thus Q(fr;x,y) = Q(f;x,y) = 0 and we are finished. Let then 7,y € HT N K. In
this case we have

dist(oz, H N K) = dist(x, H N K) < |z — goy| < Ckd(x, 00y) < Ckr.

Then we have

Qfs 2, y) dedy < / / [1£(@) = Fy)P + 1 (ex) — f@)Pdxo (e, 0oy) d dy
E, H+N(HNK),

< 2Lp0f(rp/ / Xr(x, 00y) dz dy
H+ JH+A(HNK),

< 2LPCRLrP|(H N K),|.
This is (4.13) and completes the proof. O

We extend Theorem to the case of Sobolev functions in Wfll’p (H?) and to sets
with finite horizontal perimeter. We proceed by approximation, using Theorem [2.1.8
We remark that the approximating functions f, in that Theorem are obtained as con-
volutions of the form

= /Hd fy)de(lx —y|)dy, €>0,z¢€ H.

Here J. = 21 J(Iz|/c) is a standard convolution kernel. Hence, if f is o-symmetric,
then also f,, is o-symmetric. Multiplying each f,, by a suitable cut-off function, we may
then assume that the functions f,, are compactly supported and o-symmetric, if f is
o-symmetric.

Corollary 4.1.5. Let R be either an horizontal or vertical rearrangement system with
symmetry o of HY.
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(i) Let 1 < p < oo and let f € Wfll’p(Hd) be a o-symmetric function. Then fr €
Wfll’p(Hd) and moreover

IVafrle@e < IVaflloyma)- (4.15)
(i) Let f € BVu(H?) be a o-symmetric function. Then fr € BV (H?) and moreover

\Vafr|(H?) < |Vaf|H). (4.16)
Here fr is the two-points rearrangement of f defined in (4.6)).

Proof. We prove only statement (i). The same argument applies to statement (ii).
We proceed by approximation using Theorem [2.1.8] and the above considerations. Let
(fn)nen C CH(HY) be a sequence of o-symmetric functions such that

nhjgo | frn — fHLP(Hd) = nh_{go Ve fn — vHfHLp(Hd) =0.

Possibly taking a subsequence, we can assume that f, — f a.e. in H
By Theorem we have that (f,,)r € Wg"(H?) and

IVa(fr)rl Loy < Vel e @a)-

It follows that, up to subsequences, the sequence (( fn)R) nen converges weakly in Wfll’p (H?)
to a function g such that

IVagl rp@ey < lminf [ Vi (fo)r [l ge)-

We may also assume that (f,)r — ¢ a.e.in H?. We claim that g = fr.

Let N C H? be a £2¥1 negligible set such that for all x € H*\ N we have that
fn(z) — f(z) and (fn)r(z) — g(x) as n — oco. By the continuity of ¢ this implies that
fnlox) — f(ox) as n — oo, as well. If f(x) > f(ox), then there exists a n such that
for all n > 7 it holds that f,(x) > f,(ox). Obviously the same holds if f(z) < f(ox).
This implies that (f,)r(z) — fr(z) for all z € H*\ N and hence that g = fr. This
completes the proof.

O

4.2 Steiner rearrangement

In this section we consider the Steiner rearrangement system associated to the horizontal
reflection system with symmetry o of H? (see Definition .

Let 75 : H? — HY, s € R, be the vertical translation defined as 74(z,t) = (z,t+s) for
any (z,t) € H% These translations form a l1-parameter group of isometries, T = {7, }scr.
We may identify the reflection hyperplane H = {(z,0) € H?} with H?/T. The action of
T is continuous and proper and the orbits are the vertical lines T, = {(z,t) € H% : t € R}.
Finally, the natural projection is 7 : HY — H, 7(z,t) = (2,0).
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By the Fubini theorem, the Lebesgue measure £2¢+1

Indeed, for any measurable set £ C H? we have

disintegrates naturally along T

|E| = /Hﬁl(EmTz)dH?d(z),

where H'! denotes the 1-dimensional Hausdorff measure. Since it is clear that the function
s — HY(Bs(z) N T%) is strictly increasing from [0, 400) to [0, +00) for any z € C%, the
triple (T, H!', H??) is a rearrangement system of (H? d, £2?*1). It is clear that such
rearrangement is regular.

For any measurable set £ C H? and for any non-negative, measureable function
f : H* — R, we call the rearrangements E* and f*, given in Definition the
Steiner rearrangements of E and f.

Now we prove a statement analogous to Theorem [3.6.37]

Theorem 4.2.6. Let f € erl’p(Hd), 1 < p < oo, be a non-negative, o-symmetric
function and let f* be the Steiner rearrangement of f. Then f* & erl’p(Hd) and

Ve Sl or@e < IVafle@e- (4.17)

Proof. We start by proving the Theorem for f € C}(H?). Here we follow closely the
proof of Theorem

Let K € HY be a compact cube centered at 0, with axes parallel to the coordinate
axes and such that supp f C K. Let A; be the family of all non-negative o-symmetric
functions g € LP(H?) such that

(A1) HY{g > s}, = H{f > s}, for £?¥-a.e. z € C? and for all s > 0;
(A2) g(z,t) =0 for all (z,t) € H\ K;
(A3) IVuYl rr@ay < VRS Lr@ay-

By [(A3)| the family Ay is uniformly bounded in Wfll’p (H?) and by [(A2)|it is boundedly
supported. By the compactness theorem in [GN96], Ay is then compact in L? (]Rd).
By the Weierstrass theorem, the functional J : Ay — [0, +00),

Io) = [ o= frd (4.15)

achieves the maximum at some point f € Agp. If J( f) = 0, we are finished. In fact
this would imply that f = f* a.e., and hence that f* € As. Condition [(A3)|is then
. On the other hand, J(f) > 0 cannot occur. The proof is exactly the same
as in Theorem B.6.37 In fact we can find a vertical translation of H such that the
two-points rearrangement f@ of f with respect to the translated vertical rearrangement
system, satisfies [(A1)| and [(A2)| and moreover is such that J(fz) < J(f). Since by
Corollary |4_151 f@ satisfies also M, we have that f@ € Ay, thus contradicting the
minimality of f.
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To prove the general case, we proceed by approximation using Theorem Let
(fn)nen C CH(HY) be a sequence such that

Jim [| fr = fllzorey = I Ve fo = Va S| g = 0.

In particular, we have

n—oo

—+o00
Jim / LHEER: |falzt) — f(z,0)] > s/ dzds = 0
0 Ccd

and, up to subsequences, we have that for £2?-a.e. z € C% and for all s > 0

lim LYt eR: |fu(z,t) — f(z,8)] > s/P} = 0. (4.19)

We can also assume that f,(z,t) — f(z,t) for a.e. (z,t) € H?
Now we claim that this implies that for all s > 0

lim L' ({fa(z,-) > s}A{f(z,") > s}) = 0. (4.20)

n—oo

In fact, for any € > 0

{fu(z,") >s+e}A{f(z,) >s+¢e}
={fu(z,) >s+e> flz,)}U{f(z,:) >s+e> fulz,)}
- {|fn(za ) - f(zv )’ > 25}.
Hence, by ([.3), £ ({fn(2,) > s+ e}A{f(z,") > s+¢}) — 0 as n — oo. Letting & | 0
we get .

By the first part of the proof, we have
IVafolle@ay < [IVafalloema)-

It follows that, up to subsequences, the sequence (f;¥),cn converges weakly in erl’p (H?)
to a function g such that

IVagll e ey < lim inf IV foll e ey-

We may also assume that f — ¢ a.c.in H%. We claim that g = f*.

The functions t — f}(z,t) and t — g(z,t) are even and non-increasing for ¢ > 0.
The sets I,(z,s) = {fr(z,-) > s} and I(z,s) = {g(z,-) > s} are essentialy symmetric
intervals. Then I,,(z,s) — I(z,s), in the natural sense, for £2%a.e. z € C? and L'-a.e.
s € R. It follows that

lim £'({fi(z,) > s}A{g(z,") > s}) =0. (4.21)

n—oo

From (4.20) and (4.21)), we deduce that
ﬁl{g(z, ) > s} = lim El{f;(z, ) > s} = lim ﬁl{fn(z,-) > s} = El{f(z, ) > s}.

This implies that ¢ = f* a.e. on H?, thus completing the proof. O
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We recall that the H-perimeter of a set £ C H? is Pg(E) = |Vaxe|(HY). A set
E c H? is g-symmetric if E = oF or equivalently if yz is a o-symmetric function.

Theorem 4.2.7. Let E C H? be a o-symmetric set of finite measure and H-perimeter
and let E* be the Steiner rearrangement of E. Then E* is of finite H-perimeter and

Pa(E") < Pa(E). (4.22)

Proof. The proof is a repetition of the one of Theorem In a first step, we prove
the theorem for f € C}(H?) N BVir(H?) with ||f|lc < 1. In the definition of Ay, we
consider functions g € L'(H) with ||g||c < 1, replacing inthe Sobolev norm with
the horizontal total variation. In the functional J in we choose p = 2. To exclude
the case J(f) > 0 we use now Corollary statement (ii). In the second step, we
prove the theorem for sets with finite perimeter and measure, on using the approximation
Theorem 2.1.8 O

We end this section proving that Theorem does not hold dropping the assump-
tion on o-symmetry of the sets. We do so constructing a set £ C H¢ such that its
Steiner rearrangement satisfies

In particular, the set F is the left translation of a cylinder.

Example 4.2.8. Let D = {z € C: |z] < 1} and define the horizontal area of the graph
of a Lipschitz function f: D — R as

Au(f) = /D \/(Zi - 2y>2 + <g£ + 2:c>2 dx dy. (4.23)

This area is the horizontal perimeter of the epigraph of f inside the cylinder D x R.
Fix a real number ¢ > 0 and let f,5, a,b € R, be the affine function fq(z,y) =
ax + by + ¢. The horizontal area of the graph of this function depends only on the

parameter s = v/a? + b2. Namely for s > 0, by (4.23)),

1 21
A(s) = Au(fap) = / ( V82 + drssind + 4r2 dﬁ) rdr.
0 0

The derivative in s of the function A is

1 2m 2 in 9
Al(s) = / (/ s+ 2rsin dﬁ) rdr.
0 0 2vs2+4rsind + 4r2

In particular A’(0) = 0. The second derivative is

! 2m 473 cos? ¥
A'(s) = / / —dy | rdr > 0.
(s) 0 < 0 (82 +4rsind + 4r2)%2 rer
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Then A’ is strictly increasing and thus also A is increasing for s > 0.
Now, let C,p, C H! be the cylinder

Cop ={(z+iy,t) eH :x +iy € D, |t —ax — by| < c}.
We claim that for all a,b € R we have
Pu(Coo) < Pu(Cap), (4.24)

with equality if and only if a = b = 0.
In fact, by a standard formula for the horizontal perimeter, there holds

P (Cap) = 241 (fap) + H2(OD x RN IC,y),

where H? is the 2-dimensional Hausdorff measure in H' = R3. By Fubini theorem,
H?(OD x RN AC, ) = 4me is independent of a,b. The claim follows from the previous
considerations on the function A.

Now, let p = (20,0) € H! be a point such that zy # 0 and let

E=pxCoo=1{(z,t) EH": |2 — 2| < 1, |t — 2Im(202)| < c}.
The Steiner rearrangement of the FE is the cylinder
E* = {(Z’t) € Hl : |Z - ZO‘ < ]-7 ’t’ < C} =p* Ca,b’

for suitable a,b € R that satisfy a? + b # 0, since zg # 0. By the left invariance of the
H-perimeter and by the discussion of the equality case in (4.24]), we have

PH(E*) = PH(Ca,,b) > PH(C0,0) = PH(E)

4.3 Cap rearrangement

In this section we define the cap rearrangement associated to the vertical reflection
system with symmetry o of H? (see Definition 4.1.2). We refer to [Bac94] for the
FEuclidean cap rearrangement.

For z € C, we let z = (21,2') € C x C¥L. Let r : H* — H?Y o € S!, be the
rotation defined as r(21,2',t) = (ei®21,2',t) for any (21,2',t) € H% These rotations
form a group of isometries, R = {ry }aes1- We may identify HY/R = R, x C¥" ' xR C H,
where we let Ry = {z € R: z > 0}. The action of R is continuous and proper and
the orbits are the spheres R, = {(e'®z,2',t) € H?: a € S'}, for p = (v, 7',t) € HY/R.
Finally, the natural projection is 7 : H* — H?/R, (21, 2',t) = (21,2, t).

The natural disintegration of the Lebesgue measure £2%F1 along R is given by the
polar coordinates on C. Indeed, for any measurable set E C H?, by the Fubini theorem
and the Coarea formula, we have

|E| = HY(E N Ry) dH*(p),
HY/R
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where H® denotes the s-dimensional Hausdorff measure on H¢ = R2¥+1_ It is clear that
the function s — H!(Bs(p) N R,) is strictly increasing from [0, so(p)) to [0, H1(R,)) for
any p € H?/R. Here so(p) = max{d(z,p) : = € R,}. Then the triple (R, H!, H??) is a
rearrangement system of (HY, d, £2¢+1). Tt is clear that such rearrangement is regular.

For any measurable set £ C H? and for any non-negative, measurable function
f:H? - R, we call the rearrangements E* and f*, given in Definition the cap
rearrangements of £ and f.

We end this chapter proving two results analogous to Theorems [£.2.6] and [£.2.7]

Theorem 4.3.9. Let f € Wéfp(Hd), 1 < p < o0, be a non-negative, o-symmetric
function and let f* be the cap rearrangement of f. Then f* € Wfll’p(Hd) and

VeS| o @ay) < IVESll e @a)- (4.25)

Proof. We can prove the assertion for f € C}(H?) as in Theorem
To prove the general case, we proceed by approximation using Theorem Let
(fn)nen C CL(HY) be a sequence such that

nh_{go | fr — fHLP(Hd) = 7}1—{20 Ve fn — vaHLP(Hd) = 0.

In particular, we have

i +oo/ H'Ya € S': |fu(ra(€)) — f(ra(§))] > s/} dEds = 0
0 HY/R

n—oo
and, up to subsequences, we have that for H?%-a.e. £ € H¢ /R and for all s > 0
lim Hl{a es: ’fn(ra(g)) - f(ra(g))‘ > Sl/p} =0.

We can also assume that f, — f a.e. in H%. As in the proof of Theorem we can
then show that

nler()loHl ({a: fa(ra(§) > s}A{a: f(ra(§)) > s}) =0. (4.26)
By the first part of the proof, we have
IVafallor@ey < IVafalloe@e)-

It follows that, up to subsequences, the sequence (f;),en converges weakly in Wlli’p (H?)
to a function ¢ such that

IVEgl p ey < liminf (Vi fll i ga)-

We may also assume that f — g a.e.in H?. We claim that g = f*.
For fixed ¢ € H?/R and parametrizing S! = [~,7), f}(ro(€)) and g(rq(€)) depend
only on |a|. Then, with abuse of notation, we let f(£, ) = fX(ro(§)) and g(&, ) =
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g(ra(§)). The functions a — f¥({,a) and a — g¢(§,a), a € [—m, ), are then even
and non-increasing for v > 0. Thus the sets [,(¢,s) = {a € [-m,7) : fi(& a) > s}
and I(§,s) = {a € [m,7) : g(§, a) > s} are essentially symmetric intervals. Then
I,(¢,8) — I(&,5), in the natural sense, for H?%-a.e. ¢ € HY/R and L'-a.e. s € R. Tt
follows that

Jim £1({f7(€,) > s}A{g(&,) > s}) = 0. (4.27)

Let ¢ : H* — R be a function such that ¢(r,(£)) depends only on |« for ¢ € HY/R,
as above. We let (&, a) = ¢(rq(€)). Then we claim that it holds

HYa e St p(ra(€)) > s} =21¢|LHa € [-m,7) : p(& a) > s}, forae &cHYR
(4.28)
In fact, by a change of variables, we get that

Hl{a tp(ra(§)) > s} = /Sl X{oz cp(ra(g))>s}(a) dHl(a)
- [ el

= 2l¢| /0 X{o(e)>sH (@) do
=2[¢]LHp(€, ) > s}

Here we used the fact that (&, a) = (&, —«). By the same computations, we can also
prove that (4.28) holds replacing > with <.
Both f* and g satisfies the assumptions on ¢ in the previous claim. Therefore (4.27))

and imply that
nan;oHl ({a: fr(ra(§) > s}A{a: g(ra(§)) >s}) =0 (4.29)

From and , we deduce that
H' o g(ra(§)) > s} = lim H'a: fi(ra(§)) > s}
= lim H'{a: falra(€)) > s}
=H'{a: f(ra() > s}
This implies that ¢ = f* a.e. on H?, thus completing the proof. O

Theorem 4.3.10. Let E C H? be a o-symmetric set of finite measure and H-perimeter
and let E* be the cap rearrangement of EE. Then E* is of finite H-perimeter and

Pu(E") < Pu(E). (4.30)

Proof. The proof is exactly the same as Theorem [4.2.7, upon using the approximation
argument in the proof of Theorem O
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Appendix A

Notation

A.1 Measures and sets

E Closure of E.

oF Topological boundary of E.

XE Characteristic function of the set E, i.e. xg(z) =1 if x € E, otherwise xg(x) = 0.
diam E sup, ,ep | — y|, diameter of the set E.

# Counting measure.

L d-dimensional Lebesgue measure.

H? s- dimensional Hausdorff measure in R¢.

wq Lebesgue volume of the unit ball of RY.

|E| Lebesgue measure of the set E.

fp fdu ‘—}El [ f du, averaged integral of f.

A.2 Functions

Id Identity function.

fle Restriction of f to the set E.

Vf Gradient of f: R — R.

gg]:; Partial derivative of f : R* — R with respect to the variable xj.
Lip(f) Lipschitz constant of f : R? — R, see (3.2).

C*(RY) {r: R? — R : f is differentiable with continuity & times }.

|- e x,) The LP-norm in X with respect to the measure p.

A.3 Finite dimensional Banach space

R? d-dimensional Euclidean space.
ei i-th vector of the standard Euclidean basis, e; = ((5,-j)§l:1.
x=(x1,...,2q) Point of R?.

83



84 APPENDIX A. NOTATION

Ty x1Yy1 + T2y2 + . .. + Tpyn, Euclidean scalar product.
|| VT x = /22 + 23 + ...+ 22, Euclidean norm.
-l A norm in R4

|V f] Euclidean total variation measure of f : R? — R.
-l p p-mean norm associated to || - ||, see (1.2)).

|- 1 1-mean norm associated to || - [|.

E(v) Vector associated to v defined in (1.4)).

Ky q Geometric constant defined in .

B, [y R [yl <r).

B, (z) {yeR:: |z —y| <r}.

By (z;v) {y€ B(z): £y —z) v >0}

A.4 Heisenberg group

H¢ d-dimensional Heisenberg group.

x = (z,t) Point of HY.

Ty Heisenberg group non-commutative product.

z! Inverse of a point, i.e. x *xz~! = 0.

z Complex conjugate of z € C.

Re(z), Im(2) Real and imaginary part of z € C.

AN Horizontal distribution on H<.

T,X;,Y; Vector fields spanning the Lie algebra of H.

L(v) Length of a horizontal curve.

da(-,-) Carnot-Carathéodory metric in H,

Oz The non-isotropic dilation 0y (z,t) = (Az, A22).

du(-,-) A metric equivalent to the Carnot-Carathéodory metric, see Proposition m
T Standard projection 7(z,t) = z.

B, {y e H: d(0,y) <r}.

B, (z) {ye HY: d(z,y) <r}.

BF(x;0) {y € B.(z): £m(z~  xy)-v > 0}.

Cp.a Geometric constant defined in .

Vuf Horizontal gradient of a function f : H* — R, see .
|V f] Horizontal total variation measure of f : H* — R.

0 The reflection function defined in (4.1)).

A.5 Metric measure space

o3y Push-forward measure of y with respect to ¢.
IV f ||jLEp (X0) Quantity defined in Definition

P~ (E; X,d, pn) Inferior perimeter of £ C X, defined in Definition
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R ={P, o} A reflection system, see Definition

fr, Er Two-points rearrangements of f or E, see Definitions |3.3.11| and |3.3.12l
Q- (f,9) The quantity defined in (3.26).

S(X, p) {f: X —[0,400) : p{f >t} < +oo for any t > 0}.

(T, (pa)zex/rs ) A rearrangement system, defined in Definition

E, ENT,, the x-section of £ C X.

f* E* Rearrangements of f or F, see Definition 3.4.25l

(R,T), (R,T,G) A Steiner or a Schwarz system, see Definitions |3.6.30| and |3.6.32l
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