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Chapter 1

Introduction

The notion of an m-rectifiable set plays a central role in Geometric Measure Theory.
Indeed, m−rectifiable sets are a measure-theoretic generalization of C1 m−dimensional
submanifolds of Rn.
This concept was first introduced by Besicovitch for 1-dimensional sets in the plane, then
his work was extended by Federer to m−subsets of Rn, with m an integer, and finally
generalized by Marstrand to fractal sets in the plane whose Hausdorff dimension is any
positive real number.

In order to appreciate the importance of these sets we mention the decomposition the-
orem for Borel sets with finite Hausdorff measure ([DL08], Theorem 5.7). We refer to
[DL08], Definition 5.6, for the definition of a purely unrectifiable set:

Theorem 1: Let B be a Borel set such that Hm(B) < ∞. Then there exist two Borel
sets Bu, Br ⊂ B such that

• Br is rectifiable,

• Bu is purely unrectifiable,

• Bu ∪Br = B

and such a decomposition is unique up to sets with zero Hm measure.

Therefore it’s useful to have some criteria to establish if a set is rectifiable or not. Rec-
tifiable sets can be characterized in several different ways:

• through the existence ofm-dimensional density (see [AFP00], Besicovitch-Marstrand-
Mattila Theorem 2.63, where it is also proved that this density is equal to 1);

• in a more geometric way, using cones (see [DL08], Theorem 4.6);

• using the Besicovitch-Federer projection theorem ([MA95], Theorem 18.1), which
instead characterize purely unrectifiable sets to be those sets with finite Hm mea-
sure and null projection on almost every m-dimensional linear plane;

• through tangent measures: this notion was introduced by Preiss in his work on
rectifiable sets and the aim of this Thesis is to prove the following theorem, which
explaines this characterization.

Theorem 2: Let B ⊆ Rn be a Borel set such that µ = HmxB is a Radon measure, then
the following statements are equivalent:

(i) B is m−rectifiable;
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4 CHAPTER 1. INTRODUCTION

(ii) For µ−a.e. x ∈ Rn there exists Wx ∈ G(m,Rn) such that

Tan(m)(µ, x) =
{
HmxWx

}
,

where Tan(m)(µ, x) is the set of m−tangent measures of µ at x.

For the formal definition of m−tangent measure we refer to Definition 37.
The interesting aspect of this characterization is that it explains the description of rec-
tifiable sets as ′′m−dimensional surfaces in Geometric Measure Theory′′. Indeed, the
approximate tangent space to an m-rectifiable measure can be seen as a generalization of
the tangent plane to a C1 submanifold of the Euclidian space in Differential Geometry.
Namely, let S be an m−dimensional C1 submanifold of Rn, µ = HmxS and x ∈ S. If we
set

Sr =

(
S − x
r

)
=
{
y ∈ Rn : x+ ry ∈ S

}
,

then we have

r−m(Tx,r)∗ µ = HmxSr

where Tx,r(y) =
y − x
r

and (Tx,r)∗µ is the push-forward measure.

To get a tangent measure we let r tend to 0. But, since S is C1, as r ↘ 0 the sets Sr
converge to the tangent plane Tx to S at x.

In Chapter 2 we see some preliminary definitions for the work of the following chapters:
the basic notions of measure theory and of Hasudorff measures, the elementary proper-
ties of Lipschitz functions, the definition of weak* convergence for Radon measures. In
particular, in Section 2.5 we prove the Area Formula, a result that will be essential for
the proof of Theorem 2.

In Chapter 3 we define the notion of m-rectifiable set, adopting the terminology first
introduced by Federer in [FE69].
Then we define tangent measures using the weak* convergence for Radon measures.
Therefore, in Section 3.2 we show that these two concepts are linked. Indeed, Theorem
2 states a necessary and sufficient condition for a subset B of Rn to be m−rectifiable
involving tangents measures: given a Radon measure µ, a set is m-rectifiable if and only
if the tangent measure to µ at almost all its points is the m-dimensional Hausdorff mea-
sure restricted to an appropriate m-dimensional subspace of Rn. In particular, before
starting with the proof we see some properties of the function defined in the support of
the measure µ that associetes to each point x a m-plane Wx in Rn with the property
that the tangent measure to µ in x is the m−Hausdorff measure restrected to that affine
subspace of Rn.

Finally, in Chapter 4, we apply Theorem 2 to sets of finite perimeter: we prove that the
reduced boundary of a set E with finite perimeter is (n− 1)− rectifiable by proving that
the Radon measure µ = ||D1E || is (n− 1)− rectifiable.



Chapter 2

Preliminaries and notation

In this Chapter we introduce the basic definitions and results of measure theory; we
mainly follow [EG92], Section 1.1, part of 1.5, something from 1.7 and 1.8, 1.9, a great
part of Chapter 2, Sections 3.1, 3.2, 3.3.

However, Theorem 16 is Theorem 3.1.16 in [FE69] and Theorem 22 is the second part of
Theorem 3.2 in [SI84].

2.1 Notation and Basic Notions of Measure Theory

Given x ∈ Rn and r > 0 we denote by U(x, r) and B(x, r] the open and closed ball of
center x and radius r, while we use ∂B(x, r) to refer to its boundary.
In general, for any set A ⊂ Rn we denote by Ā its topological closure and by ∂A its
topological boundary.

Next, we recall the basic definitions of measure theory. Let X be a set (in our later
argument we will have X = Rn):

Definition 1. A family of sets A ⊂ P(X) is called σ-algebra if:

(i) ∅, X ∈ A;

(ii) if A ∈ A, then X \A ∈ A

(iii) if {Ak}k∈N, then
∞⋃
k=1

Ak ∈ A.

In particular, if (X, τ) is a topological space, we define B(X), the Borel σ-algebra of
(X, τ), as the smallest σ-algebra on X which contains all open sets (i.e., τ ⊂ B(X)).
For instance, when we consider the Borel σ-algebra B(Rn), we refer to Rn endowed with
its standard topology generated by the family of open balls

{
B(x, r) : x ∈ Rn, r ∈ R>0

}
.

Definition 2. A mapping µ : A −→ [0,∞] is a measure on the σ-algebra A if:

(i) µ(∅) = 0;

(ii) if {Ak}k∈N is a sequence of disjoint sets in A, then µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak).

5



6 CHAPTER 2. PRELIMINARIES AND NOTATION

Then (X,A, µ) is a measure space.

Definition 3. A set A ⊂ X is µ−measurable if for each set B ⊂ X,

µ(B) = µ(B ∩A) + µ(B \A).

It’s useful to extend the notion of measurability from sets to functions:

Definition 4. Let (X,A, µ) be a measure space, (Y, τ) be a topological space and
f : X −→ Y be a function. We say that f is µ-measurable if f−1(U) is µ−measurable
for all U ∈ τ .

Definition 5. Given two measure spaces (X,M), (Y,N), where N is the Borel σ−algebra
of Y , a measurable function f : X → Y and a measure µ defined on M, the pushfor-
ward of µ is the measure f∗(µ) on Y given by:(

f∗(µ)
)
(B) = µ

(
f−1(B)

)
, forB ∈ N.

Definition 6. Let (X,A, µ) be a measure space, we say that µ is:

• finite if µ(X) <∞;

• σ- finite if there exists a family of µ-measurable sets {Ak}k∈N such that µ(Ak) <∞

and X =

∞⋃
k=1

Ak.

Moreover, if there is a topology on X, µ is said to be

• a Borel measure if B(X) ⊂ A;

• a Borel regular measure if it is a Borel measure and for any A ⊂ X there exists
B ∈ B(X) so that A ⊂ B and µ(A) = µ(B);

• a Radon measure if it is Borel regular and µ(K) <∞ for each K compact subset
of X.

If E ⊂ X and µ is a measure on X, we denote by µxE the measure defined by(
µxE

)
(A) := µ(A ∩ E).

From now on, we will consider the case X = Rn.

2.2 Hausdorff Measures on Rn

Idea: We want to define in Rn some ”lower dimensional” measures in order to be able
to associate a measure and a dimension (not necessarily in N) also to subsets of Rn
which are not n-dimensional. For this reason we introduce on Rn the so called Hausdorff
measures: these measures are defined in terms of the diameters of proper coverings and
we say that a set A ⊂ Rn is a m-dimensional subset of Rn if 0 < Hm(A) <∞ for some
0 ≤ m ≤ n.

Definition 7. Let A ⊂ Rn,
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(i) if 0 ≤ m <∞, 0 < δ ≤ ∞ we define

Hm
δ (A) ≡ inf

{ ∞∑
j=1

α(m)
(diam(Cj)

2

)m
: A ⊂

∞⋃
j=1

Cj , diamCj ≤ δ

}
,

where

α(m) ≡ πm/2

Γ
(
m
2 + 1

) ,
and the gamma function is defined by Γ(m) ≡

∫ ∞
0

e−xxm−1dx, for 0 < m <∞.

(ii)
Hm(A) ≡ lim

δ→0
Hm
δ (A) = sup

δ>0
Hm
δ (A)

and we call it m-dimensional Hausdorff measure on Rn. b

Therefore the Hausdorff dimension of a set A ⊂ Rn is defined to be

dimH(A) ≡ inf{0 ≤ s <∞ : Hs(A) = 0} = sup{0 ≤ s <∞ : Hs(A) =∞}.

We observe that dimH(A) ≤ n since Hs ≡ 0 on Rn if s > n.

b But is there any relation between the definition of Ln as the n-fold product of
L1 and Hn computed in terms of coverings of arbitrary small diameter? The following
important theorem guarantees that equality holds:

Theorem 8. Hn = Ln on Rn.

As for the proof we refer to [EG92], section 2.2, we only remark that this proof is based
on the Isodiametric Inequality:

Theorem 9 (Isodiametric Inequality). For all sets A ⊂ Rn,

Ln(A) ≤ α(n)

(
diam(A)

2

)n
.

Therefore it’s useful to recall that Hm, 0 ≤ m < ∞, is a Borel regular measure on Rn,
but is not a Radon measure if 0 ≤ m < n, since Rn is not σ- finite with respect to Hm

([EG92], section 2.1, Theorem 1).
However, if B is a Borel measurable set such that Hm(B ∩K) < ∞, for all K ⊂ Rm
compact, HmxB is a Radon mesure on Rm.

Finally, we introduce some useful results about densities of Hausdorff measures. For the
Lebesgue measure, there is a theorem which states that, given E ⊂ Rn Ln-measurable,
the set of points in E whose neighbourhood is partially in E and partially outside of E
has Lebesgue measure equal to 0 (for the proof of this theorem see [EG92], Section 1.7):

Theorem 10 (Lebesgue-Besicovitch Differentiation Theorem). Let E ⊂ Rn be Ln−
measurable, then

lim
r→0

Ln
(
B(x, r) ∩ E

)
α(n)rn

=

1 for Lna.e. x ∈ E,

0 for Lna.e. x ∈ Rn \ E.
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Therefore the concept of density was generalized by Besicovitch to a general Radon
measure in Rn: in particular, in the above hypothesis on the set B (i.e., B is a Borel
measurable set with the property that Hm(B ∩ E) < ∞ for all K ⊂ Rm compact), the
following result holds:

Proposition 11. (i) For Hm- a.e. x ∈ B

1

2m
≤ Θm

∗ (HmxB, x) ≤ Θm,∗(HmxB, x) ≤ 1,

where Θm
∗ (HmxB, x) and Θm,∗(HmxB, x) are the densities defined by

Θm
∗ (HmxB, x) = lim inf

r→0

Hm
(
B(x, r) ∩B

)
α(m) rm

and

Θm,∗(HmxB, x) = lim sup
r→0

Hm
(
B(x, r) ∩B

)
α(m) rm

.

(ii) If B ⊂ Rn, B is Hm−measurable and Hm(B) <∞, for Hm−a.e. x /∈ B

Θm(HmxB, x) = lim
r→0

Hm
(
B(x, r) ∩B

)
α(m) rm

= 0.

As far as for its proof we refer to [EG92], Section 2.3; we just observe that it is based on
one of the two fundamental covering theorems (the other one is Besicovitch’s covering
theorem, [EG92], Section 1.5):

Theorem 12 (Vitali’s Covering Theorem). Let F be any collection of nondegenerate
closed balls in Rn with

sup{diam B |B ∈ F} <∞.

Then there exists a countable family G of disjoint balls in F such that⋃
B∈F

B ⊂
⋃
B∈G

B̂,

where B̂ denotes the concentric closed ball with radius 5 times the radius of B.

Proof: We refer to [EG92], Section 1.5.2, Theorem 2. �

2.3 Lipschitz functions

We recall that a function f : Rn −→ Rm is called Lipschitz if there exists a constant C
such that

|f(x)− f(y)| ≤ C|x− y| for allx, y ∈ Rn.

Therefore, we can define the Lipschitz constant of f

Lip(f) ≡ sup

{
|f(x)− f(y)|
|x− y|

: x, y ∈ Rn, x 6= y

}
.
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Definition 13 (Differentiability). Let f : Rm −→ Rn be a function and x be a point in
Rm. We say that f is differentiable at x if there exists a linear map

L : Rm −→ Rn

such that

lim
y→x

|f(y)− f(x)− L(x− y)|
|x− y|

= 0,

which is equivalent to require

f(y) = f(x) + L(y − x) + o(|y − x|) as y → x.

If such a map exists, it’s unique and we indicate it with Df(x), the derivative or
differential of f at x.

There is an important link between Lipschitz and differentiable functions, as Rademacher’s
theorem states:

Theorem 14 (Rademacher’s Theorem). Let f : Rn −→ Rm be a (locally) Lipschitz func-
tion. Then f is (Fréchet) differentiable at Ln−almost every x ∈ Rn, i.e., by Definition
13, for Ln−a.e. x ∈ Rn there exists a linear map Df : Rn → Rm such that:

lim
y∈Rn,y→x

|f(y)− f(x)−Df(x) · (y − x)|
|y − x|

= 0.

Proof: We refer to [EG92], Section 3.1.2, Theorem 2. �

Now we introduce two extension theorems: the first one ensures the possibility to extend
a Lipschitz map f which is defined in a subset A ⊂ Rn to a Lipschitz map f̄ defined in
the whole space, without enlarging the Lipschitz constant, while the second one states
states that this function f is as closer as we want to a function defined on the whole
space Rn which is of class C1.

Theorem 15 (Extension Theorem for Lipschitz Functions). Let A be a subset of Rn and
f : A −→ Rm be Lipschitz. Then there exists a Lipschitz function f̄ : Rn −→ Rm such
that:

(1) f̄ = f on A,

(2) Lip(f̄) = Lip(f).

Proof: Step 1: We first assume m = 1, f : A→ R. Define:

f̄(x) ≡ inf
a∈A
{f(a) + Lip(f)|x− a|}.

Choose b ∈ A: by the definition of f̄ we have f̄(b) ≤ f(b), but also, by the definition of
Lipschitz function:

f(b) ≤ f(a) + Lip(f)|b− a|, for all a ∈ A

and so f(b) ≤ f̄(b). Now, if x, y ∈ Rn, we have, using the triangular inequality

f̄(x) ≤ inf
a∈A
{f(a) + Lip(f)(|y − a|+ |x− y|)} = f̄(y) + Lip(f)|x− y|

and, changing the role of x and y, we have also f̄(y) ≤ f̄(x) + Lip(f)|x− y|.
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Step 2: If f : A → Rm, f = (f1, . . . , fm), we define f̄ ≡ (f̄1, . . . , f̄m). Now we have
found a function f̄ such that

|f̄(x)− f̄(y)|2 =

m∑
i=1

|f̄ i(x)− f̄ i(y)|2 ≤ m(Lip(f))2|x− y|2.

Step 3: For the proof that the extension map f̄ can be chosen in such a way that
Lip(f̄) = Lip(f) we refer to Kirszbraun’s theorem ([FE69], Theorem 3.1.16). �

Theorem 16 (Whitney’s extension theorem). Let A be a subset of Rn and f : A −→ Rm
be a Lipschitz function. For every ε > 0 there exists a function f̄ ∈ C1(Rn,Rm) such
that Ln

(
{x ∈ A : f(x) 6= f̄(x)}

)
< ε.

Proof: See [FE69], Theorem 3.1.16.

Definition 17. (Jacobian of a linear map) Assume L : Rm −→ Rn is linear.

(i) If m ≤ n, by Polar Decomposition Theorem we can write L = O ◦ S, where S :
Rm −→ Rm is a symmetric map and O : Rm −→ Rn is an orthogonal map, and we
define the Jacobian of L to be

JLK = |detS|.

(ii) If m ≥ n, by Polar Decomposition Theorem we can write L = S ◦ O?, where
S : Rn −→ Rn is a symmetric map and O : Rn −→ Rm is an orthogonal map, and
we define the Jacobian of L to be

JLK = |detS|.

Definition 18. Let f : Rm −→ Rn be a Lipschitz map. The Jacobian of f is

Jf(x) ≡ JDf(x)K forLma.e. x.

Remark 19. Here we have implicitly used Theorem 15 to extend the function from A
to the whole Rm and Theorem 14, which ensures the differentiability of the function f
a.e. and so the existence of Jf a.e.

Another technical result that we are going to use to prove the Area Formula and Lemma
40 is:

Lemma 20. Let f : Rm −→ Rn, m ≤ n.
Let t > 1 and the Borel set A ≡ {x| Df(x) exists, Jf(x) > 0}. Then there is a
countable collection {Ek}∞k=1 of Borel subsets of Rm such that

(i) A =
⋃∞
k=1 Ek;

(ii) f |Ek is injective, for all k ∈ N;

(iii) for each k ≥ 1 there exists a symmetric automorphism Tk : Rm −→ Rm such that

Lip
(
(f |Ek) ◦ T−1

k

)
≤ t, Lip

(
Tk ◦ (f |Ek)−1

)
≤ t,

t−m|detTk| ≤ Jf |Ek ≤ tm|detTk|.

Proof: See [EG92], Section 3.3.1, Lemma 3. �

Next we recall the following theorem, which relates the m−measure of the image of a
subset A ⊂ Rn via a Lipschitz function to the m−measure of A itself:
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Theorem 21. Let f : Rn −→ Rm be Lipschitz, A ⊂ Rn, 0 ≤ m <∞. Then

Hm(f(A)) ≤ (Lip(f))mHm(A).

Proof: See [EG92], Section 2.4.1, Theorem 1. �

In particular, if n > k and P : Rn −→ Rk is the canonical projection, for each A ⊂ Rn
and 0 ≤ m <∞ we have:

Hm(P (A)) ≤ Hm(A),

since Lip(P ) = 1.

Finally we remark the following theorem wich gives a link between the Hausdorff measure
and a Borel-regular measure:

Theorem 22. If µ is a Borel-reguler measure on Rn and t ≥ 0 is such that if A ⊂ B
and Θ∗,m (µ,B, x) ≤ t for all x ∈ A, then

tHn(A) ≤ µ(B).

Proof: We refer to [SI84], Theorem 3.2-(1). �

2.4 Weak* Convergence of Radon Measures

First of all, we recall the following general construction. If X is a Banach space, it is
possible to define the weak* topology on its dual X ′ as the weakest topology on X ′

which makes continuous the family of applications (ϕx)x∈X , where for each x ∈ X the
map ϕx : X ′ −→ R is defined by f 7→ ϕx(f) =< f, x >= f(x) (< ·, · > is the duality
between X and X ′).

In the same way, we define the weak* convergence of measures. Indeed, if we endow
the space of continuous functions with compact support Cc(Rn;Rm) with the topology
of uniform convergence on compact sets (i.e., given a sequence of functions {ϕj}j∈N ⊂
Cc(Rn;Rm) we say that ϕj → ϕ uniformly on compact sets if there exists a compact set
K so that supp(ϕj) ⊂ K for every j and ϕj → ϕ uniformly). The space Cc(Rn;Rm)
endowed with this topology is a Banach space.

Now, let µ be a Radon measure. Then the functional

ϕ →
∫
Rn

ϕdµ

is continuous and linear on Cc(Rn;Rm). Conversely, we have the following theorem:

Theorem 23 (Riesz’ Representation Theorem). Let L : Cc(Rn;Rm) → R be a linear
functional satisfying

sup{L(ϕ) : ϕ ∈ Cc(Rm;Rm), ||ϕ||∞ ≤ 1, supp(f) ⊂ K} <∞

for each compact set K ⊂ Rn. Then there exists a Radon measure µ on Rn and a
µ−measurable function σ : Rn → Rm such that

(i) |σ(x)| = 1 for µ−almost every x, and
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(ii) L(ϕ) =

∫
ϕ ·σdµ, for all ϕ ∈ Cc(Rn;Rm), where ϕ ·σ is the usual Euclidean scalar

product in Rm, that is ϕ(x) · σ(x) =

m∑
i=1

ϕi(x)σi(x).

Proof: We refer to [EG92], Section 1.8, Theorem 1.

This allows us to endow the space of Radon measures with the topology of the dual space
of Cc(Rn) and to give the following definition:

Definition 24. Let {µj}j∈N be a sequence of Radon measures on Rn. We say that µj
converges weakly* to µ, µj

∗
⇀
k→∞

µ, if

lim
j→∞

∫
Rn

ϕdµj =

∫
Rn

ϕdµ

for all ϕ ∈ Cc(Rn).

We recall also the following theorem:

Theorem 25. Let {µj}j∈N, µ be Radon measures on Rn. The following statements are
equivalent:

(1) lim
j→∞

∫
Rn

ϕ(x) dµj =

∫
Rn

ϕ(x) dµ for all ϕ ∈ Cc(Rn);

(2) • lim sup
j→∞

µj(K) ≤ µ(K) for any K ⊂ Rn compact,

• lim inf
j→∞

µj(A) ≥ µ(A) for any A ⊂ Rn open;

(3) lim
j→∞

µj(B) = µ(B) for any bounded Borel set B ⊂ Rn such that µ(∂B) = 0.

Remark 26. Sometimes Theorem 25 is called Portmanteau’s Theorem.

Proof: (1) ⇒ (2) Let K ⊂ Rn be a compact set and A ⊂ Rn be an open set with the
property that K ⊂ A. There exists ϕ ∈ Cc(Rn) so that 0 ≤ f ≤ 1, ϕ = 1 on K and
ϕ = 0 on Rn \A. Then

lim sup
j→∞

µj(K) ≤ lim
j→∞

∫
Rn

ϕ(x) dµj =

∫
Rn

ϕ(x) dµ ≤ µ(A).

In order to obtain the first claim it suffices to recall that µ(K) = inf
K ⊂

open
A
µ(A).

With the same argument we prove also the second statement.
(2) ⇒ (1) Let B ⊂ Rn be a bounded Borel set such that µ(∂B) = 0. Then

µ(B) = µ(int(B)) ≤ lim inf
j→∞

µj(int(B)) ≤ lim sup
j→∞

µj(B̄) ≤
B̄compact

µ(B̄) = µ(B).

Therefore we obtain the existence of the limit and the equality

lim
j→∞

µj(B) = µ(B).

(3)⇒(1) Let ϕ ∈ Cc(Rn). Without loss of generality we can assume ϕ ≥ 0. Next we
choose R > 0 so that µ

(
∂B(0, R)

)
= 0 and supp(ϕ) ⊂ B(0, R). Moreover we fix ε > 0

and we take 0 = t0 < t1 < · · · < tN = 2||ϕ||∞ be such that:

• ti − ti−1 < ε, for all i = 1, . . . , N ;
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• µ
(
ϕ−1({ti})

)
= 0, for all i = 1, . . . , N .

The sets Bi = ϕ−1
(
(ti−1, ti]

)
, ∀ i = 1, . . . , N are bounded, Borel and µ(∂Bi) = 0 for

i ≥ 2.
Therefore:

N∑
i=2

ti−1µ(Bi) ≤
∫
Rn

ϕ(x)dµ =

∫
∪Ni=1 Bi

ϕ(x)dµ =

N∑
i=1

∫
Bi

ϕ(x) dµ ≤

≤
N∑
i=1

tiµ(Bi) ≤ εµ(B(0, R)) +

N∑
i=2

tiµ(Bi).

With the same argument we get
N∑
i=2

ti−1µj(Bi) ≤
∫
Rn

ϕ(x)dµj ≤ εµj(B(0, R)) +

N∑
i=2

tiµj(Bi).

Next we take the difference
N∑
i=2

ti−1µ(Bi)−
N∑
i=2

ti−1µj(Bi) ≤
∫
Rn

ϕ(x)dµ−
∫
Rn

ϕ(x)dµj ≤

≤
(
εµ(B(0, R)) +

N∑
i=2

tiµ(Bi)

)
−
(
εµj(B(0, R)) +

N∑
i=2

tiµj(Bi)

)
which can be rewritten as

N∑
i=2

tiµj(Bi)−
N∑
i=2

ti−1µj(Bi)+εµj(B(0, R)) ≤
∫
Rn

ϕ(x)dµ−
∫
Rn

ϕ(x)dµj ≤

≤
N∑
i=2

tiµ(Bi)−
N∑
i=2

ti−1µ(Bi) + εµ(B(0, R)).

At this point we let j →∞ and we obtain

lim sup
j→∞

∣∣∣ ∫
Rn

ϕ(x)dµ−
∫
Rn

ϕ(x)dµj

∣∣∣ ≤ εµ(B(0, R)) +

N∑
i=2

(ti − ti−1)µ(Bi)

≤ εµ(B(0, R)) + ε

N∑
i=2

µ(Bi) ≤ 2εµ(B(0, R)).

In order to prove that lim sup = lim = 0, it suffices to let ε→ 0. �

Theorem 25 gives us other two criterions in order to establish if a sequence {µj}j∈N of
Radon measures on Rn converges weakly∗ to a Radon measure µ on Rn: one of the three
statements of Theorem 25 must hold.

Finally, we recall the theorem which ensures the sequential compactness for the weak
notion of convergence:

Theorem 27. Let (µk)k∈N be a sequence of outer Radon measures in Rn such that for
any compact set K ⊂ Rn we have supk∈N µk(K) < +∞.
Then there exists a subsequence (µkj )j∈N and a Radon outer measure in Rn such that

µkj
∗
⇀
j→∞

µ.

Proof: See [EG92], Theorem 2, Section 1.9. �
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2.5 Area Formula
In the proof of Theorem 42 the following result will play a central role:

Theorem 28 (Area Formula). Let A ⊂ Rm be a Lm- measurable set and f : A −→ Rn
Lipschitz, m ≤ n, then∫

Rn
H0
(
A ∩ f−1{y}

)
dHm(y) =

∫
A

Jf dLm.

Remark 29. We note that if f : A −→ Rn is also injective we have the identity

Hm(f(A)) =

∫
Rn

H0
(
A ∩ f−1{y}

)
dHm(y) and so the area formula can be written as

Hm(f(A)) =

∫
A

Jf dLm.

Proof of the Area Formula. By Rademacher’s Theorem we can assume that Df(x)
and Jf(x) exist for all x ∈ A. Moreover, without loss of generality, we can also assume
Lm(A) <∞.

First of all we introduce the following lemma, which gives a sense to the integral
∫
Rn

H0
(
A∩

f−1{y}
)
dHm(y):

Lemma 30. Let f : Rm −→ Rn be a Lipschitz map and A ⊂ Rm be Lm-measurable.
Then:

(i) f(A) is Hm- measurable,

(ii) the mapping y 7−→ H0
(
A ∩ f−1{y}

)
is Hm-measurable on Rn,

(iii)
∫
Rn

H0
(
A ∩ f−1{y}

)
dHm(y) ≤ (Lip(f))mLm(A).

Case 1. A ⊂ {Jf > 0} Fix t > 1 and take Borel disjoint sets {Ek}∞k=1 as in Lemma 20
(in particular A = ∪∞k=1Ej).

Then define the family Bk = {Q| Q = (a1, b1] × · · · × (am, bm], ai = ci
k , bi = ci+1

k , ci ∈
Z, i = 1, 2, . . . ,m} and set ∀Qi ∈ Bk,∀ j = 1, 2, . . .

F ij = Ej ∩Qi ∩A.

It’s still true that the sets F ij are disjoint and A = ∪∞i,j=1 F
i
j , since Ej = ∪∞i=1F

i
j .

Step 1: Claim:

lim
k→∞

∞∑
i,j=1

Hm(f(F ij )) =

∫
Rn

H0
(
A ∩ f−1{y}

)
dHm(y).

Proof of the Claim: Define

gk ≡
∞∑

i,j=1

χf(F ij ).

Clearly gk(y) is measurable for all k since it is the characteristic function of a countable
union of Hm−measurable sets. Indeed F ij = Ej ∩ Qi ∩ A is the intersection of three
Lm−measurable sets (in fact we have picked A measurable, while Ej are Borel sets, and
so Lm− measurable, but also each Qi, being a cube in Rm, is Lm−measurable) and by
(i) of the previous lemma we find that f(F ij ) is Hm− measurable.
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In particular we observe that gk(y) is exactly the number of sets F ij such that y ∈ f(F ij ),
that is F ij ∩ f−1{y} 6= ∅. Since A = ∪∞i,j=1 F

i
j , gk(y) ↗

k→∞
H0
(
A∩ f−1{y}

)
. Now, since

0 ≤ g1(y) ≤ g2(y) ≤ . . . ∀y ∈ Rn

and limk→∞ gk(y) = H0
(
A ∩ f−1{y}

)
, we can apply the Monotone Convergence Theo-

rem to obtain the result.

Step 2: Observe that we can write

Hm(f(F ij )) = Hm(f |Ej ◦ T−1
j ◦ Tj(F ij ))

and by (iii) in Lemma 20, we have also Hm(f |Ej ◦ T−1
j ◦ Tj(F ij )) ≤ tmLm(Tj(F

i
j )) and

Lm(Tj(F
i
j )) = Hm(Tj ◦ (f |Ej )−1 ◦ f(F ij )) ≤ tmHm(f(F ij )).

Lemma 31. Let L : Rm −→ Rn be a linear map, m ≤ n. Then

Hm(L(A)) = JLKLm(A),

for all A ⊂ Rn.

Using again (iii) in Lemma 20 and this lemma, we find

t−2mHm(f(F ij )) ≤ t−mLm(Tj(F
i
j )) = t−m|detTj |Lm(F ij )

≤
∫
F ij

Jf dx ≤ tm|detTj |Lm(F ij ) = tmLm(Tj(F
i
j ))

≤ t2mHm(f(F ij )).

Then we can sum on i and j:

t−2m
∞∑

i,j=1

Hm(f(F ij )) ≤
∫
A

Jf dx ≤ t2m
∞∑

i,j=1

Hm(f(F ij )).

Now we recall the Claim in Step 1 and we let k →∞ to find

t−2m

∫
Rn

H0
(
A ∩ f−1{y}

)
dHm(y) ≤

∫
A

Jf dx ≤ t2m
∫
Rn

H0
(
A ∩ f−1{y}

)
dHm(y).

At this point we get the conclusion just letting t→ 1+.

Case 2: A ⊂ {Jf = 0}. Fix ε > 0 and write f as f = p ◦ g, where

g : Rm −→ Rn × Rm, g(x) ≡ (f(x), εx), for x ∈ Rm

and
p : Rn × Rm −→ Rn, p(y, z) = y, for y ∈ Rn, z ∈ Rm.

Step 1: Claim: There exists a constant C > 0 such that

0 < Jg(x) ≤ Cε

for all x ∈ A.
Proof of the claim We observe that g = (f1, . . . fn, εx1, . . . εxm) and so

Dg(x) =

(
Df(x)
εI

)
(n+m)×m

.

Now the Binet-Cauchy Formula gives us a link between Jf(x)2 and the (m × m)−
subdeterminants of Df(x), indeed:
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Theorem 32 (Binet - Cauchy Formula). Assume m ≤ n and L : Rm −→ Rn is linear.
Then

JLK2 =
∑
λ∈Λ

(det(Pλ ◦ L))2.

Therefore Jg(x)2 = {sum of squares of (n×n)− subdeterminants of Dg(x)} ≥ ε2m > 0,
being the sum of the squares of (m×m)− subdeterminants of Dg(x).
Moreover using again Binet-Cauchy Formula and recalling that |Df(x)| ≤ Lip(f) < ∞,
we obtain

Jg(x)2 ≤ Cε2 for each x ∈ A

since Jg(x)2 is sum of Jf(x)2 and squares of terms each involving at least one ε.

Step 2 p : Rn × Rm −→ Rn is a projection, then

Hm(f(A)) ≤ Hm(g(A))

and, by the first Case, we have∫
Rm+n

H0
(
A ∩ g−1{y, z}

)
dHm+n(y, z) =

∫
A

Jg(x) dx.

Then

Hm(f(A)) ≤ Hm(g(A)) ≤
∫
Rm+n

H0
(
A ∩ g−1{y, z}

)
dHm+n(y, z)

=

∫
A

Jg(x) dx ≤ εCLm(A).

Now we let ε→ 0 to conclude Hm(f(A)) = 0; in particular, since suppH0
(
A∩f−1{y}

)
⊂

f(A), ∫
Rm

H0
(
A ∩ f−1{y}

)
dHm = 0.

Recalling that in this case A ⊂ {Jf = 0}, we find∫
A

Jf dx = 0 =

∫
Rm

H0
(
A ∩ f−1{y}

)
dHm.

General case: We write A = A1 ∪ A2 with A1 ⊂ {Jf > 0} and A2 ⊂ {Jf = 0} and
we apply the first two cases above. �

Lemma 33. Let A ⊂ Rm be a Lm−measurable set and f : A−→Rn be an injective
function. Then for each u : Rn −→ R∫

A

(u ◦ f) Jf dLm =

∫
f(A)

u dHm. (2.1)

Proof: First of all we consider the case in which u is a simple function, i.e. there exist
α1, . . . , αk ∈ R and E1, . . . Ek ⊂ Rn measurable sets such that

u(x) =

k∑
i=1

αiχEi(x)

where χEi is the characteristic function of Ei.
Then

u ◦ f(x) =

k∑
i=1

αiχEi(f(x)).
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and we can rewrite the first member in (2.1) as∫
A

u(f(x)) Jf(x) dLm =

∫
A

k∑
i=1

αiχEi(f(x)) Jf(x) dLm =

k∑
i=1

αi

∫
A

χEi(f(x)) Jf(x) dLm

=

k∑
i=1

αi

∫
f−1(Ei)

Jf dLm

Area form.
=

k∑
i=1

αi

∫
Ei

H0
(
f−1(Ei) ∩ f−1(y)

)
dHm(y)

=

k∑
i=1

αiH
m(Ei).

While the second member is:∫
A

u(y) dHm(y) =

∫
f(A)

k∑
i=1

αi χEi(y) dHm(y) =

k∑
i=1

αiH
m(Ei)

and we have found the result in the case in which u is a simple function.
In the general case u : Rn −→ R is a measurable function: then it suffices to recall that
there exist a sequence of simple functions {φj} such that 0 ≤ |φ1| ≤ |φ2| ≤ · · · ≤ |f |,
φj → u pointwise and φj → u uniformely on any set on which u is bounded.
Therefore, observing that u is even an integrable function and has the property that
|φj | ≤ u a.e. for all j, we obtain the result using the Dominated Convergence Theorem:∫

f(A)

u dHm = lim
j→∞

∫
f(A)

φj dH
m =

∫
A

(φj ◦ f) Jf dLm =

∫
A

(u ◦ f) Jf dLm. �
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Chapter 3

Rectifiable Sets and Tangent
Measures

The principal sources for this chapter are [AFP00], [DL08], [MA95], [MO09] and [SI84].
In particular, the ideas used in Section 3.2.3 are taken from the proof of Theorem 11.8
in [SI84].

3.1 Rectifiable Sets

Let 1 ≤ m ≤ n− 1 be an integer. We consider Rn equipped with the Euclidean metric.

Definition 34. We say that a set B ⊂ Rn is m-rectifable if there exist finitely or
countably many Borel measurable sets Ai ⊂ Rm and Lipschitz functions fi : Ai −→ Rn
such that

Hm
[
B 	

∞⋃
i=1

fi(Ai)
]

= 0,

where 	 denotes the symmetric difference, i.e., for any two sets A,B, A	B = (A\B)∪
(B \A).

Remark 35. We observe that, using Whitney’s extension theorem (Theorem 16), we
could take C1 functions instead of Lipschitz functions in Definition 34.

Definition 36. A measure µ is a m−dimensional rectifiable measure if there exists a
m−dimensional rectifiable set B and a Borel function f such that µ = fHmxB.

We restrict our argumentation to subsets B which are Borel mesurable and such that
Hm(B ∩K) <∞, for all K ⊂ Rn compact. In such a way HmxB is a Radon measure in
Rn.

Definition 37. If µ is a Radon measure and x ∈ Rn, an m-tangent measure of µ at
x is a Radon measure ν with the property that there exists a sequence rj ↘ 0 such that

ν = lim
j→∞

r−mj
(
Tx,rj

)
∗µ,

where Tx,r(y) =
y − x
r

.

19
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Example 38. We pick a ∈ R2 and r > 0 and we consider the circle ∂B(a, r) in R2,
which is a C1 submanifold of R2. If we choose µ = H1x∂B(a, r) to be the measure, then
for each point y ∈ ∂B(a, r)

r−1
j (Ty,rj )∗µ = H1x

(
∂B(a, rj)− y

rj

)
where rj is a sequence tending to 0. We observe that

∂B(a, rj)− y
rj

=
{
z ∈ R2 : rjz + y ∈ ∂B(a, rj)

}
and, when rj tends to zero, this is exactly the tangent line to ∂B(a, r) at the point y.
Therefore, we have proved that every tangent measure is equal to H1x{y + tv : t ∈
R, v ∈ S1 is such that v · (y − a) = 0}.

Notation: We denote the set of all the m-tangent measure of µ at the point x by
Tan(m)(µ, x).

Proposition 39. If B ⊂ Rn is m−rectifiable, then B is Hm−measurable.

Proof: First of all we observe that saying that B is m-rectiable is equivalent to say that
there exist a subsetM0 ⊂ Rn, Hm(M0) = 0, finitely or countably many Borel measurable
sets Ai ⊂ Rm and Lipschitz functions fi : Ai −→ Rn such that

B = M0 ∪
( ∞⋃
i=1

fi(Ai)

)
.

We pick an i ∈ N and we note A = Ai and f = fi: A ⊂ Rm is Lm−measurable and
Lm(A) < ∞. Since the measure Lm is Radon, then for all j there exists Cj , compact
subset of A, with the property that Lm(A \ Cj) < 1/j. Moreover we can choose the
sequence of sets {Cj}j∈N so that it is increasing, Cj ⊂ Cj+1.

Next we set A0 =
⋃∞
j=1 Cj ; obviously, L

m(A \A0) = lim
j→∞

Lm(A \ Cj) = 0. We observe

that f(Cj) is still compact, being an image of a compact set by a continuous function,
and that f(A0) =

⋃
j∈N

f(Cj): therefore, each f(Cj) is Hm−measurable and f(A0), be-

ing a countable union of measurable sets, is Hm−measurable.

Now we recall that f(A) \ f(A0) ⊆ f(A \A0)

Hm
(
f(A) \ f(A0)

)
≤ Hm

(
f(A \A0)

)
=
(
Lipf

)m
Lm
(
A \A0

)
= 0,

that is, Hm(f(A) \ f(A0)) = 0.
In conclusion, since f(A0) is Hm−measurable, so it is also f(A). �

It’s useful to recall the following two results: the first one, Lemma 40, is a slightly
different characterization of rectifiable sets that uses as Ai compact sets and that shows
that the family {fi(Ai)}i∈N can be disjoint (we will use it in subsection 3.2.1). Therefore
Lemma 41 relates property (ii) in Theorem 42 to the existence of a finite density, which is
equal to 1 (the converse can also be proved, we refer to [AFP00], Theorem 2.63; actually
this last Theorem proves something more: the rectifiability of a set is equivalent to the
condition that the density is equal to 1 Hm−almost everywhere).
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Lemma 40. If B is m-rectifiable, then there exists a family of sets {Ai}i∈N, Ai ⊂ Rm
and a family of functions {fi}i∈N with

• Ai a compact set;

• fi : Ai −→ Rn a bilipschitz map (i.e. Lipschitz, injective and such that f−1
i |fi(Ai)

is Lipschitz too) with the property that max{Lipfi,Lipf−1
i } < 1 + ε for ε > 0 fixed;

• fi(Ai) are pairwise disjoint,

and such that
Hm

[
B 	

⋃
i

fi(Ai)
]

= 0.

Proof. By Lemma 20 we know that if Ai ⊂ {Jfi > 0} then there exist Borel sets
Ai ⊂ Rm and fi : Ai −→ Rn Lipschitz such that

Hm
[
B 	

∞⋃
i=1

fi(Ai)
]

= 0.

Claim: fi maps Ai ∩ {Jfi = 0} onto a Hm− zero measure set.

Proof: We write fi = p ◦ gi, where, for ε > 0 fixed,

gi : Ai −→ Rn × Rm, gi(x) ≡
(
fi(x), εx

)
forx ∈ Ai

and
p : Rn × Rm −→ Rn, for y ∈ Rn, z ∈ Rm.

We observe that there exists Ci > 0 such that for all x ∈ Ai we have

0 < Jgi(x) ≤ Ciε.

In fact, if we write gi = (f1
i , . . . , f

n
i , εx1, . . . , εxm), we find that

Dgi(x) =

(
Dfi(x)
εI

)
∈M(m+n)×m.

By Binet-Cauchy formula

JLK2 =
∑
λ∈Λ

(det(Pλ ◦ L))2,

we find the inequality Jgi(x)2 ≥ ε2n > 0, since Jgi(x)2 is the sum of the squares of
(n× n)− subdeterminants of Dgi(x).
Again by Binet-Cauchy Formula and by the inequality |Dfi(x)| ≤ Lip(fi) < ∞, we
obtain

Jgi(x)2 ≤ Ciε2 for each x ∈ A,

since Jg(x)2 is sum of Jf(x)2 and squares of terms each involving at least one ε.

At this point,

Hm(fi(Ai)) ≤ Hm(gi(Ai)) ≤
∫
Rm+n

H0
(
Ai ∩ g−1

i {y, z}
)
dHm(y, z)

Area Formula
=

∫
Ai

Jg(x) dx ≤ εCiL
m(Ai).
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and letting ε→ 0 we find Hm(fi(Ai)) = 0. �

Now we want to prove that there exist measurable subsets Cij of Ai s.t. fi|Cij is bilipschitz
for all j. To do this, we use Lemma 20: indeed, this lemma ensures that there exist a
family of Borel measurable subsets {Cij}j∈N of Ai such that Lm

(
Ai \

⋃∞
j=1 C

i
j

)
= 0,

fi,j = fi|Cij is injective and with Lipischitz inverse. Actually we observe that in the
hypothesis of Lemma 20 the function f is defined in the whole space Rm: in order to
obtain this hypothesis we have to use Theorem 15 to extend the functions fi to Lipschitz
functions f̂i : Rm −→ Rn such that Lipf̂i = Lipfi and fi = f̂i|A).

Then, if we set Ei = Ai \
⋃∞
j=1 C

i
j , we have Hm(fi(Ei)) = 0, since the Hausdorff measure

is absolutely continuous with respect to the Lebesgue measure and for all Ei

Hm(fi(Ei)) ≤ (Lipfi)mHm(Ei) ≤ (Lipfi)m Lm(Ei) = 0.

We note that, if Cik∩Cij 6= ∅, with k 6= j, we can consider c̃ik = Cik and c̃ij = Cij \(Cik∩Cij)
and so it’s possible to take these subsets Cij in such a way they are pairwise disjoint and
also to require empty intersection with the set f−1

i (fi(Ei)) (which has Hausdorff measure
equal to zero since f−1|Cij is a Lipschitz function).

In addition, we can find a countable family of subsets Di
j,k of these sets Cij so that the

function fi can be approximated in each Di
j,k by a constant function, i.e., so that its

Lipschitz constant and the Lipschitz constant of its inverse f−1
i |Dij,k are both near 1 (and

then we have found the required condition max {Lip fi, Lip f−1
i } ≤ 1 + ε).

In particular, we can prove the following result, which is pretty similar to Lemma 20:

Claim: There exists a countable family of Borel subsets {Di
j,k}∞k=1 of Rm such that

for all ε ∈ (0, 1):

1) Cij = ∪∞k=1D
i
j,k;

2) fi|Dij,k is injective for all k;

3) for each k ≥ 1 there exists a symmetric automorphism Tk : Rm −→ Rm such that

Lip
(
(fi|Dij,k) ◦ T−1

k

)
≤ 1 + ε, Lip

(
Tk ◦ (f |Dij,k)−1

)
≤ 1 + ε,

Proof: First of all we note that the following inequality is true:

1

1 + ε
+
ε

2
< 1 < 1 + ε− ε

2
.

Choose C, countable dense subset of Cij , and S, countable dense subset of symmetric
automorphisms of Rm.
For each c ∈ C, T ∈ S and for each n ∈ N∗ we define E(c, T, n) as the set of all points
x ∈ Cij ∩B(c, 1/n) satistying ∀v ∈ Rm(

1

1 + ε
+
ε

2

)
|Tv| ≤ |Df(x)v| ≤

(
1 + ε− ε

2

)
|Tv| (3.1)

and, for all a ∈ B(b, 2/n),

|fi(a)− fi(b)−Dfi(b) · (a− b)| ≤
ε

2
|T (a− b)|. (3.2)
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Summing up these two considitions we find the estimate

1

1 + ε
|T (a− b)| ≤ |fi(a)− fi(b)| ≤ (1 + ε)|T (a− b)| (3.3)

for b ∈ E(c, T, n), a ∈ B(x, 2/n).

We can now relabel the countable collection {E(c, T, n) : c ∈ C, T ∈ S,n ∈ N∗} as{
Di
j,k

}∞
k=1

. Indeed, we note that each E(c, T, i) is a Borel set since Df is Borel mea-

surable and we now see that Cij =

∞⋃
k=1

Di
j,k: let b ∈ Cij and decompose Dfi(b) = O ◦ S

where O is an orthogonal map and S is a symmetric map. Then we choose T ∈ S such
that

Lip(T ◦ S−1) ≤

(
1

1 + ε
+
ε

2

)−1

, Lip(S ◦ T−1) ≤ 1

1 + ε
− ε

2
.

Next pick n ∈ N∗ and c ∈ C so that |b− c| < 1/n,

|fi(a)− fi(b)−Dfi(b) · (a− b)| ≤
ε

Lip(T−1)
|a− b| ≤ ε|T (a− b)|

for all a ∈ B(b, 2/n) and so b ∈ E(c, T, n).

At this point, for any set Di
j,k we have Di

j,k = E(c, T, n) for a suitable c ∈ C, T ∈ S, n ∈
N∗. Let Tk = T . Using (3.3) we find that for all b ∈ Di

j,k, a ∈ B(b, 2/n)

1

1 + ε
|Tk(a− b)| ≤ |fi(a)− fi(b)| ≤ (1 + ε)|Tk(a− b)|.

Recalling that Di
j,k ⊂ B(c, 1/n) ⊂ B(b, 2/n), we obtain that this inequality is still true

for all a, b ∈ Di
j,k: this implies that fi|Dij,k is one-to-one and also that

Lip
(
(fi|Dij,k) ◦ T−1

k

)
≤ 1 + ε, Lip

(
Tk ◦ (f |Dij,k)−1

)
≤ 1 + ε. �

Now, we are left to prove that:

1) Cij can be chosen to be compact,

2) fi,j(Cij) ∩ fl,k(Cik) = ∅, ∀i, j, k, l.

Consider a finite set J ⊂ N and define

P iJ =
⋂
j∈J

fi(C
i
j) \

⋃
j∈J

fi(C
i
j).

If we set J = {J ⊂ N |P iJ 6= ∅} , we find that {P iJ | J ∈ J} is a partition of
∞⋃
j=1

fi(Aj).

We fix a j ∈ N and we consider all the subsets J ∈ J containing j: fi|Cij∩f−1
i (P iJ )

is still bilipschitz onto its image fi|Cij∩f−1
i (P iJ )(C

i
j) = P iJ (being the restrinction of the

bilipschitz map fi|Cij ).

Then we choose a compact set Ki
J in P iJ and we note that Di

J = f−1
i (Ki

J) is still
a compact subset of Ai, since fi is a continuous map. Moreover fi|DiJ : Di

J −→ Ki
J is

still a bilipschitz map and we have fi(D
i
J) = fi(D

i
K) or fi(D

i
J) ∩ fi(Di

K) 6= ∅, for all
K,J ∈ J.
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At this point, we can get the conclusion, since the sets Ki
J can be chosen to cover half

Hausdorff measure of fi(Ai) and we can argue as above for fi(Ai) \Ki
J . Therefore we

have found a covering for Hm- almost all fi(Ai). �

Lemma 41. If for all x there exists Wx ∈ G(m,Rn) such that Tan(m)(µ, x) = {HmxWx},
then

Θm(µ, x) = 1.

Proof: We have
r−m

(
Tx,r

)
∗µ ⇀ HmxWx

in the weak-∗ topology.

We take an open ball U(x, (1 − ε)r) of center in x and radius (1 − ε)r, with r > 0 and
ε ∈ (0, 1); by (ii) in Theorem 25, we have:

(1− ε)mα(m) =
(
HmxWx

)(
U(0, 1− ε)

))
≤ lim inf

r→0+
r−m

(
Tx,r

)
∗

(
HmxA

)(
U(0, 1− ε)

)
= lim inf

r→0+
r−m

(
HmxA

)(
U(x, (1− ε)r)

)
.

Therefore,

(1− ε)m ≤ lim inf
r→0+

(
HmxA

)(
B(x, r]

)
α(m)rm

≤ lim sup
r→0+

(
HmxA

)(
B(x, r]

)
α(m)rm

≡ 1.

Now we let ε→ 0+, then U(x, (1−ε)r)↗ U(x, r),
(
HmxA

)(
U(x, r)

)
≤
(
HmxA

)(
B(x, r]

)
and, using Theorem 25 -(ii),

lim sup
r→0+

(
HmxA

)(
B(x, r]

)
rm

= lim sup
r→0+

r−m
(
Tx,r

)
∗

(
HmxA

)(
B(0, 1]

)
≤
(
HmxWx

)(
B(0, 1]

)
= α(m),

and so
Θm(µ, x) = 1. �

3.2 A criterion for rectifiability

Our goal is to prove the following theorem:

Theorem 42. Let B ⊆ Rn be a Borel set such that µ = HmxB is a Radon measure,
then the following statements are equivalent:

(i) B is m-rectifiable;

(ii) For µ−a.e. x ∈ Rn there exists a m-dimensional plane Wx ∈ G(m,Rn) such that

Tan(m)(µ, x) =
{
HmxWx

}
Remark 43. With G(m,Rn) we refer to the Grassman space, i.e. the space of all the
m-dimensional subspaces (or m-planes) of Rn.
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3.2.1 Some properties of the function ϕ(x) = Wx

First of all we recall that the support of a measure µ is (the closure of) the set:

suppµ =
{
x ∈ Rn : for all Vx ∈ B(Rn), neighbourhood of x, we haveµ(Vx) > 0

}
.

We consider a rectifiable measure µ and the µ−almost everywhere defined function ϕ:

suppµ ϕ−→ G(m,Rn)

x 7→ ϕ(x) = Wx,
(3.4)

which associates to each point in the support of the measure µ the plane Wx such that

r−mj (Tx,rj )∗µ ⇀ HmxWx

where {rj}j∈N is a sequence which tends to 0.

Remark 44. We recall that, since suppµ is m−rectifiable, there exist a countable family
of Borel sets {Ai}i∈N and a countable family of Lipschitz functions {fi : Ai → Rn}i∈N
such that

Hm

(
suppµ	

∞⋃
i=1

fi(Ai)

)
.

According to Lemma 40, the functions fi can be chosen to be bilipschitz (and so fi and
f−1
i are both continuous) and we can take the sets Ai with the property that fi(Ai) are
pairwise disjoint.

This means that each x ∈ suppµ belongs to one fi(Ai), i.e., that there exists a point
ξx ∈ Ai such that x = fi(ξ).

Moreover, we recall that Wx is the image of the differential of fi, evaluated in ξx:

Wx = Dfi(ξx)[Rm].

Proposition 45. The function ϕ is µ−measurable.

Proof: For what we have seen in Remark 44, it suffices to prove that for each i ∈ N the
function Dfi : Ai −→ Rn is measurable. This is equivalent to say that all the entries of
the matrix Dfi(·) are measurable.

We note that each function fi is defined in Ai ⊂ Rm, but it can be extended to the whole
Rm using Theorem 15. Then

fi : Rm −→ Rn

and, for each x ∈ Rm, fi(x) = (f1
i (x), . . . , fni (x)), where f ji : Rm −→ R is a Lipschitz

map for all j ∈ {1, . . . , n}.

At this point it suffices to recall that for almost all ξ ∈ Rm we have
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∂f ji
∂ξk

(ξ) = lim
t→0

f ji (ξ + tek)− f ji (ξ)

t
.

But each f ji is a Lipschitz function, thus, in particular, it is a continuous funcion in ξ.

Therefore,
∂f ji
∂ξk

(ξ) is Borel measurable and we get the conclusion. �

We observe that if suppµ is a submanifold of Rn of class C1, then the function ϕ defined
in (3.4) is continuous.

3.2.2 Proof of (i)⇒ (ii)

This part of the proof of Theorem 42 is based on the Area Formula.
By Lemma 40, we know that Hm−a.e. x ∈ B belongs to one and only one fi(Ai) since
Hm

[
B 	

⋃
i fi(Ai)

]
= 0 and that we can require that the sets Ai are compact, while

fi(Ai) are pairwise disjoint.
Therefore, in order to prove that for all u ∈ Cc(Rn)

r−m
∫
B⊂Rn

u d(Ta,r)∗µ(x) −→
r→0

∫
B⊂Rn

u d(HmxWa)(x),

it suffices to prove the result for sets of the form B = fi(Ai), since the integral over the

set having zero Hm−measure is zero and the integral over the disjoint union
∞⋃
i=1

fi(Ai)

is just the sum of the integrals over each fi(Ai).

We denote with ξ the variables in Ai ⊂ Rm and with x the points belonging to fi(Ai) ⊂
Rn. Then we consider a point a ∈ fi(Ai), that we can suppose being the image of 0 by
fi, i.e.

Ai → fi(Ai) = B

0 7−→ a = fi(0).

In particular, we assume that:

• fi is differentiable at 0;

• 0 is a Lebesgue point of Jmfi with respect to the Lebesgue measure;

• 0 is a point of Hm−density equals to 1 in Ai, i.e., limr→0
Hm(B(0, r) ∩Ai)

α(m)rm
.

We recall that if µ is a Radon measure on Rn, 1 ≤ p < ∞, a point x ∈ Rn is called
Lebesgue point of f ∈ Lploc(Rn, µ) with respect to µ if

lim
r→0
−
∫
B(x,r)

|f − f(x)|p dµ = 0.

Finally, we set µ = Hmxfi(Ai) and Wa = Dfi(0)
[
Rm
]
∈ G(m,Rn).
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Then, if we take u ∈ Cc(Rn), we recall that our aim is to prove that

r−m
∫
B⊂Rn

u d(Ta,r)∗µ(x) −→
r→0

∫
B⊂Rn

u d(HmxWa)(x)

Lemma 33
=

B=fi(Ai)

∫
Ai⊂Rm

u[Dfi(0)(ξ)] · J(Dfi(0)) dLm(ξ).

J(Dfi(0))=Jfi(0)
=

∫
Ai⊂Rm

u[Dfi(0)(ξ)] · Jfi(0) dLm(ξ).

First of all, recalling the definition of pushforward of a measure and using again Lemma
33, we can rewrite the first integral above as:

r−m
∫
B

(
u ◦ Ta,r

)
dHmxfi(Ai)(x) = r−m

∫
Ai

(
u ◦ Ta,r ◦ fi

)
Jfi dL

m(ξ).

In addiction, we remark the following facts:

1) since u is a continuous function with compact support, there exists max |u| < ∞
(by Weiestrass Theorem) and u is uniformly continuous, that is, for all ε > 0, there
exists δ > 0 such that for each x, y ∈ supp(u), |x− y| < δ, then |u(x)− u(y)| < ε.
In particular, the uniform continuity of u can be written also using the oscillation
of u

|u(x1)− u(x2)| ≤ oscu(|x1 − x2|)

where oscu = sup
y∈Rn

u(y)− inf
y∈Rn

u(y).

2) fi is differentiable at the point 0, that is,

lim
ξ→0

∣∣fi(ξ)− fi(0)−Dfi(0)(ξ)
∣∣

|ξ|
= 0

and this is equivalent to say that
∣∣fi(ξ)− fi(0)−Dfi(0)(ξ)

∣∣ is o(|ξ|), i.e.,∣∣fi(ξ)− fi(0)−Dfi(0)(ξ)
∣∣ ∼ o

(
|ξ|
)
.

3) Actually, we are interested in the support of u[Dfi(0)(ξ)]. For the previous point,

this is equivalent to find the set of ξ ∈ Rm where u
[
fi(ξ)− fi(0)

r

]
6= 0. Therefore,

since supp(u) ⊆ BR = U(0, R) for some R > 0, it has to occur
∣∣∣∣fi(ξ)− fi(0)

r

∣∣∣∣ < R.

4) If 0 is a point of Hm−density 1 in Ai, then it’s a point of density 1 also for the set
1

r
Ai =

{ξ
r

: ξ ∈ Ai
}
, for all r > 0. Indeed:

lim
r→0

Hm
(
B(0, r) ∩ 1

rAi
)

α(m)rm
= lim

r→0

1
rmHm

(
B(0, r2) ∩Ai

)
α(m)rm

r2=s
= lim

s→0

Hm
(
B(0, s) ∩Ai

)
α(m)sm

= 1.



28 CHAPTER 3. RECTIFIABLE SETS AND TANGENT MEASURES

For the first of the points above we have

∣∣∣∣u(fi(ξ)− fi(0)

r

)
− u
(
Dfi(0)(ξ)

r

)∣∣∣∣ ≤ oscu
(∣∣∣∣fi(ξ)− fi(0)

r
− Dfi(0)(ξ)

r

∣∣∣∣),
while,

∣∣∣∣fi(ξ)− fi(0)

r
− Dfi(0)(ξ)

r

∣∣∣∣ is o(|ξ|) only if |ξ| ≤ Cr, for some Cr > 0 depending

on r, that is, ξ ∈ BCr = U(0, Cr).

Hence:

r−m
∫
B

(
u ◦ Ta,r

)
dHmxfi(Ai)(x) = r−m

∫
Ai∩BCr

u

[
fi(ξ)− a

r

]
Jfi(ξ) dL

m(ξ)

a=fi(0)
= r−m

∫
Ai∩BCr

u

[
fi(ξ)− fi(0)

r

]
Jfi(ξ)dL

m(ξ)

Now, we can suppose that Cr ∼ r and we rewrite the last integral using the characteristic
function of Ai:

∫
Ai∩Br

u

[
fi(ξ)− fi(0)

r

]
Jfi(ξ)dL

m(ξ) =

∫
Br

u

[
fi(ξ)− fi(0)

r

]
χAi(ξ)Jfi(ξ)dL

m(ξ)

=

∫
Br

u

[
fi(ξ)− fi(0)

r

]
χAi(ξ)

(
Jfi(ξ)− Jfi(0) + Jfi(0)

)
dLm(ξ).

Then we are interested in computing the following sum of integrals:

lim
r→0
−
∫
B(0,r)

u

[
fi(ξ)− fi(0)

r

]
χAi(ξ)

(
Jfi(ξ)− Jfi(0)

)
dLm(ξ)+

+ lim
r→0
−
∫
B(0,r)

u

[
fi(ξ)− fi(0)

r

]
χAi(ξ)Jfi(0)dLm(ξ).

For the first one of these two integrals we recall that 0 is a Lebesgue point for Jfi and
that Ai is compact:

lim
r→0

∣∣∣∣∣−
∫
Br

u

[
fi(ξ)− fi(0)

r

]
χAi(ξ)

(
Jfi(ξ)− Jfi(0)

)
dLm(ξ)

∣∣∣∣∣
≤ lim
r→0
−
∫
BR

∣∣∣∣u[fi(ξ)− fi(0)

r

]
χAi(ξ)

(
Jfi(ξ)− Jfi(0)

)∣∣∣∣dLm(ξ)

≤ Lm(Ai) sup
Ai

|u| lim
r→0
−
∫
Br

∣∣Jfi(ξ)− Jfi(0)
∣∣dLm(ξ)

= C lim
r→0
−
∫
Br

∣∣Jfi(ξ)− Jfi(0)
∣∣dLm(ξ) = 0.

As for the second term in the sum, first of all we apply the changement of variables

y =
ξ

r
, possible for the fourth of the points above:

lim
r→0

1

rm

∫
Br∩Ai

u

[
fi(ξ)− fi(0)

r

]
Jfi(0)dLm(ξ)

dy=r−mdξ
= lim

r→0

∫
B(0,1)∩ 1

rAi

u

[
fi(ry)− fi(0)

r

]
Jfi(0)dLm(y).
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Now we note that, according to the second and the third of the points above and for the
continuity of u, we have

lim
r→0

u

[
fi(ry)− fi(0)

r

]
= u

(
Dfi(0)(ξ)

)
and

∣∣∣∣u[fi(ry)− fi(0)

r

]
Jfi(0)

∣∣∣∣ ≤ sup
B(0,1)

|u||Jfi(0)| ∈ L∞(B(0, 1)) ⊂ L1(B(0, 1)).

Therefore we can apply Dominated Convergence Theorem of Lebesgue and conclude that

lim
r→0

1

rm

∫
Br∩Ai

u

[
fi(ξ)− fi(0)

r

]
Jfi(0)dLm(ξ) =

∫
Ai

u(Dfi(0)(ξ))Jfi(0)dLm(ξ). �

Example 46. In R2 we consider a set B which is 1-rectifiable (H1(B) <∞)

B =

∞⋃
i=1

∂B
(
ai,

1

2i

)
,

where {ai}i is a dense subset in R2.

This example shows that the structure of a rectifiable set can be very strange: in this
case, the set B is a union of pieces of circumference and it has the property that its
closure is the whole space R2.

By Lemma 40, we have the existence of compact sets Ai ⊂ R1 and bilipschitz functions
fi : Ai −→ ∂B

(
ai, 1/2

i
)
⊂ R2 and such that the sets fi(Ai) are pairwise disjoint. Then

we can define the measure µ =
∑
i

µi =
∑
i

H1xfi(Ai) and we find

r−1 (Ta,r)∗µ(B(0, 1)) =
µ(T−1

a,r (B(0, 1)))

r
=

µ(B(a, r))

r
. �

3.2.3 Proof of (ii)⇒ (i)

First of all we take R > 0 such that µ(∂B(0, R)) = 0 and we replace µ with µ xB(0, R):
in such a way we obtain a finite measure.

We want to prove that if for µ−almost every point x ∈ Rn there exists a m−dimensional
plane Wx such that

Tanm(µ, x) =
{
HmxWx

}
,

where µ = HmxB, then B is m−rectifiable, that is the existence of a countable family
of sets Fi = graph(fi) with fi Lipschitz maps such that:

Hm

(
B \

∞⋃
i=1

Fi

)
= 0.

In order to do this we argue following these steps:
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Plan of the proof:

Step 1: We take a set F ⊂ Rn with µ(Rn \F ) ≤ 1

4
µ(Rn) and such that for each x ∈ F

there exists a m−dimensional plane Wx such that Tan(m) (µ, x) = HmxWx.
Then in this set we define two sequences of measurable functions, {fk}k≥1 and {qk}k≥1,
with the property that

lim
k→∞

fk(x) ≥ θ0 ∈ (0, 1]

and
lim
k→∞

qk(x) = 0

for all x ∈ F .

Step 2: By the measurability of the functions fk and qk we can use Egorov’s theorem in
order to find E, a µ−measurable subset of F such that the limits above hold uniformely

for all x ∈ E and with the property that µ(F \ E) ≤ 1

4
µ(Rn).

Step 3: Therefore we choose N = N(n,m) (n − m)−dimensional subspaces of Rn,
π1, . . . πN such that for each π, (n − m)-dimensional subspace of Rn, there exists j ∈
{1, . . . N} which satisfies the condition dist(π, πj) < 1/16.
Using these planes we are able to write the set E as a union of N subsets Ej , where Ej
is the set of points whose tangent space Wx has distance less than 1/16 from the plane
πj (we observe that the tangent space exists for all x ∈ E, being a subset of F ).

Step 4: Now we construct a Lipschitz function fj : Rm → Rn−m such that for each
x ∈ Ej there is a neighbourhood of x in Ej which is entirely conteined in the graph of
fj (possibly applying an orthogonal transormation qj to graph(fj)).
In particular, E ⊂

⋃M
i=1 qi(graphfi).

Step 5: Replacing µ by µx

(
Rn \

⋃M
i=1 qi(graph(fi))

)
and arguing as above, we find

countably many Lipschitz graphs which coverHm−almost everywhere B: we have proved
that B is m−rectifiable.

Proof: We take up again the five steps presented above.

Step 1: For any (n−m)−dimensional subspace π ⊂ Rn and any α ∈ (0, 1) , we denote
with pπ the orthogonal projection of Rn onto π and with Xα(π, x) the cone defined by

Xα(π, x) = {y ∈ Rn : |pπ(y − x)| ≥ α|y − x|}.

Moreover, for two (n−m)− dimensional subspaces π, π′ we define the distance between
π, π′ by

dist (π, π′) = sup
|x|=1

|pπ(x)− pπ′(x)|.

Choose θ0 ∈ (0, 1] and a Borel-measurable subset F ⊂ Rn such that

µ(Rn \ F ) ≤ 1

4
µ(Rn) (3.5)

and such that for each x ∈ F there exists Wx ∈ G(m,Rn) such that Tan(m) (µ, x) =
HmxWx . Thus in particular for x ∈ F we have

θ0 ≤ lim
j→∞

µ(B(x, rj))

α(m)rmj
=

HmxWx(B(0, 1))

α(m)
= 1
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and

lim
j→∞

µ
(
X 1

2
(πx, x) ∩B(x, rj)

)
α(m)rmj

= 0,

where πx = (Wx)⊥. We recall that if X is a metric space and f is a function defined
on X, the limit lim

x→0
f(x) exists if and only if limj→∞ f(xj) exists for any sequence

{xj} ⊂ X with the property that xj
j→∞−→ 0 , and these two limits coincide. Then for

each rj ↘ 0

lim
rj→∞

µ
(
X 1

2
(πx, x) ∩B(x, rj)

)
α(m)rmj

= Θm
(
µxX 1

2
(πx, x), x

) def.
= lim

r→0

µ
(
X 1

2
(πx, x) ∩B(x, r)

)
α(m)rm

.

If y ∈ Wx, y 6= x, then pπx(y − x) = 0 � 1
2 |x − y| and so y /∈ X 1

2
(π, x), while

Tan(m)(x, µ) = {HmxWx} (from which we deduce that Θm
(
µxX 1

2
(πx, x), x

)
= 0).

For k = 1, 2, . . . and x ∈ F we define

fk(x) = inf
0<ρ< 1

k

µ(B(x, ρ])

α(m)ρn

and

qk(x) = sup
0<ρ< 1

k

µ
(
X 1

2
(πx, x) ∩B(x, ρ)

)
α(m)ρm

.

Claim: fk and qk are both measurable.

Proof: fk is measurable: By the density of Q in R, we can assume ρ ∈ Q, i.e.,

fk(x) = inf
0<ρ< 1

k ,ρ∈Q

µ(B(x, ρ])

α(m)ρn
.

We fix ρ ∈ Q and we consider
fρ(x) = µ

(
B(x, ρ]

)
.

Since B(x, ρ] is closed, the function x 7→ fρ(x) is upper semi-continuous. Indeed if xj → x
in Rn, then for all ε > 0 there exists N ∈ N such that xj ∈ B(x, ε) if j ≥ N .
Now µ is a Radon measure and

µ
(
B(xj , ρ]

)
≤ µ

(
B(x, ρ+ ε]

)
≤ µ

(
B(x, ρ]

)
+ η(ε),

where η is a function such that η(ε)
ε−→ 0. Therefore, if xj → x, lim sup

j→∞
fρ(xj) = fρ(x).

At this point we have also the measurability of fk since any upper semi-continuous func-
tion is (Borel) measurable. Indeed the upper semi-continuity of the function implies that
the set U = {x : fk(x) < t} is open (and this is equivalent to the measurability of fk):
we fix x ∈ U and ε = t− fk(x); using the definition of semi-continuity, we find that there
exists a δ > 0 such that for all y ∈ B(x, δ), fk(y) < fk(x)+ε and so y ∈ U , i.e. U is open.

qk is measurable: In order to prove the measurability of gk the argument is slightly
different.
We just consider qk(x) = sup0<ρ< 1

k ,ρ∈Q
µ
(
X 1

2
(πx, x) ∩ B(x, ρ)

)
and we observe that the

set X 1
2
(πx, x) is closed.

The µ−a.e. defined function

suppµ → G(m,Rn)

x 7→ πx,
(3.6)
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where the Grassmannian space is equipped with the topology given by the metric ||pπ1
−

pπ2
|| = dist(π1, π2) = sup

|x|=1

|pπ(x) − pπ′(x)| for all π1, π2 ∈ G(m,Rn), is µ−a.e. (Borel)

measurable, according to Proposition 45.
We recall that we have the following hypothesis:

Tan(m)(µ, x) = {µx} = {HmxWx}

that is, for all ϕ ∈ Cc(Rm) and for all sequence rj ↘ 0∫
Rn

ϕ(y) dµx(y) = lim
j→∞

r−mj

∫
Rn

ϕ
(y − x

rj

)
dµ(y)

i.e., if we pose as usual µx,r = r−m
(
(Tx,r)]µ

)
,

µx,r ⇀
r→0

νx = HmxWx.

Then the map from Rn to R defined as the composition of the functions

Rn → Cc(Rn)∗ → R

x 7→ νx
evϕ7→

∫
ϕdνx,

(3.7)

where ϕ ∈ Cc, is measurable with respect to the weak-* topology.

Lemma 47. If ϕ ∈ Cc(Rn) then the function

Rn −→ R

x 7→
∫
ϕdνx

(3.8)

is Borel measurable.

Proof: We recall that ∫
ϕdνx = lim

j→∞

∫
ϕdµx,rj

and that ∫
ϕdνx,rj = r−mj

∫
ϕ

(
y − x
rj

)
dµ(y).

The function

x 7→ r−mj

∫
ϕ

(
y − x
rj

)
dµ(y)

is Borel measurable, since it’s continuous.
Then the function in the statement of the lemma is Borel measurable too, being the limit
of a sequence of measurable functions. �

At this point we use Pettis’ measurability theorem in order to ensure that the function
x 7→ νx is measurable. The notions that we are going to use are that one in Definition
4 and the following one:

Definition 48. Let (X,M) be a measurable space and Y be a Banach space. Then
f : X → Y is said to be weakly measurable if, for every continuous linear functional
g ∈ Y ∗, the function

g ◦ f : X → R
x 7→ g(f(x))

(3.9)
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is a measurable function with respect to M and the Borel σ−algebra on R.

Theorem 49 (Pettis’ Theorem). A function f : X → B defined in a space with measure
(X,A, µ) and taking values in a Banach separable space B is (strongly) measurable (with
respect to A on X and the Borel σ− algebra on B) if and only if it is weakly measurable.

Proof: See [PE38], Theorem 1.1. �

Actually the space Cc(Rn)∗ is not a Banach space (it’s just a separable Fréchet space)
but in our case it suffices to consider the following subset of Cc(Rn)∗:

Z =
{
HmxW : W ∈ G(m,Rn)

}
.

In Z there are two different topologies: the topology given by the restriction of the
norm naturally defined in the dual space Cc(Rn)∗, (Z,dist), and the weak-* topology,
(Z, σ < Cc(Rn)∗, Cc(Rn) >). We would like to prove that these two topologies are equiv-
alent. Obviously the second one is weaker than the first one and so, in order to get the
conclusion, we want to prove that the topology genereted by the norm is contained in
the weak-* topology. We observe that Z endowed with the topology generated by dist is
compact, but Z is compact also with the topology given by σ(Cc(Rn)∗, Cc(Rn)), which
is weaker than the first one: we have proved that these two topologies coincide, i.e. they
have the same open sets, since the whole space is compact not only if we consider the
strongest topology (Z,dist), but even in the weak-* topology.

Now we can go on in the proof of the measurability of the function x 7→ µ
(
X 1

2
(πx, x) ∩

B(x, ρ)
)
: to this purpose, we consider a sequence of functions ϕj(x, y)↘

1X 1
2

(µ,x)(y) 1B(x,r)(y), for all y ∈ Rn such that for all x the function ϕj(x, ·) ∈ Cc(Rn)

and ∫
ϕj(x, y) dµ(y) −→

j→∞
µ
(
X 1

2
(πx, x) ∩B(x, ρ)

)
.

Then it suffices to prove that for all j ∈ N the function

x 7→
∫

ϕj(x, y) dµ(y)

is Borel measurable. To reach this conclusion it’s enough to observe that this function is
actually continuous. �

Step 2: From Step 1 we have

lim
k→∞

fk(x) ≥ θ0 and lim
k→∞

qk(x) = 0 ∀x ∈ F

and, since fk and qk are both measurable, we are allowed to use Egorov’s theorem which
ensures that there exists a µ− measurable subset E ⊂ F such that

µ(F \ E) ≤ 1

4
µ(Rn) (3.10)

and the limits above hold unifomely for x ∈ E, i.e., for all ε > 0 there exists a δ > 0 such
that

µ(B(x, ρ))

α(m)ρn
≥ θ0 − ε (3.11)
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and

µ
(
X 1

2
(πx, x) ∩B(x, ρ)

)
α(m)ρm

≤ ε. (3.12)

x ∈ E, 0 < ρ < δ.

Step 3: At this point, we can choose (n−m)−dimensional subspaces π1, . . . , πN of Rn,
where N ∈ N depends on n and m, such that for each (n−m)−dimensional subspace π
of Rn there exists j ∈ {1, . . . , N} such that d(π, πj) <

1
16 .

Then we define the subsets E1, . . . , EN by:

Ej = {x ∈ E : dist(πj , πx) <
1

16
}

and we clearly find E =

N⋃
j=1

Ej .

Claim: If ε = θ0/16n and if δ > 0 is such that (3.11) and (3.12) hold, then

X 3
4
(πj , x) ∩ Ej ∩B

(
x,
δ

2

)
= {x}, for allx ∈ Ej , j = . . . , N. (3.13)

Proof of the claim: By contradiction, we suppose that there exists j ∈ {1, . . . , N} such

that x ∈ Ej and y ∈ X 3
4
(πj , x)∩Ej ∩B

(
x,
δ

2

)
, i.e., there exists ρ ∈ (0, δ/2) such that

y ∈ X 3
4
(πj , x) ∩ Ej ∩ ∂B(x, ρ). Then, by (3.12), since x ∈ E and 2ρ < δ , we have

µ
(
X 1

2
(πx, x) ∩B(x, 2ρ)

)
< εα(m) (2ρ)m.

Again, observing that B(y, ρ/8) ⊂
(
X 1

2
(πx, x) ∩B(x, 2ρ)

)
, we find, applying (3.11):

µ
(
X 1

2
(πx, x) ∩B(x, 2ρ)

)
≥ µ

(
B(y,

ρ

8
)
)
≥ θ0 α(m)

(ρ
8

)m
which contradicts (3.12), recalling that ε = θ0/16m. �

Step 4: From (3.13) we want to find a Lipschitz function f such that the condition

Ej ∩B
(
x,
δ

2

)
⊂ q(graph f), (3.14)

holds for all x ∈ Ej . Here q is an orthogonal transformation in Rn with the property
that q(πj) = Rn−m (as consequence of the claim above).

We prove the following lemma:

Lemma 50 (Bow-tie Lemma). Let f : Rm −→ Rn−m be a function (and so graph(f) ⊂
Rn).
Then f is Lipschitz with constant L > 0 if and only if for all x ∈ Rm

graph(f) ⊂
(
x, f(x)

)
+KL (3.15)

where KL ⊂ Rn is the cone defined by

KL =
{

(x, y) ∈ Rm × Rn−m : |y| ≤ L|x|
}
.
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Proof: ′′ ⇒′′ If f is a Lipschitz function with constant L,

|f(x)− f(y)| ≤ L|x− y|, for all x, y ∈ Dom(f).

This is equivalent to say that the absolute value of the slopes of all secant lines is bounded
by L.
Hence, for all x ∈ R the graph of the function lies completely in

(
x, f(x)

)
+KL.

′′ ⇐′′ If for all x ∈ R graph(f) ⊂
(
x, f(x)

)
+KL , then

|f(x)− f(y)| ≤ L|x− y| for all x, y ∈ R

and f is Lipschitz. �

Condition (3.15) is expressed in (3.13): in fact,

X 3
4
(πj , x) ∩ Ej ∩B

(
x,
δ

2

)
= {x} =⇒ Ej ∩B

(
x,
δ

2

)
⊂
(
Rn \X 3

4
(πj , x)

)
∪ {x}

and the set
(
Rn \X 3

4
(πj , x)

)
∪ {x} is of the form KL .

Moreover, by the definition of X 3
4
(πj , x), we observe that the tangent planes of graph(f)

are (n − m)−dimensional subspaces of Rn and so the function f is Rn−m valued and
defined in a subset of Rm.
Therefore we can find a Lipschitz function f = (f1, . . . , fn−m) defined in the whole space
Rm (possibly using the Extension Theorem for Lipschitz functions in order to extend f
to Rm, and so f : Rm −→ Rn−m) such that if we take x ∈ Ej , we have

Ej ∩B
(
x,
δ

2

)
⊂ q(graph f)

as required in (3.14).

At this point, we observe that we can choose the Lipschitz functions f1, . . . , fM and the
orthogonal transformations q1, . . . , qM such that

E ⊂
M⋃
i=1

qi(graph fi)

and we recall that we can do this since j ∈ {1, . . . , N} and x ∈ Ej are arbitrary.

Step 5: Since we have chosen the set E such that (3.5) and (3.10) hold, we have

µ

(
Rn \

M⋃
i=1

qi(graph fi)
)
≤ µ

(
Rn \ E

)
= µ

(
Rn \ F

)
+ µ

(
F \ E

)
≤ 1

2
µ(Rn).

In order to cover the whole set B ⊂ Rn, we can argue as we have done until now, but

we need to replace µ by µ x

(
Rn \

M⋃
i=1

qi(graph (fi))

)
.

In such a way we find that there exist countably man Lipschitz graphs Fi = graph (fi),

where fi : Rm −→ Rn−m such that µ
(
Rn \

∞⋃
i=1

Fi

)
= 0 .

Using Theorem 22 with t = 1 (by Lemma 41), we deduce Hm

(
B \

∞⋃
i=1

Fi

)
= 0 and so

B is m− rectifiable.
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Chapter 4

Rectifiability of the reduced
boundary

In this chapter we use the terminology presented in [EG92]: the following theorems are
taken from the same book, except for the Isopermetric Inequality that can be found in
[AFP00]. Indeed as far as BV functions and sets of finite perimeter described in the
first section we refer to sections 5.1 and 5.2 of [EG92], while for the speech about the re-
duced boundary we refer to section 5.7 ( and, in particular, to subsectios 5.7.1 and 5.7.2).

4.1 BV Functions and Sets of Finite Perimeter

Let U ⊂ Rn an open set.

Definition 51. We say that a function f ∈ L1(U) has bounded variation in U if

sup

{∫
U

fdivϕdx|ϕ ∈ C1
c (U ;Rn), |ϕ| ≤ 1

}
<∞

and we write f ∈ BV (U).

Definition 52. An Ln-measurable subset E ⊂ Rn has finite perimeter in U if

1E ∈ BV (U).

It’s useful to introduce also local versions of the above concepts:

Definition 53. A function f ∈ L1
loc(U) has locally bounded variation in U (f ∈

BVloc(U)) if for each open set with compact closure V ⊂⊂ U (i.e. open bounded
set),

sup

{∫
V

fdivϕdx|ϕ ∈ C1
c (V ;Rn), |ϕ| ≤ 1

}
<∞.

Definition 54. An Ln-measurable subset E ⊂ Rn has locally finite perimeter in U if

1E ∈ BVloc(U).

Then we can introduce the following important theorem which ensures that the weak
first partial derivatives of a BV function are actually Radon measures:

37
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Theorem 55 (Structure Theorem for BVloc Functions). Let f ∈ BVloc(U). Then there
exists a Radon measure µ on U and a µ−measurable function σ : U → Rn such that

(i) |σ(x)| = 1 µ−a.e.

(ii)
∫
U

fdivϕdx = −
∫
U

ϕ · σ dµ,

for all ϕ ∈ C1
c (U ;Rn).

Proof: See [EG92], Section 5.1, Theorem 1. �

If f ∈ BVloc(U) we will denote the measure µ ≡ ||Df || and we call it variation measure
of f ; in particular, if f = 1E where E is a set of locally finite perimeter in U , we will
write µ ≡ ||∂E|| (perimeter measure of E) and nE ≡ −σ.
Hence, with this notation, for all ϕ ∈ C1

c (U ;Rn)

∫
E

divϕdx =

∫
U

ϕ · nE d||∂E||.

Remark 56. If f ∈ BVloc(U) ∩ L1(U), then f ∈ BV (U) if and only if ||Df ||(U) <∞
and we define

||f ||BV (U) ≡ ||f ||L1(U) + ||Df ||(U).

Moreover we recall the following fact that we will use in the proof of Theoreom 65:

Theorem 57 (Lower Semicontinuity of Variation Measure). Suppose fk ∈ BV (U) (k =
1, . . . ) and fk −→ f in L1

loc(U). Then

||Df ||(U) ≤ lim inf
k→∞

||Dfk||(U).

Proof: We refer to [EG92], Section 5.2.1, Theorem 1. �

And finally the important inequality:

Theorem 58 (Isoperimetric Inequality). For any Ln−measurable set E ⊂ Rn, n ≥ 2,
there holds

min
{
Ln(E),Ln(Rn \ E)

}n−1
n ≤ 1

nα(n)
1
n

||∂E||(Rn)

and there is equality if and only if E or its complement is equivalent to a ball.

Proof: See [AFP00], Theorem 3.46 or [FE69], Theorem 3.2.43 . �

4.2 The reduced boundary

Let E be a set of locally finite perimeter in Rn.

Definition 59. We say that a point x ∈ Rn is in the reduced boundary of E (x ∈ ∂?E)
if

(i) ||∂E||(B(x, r)) > 0 for all r > 0,
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(ii) limr→0 −
∫
B(x,r)

nE d||∂E|| = nE(x),

(iii) |nE(x)| = 1.

Theorem 60 (Lebesgue-Besicovitch Differentation Theorem). Let µ be a Radon measure
on Rn and f ∈ L1

loc(Rn, µ). Then

lim
r→0
−
∫
B(x,r)

fdµ = f(x)

for µ almost every x ∈ Rn.

Remark 61.
||∂E||(Rn \ ∂?E) = 0.

Proof: First of all we observe that if (ii) in Definition 59 is true, then also (i) has to
hold.
Actually, if x ∈ Rn \ ∂?E and (ii) in Definition 59 doesn’t hold, we get a contradiction
with Theorem 60, which states that we can differentiate with respect to any Radon mea-
sure, and ||∂E|| is a Radon measure.
But also if x ∈ Rn \ ∂?E and (iii) in Definition 59 isn’t true, we have a contradiction
with Riesz Theorem (Theorem 23-(i)) which ensures that |nE(x)| = 1 for ||∂E||−almost
every x ∈ Rn.
Therefore, we can conclude that ||∂E||(Rn \ ∂?E) = 0. �

Lemma 62. Let ϕ ∈ C1
c (Rn,Rn). Then for each x ∈ Rn and for L1 a.e. r > 0,

∫
E∩B(x,r)

divϕdy =

∫
B(x,r)

ϕ · nE d||∂E||+
∫
E∩∂B(x,r)

ϕ · ndHn−1,

where n is the outward unit normal to ∂B(x, r).

Proof: We take a smooth function h : Rn −→ R, then

∫
E

div(hϕ) dy =

∫
E

hdivϕdy +

∫
E

Dh · ϕdy

and so ∫
Rn

hϕ · nE d||∂E|| =

∫
E

hdivϕdy +

∫
E

Dh · ϕdy.

In particular this is true if we consider

hε(y) ≡ gε(|y − x|)

with gε : [0,∞) −→ [0, 1]

gε(s) ≡


1 if 0 ≤ s ≤ r,
0 if s ≥ r + ε,

1

ε
(r + ε− s) if r ≤ s ≤ r + ε.
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Actually, the function hε is just Lipschitz continuous, not C1, but we can mollify it.
Since

g′ε(s) =

 0 if 0 ≤ s < r or s > r + ε

−1

ε
if r < s < r + ε

we have

Dhε =


0 if |y − x| < r or |y − x| > r + ε

−1

ε

y − x
|y − x|

if r < |y − x| < r + ε.

Then we get

∫
Rn

hεϕ · nE d||∂E|| =

∫
E

hεdivϕdy −
1

ε

∫
E∩{y|r<|y−x|<r+ε}

ϕ · y − x
|y − x|

dy.

We let ε↘ 0 and we obtain for L1−a.e. r > 0∫
B(x,r]

ϕ · nE d||∂E|| =

∫
E∩B(x,r)

divϕdy −
∫
E∩∂B(x,r)

ϕ · ndHn−1. �

Lemma 63. Let x ∈ ∂?E. Then there exist positive constants C1, C2, C3 depending only
on n, such that

(i) lim infr→0
Ln(B(x, r) ∩ E)

rn
> C1 > 0,

(ii) lim infr→0
Ln(B(x, r) \ E)

rn
> C2 > 0,

(iii) lim supr→0

||∂(E ∩B(x, r))||(Rn)

rn−1
≤ C3.

Proof: (i) We choose ϕ ∈ C1
c , |ϕ| ≤ 1 , then, according to Lemma 62, for L1 a.e. r > 0

∫
E∩B(x,r)

divϕdy =

∫
B(x,r)

ϕ · nE d||∂E||+
∫
E∩∂B(x,r)

n · ϕdHn−1

≤ ||∂E||(B(x, r)) + Hn−1(∂B(x, r) ∩ E)

we obtain

||∂(E ∩B(x, r))||(Rn) ≤ ||∂E||(B(x, r)) + Hn−1(E ∩ ∂B(x, r)). (4.1)

Next we choose ϕ ∈ C1
c (Rn,Rn) such that

ϕ ≡ nE(x) on B(x, r).

Then ∫
B(x,r)

nE(x) · nE d||∂E|| = −
∫
E∩∂B(x,r)

nE(x) · ndHn−1. (4.2)

Moreover, since x ∈ ∂?E,

lim
r→0

nE(x) · −
∫
B(x,r)

nE d||∂E|| = |nE(x)|2 = 1
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and (4.2), for L1−a.e. r > 0 small enough, 0 < r < r0 = r0(x), we have

1

2
≤
∣∣∣∣ 1

||∂E||(B(x, r))
nE(x) ·

∫
E∩∂B(x,r)

ndHn−1

∣∣∣∣ ≤ Hn−1(E ∩ ∂B(x, r))

||∂E||(B(x, r))
(4.3)

This, together with (4.1), leads to

||∂(E ∩B(x, r))||(Rn) ≤ 3Hn−1(∂B(x, r) ∩ E) (4.4)

for a.e. 0 < r < r0.

Next, we consider the function

g(r) = Ln(E ∩B(x, r))

=

∫ r

0

(∫
E∩∂B(x,r)

dHn−1

)
ds

=

∫ r

0

Hn−1(∂B(x, s) ∩ E) ds

and the function g is absolutely continuous with

g′(r) = Hn−1(∂B(x, r) ∩ E) for a.e. r > 0.

Then, by the Isoperimetric Inequality (Theorem 58):

g(r)
n−1
n = Ln(B(x, r) ∩ E)

n−1
n ≤ C||∂(B(x, r) ∩ E)||(Rn)

≤ 3CHn−1(∂B(x, r) ∩ E) ≤ 3Cg′(r)
(4.5)

where C is the Isoperimetric constant. Hence

r

3Cn
≤
∫ r

0

(
g(r)

1
n

)′
dr = g(r)

1
n

and so
g(r) ≤ 1

3nC
rn.

At this point, we have that for 0 < r ≥ r0

lim inf
r↘0

Ln(E ∩B(x, r))

rn
≤ 1

3nC

and this proves (i).
Now we observe that for all ϕ ∈ C1

c (Rn;Rn) we have∫
E

divϕdx+

∫
Rn\E

divϕdx =

∫
Rn

divϕdx = 0.

Therefore
||∂E|| = ||∂(Rn \ E)|| and nE = −nRn\E

and (ii) follows from (i). In (4.3) we have found that for all 0 < r < r0

||∂E||(B(x, r)) ≤ 2Hn−1(E ∩ ∂B(x, r)) ≤ Crn−1

which implies

lim sup
r↘0

||∂E||(B(x, r))

rn−1
≤ const. <∞.

This together with (4.1) gives (iii). �
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4.3 The reduced boundary is n− 1 rectifiable

Let E be a bounded set of Rn with locally finite perimeter. We consider the distributional
derivative D1E = nE · ||D1E ||: this is a vector valued measure such that for all ϕ ∈
C∞c (Rn,Rn)

< ϕ,Df > :=

∫
Rn
fdivϕdx.

We know that the measure µ = ||D1E || is a Radon measure. Our aim is to prove that
this measure (and the reduced boundary ∂?E) is n− 1 rectifiable.

We chose a point x ∈ ∂?E and we define the homothetic expansion of E in x of ratio r
as

Ex,r :=
E − x
r

.

The following theorem proves that this homothetic expansion tends to an appropriate
half space in L1

loc(Rn).

Definition 64. For each x ∈ ∂?E , define the hyperplane

H(x) ≡
{
nE(x) · (y − x) = 0

}
and the half-spaces

H+(x) ≡
{
nE(x) · (y − x) ≥ 0

}
,

H−(x) ≡
{
nE(x) · (y − x) ≤ 0

}
.

Theorem 65 (Homotetic Expansion Theorem). Let x ∈ ∂?E. Then

1Ex,r −→ 1H−(x) inL1
loc(Rn)

as r → 0.

Proof: Without loss of generality we can assume
x = 0,
nE(0) = en = (0, . . . , 0, 1),
H(0) =

{
y ∈ Rn|yn = 0

}
,

H+(0) =
{
y ∈ Rn|yn ≥ 0

}
,

H−(0) =
{
y ∈ Rn|yn ≤ 0

}
.

Let rk be any sequence which tends to 0: it suffices to prove that there exists a subse-
quence {sj}∞j=1 of {rk}∞k=1 such that

1Esj
j→∞−→ 1H−(0) inL1

loc(Rn).

Now we fix L > 0 and pose

Dr ≡ Er ∩B(0, L), gr(y) =
y

r
.

For any ϕ ∈ C1
c (Rn;Rn), |ϕ| ≤ 1, we have

∫
Dr

divϕdz =
1

rn−1

∫
E∩B(0,rL)

div(ϕ ◦ gr) dy

=
1

rn−1

∫
(ϕ ◦ gr) · nE∩B(0,rL) d||∂(E ∩B(0, rL))||

≤ ||∂(E ∩B(0, rL))||(Rn)

rn−1

≤ C <∞,
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where r ∈ (0, 1] and in the last line we have used Lemma 63-(iii).
But so for r ∈ (0, 1] we have also

||∂Dr||(Rn) ≤ C <∞.

Noticing that
||1Dr ||L1(Rn) = Ln(Dr) ≤ Ln(B(0, L)) <∞

we have
||1Dr ||BV(Rn) = ||1Dr ||L1(Rn) + ||∂Dr||(Rn) ≤ C <∞.

Using the Compactness Theorem (Theorem 27), we find that there exists a subsequence
{sj}∞j=1 ⊂ {rk}∞k=1 and a function f ∈ BVloc(Rn) such that

1Esj −→ f in L1
loc(Rn).

Possibly passing to another subsequence of {sj}∞j=1 we can assume that 1Esj converges to
f Ln−a.e. too: therefore f(x) ∈ {0, 1} for Ln−a.e. x and there exists a subset F ⊂ Rn
with locally finite perimeter such that

f = 1F Ln − a.e.

and so if ϕ ∈ C1
c (Rn;Rn), ∫

F

divϕdy =

∫
Rn

ϕ · nF d||∂F ||

where nF is a ||∂F ||−measurable function with |nF | = 1 ||∂F ||−a.e.

At this point our goal is to prove that F = H−(0).

First step: nF = en ||∂F ||−a.e.
Proof: Let ϕ ∈ C1

c (Rn;Rn), we have ∀ j∫
Rn

ϕ · nEj d||∂Ej || =

∫
Ej

divϕdy.

Since 1Ej → 1F in L1
loc, we have for all ϕ ∈ C1

c (Rn,Rn)∫
Ej

divϕdy =

∫
F

divϕdy

and so ∫
Rn

ϕ · nEj d||∂Ej ||
j→∞−→

∫
Rn

ϕ · nF d||∂F ||.

Therefore
nEj ||∂Ej ||

∗
⇀ nF ||∂F ||

in the weak* convergence of Radon measures.
Then we choose L > 0 such that ||∂F ||(∂B(0, L)), and we have∫

B(0,L)

nEj d||∂Ej || →
∫
B(0,L)

nF d||∂F ||.

Next we note that (?)

• ||∂Ej ||(B(0, L)) =

∣∣∣∣∣∣∣∣∂( 1

sj
E

)∣∣∣∣∣∣∣∣( 1

sj
B(0, sjL)

)
=

1

sn−1
j

||∂E||
(
B(0, sjL)

)
;
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•
∫
B(0,L)

nEj d||∂Ej || =
1

sn−1
j

∫
B(0,sjL)

nE d||∂E||.

So it follows that

lim
j→∞

−
∫
B(0,sjL)

nEj d||∂Ej || = lim
j→∞

∫
B(0,sjL)

nE d||∂E||

||∂E||
(
B(0, sjL)

) 0∈∂?E
= nE(0) = en.

At this point we use the fact that ||∂F ||(∂B(0, L)) = 0 and the Lower Semicontinuity
Theorem to find

||∂F ||(B(0, L)) ≤ lim inf
j→∞

||∂Ej ||(B(0, L)),

and, possibily passing to a subsequence, we can consider the limit instead of the lim inf:

||∂F ||(B(0, L)) ≤ lim
j→∞

||∂Ej ||(B(0, L)); (4.6)

moreover

lim
j→∞

||∂Ej ||(B(0, L)) = lim
j→∞

∫
B(0,L)

en · nEj d||∂Ej ||

weak conv.
=

∫
B(0,L)

en · nF d||∂F ||

Cauchy-Schwartz ineq.
≤ ||∂F ||(B(0, L)).

(4.7)

But then we find that the inequalities in (4.6) and (4.7) are actually equalities and, in
particular

en · nF = 1 ||∂F || − a.e.

and, recalling that |nF | = 1 ||∂F ||−a.e., this is equivalent to

nF = en ||∂F || − a.e.

Second step: F is a half space, i.e. F =
{
y ∈ Rn : yn ≤ γ

}
for some γ ∈ R.

Proof: In the proof of the first step we have seen that for all ϕ ∈ C1
c (Rn,Rn)∫

F

divϕdz =

∫
Rn

ϕ · en d||∂F ||.

Then we fix ε > 0 and we consider the mollified function fε = 1F ∗ ηε with ηε(x) :=
1

εn
η

(
x

ε

)
Now fε ∈ C∞(Rn) and∫

Rn
fε divϕdy =

∫
F

divϕε dy =

∫
Rn

ηε ∗ (ϕ · en) d||∂F ||.

On the other hand, integrating by parts we find:∫
Rn

fεdivϕdz = −
∫
Rn

Dfε · ϕdz.

a) If ϕ ∈ C1
c (< en >

⊥,Rn), then ϕn = 0 and ϕ · nE ≡ 0, and so

−
∫
Rn

Dfε · ϕdy =

∫
Rn

ϕε · nE d||∂E|| = 0

by the Fundamental Theorem of Calculus of Variations we have

Dfε = 0 a.e. in < en >
⊥,

i.e. in each hyperplane perpendicular to en (each of them is connected) fε is
constant.
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b) If ϕ ∈ C1
c (Rn,Rn) with ϕ · nE 6= 0 (ϕn 6= 0): then there exists a function a :

Rn −→ R>0 such that
ϕ(x) = a(x) · nE .

Therefore

−
∫
Rn

Dfε · a(x)nE dx =

∫
Rn

fε div(a(x)nE) dx

=

∫
Rn

fε · ∇a(x)nE dx =

∫
E

∇a(x)nE︸ ︷︷ ︸
=divϕε

dx

=

∫
Rn

a(x)︸︷︷︸
ϕε·nE

d||∂E|| ≥ 0

Therefore we get the conclusion:

∂fε
∂xi

≡ 0 for i = 1, . . . , n− 1, and
∂fε
∂xn

≤ 0

(1F is equal to 1 or 0 in each hyperplane perpendicular to en, while it’s decreasing in
the en-direction). We recall that fε → 1F Ln−a.e. if ε tends to zero and so there
exists a γ ∈ R such that, up to a set of Ln−measure zero,

F =
{
y ∈ Rn : yn ≤ γ

}
.

Third step: F = H−(0), i.e. γ = 0.
Proof: We know that x ∈ ∂?E and we suppose that γ > 0. Next we take the sequence

defined above Ej =
1

sj
E, 1Ej −→ 1E in L1

loc(Rn).

Then

α(n)γn = Ln(B(0, γ) ∩ E) = lim
j→∞

Ln(B(0, γ) ∩ Ej)

= lim
j→∞

Ln(B(0, γsj) ∩ E)

snj

(4.8)

which gives a contradiction to Lemma 63-(i). If we suppose γ < 0, the same argument
leads to a contradiction to Lemma 63-(ii). �

But since 1Ex,r
L1

loc−→ 1H−(x), it is true that ||D1Ex,r || −→ ||D1H−(x)|| and D1Ex,r ⇀

D1H−(x) = Hn−1x ∂H−(x)︸ ︷︷ ︸
=H(x)∈G(n−1,Rn)

in the weakly* topology of Cc(Rn,Rn)∗.

Indeed the following lemma is true:

Lemma 66. If {fj}j , f ∈ L1
loc such that fj −→ f in L1, then Dfj

∗
⇀ Df .

Proof: Choose ϕ ∈ C∞c (Rn,Rn)

< ϕ,Dfj >=

∫
fjdivϕ

L1

−→
∫

fdivϕ =< ϕ,Df > . �

Therefore the tangent measure is flat almost everywhere: if we pose µ = ||D1E ||,
Tann−1(µ, x) = {Hn−1xW, with W ∈ G(n − 1,Rn)} a.e. x ∈ ∂?E which is equiva-
lent to say that ∂?E is n− 1 rectifiable, by Theorem 42.

In addiction as we have seen in Remark 61 ||D1E ||(Rn \ ∂?E) = 0 and we observe that
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||D1E || << Hn−1; then, by the Isoperimetric Inequality (Gagliardo-Nirenberg-Sobolev,
Theorem 58), we get

||D1E || = CHn−1x∂?E

where C ∈ R+. In order to conclude that C = 1 we have to use an argument of density
and, in particular, the following:

Proposition 67. Let x ∈ ∂?E

lim
r→0

||∂E||(B(x, r))

α(n− 1)rn−1
= 1.

Proof: By (?),
||∂E||(B(x, r))

rn−1
= ||∂Er||(B(x, 1)).

Now ||∂H−(x)||∂(B(x, 1)) = Hn−1(∂B(x, 1)) ∩H(x)) = 0 and, by the Homotetic Ex-
panction Theorem, we find

lim
r→0

||∂E||(B(x, r))

rn−1
= ||∂H−(x)||(B(x, 1)) = Hn−1(B(x, 1) ∩H(x))

= α(n− 1). �

Remark 68. (on Lemma 66) fj −→ f in L1 ; ||Dfj ||
∗
⇀ ||Df ||, where we recall

that for all U ⊂ Rn

||Df ||(U) = sup

{∫
divϕf : suppϕ ⊆ U and ||ϕ||∞ ≤ 1

}

Example 69. In R2 we consider the function fr =
1

r
1Br . Then we have:

• ||fr||L1 = πr −→
r→0+

0,

• Dfr =
1

r
· x
|x|

H1x∂B(x, r),

• Dfr ⇀ 0 weakly*,

but ||Dfr|| ⇀ 2πδ0. Indeed by Structure Theorem for BVloc Functions (Theorem 55)

Dfr = σµr

where σ : U → Rn, |σ| = 1: in our case σ(x) =
x

|x|
and Dfr =

1

r
· x
|x|

H1x∂B(x, r), so

µr = ||Dfr|| =
1

r
H1x∂B(x, r).

We observe that µr has no more orientation and that (µr)r>0 is a sequence of measures
with the same mass.
Moreover

||Dfr|| ⇀ 2πδ0

since we have ||Dfr||(R2) = 2π and for all ϕ ∈ C1
c (U)

lim
r→0

∫
U

ϕ(x)
1

r
dH1x∂B(x, r) = 2πϕ(0).

However if 0 ∈ ∂?E and fr = 1E
r
, we know that ||D1E || = n · ||D1E || and that
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• x ∈ ∂?E if and only if ||D1E ||
(
B(x, r)

)
> 0, ∀ r > 0,

• limr→0 −
∫
B(x,r)

n(y)||D1E ||(y) = n∗(x) exists and ||n∗(x)|| = 1.

This is equivalent to say that there is not loss of mass and it’s true that if 1E
r
−→
L1

1H−(0),

then ||D1E
r
|| ⇀ ||D1H−(0)||.
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