Università degli Studi di Padova

Dipartimento di Matematica Corso di Laurea in Matematica

Non-Minimality for a Class of Angles

Tesi di Laurea Magistrale

Candidato Giulia Vescovo Matricola: 1041138

Relatore **Prof. Roberto Monti** Università di Padova

 $\begin{array}{c} 24 \ \mathrm{Luglio} \ 2015\\ \mathrm{Anno} \ \mathrm{Accademico} \ 2014/2015 \end{array}$

Preface

In this thesis we deal with the problem of regularity of length-minimizing curves in Carnot-Carathéodory spaces.

In the first chapter we study the notion of sub-Riemannian manifold, that is a triple (M, \mathcal{D}, g) where M is a smooth manifold, $\mathcal{D} \subseteq TM$ is a distribution on M and g is a metric on \mathcal{D} . Since we deal with a problem of local nature, we identify M with \mathbb{R}^n and \mathcal{D} with a distribution on \mathbb{R}^n generated by a global frame of orthonormal smooth vector fields X_1, \ldots, X_r . We introduce the class of \mathcal{D} -horizontal curves, that are Lipschitz curves γ tangent to the distribution \mathcal{D} at almost every point, i.e. there exists $h \in L^{\infty}([0,1], \mathbb{R}^r)$ (whose components are called *controls* of γ) such that

$$\dot{\gamma}(t) = \sum_{i=1}^{r} h_i(t) X_i(\gamma(t)) \quad \text{for a.e. } t \in [0, 1].$$

Thus we can define the length of the \mathcal{D} -horizontal curve γ as follows:

$$L(\gamma) := \int_0^1 |h(t)| \, dt.$$

We define the Carnot-Carathéodory distance between two points x and y in \mathbb{R}^n as the infimum of the lengths of all \mathcal{D} -horizontal curves joining x to y. By the Chow-Rashevsky Theorem, if \mathcal{D} is bracket-generating then any couple of points in \mathbb{R}^n can be connected by a \mathcal{D} -horizontal curve, hence the Carnot-Carathéodory distance is actually a distance on \mathbb{R}^n . A length-minimizer joining x to y is a \mathcal{D} -horizontal curve that realizes the distance between x and y. In general, length-minimizers do not exist globally, but we will prove their local existence. Moreover, a length-minimizer is in particular an extremal, that is a \mathcal{D} -horizontal curve which satisfies the firstorder necessary conditions of Pontryagin Maximum Principle. Extremals can be either normal or abnormal: normal extremals are C^{∞} -smooth, while strictly abnormal extremals (i.e. extremals that are abnormal but not normal) could develop singularities.

The principal open problem in Geometric Control Theory and Calculus of Variations in Carnot-Carathéodory spaces is the regularity of length-minimizers (see [5], Chapter 10, Paragraph 10.1, or [1] and [6]). Originally - by using a wrong argument - Strichartz proved that all length-minimizers are smooth: by applying Pontryagin Maximum Principle, he forgot the case of abnormal extremals. In 1994 Montgomery exhibited the first example of abnormal length-minimizer (see [4]). In 1995 Liu and 4

Sussmann discovered the class of regular abnormal extremals, i.e. abnormal extremals that are always locally length-minimizing (see [9]). On the other hand, all known examples of length-minimizers are smooth. Thus, the open questions are the following:

- Are all length-minimizers C^{∞} -smooth?
- Are all length-minimizers C^1 -smooth?
- Can length-minimizers present angles?

The second chapter contains new results. We prove the non-minimality of angles in a certain class of examples which is not included in the known literature.

Let M be an n-dimensional smooth manifold and let $\mathcal{D} \subseteq TM$ be a bracketgenerating distribution of rank r, for some $r = 1, \ldots, n$. Suppose that X_1, \ldots, X_r constitute a frame of vector fields such that $\mathcal{D} = \text{span} \{X_1, \ldots, X_r\}$. For every $\ell \in \mathbb{N}$, let us call \mathcal{D}_{ℓ} (resp. \mathcal{L}_{ℓ}) the distribution spanned by the iterated commutators of X_1, \ldots, X_r of length equal to ℓ (resp. at most ℓ), so that $\mathcal{D}_0 = \mathcal{L}_0 = \{0\}$, $\mathcal{D}_1 = \mathcal{L}_1 = \mathcal{D}$ and $\mathcal{L}_{\ell} = \mathcal{D}_0 + \ldots + \mathcal{D}_{\ell}$.

In [3] it is proved that if (M, \mathcal{D}, g) is a sub-Riemannian manifold, where \mathcal{D} is equiregular (i.e. dim (\mathcal{D}_{ℓ}) is constant in M) and satisfies

$$[\mathcal{L}_i, \mathcal{L}_j] \subseteq \mathcal{L}_{i+j-1} \quad \text{for every} \quad i, j \ge 2 \text{ with } i+j \ge 5, \tag{1}$$

then a \mathcal{D} -horizontal curve on M with a corner-type singularity is not length-minimizing.

Moreover, in [2] it is proved that the same thesis holds if we replace the hypothesis of equiregularity and (1) with the following condition:

$$\mathcal{L}_i(x) \neq \mathcal{L}_{i-1}(x) \implies \mathcal{L}_{i+1}(x) = \mathcal{L}_i(x) \quad \text{for every } i \ge 1 \text{ and } x \in M.$$
 (2)

In this chapter we study a class of non-equiregular distributions that do not satisfy neither (1) nor (2) but in which angles are not length-minimizers. The main result of the thesis is the following:

Theorem 0.1. Let $\alpha \in \mathbb{N}^+$, $\beta \in \mathbb{N}$ and $\gamma \in \mathbb{N}^+$. Let \mathcal{D} be the distribution in \mathbb{R}^4 of 2-planes spanned pointwise by the vector fields

$$X_1 = \frac{\partial}{\partial x_1}, \qquad X_2 = \frac{\partial}{\partial x_2} + x_1^{\alpha} x_2^{\beta} \frac{\partial}{\partial x_3} + x_3^{\gamma} \frac{\partial}{\partial x_4}.$$
 (3)

Let $\nu : [-1,1] \to \mathbb{R}^4$ be the *D*-horizontal curve defined by

$$\nu(t) = \begin{cases} (0, -t, 0, 0) & \text{if } t \in [-1, 0], \\ (t, 0, 0, 0) & \text{if } t \in [0, 1]. \end{cases}$$
(4)

Then ν is not length-minimizing.

The proof of the previous theorem consists of the following steps:

 \diamond STEP 1: Let \mathcal{D} be the distribution generated by (3). We have that

step
$$(\mathcal{D}) = \gamma(\alpha + \beta + 1) + 1$$
,

in particular \mathcal{D} is bracket-generating in all of \mathbb{R}^4 .

 \diamond STEP 2: For the distribution spanned by (3), the following are equivalent:

- (i) the distribution is not equiregular and does not satisfy neither (1) nor (2),
- (ii) $(\alpha, \beta) = (1, 0)$ and $\gamma \ge 2$.

 \diamond STEP 3: Hereafter, we shall restrict to the case $(\alpha, \beta) = (1, 0)$ and $\gamma \ge 2$. The angle ν defined in (4) is a strictly abnormal extremal.

 \diamond STEP 4: In order to prove that ν is not length-minimizing, we adapt the shortening technique introduced in [3]: we exhibit a \mathcal{D} -horizontal curve joining the points $\nu(-1) = (1, 0, 0, 0)$ and $\nu(1) = (0, 1, 0, 0)$, whose length is strictly smaller than 2, which is the length of ν .

In the case $\gamma \geq 3$ we proceed as follows: first of all, we "cut" the corner ν by considering the \mathcal{D} -horizontal curve ν^{ε} (for some $\varepsilon \in (0, 1)$) whose first two components coincide with the polygonal planar curve $(0, 1) \rightarrow (0, \varepsilon) \rightarrow (\varepsilon, 0) \rightarrow (1, 0)$. The curve ν^{ε} is strictly shorter than ν , but its endpoint has changed into

$$\left(1,0,-\frac{1}{2}\varepsilon^2,\frac{(-1)^{\gamma+1}}{2^{\gamma}}\,\frac{\varepsilon^{2\gamma+1}}{2\gamma+1}\right).$$

In order to correct the endpoint, we have to modify ν^{ε} : consider the lift μ^{ε} of the planar curve (depending on suitable positive parameters a, b, c and r) in Figure 1.

Figure 1: The curve $(\mu_1^{\varepsilon}, \mu_2^{\varepsilon})$.

The endpoint of μ^{ε} is (0, 1, 0, 0) if and only if

$$c = -\frac{\varepsilon^2}{2(b-a)}$$
 and $r = r(\varepsilon)$,

for a uniquely determined function $\varepsilon \mapsto r(\varepsilon)$. For ε sufficiently small, one has that

$$r(\varepsilon) \sim \begin{cases} \varepsilon^{\frac{2\gamma+1}{\gamma+2}} & \text{if } \gamma \text{ is odd,} \\ \\ \varepsilon^{\frac{2\gamma+1}{\gamma+3}} & \text{if } \gamma \text{ is even.} \end{cases}$$
(5)

Finally, by means of the previous estimates on $r(\varepsilon)$ we can prove that, for ε sufficiently small, the difference of length ΔL (between ν and μ^{ε}) is strictly positive, precisely

$$\Delta L = \left(2 - \sqrt{2}\right)\varepsilon - \frac{\varepsilon^2}{a - b} - 8 g_{\gamma}(\varepsilon) C_{\gamma} r(\varepsilon) > 0, \qquad (6)$$

where g_{γ} is a function such that $\lim_{\varepsilon \to 0^+} g_{\gamma}(\varepsilon) = 1$. Therefore, ν is not lengthminimizing since μ^{ε} joins the same points and is strictly shorter.

The case $\gamma = 2$ is more delicate and interesting. The previous argument does not work. The curve μ^{ε} constructed above is not shorter than ν . Thus we have to find a more refined competitor for ν . To this aim, consider the lift η^{ε} of the planar

Figure 2: The curve $(\eta_1^{\varepsilon}, \eta_2^{\varepsilon})$.

curve (depending on suitable positive parameters s and r) in Figure 2. We show that (for ε sufficiently small) there exists a unique positive number

$$s(\varepsilon) \in \left(0, \sqrt[4]{\frac{21}{4}}\varepsilon^{\frac{5}{4}}\right)$$

such that, choosing

$$s = s(\varepsilon)$$
 and $r = \sqrt[5]{4} s(\varepsilon)^{\frac{6}{5}}$,

the endpoint of η^{ε} is (0, 1, 0, 0) and the difference of length ΔL (between ν and η^{ε}) is strictly positive, precisely

$$\Delta L = (2 - \sqrt{2})\varepsilon - 4\varepsilon^2 - 4s(\varepsilon) - 8s(\varepsilon)^2 - 8r(\varepsilon) > 0,$$

proving that also in this case ν is not a length-minimizer.

Acknowledgements

In questa pagina vorrei ringraziare brevemente tutti coloro che, in un modo o nell'altro, mi hanno sostenuta durante tutti i miei studi e durante la stesura di questo lavoro.

Un riconoscimento particolare va ad Enrico che è stato per me di grandissimo aiuto, sempre.

Ringrazio molto i professori Roberto Monti e Giuseppe De Marco che mi hanno dato fiducia e dai quali ho imparato molto.

Grazie a tutti gli amici e colleghi matematici per la preziosa collaborazione e per il tempo passato assieme: Danka, Elçin, Davide, Federico, Luisa e molti altri.

Desidero poi ringraziare: Antonietta Mion, amica speciale ed insegnante di italiano delle elementari, la mia professoressa di matematica del liceo Loretta Reato e tutti gli amici per il loro affetto e supporto psicologico.

Sono profondamente grata ai miei cari genitori che, nonostante tutto, mi hanno incoraggiata a studiare e mi hanno sostenuta in ogni mia attività da sempre. Grazie anche a nonna Natalina, a tutta la mia famiglia e a Leo.

Giulia Vescovo

Contents

1	Preliminaries			13
	1.1	1 Sub-Riemannian manifolds		13
	1.2	Length-minimizers		
	1.3	Extremal curves		17
		1.3.1	The notion of extremal curve	17
		1.3.2	Proof of Pontryagin Maximum Principle	19
		1.3.3	The open problem of regularity	23
2	Non-minimality for a class of angles			25
	2.1	\mathcal{D} is gl	lobally bracket-generating	27
	2.2	When	\mathcal{D} satisfies (A), (B) ₀ and (C) ₀	31
		2.2.1	Condition (A)	31
		2.2.2	Condition $(B)_0$	33
		2.2.3	Condition $(C)_0$	35
	2.3	The a	ngle ν is an abnormal extremal	35
	2.4	2.4 The curve ν is not a length-minimizer		37
		2.4.1	The "cut" ν^{ε}	38
		2.4.2	The first perturbation ζ^{ε} of ν^{ε}	40
		2.4.3	The second perturbation μ^{ε} of ν^{ε}	44
		2.4.4	Final considerations	47
	2.5	Case ($(\alpha, \beta, \gamma) = (1, 0, 2) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	50
р,	1.1.			

Bibliography

Chapter 1

Preliminaries

1.1 Sub-Riemannian manifolds

Our first aim is to introduce the setting we will work in, namely the *sub-Riemannian manifolds*, which is a family of abstract manifolds endowed with a Riemannian metric on a suitable sub-bundle (that we will call *distribution*) of the tangent bundle.

Definition 1.1 (Distribution). Given M an n-dimensional smooth manifold, we define a distribution \mathcal{D} of rank r on M as follows:

- (i) $\mathcal{D}(p)$ is an r-dimensional vector subspace of T_pM for every $p \in M$,
- (ii) for every $p \in M$ there exist an open neighborhood U of p in M and smooth vector fields $X_1, ..., X_r$ on U such that

$$\mathcal{D}(q) = \operatorname{span}_{T_q M} \{ X_1(q), ..., X_r(q) \} \quad \text{for every } q \in U.$$
 (1.1)

We will call X_1, \ldots, X_r a frame of smooth vector fields of \mathcal{D} and we will denote by rank $(\mathcal{D}) := r$ the rank of \mathcal{D} . Given a smooth vector field X on M, we write $X \in \text{Sec}(\mathcal{D})$ if $X(q) \in \mathcal{D}(q)$ for every $q \in M$.

Let M be an *n*-dimensional smooth manifold, let \mathcal{D} be a distribution on M of rank r and let X_1, \ldots, X_r be a frame of smooth vector fields of \mathcal{D} . For every $\ell \in \mathbb{N}^+$ and $i_1, \ldots, i_\ell \in \{1, \ldots, r\}$, we define

$$X_{i_1\dots i_{\ell}} := [X_{i_1}, [X_{i_2}, \dots [X_{i_{\ell-1}}, X_{i_{\ell}}] \dots]].$$
(1.2)

We say that $X_{i_1...i_{\ell}}$ is an iterated commutator of X_1, \ldots, X_r of length ℓ . For any point $p \in M$, we define

$$\begin{aligned} \mathcal{D}_{0}(p) &:= \{0\}, \\ \mathcal{D}_{1}(p) &:= \mathcal{D}(p), \\ \dots \\ \mathcal{D}_{\ell}(p) &:= \operatorname{span}_{T_{p}M} \{ X_{i_{1} \dots i_{\ell}}(p) \in T_{p}M : i_{1}, \dots, i_{\ell} \in \{1, \dots r\} \} \end{aligned}$$

Finally, let us define

$$egin{aligned} \mathcal{L}_0 &:= \mathcal{D}_0 = \{0\}, \ \mathcal{L}_1 &:= \mathcal{D}_0 + \mathcal{D}_1 = \mathcal{D}, \ & \dots \ \mathcal{L}_\ell &:= \mathcal{D}_1 + \dots + \mathcal{D}_\ell. \end{aligned}$$

One can easily prove that \mathcal{D}_{ℓ} and \mathcal{L}_{ℓ} are distributions on M. Let us define the function step $(\mathcal{D}, \cdot) : M \to \overline{\mathbb{N}} := \mathbb{N} \cup \{+\infty\}$ as

$$\operatorname{step}(\mathcal{D}, p) := \inf \{ s \in \mathbb{N} : \mathcal{L}_s(p) = T_p M \} \quad \text{for every } p \in M.$$
(1.3)

Definition 1.2 (Bracket-generating distribution). A distribution \mathcal{D} on M is said to be bracket-generating (or completely non-integrable) if step $(\mathcal{D}, M) \subseteq \mathbb{N}$, i.e.

$$\operatorname{step}(\mathcal{D}, p) < +\infty \quad \text{for every } p \in M.$$
 (1.4)

A bracket-generating distribution \mathcal{D} is of finite step if $\operatorname{step}(\mathcal{D}, \cdot)$ is bounded, and in this case we define $\operatorname{step}(\mathcal{D}) := \|\operatorname{step}(\mathcal{D}, \cdot)\|_{L^{\infty}}$, i.e.

$$\operatorname{step}(\mathcal{D}) = \min\{s \in \mathbb{N} : \mathcal{L}_s(p) = T_p M \text{ for every } p \in M\} < +\infty.$$
(1.5)

If X is a topological space and $x \in X$, we indicate by $\mathcal{N}_X(x)$ (or briefly $\mathcal{N}(x)$) the set of all open neighborhoods of x in X.

Lemma 1.3. Let X be a topological space. Let $A \in C(X, M_{m,n}(\mathbb{R}))$, i.e.

$$A(x) = (A_{i,j}(x))_{i,j}$$
 for every $x \in X$, for suitable $A_{i,j} \in C(X, \mathbb{R})$.

Let $\mathrm{rk} : M_{m,n}(\mathbb{R}) \to \mathbb{N}$ be the function that associates to every matrix its rank. Then $\mathrm{rk} \circ A : X \to \mathbb{R}$ is lsc (i.e. lower semicontinuous), in other words

$$\forall x \in X \quad \exists U \in \mathcal{N}(x) : \quad \forall y \in U \quad \mathrm{rk}(A(y)) \ge \mathrm{rk}(A(x)).$$
(1.6)

Proof. Fix $x \in X$. Let $k := \operatorname{rk}(A(x))$, hence we can choose $R \subseteq \{1, \ldots, m\}$ and $C \subseteq \{1, \ldots, n\}$ both of cardinality equal to k, such that $\det(M(x)) \neq 0$, where

$$M(y) := \left(A_{i,j}(y)\right)_{i \in R, j \in C} \in M_k(\mathbb{R}) \quad \text{for every } y \in X.$$

By continuity of the function det : $M_k(\mathbb{R}) \to \mathbb{R}$, also det $\circ M : X \to \mathbb{R}$ is continuous. Thus there exists $U \in \mathcal{N}(x)$ such that det $(M(y)) \neq 0$ for every $y \in U$. This implies that $\operatorname{rk}(A(y)) \geq k$ for every $y \in U$, hence the thesis.

Proposition 1.4. Let \mathcal{D} be a distribution on an n-dimensional smooth manifold M. Then step $(\mathcal{D}, \cdot) : M \to \overline{\mathbb{N}}$ is use (i.e. upper semicontinuous), in other words

$$\forall p \in M \quad \exists U \in \mathcal{N}(p) : \quad \forall q \in U \quad \operatorname{step}(\mathcal{D}, q) \leq \operatorname{step}(\mathcal{D}, p). \tag{1.7}$$

Proof. We can assume without loss of generality that $M = \mathbb{R}^n$, because of the local nature of the statement. Fix $p \in M$. If $\operatorname{step}(\mathcal{D}, p) = +\infty$ then (1.7) clearly follows. So assume $s := \operatorname{step}(\mathcal{D}, p) \in \mathbb{N}$, then there exist $Z_1, \ldots, Z_n \in \operatorname{Sec}(\mathcal{L}_s)$ such that $Z_1(p), \ldots, Z_n(p)$ is a basis of \mathbb{R}^n . For every $q \in \mathbb{R}^n$, let us call $M(q) \in M_n(\mathbb{R})$ the matrix having $Z_1(q), \ldots, Z_n(q)$ as columns. Thus $\operatorname{rk}(M(p)) = n$. We deduce, from Lemma 1.3, that M(q) has rank equal to n for every $q \in U$. Therefore

$$\operatorname{step}(\mathcal{D},q) \leq \operatorname{step}(\mathcal{D},p),$$

for every $q \in U$, proving (1.7).

Definition 1.5. Let M be a smooth n-dimensional manifold. A sub-Riemannian metric on M is a family $g = g_p(\cdot, \cdot)$ of inner products on each vector space $\mathcal{D}(p)$, such that $g_p(\cdot, \cdot)$ depends smoothly on p. The norm induced by this metric, i.e.

$$||v||_p := g_p(v,v)^{1/2}$$

for every $v \in \mathcal{D}(p)$ is called *sub-Riemannian norm*. The triple (M, \mathcal{D}, g) is called *sub-Riemannian manifold*.

1.2 Length-minimizers

Hereafter, we will assume that M coincides with \mathbb{R}^n and that every frame of smooth vector fields is global (i.e. defined in all of \mathbb{R}^n), because of the local nature of the problems that we are going to study. We will denote by $\operatorname{Lip}([a, b], \mathbb{R}^n)$ the set of all Lipschitz curves from $[a, b] \subseteq \mathbb{R}$ to \mathbb{R}^n .

Definition 1.6 (\mathcal{D} -horizontal curve). Let \mathcal{D} be a distribution of rank r on \mathbb{R}^n , generated by a frame of smooth (linearly indipendent) vector fields X_1, \ldots, X_r . A curve $\gamma \in \operatorname{Lip}([a, b], \mathbb{R}^n)$ is said to be \mathcal{D} -horizontal if

$$\dot{\gamma}(t) \in \mathcal{D}(\gamma(t))$$
 for a.e. $t \in [a, b],$ (1.8)

in other words for some $h = (h_1, \ldots, h_r) \in L^{\infty}([a, b], \mathbb{R}^r)$ we have that

$$\dot{\gamma}(t) = \sum_{i=1}^{r} h_i(t) X_i(\gamma(t)) \quad \text{for a.e. } t \in [a, b].$$

$$(1.9)$$

We will refer to h_1, \ldots, h_r as controls of γ .

Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold. The *length* of a \mathcal{D} -horizontal curve $\gamma \in \operatorname{Lip}([a, b], \mathbb{R}^n)$ is defined as

$$L(\gamma) := \int_{a}^{b} \sqrt{g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt.$$
(1.10)

Definition 1.7 (Carnot-Carathéodory distance). Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where the distribution \mathcal{D} is bracket-generating. The Carnot-Carathéodory distance between two points $x, y \in \mathbb{R}^n$ is given by

 $d(x,y) := \inf \{ L(\gamma) \mid \gamma : [a,b] \to \mathbb{R}^n \text{ is } \mathcal{D} \text{-horizontal}, \gamma(0) = x, \gamma(1) = y \}.$ (1.11)

By the Chow-Rashevsky theorem (see Theorem 2.2, p. 24 in [5]), if the distribution \mathcal{D} is bracket-generating, then any couple of points in \mathbb{R}^n can be connected by a \mathcal{D} -horizontal curve. Hence the function $d : \mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ is actually a distance on \mathbb{R}^n .

Remark 1.8. One can see that the topology induced by the Carnot-Carathéodory distance d coincides with the Euclidean topology of \mathbb{R}^n (see Theorem 2.3 p. 24 in [5], or [7]).

Definition 1.9 (Length-minimizer). Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where the distribution \mathcal{D} is bracket-generating. A \mathcal{D} -horizontal curve $\gamma : [a, b] \to \mathbb{R}^n$ is a *length-minimizer* if it realizes the infimum in (1.11), i.e. $d(\gamma(a), \gamma(b)) = L(\gamma)$.

In general global length-minimizers do not exist, but the local existence holds true and it is a consequence of Ascoli-Arzelà theorem and of Dunford-Pettis theorem.

Theorem 1.10 (Local existence of length-minimizers in \mathbb{R}^n). Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where the distribution \mathcal{D} is bracket-generating. Let d be the Carnot-Carathéodory distance defined in (1.11). Let us fix $x \in \mathbb{R}^n$. Then there exists $\rho_x > 0$ such that the following property hold: for every

$$y \in B(x, \rho_x) := \left\{ z \in \mathbb{R}^n \, \big| \, d(x, z) < \rho_x \right\},$$

there exists a length-minimizer γ joining x to y.

Proof. By Remark 1.8, we can choose $\rho_x > 0$ such that

$$B(x,\rho_x) := \left\{ y \in \mathbb{R}^n \, \middle| \, d(x,y) < \rho_x \right\}$$

is an open bounded subset of \mathbb{R}^n . Fix $y \in B(x, \rho_x)$. By definition of d there exists a sequence of \mathcal{D} -horizontal curves $\Gamma = \{\gamma^k\}_{k \in \mathbb{N}}$ parametrized on [a, b] joining x to y such that $\lim_{k\to\infty} L(\gamma^k) = d(x, y)$. Hence there exists $\bar{k} \in \mathbb{N}$ such that $[\gamma^k] \subseteq B(x, \rho_x)$ for every $k \geq \bar{k}$, we argue by contradiction: assume that $[\gamma^{k_j}] \not\subseteq B(x, \rho_x)$ for some subsequence $\{\gamma^{k_j}\}_{j\in\mathbb{N}}$, thus $\gamma^{k_j}(t^{k_j}) \notin B(x, \rho_x)$ for some $t_{k_j} \in [a, b]$. Then

$$L(\gamma^{k_j}) \ge L\left(\gamma^{k_j}_{|[0,t^{k_j}]}\right) \ge d\left(x,\gamma^k(t^{k_j})\right) \ge \rho_x,$$

which gives $d(x, y) = \lim_{j \to \infty} L(\gamma^{k_j}) \ge \rho_x$, contradicting $y \in B(x, \rho_x)$.

Without loss of generality we can assume that for every $k \in \mathbb{N}$ the curve γ^k is parametrized by constant speed and X_1, \ldots, X_r is a frame of orthonormal (with respect to g) vector fields generating \mathcal{D} such that rank $\mathcal{D} = r$. Hence for every $k \in \mathbb{N}$,

$$L(\gamma^k) = \int_a^b |h^k(t)| \, dt,$$

where $h^k \in L^{\infty}([a, b], \mathbb{R}^r)$ are the controls of γ^k . Then $|h^k(t)| = L(\gamma^k)$, for almost every $t \in [a, b]$ and for every $k \in \mathbb{N}$. Thus $\{\|\dot{\gamma}^k\|_{L^{\infty}} | k \geq \bar{k}\}$ is bounded. Hence the family Γ is equilipschitz, so in particular it is equicontinuous. Moreover, since $[\gamma^k] \subseteq B(x, \rho_x)$ for every $k \geq \bar{k}$, Γ is bounded. By Ascoli-Arzelà theorem we have that Γ is totally bounded. Note that $\overline{\Gamma}$ is a totally bounded closed subset of the complete space $(C([a, b], \mathbb{R}^n), \|\cdot\|_{\infty})$, thus $\overline{\Gamma}$ is also complete. Then, up to a subsequence, $\gamma^k \to \gamma$ uniformly as $k \to \infty$, for some $\gamma \in \operatorname{Lip}([a, b], \overline{B(x, \rho_x)})$.

We can choose M > 0 such that $|h^k| \leq |\dot{\gamma}^k| \leq ||\dot{\gamma}^k||_{\infty} \leq M$ a.e. in [a, b] and for every $k \geq \bar{k}$. Fix $\varepsilon > 0$ and $E \subseteq [a, b]$ with $\mathcal{L}^1(E) \leq \frac{\varepsilon}{M}$, then

$$\left| \int_{E} h^{k}(t) \, dt \right| \le M \, \mathcal{L}^{1}(E) \le \varepsilon$$

i.e. the family of controls $\{h^k\}_{k\geq \bar{k}} \subseteq L^1([a,b],\mathbb{R}^r)$ is uniformly integrable. Then, by Dunford-Pettis theorem, up to a subsequence $h^k \rightharpoonup h$ as $k \rightarrow \infty$ for some $h \in L^1([a,b],\mathbb{R}^r)$. By integrating the equation $\dot{\gamma}^k(t) = \sum_{i=1}^r h_i^k(t) X_i(\gamma(t))$ with respect to t, we get

$$\gamma^{k}(t) - x = \sum_{i=1}^{r} \int_{a}^{b} h_{i}^{k}(s) X_{i}(\gamma(s)) ds \quad \text{for every } t \in [a, b].$$

By letting k go to ∞ we get

$$\gamma(t) - x = \sum_{i=1}^{r} \int_{a}^{b} h_{i}(s) X_{i}(\gamma(s)) ds \quad \text{for every } t \in [a, b].$$

By differentiating the above equation with respect to t, we obtain that γ is \mathcal{D} -horizontal with controls h:

$$\dot{\gamma}(t) = \sum_{i=1}^{r} h_i(t) X_i(\gamma(t)) \quad \text{for a.e. } t \in [a, b].$$

Note that $\gamma(a) = x$ and $\gamma(b) = y$. Finally, by Fatou Lemma, we have that

$$L(\gamma) = \|h\|_{L^{1}([a,b],\mathbb{R}^{r})} \le \liminf_{k \to \infty} \|h^{k}\|_{L^{1}([a,b],\mathbb{R}^{r})} = d(x,y),$$

so that $L(\gamma) = d(x, y)$ as required.

1.3 Extremal curves

1.3.1 The notion of extremal curve.

Definition 1.11 (Optimal Pair). Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where the distribution \mathcal{D} is bracket-generating. If γ is a length-minimizer with controls h, we say that (γ, h) is an optimal pair.

Remark 1.12. If $(\mathbb{R}^n, \mathcal{D}, g)$ is a sub-Riemannian manifold and X_1, \ldots, X_r is a frame of othonormal (with respect to g) vector fields of \mathcal{D} , then a \mathcal{D} -horizontal curve γ with controls h has length equal to

$$L(\gamma) = \int_0^1 |h(t)| \, dt.$$
 (1.12)

The 2-length of γ is defined as follows:

$$L_2(\gamma) := \left(\int_0^1 |h(t)|^2 dt\right)^{\frac{1}{2}}.$$
 (1.13)

The Carnot-Carathéodory distance

$$d(x,y) = \inf \{ L(\gamma) \mid \gamma \text{ is } \mathcal{D}\text{-horizontal}, \gamma(0) = x, \gamma(1) = y \},\$$

coincides with the following distance:

$$d_2(x,y) := \inf \{ L_2(\gamma) \mid \gamma \text{ is } \mathcal{D}\text{-horizontal}, \gamma(0) = x, \gamma(1) = y \}.$$

$$(1.14)$$

Indeed, note that when γ is parametrized by constant speed c, one has that

$$L(\gamma) = |h(t)| = c = L_2(\gamma)$$
 for almost every $t \in [0, 1]$.

Now we give the definition of extremal curve:

Definition 1.13 (Extremal curve). Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where \mathcal{D} is a bracket-generating distribution of rank r, generated by X_1, \ldots, X_r . Fix $x, y \in \mathbb{R}^n$. Let γ be a competitor in (1.11). We say that γ is an extremal curve if there exist $\xi_0 \in \{0,1\}$ and a curve $\xi \in \text{Lip}([0,1], \mathbb{R}^n)$ such that the following conditions hold:

(i) for every $t \in [0, 1]$

$$\xi_0 + |\xi(t)| \neq 0, \tag{1.15}$$

(ii) for almost every $t \in [0, 1]$ and for every i = 1, ..., r

$$\xi_0 h_i(t) + \xi(t) \cdot X_i(\gamma(t)) = 0, \qquad (1.16)$$

(iii) for almost every $t \in [0, 1]$

$$\dot{\xi}(t) + \sum_{i=1}^{r} h_i(t) X_i'(\gamma(t))^T \xi(t) = 0.$$
 (1.17)

If γ is an extremal curve and $\xi_0 = 1$ (resp. $\xi_0 = 0$), we say that γ is a normal (resp. abnormal) extremal. We say that γ is a strictly abnormal extremal if it is abnormal but not normal.

In the following theorem we see that length-minimizers are extremal curves, so they satisfy some necessary first-oreder conditions. By Remark 1.12, we can suppose γ parametrized by constant speed, thus we can fix $L^2([0,1], \mathbb{R}^r)$ as space of controls.

Theorem 1.14 (Pontryagin Maximum Principle). Consider a sub-Riemannian manifold $(\mathbb{R}^n, \mathcal{D}, g)$, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_1, \ldots, X_r . Assume that X_1, \ldots, X_r are orthonormal with respect to g. Let $(\gamma, h) \in \text{Lip}([0, 1], \mathbb{R}^n) \times L^2([0, 1], \mathbb{R}^r)$ be an optimal pair, with γ parametrized by constant speed. Then γ is an extremal curve.

1.3.2 Proof of Pontryagin Maximum Principle

In order to prove Theorem 1.14, we need some preliminary results and definitions. Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_1, \ldots, X_r . Assume that X_1, \ldots, X_r are orthonormal with respect to g.

Let $(\gamma, h) \in \operatorname{Lip}([0, 1], \mathbb{R}^n) \times \operatorname{L}^2([0, 1], \mathbb{R}^r)$ be an optimal pair. Suppose that $x_0 \in \mathbb{R}^n$ is the initial point of γ , i.e. $\gamma(0) = x_0$. For every *r*-tuple of controls $v \in L^2([0, 1], \mathbb{R}^r)$, consider the unique solution $\gamma^v \in \operatorname{Lip}([0, 1], \mathbb{R}^n)$ of the following Cauchy problem:

$$\begin{cases} \dot{\gamma}^{v}(t) = \sum_{i=1}^{r} v_{i}(t) X_{i}(\gamma^{v}(t)), \\ \gamma^{v}(0) = x_{0}, \end{cases}$$
(1.18)

for almost every $t \in [0,1]$. For every $t \in [0,1]$, let $\mathcal{E}_t : L^2([0,1], \mathbb{R}^r) \to \mathbb{R}^n$ be the map defined by

$$\mathcal{E}_t(v) := \gamma^v(t). \tag{1.19}$$

We say that the map $\mathcal{E} := \mathcal{E}_1$ is the *endpoint map*. Note that $\mathcal{E}(h) = \gamma^h(1) = \gamma(1)$. For every $x \in \mathbb{R}^n$ consider the unique solution $\gamma_x \in \operatorname{Lip}([0,1],\mathbb{R}^n)$ of the following Cauchy problem:

$$\begin{cases} \dot{\gamma}_{x}(t) = \sum_{i=1}^{r} h_{i}(t) X_{i}(\gamma_{x}(t)), \\ \gamma_{x}(0) = x, \end{cases}$$
(1.20)

for almost every $t \in [0, 1]$. Note that $\gamma_{x_0} = \gamma$. The family of maps $\{\phi_t\}_{t \in [0, 1]}$, where $\phi_t : \mathbb{R}^n \to \mathbb{R}^n$ is defined by

$$\phi_t(x) := \gamma_x(t), \tag{1.21}$$

is called optimal flow. Note that $\phi_t(x_0) = \gamma(t)$ for every $t \in [0, 1]$. For every $t \in [0, 1]$ we have that the map ϕ_t is a C^1 -diffeomorphism.

Let us define the map $\tilde{\mathcal{E}}_t : L^2([0,1],\mathbb{R}^r) \to \mathbb{R}^n$ as follows:

$$\tilde{\mathcal{E}}_t(v) := \phi_t^{-1} \big(\mathcal{E}_t(v) \big). \tag{1.22}$$

The map $\tilde{\mathcal{E}}_t$ is called the modified endpoint map of \mathcal{E}_t .

Lemma 1.15. Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_1, \ldots, X_r . Assume that X_1, \ldots, X_r are orthonormal with respect to g.

Let $(\gamma, h) \in \text{Lip}([0, 1], \mathbb{R}^n) \times L^2([0, 1], \mathbb{R}^r)$ be an optimal pair. Then for every $v \in L^2([0, 1], \mathbb{R}^r)$ the following hold:

$$\frac{\partial}{\partial t}\tilde{\mathcal{E}}_t(v) = \phi_t'\big(\tilde{\mathcal{E}}_t(v)\big)^{-1} \sum_{i=1}^r (v_i - h_i) X_i\big(\mathcal{E}_t(v)\big)$$
(1.23)

and

$$D_{v}\tilde{\mathcal{E}}_{t}(h) = \int_{0}^{1} \phi_{t}'(x_{0})^{-1} \sum_{i=1}^{r} v_{i} X_{i}(\gamma(t)) dt, \qquad (1.24)$$

where \mathcal{E}_t and $\tilde{\mathcal{E}}_t$ are the maps defined respectively in (1.19) and in (1.22), and the family of maps $\{\phi_t\}_{t\in[0,1]}$ is the optimal flow defined in (1.21).

Proof. First of all, we prove equation (1.23). By differentiating $\mathcal{E}_t(v) = \phi_t(\tilde{\mathcal{E}}_t)$ with respect to t, we obtain

$$\frac{\partial}{\partial t} \mathcal{E}_t(v) = \left(\frac{\partial}{\partial t} \phi_t\right) \left(\tilde{\mathcal{E}}_t(v)\right) + \phi_t' \left(\tilde{\mathcal{E}}_t(v)\right) \frac{\partial}{\partial t} \tilde{\mathcal{E}}_t(v).$$
(1.25)

Note that

$$\left(\frac{\partial}{\partial t}\phi_t\right)\left(\tilde{\mathcal{E}}_t(v)\right) = \sum_{i=1}^r h_i(t) X_i\left(\phi_t\left(\tilde{\mathcal{E}}_t(v)\right)\right) = \sum_{i=1}^r h_i(t) X_i\left(\mathcal{E}_t(v)\right),\tag{1.26}$$

and that

$$\frac{\partial}{\partial t} \mathcal{E}_t(v) = \sum_{i=1}^r v_i(t) X_i \big(\mathcal{E}_t(v) \big).$$
(1.27)

Therefore, by using (1.25), (1.26), (1.27) and since ϕ_t is a C^1 -diffeomorphism, we obtain (1.23).

Now we prove the equation (1.24). By integrating (1.23), with v = h + u for some $u \in L^2([0,1], \mathbb{R}^r)$, we have that

$$\tilde{\mathcal{E}}(h+u) = \tilde{\mathcal{E}}_1(h+u) = x_0 + \int_0^1 \phi_t' \big(\tilde{\mathcal{E}}_t(h+u)\big)^{-1} \sum_{i=1}^r u_i X_i \big(\mathcal{E}_t(h+u)\big) \, dt. \quad (1.28)$$

Note that $D_v \tilde{\mathcal{E}}_t(h) = \frac{\partial}{\partial s} \tilde{\mathcal{E}}_t(h+sv)|_{s=0}$ for every $v \in L^2([0,1], \mathbb{R}^r)$. By (1.28) we obtain

$$\frac{\partial}{\partial s}\tilde{\mathcal{E}}_t(h+sv) = \int_0^1 \frac{\partial}{\partial s} \left(\phi_t'\big(\tilde{\mathcal{E}}_t(h+sv)\big)^{-1}\big) \sum_{i=1}^r s \, v_i \, X_i\big(\mathcal{E}_t(h+sv)\big) \, dt \\ + \int_0^1 \phi_t'\big(\tilde{\mathcal{E}}_t(h+sv)\big)^{-1} \sum_{i=1}^r v_i \, X_i\big(\mathcal{E}_t(h+sv)\big) \, dt.$$

Hence

$$D_v \tilde{\mathcal{E}}_t(h) = \frac{\partial}{\partial s} \tilde{\mathcal{E}}_t(h+sv)|_{s=0} = \int_0^1 \phi_t' \big(\tilde{\mathcal{E}}_t(h)\big)^{-1} \sum_{i=1}^r v_i X_i \big(\mathcal{E}_t(h)\big) dt$$
$$= \int_0^1 \phi_t' \big(x_0\big)^{-1} \sum_{i=1}^r v_i X_i \big(\gamma(t)\big) dt,$$

getting the thesis.

The map $\mathcal{F}: L^2([0,1],\mathbb{R}^r) \to \mathbb{R}^{n+1}$ defined by

$$\mathcal{F}(v) := \left(\mathcal{L}(v), \mathcal{E}(v)\right), \tag{1.29}$$

where \mathcal{E} is the endpoint map and

$$\mathcal{L}(v) := \frac{1}{2} \int_0^1 |v(t)|^2 dt, \qquad (1.30)$$

is called the extended endpoint mapping. Moreover the map

$$\tilde{\mathcal{F}}: L^2([0,1],\mathbb{R}^r) \to \mathbb{R}^{n+1}$$

defined by

$$\tilde{\mathcal{F}}(v) := \left(\mathcal{L}(v), \tilde{\mathcal{E}}(v)\right),\tag{1.31}$$

is called the modified extended endpoint mapping.

We denote by $B_n(x,r)$ the open ball in \mathbb{R}^n of center x and radius r.

Lemma 1.16. Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_1, \ldots, X_r . Assume that X_1, \ldots, X_r are orthonormal with respect to g.

Let $(\gamma, h) \in \operatorname{Lip}([0, 1], \mathbb{R}^n) \times L^2([0, 1], \mathbb{R}^n)$ be an optimal pair. Then the map

$$\mathcal{F}: L^2([0,1],\mathbb{R}^r) \to \mathbb{R}^{n+1}$$

is not open at v=h.

Proof. Suppose by contradiction that \mathcal{F} is open at v = h. Let U be an open neighborhood of h in $L^2([0,1], \mathbb{R}^r)$, then $\mathcal{F}(U)$ is an open neighborhood of $\mathcal{F}(h)$ in \mathbb{R}^{n+1} . Choose r > 0 such that $B_{n+1}(\mathcal{F}(h), r) \subseteq \mathcal{F}(U)$. So there exists $\varepsilon > 0$ such that

$$\mathcal{F}(h) - \varepsilon e_1 \in B_{n+1}(\mathcal{F}(h), r) \subseteq \mathcal{F}(U),$$

where $e_1 = (1, 0, ..., 0) \in \mathbb{R}^{n+1}$. Hence $(\mathcal{L}(v) - \varepsilon, \mathcal{E}(v)) \in \mathcal{F}(U)$. Then there exists $u \in L^2([0, 1], \mathbb{R}^r)$ such that $\mathcal{F}(u) = (\mathcal{L}(v) - \varepsilon, \mathcal{E}(v))$, contradicting the fact that γ is a length-minimizer.

Lemma 1.17. Let X, Y be Banach spaces, with $\dim(Y) = n$. Let $p \in X$. Assume that $F : X \to Y$ is a differentiable function and that $dF(p) : X \to Y$ is surjective. Then F is open at p.

Proof. We can assume without loss of generality p = 0. Since $dF(0) : X \to Y$ is surjective, we can choose $v_1, \ldots, v_n \in X$ such that $dF(v_1), \ldots, dF(v_n)$ is a basis of Y. Let $V \leq X$ be the linear subspace of X generated by v_1, \ldots, v_n . We have that

$$d(F|_V)(0) = dF(0)|_V : V \to Y$$

is a linear isomorphism between V and Y. Thus $G := F|_V$ is open at 0, by the Inverse Function theorem.

Now let $U \subseteq X$ be a neighborhood of 0 in X. Hence $U \cap V$ is a neighborhood of 0 in V. Since G is open at 0, one has that $W := G(U \cap V) = F(U \cap V)$ is a neighborhood of 0 in Y. Thus also $F(U) \supseteq W$ is a neighborhood of 0 in Y. We deduce that F is open at 0.

We are now ready to prove the above-stated Pontryagin Maximum Principle.

Proof of Theorem 1.14. Let (γ, h) be an optimal pair. By Lemma 1.16 we deduce that \mathcal{F} is not open at v = h. Since $\phi_1 : \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 -diffeomorphism, also $\tilde{\mathcal{F}}$ is not open at v = h. Hence, by Lemma 1.17, we have that $d\tilde{\mathcal{F}}(h)$ is not surjective. Thus we can choose $\xi_0 \in \mathbb{R}$ and $\xi(0) \in \mathbb{R}^n$ such that $\xi_0 + |\xi(0)| \neq 0$ and

$$D_v \tilde{\mathcal{F}}(h) \cdot \left(\xi_0, \xi(0)\right) = 0$$

for every $v \in L^2([0,1], \mathbb{R}^r)$. Explicitly,

$$0 = D_v \tilde{\mathcal{F}}(h) \cdot \left(\xi_0, \xi(0)\right) = \xi_0 D_v \mathcal{L}(h) + \xi(0) D_v \tilde{\mathcal{E}}(h)$$
(1.32)

for every $v \in L^2([0,1], \mathbb{R}^r)$. Note that

$$D_v \mathcal{L}(h) = \frac{\partial}{\partial s} \mathcal{L}(h + sv)|_{s=0} = \int_0^1 \sum_{i=1}^r v_i(t) h_i(t) dt$$

for every $v \in L^2([0,1], \mathbb{R}^r)$. Then, by (1.24), we can write (1.32) as follows:

$$\int_0^1 \sum_{i=1}^r v_i(t) \left\{ \xi_0 h_i(t) + \xi(0) \cdot \phi_t'(x_0)^{-1} X_i(\gamma(t)) \right\} dt = 0$$
 (1.33)

for every $v \in L^2([0,1],\mathbb{R}^r)$. Now let $\xi:[0,1] \to \mathbb{R}^n$ be the Lipschitz curve defined by

$$\xi(t) := \left[\phi_t'(x_0)^{-1}\right]^T \xi(0).$$
(1.34)

Hence ξ satisfies (1.15): indeed if $\xi(t) = 0$ for some $t \in [0, 1]$ then $\xi(0) = 0$. By (1.33) and (1.34), we obtain (1.16): for almost every $t \in [0, 1]$

$$\xi_0 h_i(t) + \xi(t) \cdot X_i(\gamma(t)) = 0.$$

Now we prove (1.17). By differentiating (with respect to t) the following identity

$$\left[\phi_t'(x_0)\right]^T \xi(t) = \xi(0), \quad t \in [0, 1],$$

we get

$$\left[\phi_t'(x_0)\right]^T \dot{\xi}(t) + \left[\frac{d}{dt}\phi_t'(x_0)\right]^T \xi(t) = 0 \quad \text{for a.e. } t \in [0,1].$$
(1.35)

Note that

$$\frac{d}{dt}\phi_t'(x_0) = \left(\frac{d}{dt}\phi_t(x)\right)'\Big|_{x=x_0} = \left(\sum_{i=1}^r h_i(t) X_i(\phi_t(x))\right)'\Big|_{x=x_0}$$
$$= \left(\sum_{i=1}^r h_i(t) \left(X_i(\phi_t(x))\right)'\right)\Big|_{x=x_0} = \sum_{i=1}^r h_i(t) X_i'(\gamma(t)) \phi_t'(x_0).$$

Then, by (1.35) we have that

$$\left[\phi_t'(x_0)\right]^T \dot{\xi}(t) + \left[\phi_t'(x_0)\right]^T \sum_{i=1}^r h_i(t) X_i'(\gamma(t))^T \xi(t) = 0,$$

for almost every $t \in [0, 1]$, getting (1.17).

1.3.3 The open problem of regularity.

We collect here some of the most important known facts about the delicate problem of regularity of length-minimizers:

- We saw in Theorem 1.14 that every length-minimizer is an extremal curve. Thus the focus is moved to study the properties of regularity of extremal curves.
- It is simple to prove (see below) that every normal extremal is smooth, but there are length-minimizers that are strictly abnormal extremals, see [4].
- There are examples of (strictly) abnormal extremals that are not smooth but that are not length-minimizers.
- All known examples of strictly abnormal length-minimizers are smooth.

The problem of regularity of length-minimizers is still open. We now prove that every normal extremal is C^{∞} smooth.

Theorem 1.18. Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_1, \ldots, X_r . Assume that X_1, \ldots, X_r are orthonormal with respect to g. Let $\gamma : [0,1] \to \mathbb{R}^n$ be a normal extremal with controls h and dual curve ξ . Then $\gamma \in C^{\infty}([0,1], \mathbb{R}^n)$.

Proof. Note that γ and ξ are continuous. Then by (1.16) we deduce that h_i is continuous for every $i = 1, \ldots, r$. Hence (1.17) implies that ξ is C^1 and (1.9) implies that γ is C^1 .

Now, by (1.16) we deduce that h_i is continuous for every i = 1, ..., r. Hence (1.17) implies that ξ is C^2 and (1.9) implies that γ is C^2 , and so on. By repeating this argument, we deduce that γ is smooth.

In the next chapter we will study a class of abnormal extremals presenting cornertype singularities.

Chapter 2

Non-minimality for a class of angles

One of the main open problems in the study of Carnot-Carathéodory spaces is the following: is every length-minimizer smooth or not? To this purpose it was proved, in the papers [3] and [2], that - under suitable assumptions - curves with a corner-type singularity cannot be length-minimizing.

We shall makes use of some definitions: given a sub-Riemannian manifold (M, \mathcal{D}, g) , we introduce the following conditions

(A) the distribution \mathcal{D} is equiregular, i.e. for every $\ell \in \mathbb{N}$

dim $\mathcal{D}_{\ell}(p)$ is independent of the point $p \in M$.

 $(\mathbf{B})_x$ For some $x \in M$, one has that

 $[\mathcal{L}_i, \mathcal{L}_j](x) \subseteq \mathcal{L}_{i+j-1}(x)$ for every $i, j \ge 2$ with $i+j \ge 5$.

 $(\mathbf{C})_x$ For some $x \in M$, one has that

 $\mathcal{L}_i(x) \neq \mathcal{L}_{i-1}(x) \implies \mathcal{L}_{i+1}(x) = \mathcal{L}_i(x) \quad \text{for every } i \ge 1.$

The following result was proved in [3]:

Theorem 2.1. Let (M, \mathcal{D}, g) be a sub-Riemannian manifold satisfying (A) and $(B)_x$ for some $x \in M$. Then any extremal with a corner-type singularity in x is not length-minimizing.

The following result was proved in [2]:

Theorem 2.2. Let (M, \mathcal{D}, g) be a sub-Riemannian manifold satisfying $(C)_x$ for some $x \in M$. Then any extremal with a corner-type singularity in x is not length-minimizing.

The aim of this chapter is to provide an example of an extremal ν in \mathbb{R}^4 , having an angle in a point $x \in \mathbb{R}^4$, which is not a length-minimizer even if the underlying distribution \mathcal{D} does not satisfy any of the conditions (A), (B)_x and (C)_x. This is the sketch of what we will prove in the following sections:

Section 2.1. Fix $\alpha \in \mathbb{N}^+$, $\beta \in \mathbb{N}$ and $\gamma \in \mathbb{N}^+$. We call \mathcal{D} the 2-dimensional distribution in \mathbb{R}^4 generated by

$$\begin{cases} X_1(x) = (1, 0, 0, 0), \\ X_2(x) = (0, 1, x_1^{\alpha} x_2^{\beta}, x_3^{\gamma}), \end{cases} \text{ for every } x \in \mathbb{R}^4.$$

We prove that \mathcal{D} is bracket-generating in all of \mathbb{R}^4 , with step equal to $\gamma(\alpha+\beta+1)+1$. Section 2.2. We study when \mathcal{D} satisfies the above conditions (A), (B)₀ and (C)₀, namely:

- \mathcal{D} satisfies (A) if and only if $(\alpha, \beta, \gamma) = (1, 0, 1)$.
- \mathcal{D} satisfies (B)₀ if and only if $\gamma = 1$.
- \mathcal{D} satisfies (C)₀ if and only if $(\alpha, \beta) \neq (1, 0)$ and $\gamma \geq 2$.

Hence we restrict our attention to the case $(\alpha, \beta) = (1, 0)$ and $\gamma \ge 2$, in such a way that none of (A), (B)₀ and (C)₀ is satisfied.

Section 2.3. We introduce the \mathcal{D} -horizontal curve ν defined as follows:

$$\nu(t) = \begin{cases} (0, -t, 0, 0) & \text{if } t \in [-1, 0], \\ (t, 0, 0, 0) & \text{if } t \in [0, 1]. \end{cases}$$

Clearly, ν has an angle in x = 0. We prove that ν is a strictly abnormal extremal if and only if $(\alpha, \gamma) \neq (1, 1)$.

Section 2.4. We prove that ν is not a length-minimizer when $(\alpha, \beta) = (1, 0)$ and $\gamma \geq 3$. We proceed as follows:

- first of all, we "cut" the corner ν with a suitable curve ν^ε (depending on a parameter 0 < ε < 1). The length of ν^ε is strictly smaller than the one of ν, but the endpoint of ν^ε is perturbed, since its third and fourth components are non-null.
- In order to correct the third component of the endpoint of ν^ε, we introduce a new curve ζ^ε (depending also on parameters a, b and c), obtained by perturbing ν^ε with a rectangle. For suitable choices of the parameters, ζ^ε is strictly shorter than ν.
- Finally, by concatenating ζ^{ε} with a suitable circuit, we obtain a curve μ^{ε} (depending also on parameters r and s) whose third component remains equal to 0 and whose fourth component is sent to 0. For ε sufficiently small, the length of μ^{ε} remains strictly smaller than the length of ν .

Therefore, for a suitable $\varepsilon > 0$, we have that ν and μ^{ε} join the same two points and that $L(\mu^{\varepsilon}) < L(\nu)$, proving that ν is not a length-minimizer.

Section 2.5. We deal with the case $(\alpha, \beta, \gamma) = (1, 0, 2)$, proving that ν is not a length-minimizer also in this case (by exhibiting a suitable curve η^{ε} obtained with techniques analogous to that of Section 2.4).

2.1 \mathcal{D} is globally bracket-generating

First of all, we prove that the distribution \mathcal{D} introduced above has finite step in $0 \in \mathbb{R}^4$. More precisely, two suitable iterated commutators of X_1 and X_2 of length $\alpha + \beta + 1$ and $\gamma(\alpha + \beta + 1) + 1$, respectively, are multiples of e_3 and e_4 , respectively, when evaluated in x = 0. We deduce that \mathcal{D} has step smaller than or equal to $\gamma(\alpha + \beta + 1) + 1$ in 0.

Lemma 2.3. Let $\alpha \in \mathbb{N}^+$, $\beta \in \mathbb{N}$, $\gamma \in \mathbb{N}^+$. Let \mathcal{D} be the 2-dimensional distribution in \mathbb{R}^4 generated by

$$\begin{cases} X_1(x) = (1, 0, 0, 0), \\ X_2(x) = (0, 1, x_1^{\alpha} x_2^{\beta}, x_3^{\gamma}), \end{cases} \text{ for every } x \in \mathbb{R}^4.$$
(2.1)

Then \mathcal{D} has step smaller than or equal to $\gamma(\alpha + \beta + 1) + 1$ in $0 \in \mathbb{R}^4$.

Proof. STEP 1: We have that $X_1(0) = e_1$ and $X_2(0) = e_2$, so we want to obtain e_3 and e_4 . Let us take a vector field V in \mathbb{R}^4 of the form V = (0, 0, p, q), where $p \in \mathbb{N}[x_1, x_2]$ and $q \in (-\mathbb{N})[x_1, x_2, x_3]$. Then a simple computation yields

$$\begin{cases}
[X_1, V] = \left(0, 0, \frac{\partial p}{\partial x_1}, \frac{\partial q}{\partial x_1}\right), \\
[X_2, V] = \left(0, 0, \frac{\partial p}{\partial x_2}, \frac{\partial q}{\partial x_2} + \frac{\partial q}{\partial x_3} x_1^{\alpha} x_2^{\beta} + \gamma(-p) x_3^{\gamma-1}\right).
\end{cases}$$
(2.2)

Hence both $[X_1, V]$ and $[X_2, V]$ have the same form of V.

Note that every iterated commutator of X_1 and X_2 of length at least 2 has this form, since

$$[X_1, X_2] = (0, 0, \alpha x_1^{\alpha - 1} x_2^{\beta}, 0).$$
(2.3)

Moreover, let us write $L_i(Y) := [X_i, Y]$ for every vector field Y in \mathbb{R}^4 and i = 1, 2. Finally, we say that a polynomial $q \in (-\mathbb{N})[x_1, x_2, x_3]$ contains $a \in (-\mathbb{N})[x_1, x_2, x_3]$ if a is an addendum of q and $q - a \in (-\mathbb{N})[x_1, x_2, x_3]$.

STEP 2: By applying α times the first equation of (2.2) to $V = X_2$, we can easily deduce that $L_1^{\alpha}(X_2) = (0, 0, \alpha! x_2^{\beta}, 0)$.

Now, by applying $i = 1, ..., \beta$ times the second equation of (2.2) to $V = L_1^{\alpha}(X_2)$, we obtain a vector field whose third component is $\alpha!\beta(\beta-1)\cdots(\beta-i+1)x_2^{\beta-i}$ and whose fourth component is a multiple of $x_2^{\beta-i+1}$. Thus the third component of the vector field

$$X_3 := L_2^\beta \left(L_1^\alpha(X_2) \right) \tag{2.4}$$

is $\alpha!\beta!$ and its fourth component is a multiple of x_2 , in particular $X_3(0) = \alpha!\beta! e_3$. STEP 3: It only remains to find an iterated commutator of X_1, X_2 having a non-zero fourth component when evaluated at $0 \in \mathbb{R}^4$.

By applying γ times the second equation of (2.2) to $V = [X_1, X_2]$, we get that the fourth component of $L_2^{\gamma}([X_1, X_2])$ contains $-\alpha \gamma! x_1^{\gamma \alpha - 1} x_2^{\gamma \beta}$.

Moreover, by applying (other) $\gamma\beta$ times the second equation of (2.2) to the vector field $V = L_2^{\gamma}([X_1, X_2])$, we obtain that the fourth component of $L_2^{\gamma(\beta+1)}([X_1, X_2])$ contains the addendum $-\alpha\gamma!(\gamma\beta)! x_1^{\gamma\alpha-1}$.

Finally, by applying $\gamma \alpha - 1$ times the first equation of (2.2) to $V = L_2^{\gamma(\beta+1)}([X_1, X_2])$, we get that the fourth component of

$$X_4 := L_1^{\gamma \alpha - 1} \left(L_2^{\gamma (\beta + 1)} ([X_1, X_2]) \right)$$
(2.5)

contains $m := -\alpha \gamma! (\gamma \beta)! (\gamma \alpha - 1)! \in -\mathbb{N}.$

We infer that the fourth component of $X_4(0)$ is smaller than or equal to m, in particular it is non-zero. So $X_1(0), X_2(0), X_3(0), X_4(0)$ span \mathbb{R}^4 . Since the commutator X_3 has length $\alpha + \beta + 1$ and the commutator X_4 has length $\gamma(\alpha + \beta + 1) + 1 > \alpha + \beta + 1$, we get the thesis.

Remark 2.4. Actually, the step in $0 \in \mathbb{R}^4$ of the distribution \mathcal{D} of Lemma 2.3 is exactly equal to $\gamma(\alpha + \beta + 1) + 1$. It suffices to show that $e_4 \in \mathcal{L}_s(0)$ implies $s \geq \gamma(\alpha + \beta + 1) + 1$.

We need first to find an iterated commutator of the vector fields X_1 and X_2 whose fourth component is a non-null polynomial, then to commute it again until we get a non-null constant term in the fourth entry.

The iterated commutator with a non-null fourth entry of shortest length is

$$V(x) := [X_2, [X_1, X_2]](x) = \left(0, 0, \alpha\beta \, x_1^{\alpha-1} x_2^{\beta-1}, -\alpha\gamma \, x_1^{\alpha-1} x_2^{\beta} x_3^{\gamma-1}\right).$$

By observing (2.2), we deduce that we need to commute V at least $\gamma - 1$ times with respect to X_2 to get an addendum of its fourth entry having degree 0 in x_3 , and the degree in x_1 (respectively in x_2) of this addendum increases of at least $\alpha(\gamma - 1)$ (respectively $\beta(\gamma - 1)$).

Thus we need to commute V at least $\alpha - 1 + \alpha(\gamma - 1)$ times with respect to X_1 and at least $\beta + \beta(\gamma - 1)$ times with respect to X_2 , in order to get a non-null constant term on the fourth component.

Therefore, to obtain e_4 we need a commutator of length at least

$$3 + (\gamma - 1) + (\alpha - 1 + \alpha(\gamma - 1)) + (\beta + \beta(\gamma - 1)) = \gamma(\alpha + \beta + 1) + 1,$$

as stated above.

In the following lemma, we will infer from the finiteness of $\operatorname{step}(\mathcal{D}, 0)$ that \mathcal{D} is bracket-generating in a suitable neighborhood of 0, by using the upper semicontinuity of the function $x \mapsto \operatorname{step}(\mathcal{D}, x)$.

Lemma 2.5. Let α , β , γ , X_1 , X_2 and \mathcal{D} be as in Lemma 2.3. Then \mathcal{D} is bracketgenerating in a suitable neighborhood of $0 \in \mathbb{R}^4$.

Proof. By Lemma 2.3 and Remark 2.4, we have that

$$\operatorname{step}(\mathcal{D}, 0) = \gamma(\alpha + \beta + 1) + 1 < +\infty.$$

Thus, by Proposition 1.7, there exists $U \in \mathcal{N}(0)$ such that

$$\operatorname{step}(\mathcal{D}, x) \leq \operatorname{step}(\mathcal{D}, 0) < +\infty$$

for every $x \in U$. Hence the distribution \mathcal{D} is bracket-generating in U, as required.

Actually, \mathcal{D} is bracket-generating in all of \mathbb{R}^4 . In order to do this, we shall need the following definitions.

Fix $\omega \in (\mathbb{N}^+)^n$. For every $\lambda > 1$, we define the λ -dilation $\delta_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$ as

$$\delta_{\lambda}(x) := \left(\lambda^{\omega_1} x_1, \dots, \lambda^{\omega_n} x_n\right) \quad \text{for every } x \in \mathbb{R}^n.$$
(2.6)

Note that δ_{λ} is a diffeomorphism and that $\delta_{\lambda}^{-1} = \delta_{\lambda^{-1}}$. For every r > 0, let us define $B_{\lambda}(r) := \delta_{\lambda}(B(r))$, where B(r) is the open ball in \mathbb{R}^n of center 0 and radius r. Clearly

$$\bigcup_{\lambda>1} B_{\lambda}(r) = \mathbb{R}^n \quad \text{for every } r > 0.$$
(2.7)

Now let X be a smooth vector field in \mathbb{R}^n . We call λ -transform of X the vector field $\delta_{\lambda}X : \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$\delta_{\lambda}X(x) := \delta_{\lambda}'(\delta_{\lambda}^{-1}(x)) X(\delta_{\lambda}^{-1}(x)) \quad \text{for every } x \in \mathbb{R}^n.$$
(2.8)

One has that $\delta'_{\lambda}(\delta_{\lambda}^{-1}(x)) = D_{\lambda}$ for every $x \in \mathbb{R}^n$, where

$$D_{\lambda} = \begin{pmatrix} \lambda^{\omega_1} & 0 & \cdots & 0 \\ 0 & \lambda^{\omega_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda^{\omega_n} \end{pmatrix}.$$

Hence (2.8) reads as

$$\delta_{\lambda} X(x) = D_{\lambda} X(\delta_{\lambda^{-1}}(x)) \quad \text{for every } x \in \mathbb{R}^n.$$
(2.9)

The λ -transform satisfies the following properties:

• if X_1, \ldots, X_k (with $1 \le k \le n$) are linearly indipendent vector fields in an open $\Omega \subseteq \mathbb{R}^n$, then $\delta_\lambda X_1, \ldots, \delta_\lambda X_k$ are linearly indipendent in $\delta_\lambda(\Omega)$,

• for any vector fields X, Y in \mathbb{R}^n , we have that

$$\delta_{\lambda}[X,Y] = [\delta_{\lambda}X, \delta_{\lambda}Y]. \tag{2.10}$$

The first statement follows from invertibility of D_{λ} . For the second one, note that for every $x \in \mathbb{R}^n$ we have

$$\left(\delta_{\lambda}X\right)'(x) = D_{\lambda}X'\left(\delta_{\lambda^{-1}}(x)\right)D_{\lambda^{-1}} = D_{\lambda}D_{\lambda^{-1}}X'\left(\delta_{\lambda^{-1}}(x)\right) = X'\left(\delta_{\lambda^{-1}}(x)\right),$$

where we used the facts that $D_{\lambda}D_{\lambda^{-1}} = \mathbb{I}_n$ and that a diagonal matrix commutes with every other matrix. Hence for every $x \in \mathbb{R}^n$ we get

$$\begin{split} [\delta_{\lambda}X, \delta_{\lambda}Y](x) &= \left(\delta_{\lambda}Y\right)'(x)\,\delta_{\lambda}X(x) - \left(\delta_{\lambda}X\right)'(x)\,\delta_{\lambda}Y(x) \\ &= Y'\left(\delta_{\lambda^{-1}}(x)\right)D_{\lambda}X\left(\delta_{\lambda^{-1}}(x)\right) - X'\left(\delta_{\lambda^{-1}}(x)\right)D_{\lambda}Y\left(\delta_{\lambda^{-1}}(x)\right) \\ &= D_{\lambda}\left[X,Y\right]\left(\delta_{\lambda^{-1}}(x)\right) = \delta_{\lambda}[X,Y](x), \end{split}$$

obtaining the second statement above.

By using the above definitions, we can prove that:

Lemma 2.6. Let α , β , γ , X_1 , X_2 and \mathcal{D} be as in Lemma 2.3. Then \mathcal{D} is bracketgenerating in all of \mathbb{R}^4 .

Proof. By Lemma 2.5, the distribution \mathcal{D} is bracket-generating in B(r) for some r > 0. Let δ_{λ} be as in (2.6) with $\omega = (1, 1, \alpha + \beta + 1, \gamma(\alpha + \beta + 1) + 1)$. Hence for every $x \in B(r)$ we get

$$\begin{split} \delta_{\lambda} X_1 \big(\delta_{\lambda}(x) \big) &= (\lambda, 0, 0, 0) = \lambda \left(1, 0, 0, 0 \right) = \lambda X_1 \big(\delta_{\lambda}(x) \big), \\ \delta_{\lambda} X_2 \big(\delta_{\lambda}(x) \big) &= \left(0, \lambda, \lambda^{\alpha+\beta+1} x_1^{\alpha} x_2^{\beta}, \lambda^{\gamma(\alpha+\beta+1)+1} x_3^{\gamma} \right) \\ &= \lambda \left(0, 1, (\lambda x_1)^{\alpha} (\lambda x_2)^{\beta}, \left(\lambda^{\gamma(\alpha+\beta+1)} x_3 \right)^{\gamma} \right) = \lambda X_2 \big(\delta_{\lambda}(x) \big). \end{split}$$

Let X_3 and X_4 be as in (2.4) and (2.5), thus by applying the previous identities and (2.10) we have that

$$\delta_{\lambda} X_3(\delta_{\lambda}(x)) = \lambda^{\alpha+\beta+1} X_3(\delta_{\lambda}(x)),$$

$$\delta_{\lambda} X_4(\delta_{\lambda}(x)) = \lambda^{\gamma(\alpha+\beta+1)+1} X_4(\delta_{\lambda}(x)),$$

for every $x \in B(r)$. Then one has

$$\begin{split} \delta_{\lambda} X_1 &= \lambda X_1, \\ \delta_{\lambda} X_2 &= \lambda X_2, \\ \delta_{\lambda} X_3 &= \lambda^{\alpha + \beta + 1} X_3, \\ \delta_{\lambda} X_4 &= \lambda^{\gamma(\alpha + \beta + 1) + 1} X_4. \end{split}$$

in all of $B_{\lambda}(r)$. Now note that

 X_1, \ldots, X_4 are linearly indipendent in B(r)

if and only if

 $\delta_{\lambda} X_1, \ldots, \delta_{\lambda} X_4$ are linearly indipendent in $B_{\lambda}(r)$

if and only if

 X_1, \ldots, X_4 are linearly indipendent in $B_{\lambda}(r)$.

Therefore we get the thesis by arbitrarity of $\lambda > 1$ and by (2.7).

We finally collect all of the results seen in this section in the following theorem:

Theorem 2.7. Let $\alpha \in \mathbb{N}^+$, $\beta \in \mathbb{N}$, $\gamma \in \mathbb{N}^+$. Let \mathcal{D} be the 2-dimensional distribution in \mathbb{R}^4 generated by

$$\begin{cases} X_1(x) = (1, 0, 0, 0), \\ X_2(x) = (0, 1, x_1^{\alpha} x_2^{\beta}, x_3^{\gamma}), \end{cases} \text{ for every } x \in \mathbb{R}^4.$$
(2.11)

Then the distribution \mathcal{D} is bracket-generating in all of \mathbb{R}^4 and

$$\operatorname{step}(\mathcal{D}) = \gamma(\alpha + \beta + 1) + 1.$$

Proof. By Lemma 2.6, the distribution \mathcal{D} is bracket-generating in all of \mathbb{R}^4 . Note that

$$\operatorname{step}(\mathcal{D}, x) \leq \operatorname{step}(\mathcal{D}, 0) = \gamma(\alpha + \beta + 1) + 1 \quad \text{for every } x \in \mathbb{R}^4.$$

Thus we deduce that $\operatorname{step}(\mathcal{D}) = \gamma(\alpha + \beta + 1) + 1$.

2.2 When \mathcal{D} satisfies (A), (B)₀ and (C)₀

The aim of this section is to study for which values of α , β and γ the distribution \mathcal{D} , defined in 2.11, satisfies the conditions (A), (B)₀ and (C)₀.

2.2.1 Condition (A)

For the sake of clarity, we repeat the definition of equiregularity of a distribution (in the case $M = \mathbb{R}^n$).

Definition 2.8. Let $(\mathbb{R}^n, \mathcal{D}, g)$ be a sub-Riemannian manifold. Then the distribution \mathcal{D} is said to be *equiregular* if dim $\mathcal{D}_{\ell}(p)$ is independent of the point $p \in \mathbb{R}^n$, for every $\ell \in \mathbb{N}$.

One has that:

Theorem 2.9. Let α , β , γ , X_1 , X_2 and \mathcal{D} be as in Theorem 2.7. Then the distribution \mathcal{D} is equiregular if and only if $(\alpha, \beta, \gamma) = (1, 0, 1)$. *Proof.* Clearly, dim $\mathcal{D}_0(x) = 0$ and dim $\mathcal{D}_1(x) = 2$ for every $x \in \mathbb{R}^4$. We have that

$$X_{12}(x) = (0, 0, \alpha x_1^{\alpha - 1} x_2^{\beta}, 0),$$

$$X_{112}(x) = (0, 0, \alpha(\alpha - 1) x_1^{\alpha - 2} x_2^{\beta}, 0),$$

$$X_{212}(x) = (0, 0, \alpha\beta x_1^{\alpha - 1} x_2^{\beta - 1}, -\alpha\gamma x_1^{\alpha - 1} x_2^{\beta} x_3^{\gamma - 1}),$$

for every $x \in \mathbb{R}^4$.

CASE 1: Suppose $(\alpha, \beta, \gamma) = (1, 0, 1)$. For every $x \in \mathbb{R}^4$ we have that

$$X_{12}(x) = e_3,$$

 $X_{112}(x) = 0,$
 $X_{212}(x) = -e_4.$

Then

$$\dim \mathcal{D}_2(x) = \dim \mathcal{D}_3(x) = 1 \quad \text{for every } x \in \mathbb{R}^4$$

Hence \mathcal{D} is equiregular.

CASE 2: Suppose $(\alpha, \beta) = (1, 0)$ and $\gamma \ge 2$. Since $X_{112}(x) = 0$ and $X_{212}(x) = (0, 0, 0, -\gamma x_3^{\gamma-1})$ for every $x \in \mathbb{R}^4$, we find that

$$X_{112}(0) = 0,$$

 $X_{212}(e_3) = -\gamma e_4.$

Thus

$$0 = \dim \mathcal{D}_3(0) \neq \dim \mathcal{D}_3(e_3) = 1$$

Hence \mathcal{D} is not equiregular.

CASE 3: Suppose $(\alpha, \gamma) = (1, 1)$ and $\beta \ge 1$. Since $X_{12}(x) = (0, 0, x_2^{\beta}, 0)$ for every $x \in \mathbb{R}^4$, we have that

$$X_{12}(0) = 0,$$

 $X_{12}(e_2) = e_3.$

Thus

$$0 = \dim \mathcal{D}_2(0) \neq \dim \mathcal{D}_2(e_2) = 1.$$

Hence \mathcal{D} is not equiregular.

CASE 4: Suppose $\alpha \geq 2$.

Note that $X_{12}(0) = 0$ and $X_{12}(e_1 + e_2) = \alpha e_3$. Then

$$0 = \dim \mathcal{D}_2(0) \neq \dim \mathcal{D}_2(e_1 + e_2) = 1.$$

Hence \mathcal{D} is not equiregular.

2.2.2 Condition $(B)_0$

Now we are interested in studying for which values of α , β and γ our distribution \mathcal{D} satisfies condition (B)₀.

We will see that - in the case $\gamma = 1$ - the Lie brackets of two iterated commutators of X_1 and X_2 , both having length greater than or equal to 2, is null. By using this fact, we will prove that in this case $(B)_x$ holds for every $x \in \mathbb{R}^4$.

Lemma 2.10. Let $\alpha, \beta, \gamma, X_1, X_2$ and \mathcal{D} be as in Theorem 2.7. Assume that $\gamma = 1$. Then the distribution \mathcal{D} satisfies $(B)_x$ for every $x \in \mathbb{R}^4$, namely

$$[\mathcal{L}_i, \mathcal{L}_j](x) \subseteq \mathcal{L}_{i+j-1}(x) \quad for \ every \ i,j \ge 2 \ with \ i+j \ge 5$$
(2.12)

for every $x \in \mathbb{R}^4$.

Proof. Note that in this case (2.2) reads as

$$\begin{cases} [X_1, V] = \left(0, 0, \frac{\partial p}{\partial x_1}, \frac{\partial q}{\partial x_1}\right), \\ [X_2, V] = \left(0, 0, \frac{\partial p}{\partial x_2}, \frac{\partial q}{\partial x_2} + \frac{\partial q}{\partial x_3} x_1^{\alpha} x_2^{\beta} - p\right), \end{cases}$$
(2.13)

for every vector field V = (0, 0, p, q), with $p,q \in \mathbb{Z}[x_1, x_2]$. Now observe that, from (2.13), the following facts hold:

- the first and the second entry of every iterated commutator of length greater than or equal to 2 are null,
- the variables x_3 and x_4 do not appear in the iterated commutators of length greater than or equal to 2.

Hence, if V and W are two iterated commutators of X_1 and X_2 of length at least 2 (thus V = (0, 0, p, q), W = (0, 0, p', q') for some $p, p', q, q' \in \mathbb{Z}[x_1, x_2]$), then

$$[V,W] = \left(p\frac{\partial p'}{\partial x_3} - p'\frac{\partial p}{\partial x_3}\right)\frac{\partial}{\partial x_3} + \left(p\frac{\partial q'}{\partial x_3} - p'\frac{\partial q}{\partial x_3}\right)\frac{\partial}{\partial x_3} + \left(q\frac{\partial p'}{\partial x_4} - q'\frac{\partial p}{\partial x_4}\right)\frac{\partial}{\partial x_4} + \left(q\frac{\partial q'}{\partial x_4} - q'\frac{\partial q}{\partial x_4}\right)\frac{\partial}{\partial x_4} = 0$$

Now fix $i, j \ge 2$ with $i+j \ge 5$ and fix $x \in \mathbb{R}^4$. We deduce from the above computation that

$$[\mathcal{L}_i, \mathcal{L}_j](x) = [\mathcal{L}_1, \mathcal{L}_j](x) + [\mathcal{L}_i, \mathcal{L}_1](x).$$
(2.14)

Since $[\mathcal{L}_i, \mathcal{L}_1](x) = [\mathcal{L}_1, \mathcal{L}_i](x)$ and by definition of $\mathcal{L}_1(x), \mathcal{L}_2(x), \mathcal{L}_3(x), \dots$, we find that

$$[\mathcal{L}_1, \mathcal{L}_j](x) + [\mathcal{L}_i, \mathcal{L}_1](x) = \mathcal{L}_{j+1}(x) + \mathcal{L}_{i+1}(x).$$
(2.15)

Given that $s \mapsto \mathcal{L}_s(x)$ is a lattice homomorphism between \mathbb{N} (with \leq) and the grassmanian of \mathbb{R}^4 (with \subseteq), we have that

$$\mathcal{L}_{j+1}(x) + \mathcal{L}_{i+1}(x) = \mathcal{L}_{\max\{i,j\}+1}(x).$$
(2.16)

Finally, one has that $j \ge 2$ implies $i + 1 \le i + j - 1$, and similarly $i \ge 2$ implies $j + 1 \le i + j - 1$, thus $\max\{i, j\} + 1 \le i + j - 1$ and accordingly

$$\mathcal{L}_{\max\{i,j\}+1}(x) \subseteq \mathcal{L}_{i+j-1}(x).$$
(2.17)

Therefore (2.14), (2.15), (2.16) and (2.17) give $[\mathcal{L}_i, \mathcal{L}_j](x) \subseteq \mathcal{L}_{i+j-1}(x)$. This show that condition (B)_x holds for every $x \in \mathbb{R}^4$.

Conversely, when $\gamma \geq 2$ condition (B)₀ is not satisfied, indeed by commuting X_3 (defined in (2.4), of length $i = \alpha + \beta + 1$) with a suitable iterated commutator of length $j = \gamma(\alpha + \beta + 1) - (\alpha + \beta)$, we obtain a vector field Z such that Z(0) is a multiple of e_4 . Thus the vector e_4 - which does not belong to $\mathcal{L}_{i+j-1}(0) = \mathcal{L}_{\gamma(\alpha+\beta+1)}(0)$ - surely belongs to $[\mathcal{L}_i, \mathcal{L}_j](0)$.

Proposition 2.11. Let α , β , γ , X_1 , X_2 and \mathcal{D} be as in Theorem 2.7. Then condition (B)₀ is satisfied if and only if $\gamma = 1$.

Proof. STEP 1: Suppose $\gamma \geq 2$. As seen in Lemma 2.3, we have that the iterated commutator $X_3 := L_2^{\beta}(L_1^{\alpha}(X_2))$ is of the form

$$X_3(x) = (0, 0, \alpha! \beta!, x_2 f(x_1, x_2, x_3)) \quad \text{for every } x \in \mathbb{R}^4,$$

for some $f \in (-\mathbb{N})[x_1, x_2, x_3]$. Then, arguing similarly to what we did in the proof of Lemma 2.3 and using (2.2), we deduce that:

- the fourth component of $L_2(X_3)$ contains $-\alpha!\beta!\gamma x_3^{\gamma-1}$,
- the fourth component of $L_2^{\gamma-2}(L_2(X_3))$ contains $-\alpha!\beta!\gamma!x_1^{\alpha(\gamma-2)}x_2^{\beta(\gamma-2)}x_3$,
- the fourth component of $L_2^{\beta(\gamma-2)}(L_2^{\gamma-1}(X_3))$ contains

$$-\alpha!\beta!\gamma!\left(\beta(\gamma-2)\right)!x_1^{\alpha(\gamma-2)}x_3,$$

• the fourth component of $V := L_1^{\alpha(\gamma-2)} (L_2^{\beta(\gamma-2)+(\gamma-1)}(X_3))$ contains

$$-\alpha!\beta!\gamma!\,(\beta(\gamma-2))!(\alpha(\gamma-2))!\,x_3.$$
(2.18)

Since we have commuted $\alpha(\gamma - 2) + \beta(\gamma - 2) + (\gamma - 1) \ge 1$ times the vector field X_3 (with either X_1 or X_2) in order to obtain V, we have that the third component of V vanishes, so V = (0, 0, 0, q) for some $q \in (-\mathbb{N})[x_1, x_2, x_3]$ containing the addendum (2.18). A simple computation gives

$$Z := [X_3, V] = \left(0, 0, 0, \alpha! \beta! \frac{\partial q}{\partial x_3}\right).$$

Hence the fourth component of Z contains

$$-(\alpha!)^2(\beta!)^2\gamma!(\beta(\gamma-2))!(\alpha(\gamma-2))!$$

which implies that Z(0) is a non null multiple of e_4 . Moreover the length of X_3 is $i := \alpha + \beta + 1$ and the length of V is $j := \gamma(\alpha + \beta + 1) - (\alpha + \beta)$ (note that $i \ge 2$ and $j = (\alpha + \beta)(\gamma - 1) + \gamma \ge 3$, thus $i + j \ge 5$). Since $Z \in \text{Sec}([\mathcal{L}_i, \mathcal{L}_j])$, one has that $e_4 \in [\mathcal{L}_i, \mathcal{L}_j](0)$, but

$$e_4 \notin \mathcal{L}_{i+j-1}(0) = \mathcal{L}_{\gamma(\alpha+\beta+1)}(0),$$

by Remark 2.4. In other words, $(B)_0$ does not hold when $\gamma \ge 2$. STEP 2: Suppose $\gamma = 1$. By Lemma 2.10 we have that condition $(B)_0$ is satisfied. \Box

2.2.3 Condition $(C)_0$

By using Lemma 2.3, it is simple to prove that condition $(C)_0$ is satisfied if and only if $(\alpha, \beta) \neq (1, 0)$ and $\gamma \geq 2$:

Proposition 2.12. Let α , β , γ , X_1 , X_2 and \mathcal{D} be as in Theorem 2.7. Then condition (C)₀ is not satisfied if and only if either $(\alpha, \beta) = (1, 0)$ or $\gamma = 1$.

Proof. We deduce from Lemma 2.3 and Remark 2.4 that

$$\mathcal{L}_0(0) \neq \mathcal{L}_1(0) = \dots = \mathcal{L}_{\alpha+\beta}(0) \neq \mathcal{L}_{\alpha+\beta+1}(0)$$
$$= \dots = \mathcal{L}_{\gamma(\alpha+\beta+1)}(0) \neq \mathcal{L}_{\gamma(\alpha+\beta+1)+1}(0) = \dots$$

Note that $\mathcal{L}_i(0) \neq \mathcal{L}_{i-1}(0)$ only for

$$i = 1,$$

$$i = \alpha + \beta + 1,$$

$$i = \gamma(\alpha + \beta + 1) + 1.$$

Then condition (C)₀ does not hold if and only if either $\alpha + \beta = 1$ (i.e. $(\alpha, \beta) = (1, 0)$) or $\gamma(\alpha + \beta + 1) = \alpha + \beta + 1$ (i.e. $\gamma = 1$).

Hence in this section we proved that:

Corollary 2.13. Let α , β , γ , X_1 , X_2 and \mathcal{D} be as in Theorem 2.7. Then none of the conditions (A), (B)₀ and (C)₀ is satisfied if and only if $(\alpha, \beta) = (1, 0)$ and $\gamma \geq 2$.

Proof. It follows from Theorem 2.9, from Proposition 2.11 and from Proposition 2.12. \Box

2.3 The angle ν is an abnormal extremal

First of all, we give the definition of corner.

Definition 2.14 (Corner). Let $\gamma : [a, b] \to \mathbb{R}^n$ be a Lipschitz curve. We denote by $\dot{\gamma}_L(t)$ and $\dot{\gamma}_R(t)$ the left derivative and the right derivative, respectively, of γ at the time $t \in [a, b]$, whenever they exist. Explicitly,

$$\dot{\gamma}_L(t) := \lim_{h o 0^+} rac{\gamma(t+h) - \gamma(t)}{h} \ \dot{\gamma}_R(t) := \lim_{h o 0^-} rac{\gamma(t+h) - \gamma(t)}{h}.$$

We say that γ has a corner (or an angle) at the point $x = \gamma(t)$, for some $t \in [a, b]$, if there exist $\dot{\gamma}_L(t), \dot{\gamma}_R(t)$ and $\dot{\gamma}_L(t), \dot{\gamma}_R(t)$ are linearly independent.

In the next proposition, we introduce an extremal ν having a corner at $0 \in \mathbb{R}^4$ and we study, by using Pontryagin Maximum Principle, for which values of α , β and γ the curve ν is a (strictly) abnormal extremal.

Figure 2.1: The projection of ν on the plane x_1x_2 .

Proposition 2.15. Let α , β , γ , X_1 , X_2 and \mathcal{D} be as in Theorem 2.7. Then the \mathcal{D} -horizontal curve

$$\nu(t) = \begin{cases} (0, -t, 0, 0) & \text{if } t \in [-1, 0], \\ (t, 0, 0, 0) & \text{if } t \in [0, 1], \end{cases}$$
(2.19)

is a strictly abnormal extremal if and only if either $\alpha > 1$ or $\gamma > 1$. Note that ν has a corner at the point $0 \in \mathbb{R}^4$.

Proof. The curve ν is actually \mathcal{D} -horizontal, with controls

$$h(t) = \begin{cases} (0, -1) & \text{if } t \in [-1, 0], \\ (1, 0) & \text{if } t \in (0, 1]. \end{cases}$$

In order to prove that the curve ν is an abnormal extremal, we want to find a dual curve ξ which satisfies the following necessary conditions (of Pontryagin Maximum Principle):

$$\xi(t) \cdot X_i(\nu(t)) = 0$$
 for every $t \in [-1, 1]$ and $i = 1, 2,$ (2.20)

$$\xi(t) \neq 0 \quad \text{for every } t \in [-1, 1], \tag{2.21}$$

$$\dot{\xi}(t) = -\left(h_1(t) X_1'(\nu(t)) + h_2(t) X_2'(\nu(t))\right)^T \xi(t) \quad \text{for a.e. } t \in [-1, 1].$$
(2.22)

In this case, (2.20) and (2.22) read as

$$\xi_1(t) = \xi_2(t) = 0$$
 for every $t \in [-1, 1]$ (2.23)

and

$$\begin{cases} \dot{\xi}(t) = X_2'(\nu(t))^T \xi(t) & \text{ for a.e. } t \in [-1,0], \\ \dot{\xi}(t) = 0 & \text{ for a.e. } t \in (0,1], \end{cases}$$
(2.24)

respectively. We have that

$$X_{2}'(\nu(t))^{T} = \begin{pmatrix} 0 & 0 & \alpha \nu_{1}(t)^{\alpha-1}\nu_{2}(t)^{\beta} & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & \gamma \nu_{3}(t)^{\gamma-1}\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Hence:

CASE 1: Suppose $\alpha > 1$, $\gamma = 1$. We get $\xi(t) = (0, 0, \mu(t \land 0) + \lambda, \mu)$ for every $t \in [-1, 1]$, for any $\lambda, \mu \in \mathbb{R}$ with $(\lambda, \mu) \neq (0, 0)$.

CASE 2: Suppose $\alpha = 1, \gamma > 1$. We get $\xi(t) = (0, 0, 0, \mu)$ for every $t \in [-1, 1]$, for any $\mu \neq 0$.

CASE 3: Suppose $\alpha, \gamma > 1$. We get that $\xi(t) = (0, 0, \lambda, \mu)$ for every $t \in [-1, 1]$, for any $\lambda, \mu \in \mathbb{R}$ with $(\lambda, \mu) \neq (0, 0)$.

CASE 4: Suppose $\alpha = \gamma = 1$. We obtain that $\xi(t) = (0, 0, 0, 0)$ for every $t \in [-1, 1]$. Thus in this case the curve ν is not an abnormal extremal, by (2.21).

Finally, ν is not a normal extremal, because it is not smooth in t = 0, hence the thesis.

2.4 The curve ν is not a length-minimizer

As a consequence of Section 2.3 and Section 2.2, we are interested in studying \mathcal{D} in the case $(\alpha, \beta) = (1, 0)$ and $\gamma \geq 2$. Explicitly, $\mathcal{D} = \operatorname{span}\{X_1, X_2\}$ where

$$\begin{cases} X_1(x) = (1, 0, 0, 0), \\ X_2(x) = (0, 1, x_1, x_3^{\gamma}), \end{cases}$$
(2.25)

for every $x \in \mathbb{R}^4$.

By Remark 2.4 we have that $\operatorname{step}(\mathcal{D}) = 2\gamma + 1$. By Proposition 2.15 we have that the angle ν (defined in (2.19)) is a strictly abnormal extremal. The aim of this section is to find a \mathcal{D} -horizontal curve joining the points $\nu(-1) = (0, 1, 0, 0)$ and $\nu(1) = (1, 0, 0, 0)$ with length strictly smaller than that of ν .

2.4.1 The "cut" ν^{ε}

Figure 2.2: The curve $(\nu_1^{\varepsilon}, \nu_2^{\varepsilon})$.

The first step is to construct a \mathcal{D} -horizontal curve starting from the same initial point of ν , whose length is strictly smaller than that of ν . The problem is that this new curve and ν have a different endpoint, hence we will need further corrections.

Fix $0 < \varepsilon < 1$. Consider the polygonal planar curve $(\nu_1^{\varepsilon}, \nu_2^{\varepsilon}) : [-1, 1] \to \mathbb{R}^2$ obtained by the concatenation of the segment joining (0, 1) to $(0, \varepsilon)$, the segment joining $(0, \varepsilon)$ to $(\varepsilon, 0)$ and finally the segment joining $(\varepsilon, 0)$ to (1, 0). A parametrization of $(\nu_1^{\varepsilon}, \nu_2^{\varepsilon})$ can be chosen as follows:

$$(\nu_1^{\varepsilon}, \nu_2^{\varepsilon})(t) := \begin{cases} (0, -t) & \text{if } t \in [-1, -\varepsilon], \\\\ \left(\frac{t+\varepsilon}{2}, \frac{\varepsilon-t}{2}\right) & \text{if } t \in [-\varepsilon, \varepsilon], \\\\ (t, 0) & \text{if } t \in [\varepsilon, 1]. \end{cases}$$

We want to find the lift $\nu^{\varepsilon} = (\nu_1^{\varepsilon}, \nu_2^{\varepsilon}, \nu_3^{\varepsilon}, \nu_4^{\varepsilon}) : [-1, 1] \to \mathbb{R}^4$ of $(\nu_1^{\varepsilon}, \nu_2^{\varepsilon})$ starting from the point (0, 1, 0, 0), i.e.

(i) ν^{ε} is \mathcal{D} -horizontal, thus

$$\begin{split} \dot{\nu^{\varepsilon}}(t) &= h_1(t) \, X_1\big(\nu^{\varepsilon}(t)\big) + h_2(t) \, X_2\big(\nu^{\varepsilon}(t)\big) \\ &= h_1(t) \, \big(1, 0, 0, 0\big) + h_2(t) \, \big(0, 1, \, \nu_1^{\varepsilon}(t), \, \nu_3^{\varepsilon}(t)^{\gamma}\big) \end{split}$$

for almost every $t \in [-1, 1]$ and for suitable controls $h \in L^{\infty}([-1, 1], \mathbb{R}^2)$,

(ii) $\nu^{\varepsilon}(-1) = (0, 1, 0, 0).$

We deduce from (i) that

$$h = (h_1(t), h_2(t)) = (\dot{\nu}_1^{\varepsilon}(t), \dot{\nu}_2^{\varepsilon}(t)) \quad \text{for almost every } t \in [-1, 1].$$
(2.26)

 \diamond CASE $t \in [-1, -\varepsilon]$.

By (i) and (2.26) we have that $\dot{\nu}_3^{\varepsilon}(t) = 0$ and $\dot{\nu}_4^{\varepsilon}(t) = -\nu_3^{\varepsilon}(t)^{\gamma}$ for almost every $t \in [-1, -\varepsilon]$. By (ii) it follows that

$$\nu_3^{\varepsilon}(t) = \nu_3^{\varepsilon}(-1) = 0$$
 for every $t \in [-1, -\varepsilon]$,

hence

$$\nu_4^{\varepsilon}(t) = \nu_4^{\varepsilon}(-1) = 0$$
 for every $t \in [-1, -\varepsilon]$

 $\diamond \text{ CASE } t \in [-\varepsilon, \varepsilon].$

We have that $\dot{\nu}_3^{\varepsilon}(t) = -\frac{1}{2}\nu_1^{\varepsilon}(t) = -\frac{1}{4}(t+\varepsilon)$ and $\dot{\nu}_4^{\varepsilon}(t) = -\frac{1}{2}\nu_3^{\varepsilon}(t)^{\gamma}$ for almost every $t \in [-\varepsilon, \varepsilon]$. Therefore for every $t \in [-\varepsilon, \varepsilon]$

$$\nu_3^{\varepsilon}(t) = \nu_3^{\varepsilon}(-\varepsilon) - \frac{1}{4} \int_{-\varepsilon}^t (y+\varepsilon) \, dy = -\frac{1}{8}(t+\varepsilon)^2$$

and

$$\dot{\nu}_4^{\varepsilon}(t) = -\frac{1}{2}\,\nu_3^{\varepsilon}(t)^{\gamma} = \frac{(-1)^{\gamma+1}}{2^{3\gamma+1}}\,(t+\varepsilon)^{2\gamma}.$$

Then for every $t \in [-\varepsilon, \varepsilon]$

$$\nu_4^{\varepsilon}(t) = \nu_4^{\varepsilon}(-\varepsilon) + \frac{(-1)^{\gamma+1}}{2^{3\gamma+1}} \int_{-\varepsilon}^t \left(s+\varepsilon\right)^{2\gamma} ds = \frac{(-1)^{\gamma+1}}{2^{3\gamma+1}} \frac{(t+\varepsilon)^{2\gamma+1}}{2\gamma+1}.$$

 \diamond CASE $t \in [\varepsilon, 1]$.

We find that $\dot{\nu}_3^{\varepsilon}(t) = 0$ and $\dot{\nu}_4^{\varepsilon}(t) = 0$ for almost every $t \in [\varepsilon, 1]$. Therefore

$$\nu_3^{\varepsilon}(t) = \nu_3^{\varepsilon}(\varepsilon) = -\frac{1}{2}\varepsilon^2$$
 for every $t \in [\varepsilon, 1]$

and

$$\nu_4^\varepsilon(t) = \nu_4^\varepsilon(\varepsilon) = \frac{(-1)^{\gamma+1}}{2^\gamma} \frac{\varepsilon^{2\gamma+1}}{2\gamma+1} \quad \text{for every } t \in [\varepsilon, 1].$$

Then the lift of $(\nu_1^{\varepsilon}, \nu_2^{\varepsilon})$ is

$$\nu^{\varepsilon}(t) = \begin{cases} (0, -t, 0, 0) & \text{if } t \in [-1, -\varepsilon], \\ \left(\frac{t+\varepsilon}{2}, \frac{\varepsilon-t}{2}, -\frac{1}{8}(t+\varepsilon)^2, \frac{(-1)^{\gamma+1}}{2^{3\gamma+1}}, \frac{(t+\varepsilon)^{2\gamma+1}}{2\gamma+1}\right) & \text{if } t \in [-\varepsilon, \varepsilon], \\ \left(t, 0, -\frac{1}{2}\varepsilon^2, \frac{(-1)^{\gamma+1}}{2^{\gamma}}, \frac{\varepsilon^{2\gamma+1}}{2\gamma+1}\right) & \text{if } t \in [\varepsilon, 1]. \end{cases}$$

Note that the endpoint of ν^{ε} is not $\nu(1) = (1, 0, 0, 0)$, indeed

$$\nu_3^{\varepsilon}(1) = -\frac{1}{2}\,\varepsilon^2\tag{2.27}$$

and

$$\nu_4^{\varepsilon}(1) = \frac{(-1)^{\gamma+1}}{2^{\gamma}} \frac{\varepsilon^{2\gamma+1}}{2\gamma+1}.$$
(2.28)

Moreover, the length of ν is $L(\nu) = 2$, while the length of ν^{ε} is $L(\nu^{\varepsilon}) = 2(1-\varepsilon) + \sqrt{2}\varepsilon$. Hence ν^{ε} is strictly shorter than ν , precisely

$$L(\nu) - L(\nu^{\varepsilon}) = \left(2 - \sqrt{2}\right)\varepsilon > 0.$$
(2.29)

2.4.2 The first perturbation ζ^{ε} of ν^{ε}

Figure 2.3: The curve $(\zeta_1^{\varepsilon}, \zeta_2^{\varepsilon})$.

In order to correct the third component of the endpoint of ν^{ε} , we now construct a curve ζ^{ε} (obtained by modifying ν^{ε} with a rectangle), which depends on some parameters of position.

Take $0 < \varepsilon < b < a < 1$ and suppose $c < \frac{a-b}{2}$. Consider the polygonal planar curve $(\zeta_1^{\varepsilon}, \zeta_2^{\varepsilon})$ joining the following points:

$$(0,1) \to (0,\varepsilon) \to (\varepsilon,0) \to (b,0) \to (b,-c) \to (a,-c) \to (a,0) \to (1,0).$$

Then $(\zeta_1^{\varepsilon}, \zeta_2^{\varepsilon})$ can be parametrized as follows:

$$(\zeta_1^{\varepsilon}, \zeta_2^{\varepsilon})(t) := \begin{cases} (0, -t) & \text{if } t \in [-1, -\varepsilon], \\ \left(\frac{t+\varepsilon}{2}, \frac{\varepsilon-t}{2}\right) & \text{if } t \in [-\varepsilon, \varepsilon], \\ (t, 0) & \text{if } t \in [\varepsilon, b], \\ (b, b-t) & \text{if } t \in [\varepsilon, b], \\ (b, b-t) & \text{if } t \in [b, b+c], \\ \left(\frac{a-b}{a-b-2c}t - \frac{c(a+b)}{a-b-2c}, -c\right) & \text{if } t \in [b+c, a-c], \\ (a, t-a) & \text{if } t \in [a-c, a], \\ (t, 0) & \text{if } t \in [a, 1]. \end{cases}$$

We now calculate the lift $\zeta^{\varepsilon} = (\zeta_1^{\varepsilon}, \zeta_2^{\varepsilon}, \zeta_3^{\varepsilon}, \zeta_4^{\varepsilon}) : [-1, 1] \to \mathbb{R}^4$ of $(\zeta_1^{\varepsilon}, \zeta_2^{\varepsilon})$ starting from the point (0, 1, 0, 0). Since ζ^{ε} must be \mathcal{D} -horizontal, we impose that

$$\dot{\zeta}_3^{\varepsilon} = \dot{\zeta}_2^{\varepsilon} \,\,\zeta_1^{\varepsilon} \tag{2.30}$$

and that

$$\dot{\zeta}_4^\varepsilon = \dot{\zeta}_2^\varepsilon \,\zeta_3^\gamma \tag{2.31}$$

almost everywhere in [-1, 1].

 $\begin{array}{l} \diamond \text{ CASE } t \in [-1,b]. \\ \text{Clearly } \zeta^{\varepsilon}(t) = \nu^{\varepsilon}(t) \text{ for every } t \in [-1,b]. \\ \diamond \text{ CASE } t \in [b,b+c]. \\ \text{By } (2.30) \text{ we have } \dot{\zeta_3^{\varepsilon}}(t) = -b \text{ for almost every } t \in [b,b+c]. \\ \end{array}$ Then for every $t \in [b,b+c]$.

$$\zeta_3^{\varepsilon}(t) = \zeta_3^{\varepsilon}(b) - \int_b^t b \, dy = -\frac{\varepsilon^2}{2} - b(t-b).$$

By (2.31) we find that $\dot{\zeta}_4^{\varepsilon}(t) = (-1)^{\gamma+1} \left(b(t-b) + \frac{\varepsilon^2}{2} \right)^{\gamma}$ for almost every $t \in [b, b+c]$. Hence for every $t \in [b, b+c]$

$$\begin{aligned} \zeta_4^{\varepsilon}(t) &= \frac{(-1)^{\gamma+1}}{2^{\gamma}} \frac{\varepsilon^{2\gamma+1}}{2\gamma+1} + (-1)^{\gamma+1} \int_b^t \left(b(y-b) + \frac{\varepsilon^2}{2} \right)^{\gamma} dy \\ &= (-1)^{\gamma+1} \frac{\varepsilon^{2\gamma+1}}{2^{\gamma}} \left(\frac{1}{2\gamma+1} - \frac{\varepsilon}{2b(\gamma+1)} \right) + \frac{(-1)^{\gamma+1}}{b(\gamma+1)} \left(b(t-b) + \frac{\varepsilon^2}{2} \right)^{\gamma+1}. \end{aligned}$$

 \diamond CASE $t \in [b+c, a-c]$.

By (2.30) and (2.31) we deduce that for every $t \in [b + c, a - c]$

$$\zeta_3^{\varepsilon}(t) = \zeta_3^{\varepsilon}(b+c) = -bc - \frac{\varepsilon^2}{2}$$

and that

$$\begin{aligned} \zeta_4^{\varepsilon}(t) &= \zeta_4^{\varepsilon}(b+c) \\ &= (-1)^{\gamma+1} \frac{\varepsilon^{2\gamma+1}}{2^{\gamma}} \left(\frac{1}{2\gamma+1} - \frac{\varepsilon}{2b(\gamma+1)} \right) + \frac{(-1)^{\gamma+1}}{b(\gamma+1)} \left(bc + \frac{\varepsilon^2}{2} \right)^{\gamma+1}. \end{aligned}$$

 $\diamond \text{ Case } t \in [a-c,a].$

By (2.30) we have $\dot{\zeta_3^{\varepsilon}}(t) = a$ for almost every $t \in [a - c, a]$. Then

$$\zeta_3^{\varepsilon}(t) = -bc - \frac{\varepsilon^2}{2} + a(t - a + c)$$

for every $t \in [a-c, a]$. Thus, by (2.31), we find that $\dot{\zeta}_4^{\varepsilon}(t) = \left(-bc - \frac{\varepsilon^2}{2} + a(t-a-c)\right)^{\gamma}$ for almost every $t \in [a-c, a]$. Hence for every $t \in [a-c, a]$

$$\begin{aligned} \zeta_4^{\varepsilon}(t) = (-1)^{\gamma+1} \frac{\varepsilon^{2\gamma+1}}{2^{\gamma}} \left(\frac{1}{2\gamma+1} - \frac{\varepsilon}{2b(\gamma+1)} \right) + \frac{(-1)^{\gamma+1}}{b(\gamma+1)} \left(bc + \frac{\varepsilon^2}{2} \right)^{\gamma+1} \\ + \frac{1}{a(\gamma+1)} \left(\left(a(t-a+c) - bc - \frac{\varepsilon^2}{2} \right)^{\gamma+1} - \left(-bc - \frac{\varepsilon^2}{2} \right)^{\gamma+1} \right). \end{aligned}$$

 \diamond CASE $t \in [a, 1]$.

By (2.30) and (2.31) we deduce that for every $t \in [a, 1]$

$$\zeta_3^{\varepsilon}(t) = \zeta_3^{\varepsilon}(a) = -bc - \frac{\varepsilon^2}{2} + ac$$

and

$$\begin{aligned} \zeta_4^{\varepsilon}(t) = &(-1)^{\gamma+1} \frac{\varepsilon^{2\gamma+1}}{2^{\gamma}} \left(\frac{1}{2\gamma+1} - \frac{\varepsilon}{2b(\gamma+1)} \right) + \frac{(-1)^{\gamma+1}}{b(\gamma+1)} \left(bc + \frac{\varepsilon^2}{2} \right)^{\gamma+1} \\ &+ \frac{1}{a(\gamma+1)} \left(\left(ac - bc - \frac{\varepsilon^2}{2} \right)^{\gamma+1} - \left(-bc - \frac{\varepsilon^2}{2} \right)^{\gamma+1} \right). \end{aligned}$$

Thus we deduce that

$$\zeta_3^{\varepsilon}(1) = -bc - \frac{\varepsilon^2}{2} + ac.$$

Hence, if we choose

$$c = \frac{\varepsilon^2}{2(a-b)} \tag{2.32}$$

we have that $\zeta_3^{\varepsilon}(1) = 0$. Hereafter, we will always fix $c = \frac{\varepsilon^2}{2(a-b)}$. By (2.32) one has that

$$\lambda(\varepsilon) := \zeta_4^{\varepsilon}(1) = \frac{(-1)^{\gamma+1}}{2^{\gamma}(2\gamma+1)} \varepsilon^{2\gamma+1} \left(1 + \varepsilon \frac{2\gamma+1}{2b(\gamma+1)} \left(\frac{a^{\gamma}}{(a-b)^{\gamma}} - 1\right)\right).$$
(2.33)

Remark 2.16. We give a geometric interpretation of the third entry of every \mathcal{D} -horizontal curve, which is consistent with what we observe in the previous section. Namely, the third component furnishes information about the area enclosed by the first two entries in \mathbb{R}^2 . In order to give a geometric meaning to the third component of a \mathcal{D} -horizontal curve, we shall make use of the well-known Green's Formula:

Theorem 2.17. Let $\mu : [a,b] \to \mathbb{R}^2$ be a continuous, piecewise C^1 circuit in \mathbb{R}^2 . Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a vector field of class C^1 . Let us call D the region in \mathbb{R}^2 enclosed by the curve μ . Then

$$\int_{\mu} F \cdot n_{\mu} \, d\mu = \int_{D} \operatorname{div} F(x, y) \, dx \, dy, \qquad (2.34)$$

where:

- $\int_{\mu} F \cdot n_{\mu} d\mu := \int_{a}^{b} F(\mu(t)) \cdot n_{\mu}(\mu(t)) |\dot{\mu}(t)| dt$ is the path integral of F along μ ,
- n_{μ} is the unit external normal to D, explicitly

$$n_{\mu}(\mu(t)) := \frac{\left(\dot{\mu}_{2}(t), -\dot{\mu}_{1}(t)\right)}{\sqrt{\dot{\mu}_{1}(t)^{2} + \dot{\mu}_{2}(t)^{2}}}$$
(2.35)

for every $t \in [a, b]$ such that $\dot{\mu}(t)$ exists non-null and arbitrarily defined elsewhere.

Let $\mu : [t_1, t_2] \to \mathbb{R}^4$ be a \mathcal{D} -horizontal curve such that $(\mu_1(t_1), \mu_2(t_1), \mu_3(t_1)) = (0, 1, 0)$ and $(\mu_1(t_2), \mu_2(t_2)) = (1, 0)$. Let $\sigma : [0, 1] \to \mathbb{R}^2$ be the segment joining (1, 0) to (0, 1), defined by

$$\sigma(t) := (1 - t, t) \quad \text{ for every } t \in [0, 1].$$

Hence the curve obtained by concatenating (μ_1, μ_2) and σ is a circuit in \mathbb{R}^2 . Let us call D the region enclosed by such curve. Thus for every $F \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ one has

$$\int_{D} \operatorname{div} F(x, y) \, dx \, dy = \int_{t_1}^{t_2} F(\mu_1(t), \mu_2(t)) \cdot n_{(\mu_1, \mu_2)}(\mu_1(t), \mu_2(t)) \left| (\dot{\mu}_1, \dot{\mu}_2)(t) \right| \, dt \\ + \int_0^1 F(\sigma(t)) \cdot n_{\sigma}(\sigma(t)) \left| \dot{\sigma}(t) \right| \, dt.$$

Note that

$$n_{\sigma}(\sigma(t)) = \frac{(1,1)}{\sqrt{2}}$$
 for every $t \in (0,1)$.

Now take F(x,y) := (x,0) for every $(x,y) \in \mathbb{R}^2$. Thus div F = 1 and accordingly

$$\mathcal{A}(D) := \int_D dx \, dy = \int_{t_1}^{t_2} \mu_1(t) \dot{\mu}_2(t) \, dt + \int_0^1 (1-t) \, dt.$$

Since μ is a \mathcal{D} -horizontal curve, one has that $\dot{\mu}_3 = \mu_1 \dot{\mu}_2$ a.e. in [a, b]. Therefore $\mu_3(b) = \int_{t_1}^{t_2} \dot{\mu}_3(t) dt = \int_{t_1}^{t_2} \mu_1(t) \dot{\mu}_2(t) dt$, which gives

$$\mathcal{A}(D) = \mu_3(t_2) + \frac{1}{2}.$$

This equality can be interpreted in the following way: the third component of μ at the final time t_2 is equal to 0 if and only if the (signed) area enclosed by (μ_1, μ_2) (concatenated with the segment joining (0, 1) to (1, 0)) is equal to $\frac{1}{2}$. Notice that this is coherent with what we saw in the previous section for the curves ζ^{ε} and μ^{ε} . For example, note that - by (2.32) - the area of the rectangle of vertices (b, 0), (b, -c), (a, -c), (a, 0) coincides with the area of the triangle of vertices $(0, \varepsilon), (0, 0), (\varepsilon, 0)$.

2.4.3 The second perturbation μ^{ε} of ν^{ε}

We now concatenate ζ^{ε} with a suitable circuit, obtaining a new curve μ^{ε} , in such a way that the fourth component of the endpoint becomes equal to 0, but leaving unchanged its third component.

Figure 2.4: The curve $(\mu_1^{\varepsilon}, \mu_2^{\varepsilon})$.

Fix two parameters r, s > 0. To get $(\mu_1^{\varepsilon}, \mu_2^{\varepsilon})$, we add to $(\zeta_1^{\varepsilon}, \zeta_2^{\varepsilon})$ the polygonal planar curve joining the following points:

$$(1,0) \to (1+r,0) \to (1+r,-s) \to (1,-s) \to (1,s) \to \to (1-r,s) \to (1-r,0) \to (1,0).$$

We parametrize $(\mu_1^{\varepsilon}, \mu_2^{\varepsilon})$ on the interval [-1, 1 + 4r + 4s] as follows:

$$(\mu_{1}^{\varepsilon}, \mu_{2}^{\varepsilon})(t) := \begin{cases} \left(\zeta_{1}^{\varepsilon}(t), \zeta_{2}^{\varepsilon}(t)\right) & \text{if } t \in [-1, 1], \\ (t, 0) & \text{if } t \in [1, 1+r], \\ (1+r, r-t+1) & \text{if } t \in [1+r, 1+r+s], \\ (-t+2+s+2r, -s) & \text{if } t \in [1+r+s, 1+2r+s], \\ (1, t-1-2r-2s) & \text{if } t \in [1+2r+s, 1+2r+3s], \\ (-t+2+2r+3s, s) & \text{if } t \in [1+2r+3s, 1+3r+3s], \\ (1-r, -t+1+3r+4s) & \text{if } t \in [1+3r+3s, 1+3r+4s], \\ (t-4r-4s, 0) & \text{if } t \in [1+3r+4s, 1+4r+4s]. \end{cases}$$

We now want to compute the lift $\mu^{\varepsilon} = (\mu_1^{\varepsilon}, \mu_2^{\varepsilon}, \mu_3^{\varepsilon}, \mu_4^{\varepsilon}) : [-1, 1 + 4r + 4s] \to \mathbb{R}^4$ of the curve $(\mu_1^{\varepsilon}, \mu_2^{\varepsilon})$. Since μ^{ε} must be \mathcal{D} -horizontal, we impose that

$$\dot{\mu}_3^{\varepsilon} = \dot{\mu}_2^{\varepsilon} \, \mu_1^{\varepsilon} \tag{2.36}$$

and

$$\dot{\mu}_4^{\varepsilon} = \dot{\mu}_2^{\varepsilon} \left(\mu_3^{\varepsilon}\right)^{\gamma} \tag{2.37}$$

almost everywhere in [-1, 1 + 4r + 4s].

◇ CASE t ∈ [-1, 1]. Clearly μ^ε(t) = ζ^ε(t) for every t ∈ [-1, 1].
◇ CASE t ∈ [1, 1 + r].
By (2.36) and (2.37) we have that for every t ∈ [1, 1 + r]

$$\mu_3^{\varepsilon}(t) = \mu_3^{\varepsilon}(1) = 0,$$

$$\mu_4^{\varepsilon}(t) = \mu_4^{\varepsilon}(1) = \lambda(\varepsilon).$$

♦ CASE $t \in [1 + r, 1 + r + s]$.

By (2.36) we see that $\dot{\mu}_3^{\varepsilon}(t) = -(1+r)$ for almost every $t \in [1+r, 1+r+s]$. Thus

$$\mu_3^\varepsilon(t) = -(1+r)(t-r-1) \quad \text{ for every } t \in [1+r,1+r+s]$$

Therefore, by (2.37) we deduce that $\dot{\mu}_4^{\varepsilon}(t) = (-1)^{\gamma+1} (1+r)^{\gamma} (t-r-1)^{\gamma}$ for almost every $t \in [1+r, 1+r+s]$. Thus

$$\mu_4^{\varepsilon}(t) = \lambda(\varepsilon) + \frac{(-1)^{\gamma+1}}{\gamma+1} (1+r)^{\gamma} (t-r-1)^{\gamma+1} \quad \text{for every } t \in [1+r, 1+r+s].$$

♦ CASE $t \in [1 + r + s, 1 + 2r + s].$

By (2.36) and (2.37) we deduce that for every $t \in [1 + r + s, 1 + 2r + s]$

$$\begin{split} \mu_3^\varepsilon(t) &= \mu_3^\varepsilon(1+r+s) = -s\,(1+r),\\ \mu_4^\varepsilon(t) &= \mu_4^\varepsilon(1+r+s) = \lambda(\varepsilon) + \frac{(-1)^{\gamma+1}}{\gamma+1}\,(1+r)^\gamma s^{\gamma+1}. \end{split}$$

♦ CASE $t \in [1 + 2r + s, 1 + 2r + 3s]$.

By (2.36) we have that $\dot{\mu}_3^{\varepsilon}(t) = 1$ for almost every $t \in [1 + 2r + s, 1 + 2r + 3s]$. Then

$$\mu_3^{\varepsilon}(t) = -s(1+r) + (t-1-2r-s) \quad \text{for every } t \in [1+2r+s, 1+2r+3s].$$

By (2.37) we have that $\dot{\mu}_4^{\varepsilon}(t) = ((t-1-2r-s)-s(1+r))^{\gamma}$ for almost every $t \in [1+2r+s, 1+2r+3s]$. Then for every $t \in [1+2r+s, 1+2r+3s]$

$$\mu_{4}^{\varepsilon}(t) = \lambda(\varepsilon) + \frac{(-1)^{\gamma+1}}{\gamma+1} (1+r)^{\gamma} s^{\gamma+1} + \frac{1}{(\gamma+1)} \left(\left(t - 1 - 2r - s - s(1+r)\right)^{\gamma+1} - (-s(1+r))^{\gamma+1} \right) dt^{\gamma+1} + \frac{1}{(\gamma+1)} \left(\left(t - 1 - 2r - s - s(1+r)\right)^{\gamma+1} - (-s(1+r))^{\gamma+1} \right) dt^{\gamma+1} + \frac{1}{(\gamma+1)} \left(\left(t - 1 - 2r - s - s(1+r)\right)^{\gamma+1} - (-s(1+r))^{\gamma+1} \right) dt^{\gamma+1} + \frac{1}{(\gamma+1)} \left(\left(t - 1 - 2r - s - s(1+r)\right)^{\gamma+1} - (-s(1+r))^{\gamma+1} \right) dt^{\gamma+1} + \frac{1}{(\gamma+1)} \left(\left(t - 1 - 2r - s - s(1+r)\right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} \right) dt^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1} + \frac{1}{(\gamma+1)} \left(t - 1 - 2r - s - s(1+r) \right)^{\gamma+1$$

♦ CASE $t \in [1 + 2r + 3s, 1 + 3r + 3s].$

By (2.36) and (2.37) we deduce that for every $t \in [1 + 2r + 3s, 1 + 3r + 3s]$

$$\begin{split} \mu_3^{\varepsilon}(t) &= \mu_3^{\varepsilon}(1+2r+3s) = s\,(1-r),\\ \mu_4^{\varepsilon}(t) &= \mu_4(1+2r+3s) = \lambda(\varepsilon) + \frac{(-1)^{\gamma+1}}{\gamma+1}\,(1+r)^{\gamma}s^{\gamma+1}r\\ &+ \frac{1}{(\gamma+1)}\,s^{\gamma+1}(1-r)^{\gamma+1}. \end{split}$$

 \diamond CASE $t \in [1 + 3r + 3s, 1 + 3r + 4s].$

By (2.36) we have that $\dot{\mu}_3^{\varepsilon}(t) = (r-1)$ for almost every $t \in [1+3r+3s, 1+3r+4s]$. Then

$$\mu_3^{\varepsilon}(t) = (1-r)(-t+1+3r+4s) \quad \text{ for every } t \in [1+3r+3s, 1+3r+4s].$$

By (2.37) we have that $\dot{\mu}_4^{\varepsilon}(t) = -(1-r)^{\gamma}(-t+1+3r+4s)^{\gamma}$ for almost every $t \in [1+3r+3s, 1+3r+4s]$. Thus for every $t \in [1+3r+3s, 1+3r+4s]$

$$\mu_4^{\varepsilon}(t) = \lambda(\varepsilon) + \frac{(-1)^{\gamma+1}}{\gamma+1} (1+r)^{\gamma} s^{\gamma+1} r + \frac{1}{(\gamma+1)} s^{\gamma+1} (1-r)^{\gamma+1} + \frac{(1-r)^{\gamma}}{\gamma+1} \left((-t+1+3r+4s)^{\gamma+1} - s^{\gamma+1} \right).$$

♦ CASE $t \in [1 + 3r + 4s, 1 + 4r + 4s].$

By (2.36) and (2.37) we deduce that for every $t \in [1 + 3r + 4s, 1 + 4r + 4s]$

$$\begin{split} \mu_3^{\varepsilon}(t) &= \mu_3^{\varepsilon}(1+3r+4s) = 0, \\ \mu_4^{\varepsilon}(t) &= \lambda(\varepsilon) + \frac{(-1)^{\gamma+1}}{\gamma+1} (1+r)^{\gamma} s^{\gamma+1} r + \frac{1}{(\gamma+1)} s^{\gamma+1} (1-r)^{\gamma+1} \\ &- \frac{(1-r)^{\gamma}}{\gamma+1} s^{\gamma+1}. \end{split}$$

Therefore, we conclude that

$$\mu_3^{\varepsilon}(1+4r+4s) = 0,$$

$$\mu_4^{\varepsilon}(1+4r+4s) = \lambda(\varepsilon) - \frac{(-1)^{\gamma+1}}{(\gamma+1)} r s^{\gamma+1} \big((r+1)^{\gamma} - (r-1)^{\gamma} \big).$$

Note that $\mu_4^{\varepsilon}(1+4r+4s)=0$ if and only if

$$\lambda(\varepsilon) = \frac{(-1)^{\gamma+1}}{(\gamma+1)} r \, s^{\gamma+1} \big((r+1)^{\gamma} - (r-1)^{\gamma} \big). \tag{2.38}$$

Moreover, the length of μ^{ε} is

$$L(\mu^{\varepsilon}) = 2(1-\varepsilon) + \varepsilon\sqrt{2} + 2c + 4r + 4s.$$

2.4.4 Final considerations

Now let us fix r = s in the definition of μ^{ε} . Recall that $c < \frac{a-b}{2}$ and $c = \frac{\varepsilon^2}{2(a-b)}$, thus $\varepsilon < a-b$. Hence - given that also $\varepsilon < b$ - we shall take $0 < \varepsilon < \overline{\varepsilon} := \min\{b, a-b\}$.

Let us define

$$\Psi(\varepsilon) := \frac{\varepsilon^{2\gamma+1}}{2^{\gamma}(2\gamma+1)} \left(1+\varepsilon k\right) \quad \text{for every } \varepsilon \in (0,\bar{\varepsilon}), \tag{2.39}$$

where $k := \frac{2\gamma+1}{2b(\gamma+1)} \frac{a^{\gamma}-(a-b)^{\gamma}}{(a-b)^{\gamma}} > 0$, and

$$\Phi(r) := \frac{r^{\gamma+2}}{(\gamma+1)} \left((r+1)^{\gamma} - (r-1)^{\gamma} \right) \quad \text{for every } r > 0.$$
 (2.40)

Observe that

$$\Phi(r) = \frac{r^{\gamma+2}}{(\gamma+1)} \sum_{i=0}^{\gamma} {\gamma \choose i} r^i (1-(-1)^{\gamma-i}) \quad \text{for every } r > 0.$$
(2.41)

We deduce from (2.38) that, given $\varepsilon \in (0, \overline{\varepsilon})$, one has that

 $\mu_4^{\varepsilon}(1+8r) = 0$ if and only if $\Psi(\varepsilon) = \Phi(r)$.

Hence our task is to find, for $\varepsilon \in (0, \overline{\varepsilon})$ sufficiently small, a suitable r > 0 (if it exists) such that both $\Psi(\varepsilon) = \Phi(r)$ and $L(\mu^{\varepsilon}) < L(\nu)$.

Note that $\Psi(\varepsilon) > 0$ for every $\varepsilon \in (0, \overline{\varepsilon})$ and that $\Phi : (0, +\infty) \to (0, +\infty)$ is a polynomial function with positive coefficients such that $\Phi(0) = 0$, in particular Φ is strictly increasing and continuous. Given that $\lim_{r \to +\infty} \Phi(r) = +\infty$ and $\lim_{r \to 0^+} \Phi(r) = 0$, for every $\varepsilon \in (0, \overline{\varepsilon})$ there exists a unique $r(\varepsilon) > 0$ such that

$$\Psi(\varepsilon) = \Phi(r(\varepsilon)). \tag{2.42}$$

By (2.42) we deduce that $\lim_{\varepsilon \to 0^+} \Phi(r(\varepsilon)) = \lim_{\varepsilon \to 0^+} \Psi(\varepsilon) = 0$, hence necessarily

$$\lim_{\varepsilon \to 0^+} r(\varepsilon) = 0. \tag{2.43}$$

We now study what happens to the length of μ^{ε} when we choose $r = r(\varepsilon)$. We distinguish three cases:

 $\diamond \text{ CASE } \gamma = 2.$ We have that

$$\Phi(r) = \frac{4}{3}r^5,$$

$$\Psi(\varepsilon) = \frac{\varepsilon^5}{20}(1+\varepsilon k).$$

In this case, we can explicitly compute the function $r: (0, \bar{\varepsilon}) \to (0, +\infty)$. Namely

$$r(\varepsilon) = \sqrt[5]{\frac{3(1+\varepsilon k)}{80}} \varepsilon.$$

Note that μ^{ε} is strictly shorter than ν if and only if

$$L(\nu) - L(\mu^{\varepsilon}) = \left(2 - \sqrt{2}\right)\varepsilon - \frac{\varepsilon^2}{a - b} - 8\sqrt[5]{\frac{3(1 + \varepsilon k)}{80}}\varepsilon > 0.$$
(2.44)

Since k > 0, we have that

$$\left(2-\sqrt{2}\right)\varepsilon - \frac{\varepsilon^2}{a-b} - 8\sqrt[5]{\frac{3(1+\varepsilon k)}{80}}\varepsilon < \left(2-\sqrt{2}-8\sqrt[5]{\frac{3}{80}}\right)\varepsilon - \frac{\varepsilon^2}{a-b}$$

But the right hand side is positive if and only if $\varepsilon < (a-b)\left(2-\sqrt{2}-8\sqrt[5]{\frac{3}{80}}\right) < 0$, which is impossible because $\varepsilon \in (0, \overline{\varepsilon})$. Hence (2.44) is not satisfied in the case $\gamma = 2$.

 $\diamond \text{ CASE } \gamma \geq 3 \text{ ODD.}$ We have that

$$\Phi(r) = \frac{2}{(\gamma+1)} \sum_{i=0}^{\frac{(\gamma-1)}{2}} {\gamma \choose 2i} r^{\gamma+2+2i} = \frac{2r^{\gamma+2}}{\gamma+1} (1+r^2 p(r))$$

for a suitable polynomial $p \in \mathbb{N}[r]$. Equation (2.42) yields

$$r(\varepsilon) = g_{\gamma}(\varepsilon) C_{\gamma} \varepsilon^{\frac{2\gamma+1}{\gamma+2}}, \qquad (2.45)$$

where

$$C_{\gamma} := \sqrt[\gamma+2]{\frac{\gamma+1}{2^{\gamma+1}(2\gamma+1)}}$$

and

$$g_{\gamma}(\varepsilon) := \sqrt[\gamma+2]{rac{1+\varepsilon k}{1+r(\varepsilon)^2 p(r(\varepsilon))}}$$

In order to prove that ν is not a length minimizer, we have to verify that

$$L(\mu^{\varepsilon}) < L(\nu),$$

which is equivalent to

$$\left(2-\sqrt{2}\right)\varepsilon - \frac{\varepsilon^2}{a-b} - 8\,g_\gamma(\varepsilon)\,C_\gamma\,\varepsilon^{\frac{2\gamma+1}{\gamma+2}} > 0.$$
(2.46)

By collecting ε , we have that (2.46) is equivalent to

$$\left(2-\sqrt{2}\right) - \frac{\varepsilon}{a-b} - 8\,g_{\gamma}(\varepsilon)\,C_{\gamma}\,\varepsilon^{\frac{\gamma-1}{\gamma+2}} > 0.$$
(2.47)

Note that, since $\gamma > 1$, one has

$$\frac{\gamma - 1}{\gamma + 2} > 0,$$

and note that $\lim_{\varepsilon \to 0^+} g_{\gamma}(\varepsilon) = 1$. Hence the limit of the left hand side of (2.47) as $\varepsilon \to 0^+$ is $2 - \sqrt{2} > 0$, proving that there exists $\varepsilon_{\gamma} \in (0, \overline{\varepsilon}]$ such that (2.47) is satisfied for every $\varepsilon \in (0, \varepsilon_{\gamma})$.

 $\diamond \text{ CASE } \gamma \geq 4 \text{ EVEN.}$ We have that

$$\Phi(r) = \frac{2}{(\gamma+1)} \sum_{i=0}^{\frac{(\gamma-2)}{2}} \binom{\gamma}{2i+1} r^{\gamma+2+(2i+1)} = \frac{2r^{\gamma+3}}{\gamma+1} \left(1+r^2 q(r)\right)$$

for a suitable polynomial $q \in \mathbb{N}[r]$. Equation (2.42) yields

$$r(\varepsilon) = g_{\gamma}(\varepsilon) C_{\gamma} \varepsilon^{\frac{2\gamma+1}{\gamma+3}}, \qquad (2.48)$$

where

$$C_{\gamma} := \sqrt[\gamma+2]{\frac{\gamma+1}{2^{\gamma+1}\gamma \left(2\gamma+1\right)}}$$

and

$$g_{\gamma}(\varepsilon) := \sqrt[\gamma+2]{rac{1+\varepsilon k}{1+r(\varepsilon)^2 q(r(\varepsilon))}}$$

In order to prove that ν is not a length minimizer, we have to verify that

$$L(\mu^{\varepsilon}) < L(\nu),$$

which is equivalent to

$$\left(2-\sqrt{2}\right)\varepsilon - \frac{\varepsilon^2}{a-b} - 8\,g_\gamma(\varepsilon)\,C_\gamma\,\varepsilon^{\frac{2\gamma+1}{\gamma+3}} > 0. \tag{2.49}$$

By collecting ε , we have that (2.49) is equivalent to

$$\left(2-\sqrt{2}\right) - \frac{\varepsilon}{a-b} - 8\,g_{\gamma}(\varepsilon)\,C_{\gamma}\,\varepsilon^{\frac{\gamma-2}{\gamma+3}} > 0.$$
(2.50)

Note that, since $\gamma > 2$, one has

$$\frac{\gamma-2}{\gamma+3} > 0,$$

and note that $\lim_{\varepsilon \to 0^+} g_{\gamma}(\varepsilon) = 1$. Hence the limit of the left hand side of (2.50) as $\varepsilon \to 0^+$ is $2 - \sqrt{2} > 0$, proving that there exists $\varepsilon_{\gamma} \in (0, \overline{\varepsilon}]$ such that (2.50) is satisfied for every $\varepsilon \in (0, \varepsilon_{\gamma})$.

We finally summarize what we did in this section: we proved that

Theorem 2.18. Let $\gamma \in \mathbb{N}^+$ with $\gamma \geq 3$. Let \mathcal{D} be the distribution in \mathbb{R}^4 generated by

$$\begin{cases} X_1(x) = (1, 0, 0, 0), \\ X_2(x) = (0, 1, x_1, x_3^{\gamma}) \end{cases}$$

for every $x \in \mathbb{R}^4$. Let $\nu : [-1,1] \to \mathbb{R}^4$ be the strictly abnormal extremal for \mathcal{D} defined by

$$\nu(t) = \begin{cases} (0, -t, 0, 0) & \text{if } t \in [-1, 0], \\ (t, 0, 0, 0) & \text{if } t \in [0, 1], \end{cases}$$
(2.51)

so that ν has a corner at 0. Then ν is not length-minimizing.

2.5 Case $(\alpha, \beta, \gamma) = (1, 0, 2)$

In this section we shall make use of the following definitions:

• Given $\sigma^1 \in \operatorname{Lip}([a, b], \mathbb{R}^n)$ and $\sigma^2 \in \operatorname{Lip}([c, d], \mathbb{R}^n)$ such that $\sigma^1(b) = \sigma^2(c)$, the concatenation $\sigma^1 * \sigma^2 \in \operatorname{Lip}([a, b+d-c], \mathbb{R}^n)$ between σ^1 and σ^2 is defined by

$$(\sigma^{1} * \sigma^{2})(t) := \begin{cases} \sigma^{1}(t) & \text{if } t \in [a, b], \\ \sigma^{2}(t - b + c) & \text{if } t \in [b, b + d - c]. \end{cases}$$

If \mathcal{D} is a distribution on \mathbb{R}^n , generated by a global frame of orthonormal vector fields, and σ^1 , σ^2 are \mathcal{D} -horizontal, then also $\sigma^1 * \sigma^2$ is \mathcal{D} -horizontal and satisfies $L(\sigma^1 * \sigma^2) = L(\sigma^1) + L(\sigma^2)$.

Since * is associative, for any Lipschitz curves σ^1, σ^2 and σ^3 , we will write $\sigma^1 * \sigma^2 * \sigma^3$ instead of $(\sigma^1 * \sigma^2) * \sigma^3$.

• Given $\sigma \in \operatorname{Lip}([a, b], \mathbb{R}^n)$, we will denote by

$$\mathcal{E}(\sigma) := \sigma(b) \tag{2.52}$$

its endpoint.

• With abuse of notation, for every $x, y \in \mathbb{R}^n$ we will denote by [x, y] the following parametrization of the segment joining x to y:

$$[x, y](t) := (1 - t)x + ty$$
 for every $t \in [0, 1]$.

In Section 2.4 we showed that the \mathcal{D} -horizontal angle ν (where ν is defined in (2.19) and \mathcal{D} is defined in Theorem 2.18) is not a length-minimizer for $\gamma \geq 3$. However, the same technique doesn't show that ν is not a length-minimizer in the case $\gamma = 2$, since there was a problem in the balance of length (see Subsection 2.4.4). The aim of this section is to provide an example of a curve η^{ε} , which shows that ν is not a length-minimizer also in the case $\gamma = 2$.

In order to do this, let us fix $\varepsilon < \frac{1}{4}$. We want to concatenate the following planar curves:

• We follow the "cut" ν^{ε} (defined in Subsection 2.4.1) from (0,1) to $(\frac{1}{4}, 0)$, i.e. we consider

$$\nu^{\varepsilon}|_{\left[-1,\frac{1}{4}\right]}.$$

• The rectangle R^1 joining the following points:

$$\left(\frac{1}{4},0\right) \rightarrow \left(\frac{1}{4},-2\varepsilon^2\right) \rightarrow \left(\frac{1}{2},-2\varepsilon^2\right) \rightarrow \left(\frac{1}{2},0\right).$$

• The square Q^1 (of suitable side s > 0) joining the following points:

$$\left(\frac{1}{2},0\right) \rightarrow \left(\frac{1}{2},s\right) \rightarrow \left(\frac{1}{2}+s,s\right) \rightarrow \left(\frac{1}{2}+s,0\right) \rightarrow \left(\frac{1}{2},0\right).$$

• The rectangle R^2 joining the following points:

$$\left(\frac{1}{2},0\right) \rightarrow \left(\frac{1}{2},-4s^2\right) \rightarrow \left(\frac{3}{4},-4s^2\right) \rightarrow \left(\frac{3}{4},0\right).$$

- The segment $S := \left[\left(\frac{3}{4}, 0 \right), (1, 0) \right]$.
- The curve Q^2 (of suitable parameter r > 0) joining the following points:

$$(1,0) \to (1+r,0) \to (1+r,-r) \to$$

 $(1,-r) \to (1,r) \to (1-r,r) \to (1-r,0) \to (1,0)$

We parametrize the above-mentioned curves as follows:

$$R^{1}(t) := \begin{cases} \left(\frac{1}{4}, -t\right) & \text{if } t \in \left[0, 2\varepsilon^{2}\right], \\ \left(t - 2\varepsilon^{2} + \frac{1}{4}, -2\varepsilon^{2}\right) & \text{if } t \in \left[2\varepsilon^{2}, 2\varepsilon^{2} + \frac{1}{4}\right], \\ \left(\frac{1}{2}, t - 4\varepsilon^{2} - \frac{1}{4}\right) & \text{if } t \in \left[2\varepsilon^{2} + \frac{1}{4}, 4\varepsilon^{2} + \frac{1}{4}\right] \end{cases}$$

$$Q^{1}(t) := \begin{cases} \left(\frac{1}{2}, t\right) & \text{if } t \in [0, s], \\ \left(t + \frac{1}{2} - s, s\right) & \text{if } t \in [s, 2s], \\ \left(\frac{1}{2} + s, -t + 3s\right) & \text{if } t \in [2s, 3s], \\ \left(-t + 4s + \frac{1}{2}, 0\right) & \text{if } t \in [3s, 4s]. \end{cases}$$

$$R^{2}(t) := \begin{cases} \left(\frac{1}{2}, -t\right) & \text{if } t \in \left[0, 4s^{2}\right], \\ \left(t - 4s^{2} + \frac{1}{2}, -4s^{2}\right) & \text{if } t \in \left[4s^{2}, 4s^{2} + \frac{1}{4}\right], \\ \left(\frac{3}{4}, t - 8s^{2} - \frac{1}{4}\right) & \text{if } t \in \left[4s^{2} + \frac{1}{4}, 8s^{2} + \frac{1}{4}\right]. \end{cases}$$

$$Q^{2}(t) := \begin{cases} (t+1,0) & \text{if } t \in [0,r], \\ (r+1,r-t) & \text{if } t \in [r,2\,r], \\ (-t+3\,r+1,-r) & \text{if } t \in [2\,r,3\,r], \\ (1,t-4\,r) & \text{if } t \in [3\,r,5\,r], \\ (-t+5\,r+1,r) & \text{if } t \in [5\,r,6\,r], \\ (1-r,-t+7\,r) & \text{if } t \in [6\,r,7\,r], \\ (t+1-8\,r,0) & \text{if } t \in [7\,r,8\,r]. \end{cases}$$

We want to choose s, r > 0 in such a way that, having called η^{ε} the lift of the concatenated curve

$$\nu^{\varepsilon}|_{\left[-1,\frac{1}{4}\right]} * R^{1} * Q^{1} * R^{2} * S * Q^{2},$$

one has that $\mathcal{E}(\eta^{\varepsilon}) = (1, 0, 0, 0)$. We proceed in the following way: \diamond STEP 1: Let us call $\pi^1 := \nu^{\varepsilon}|_{\left[-1, \frac{1}{4}\right]} * R^1$ and $\bar{\pi}^1$ its lift to \mathbb{R}^4 . Then

$$\mathcal{E}(\bar{\pi}^1) = \left(\frac{1}{2}, 0, 0, -\frac{\varepsilon^5}{20} - \frac{\varepsilon^6}{2}\right).$$

 \diamond STEP 2: Let us call $\pi^2 := \pi^1 * Q^1$ and $\bar{\pi}^2$ its lift to \mathbb{R}^4 . We want to find s > 0 in such a way that the fourth component of

$$\mathcal{E}(\bar{\pi}^2) = \left(\frac{1}{2}, 0, -s^2, -\frac{\varepsilon^5}{20} - \frac{\varepsilon^6}{2} + \frac{1-2s}{6}s^4\right)$$

is equal to 0. Note that $\mathcal{E}(\bar{\pi}^2)_4 = 0$ if and only if

$$f(s) := -3\varepsilon^5 - 30\varepsilon^6 + 10s^4 - 20s^5 = 0.$$
(2.53)

By differentiating f with respect to s, we obtain that

$$\frac{d}{ds}f(s) = 40\,s^3 - 100\,s^4 > 0$$

when $s \in (0, \frac{2}{5})$, hence f is strictly increasing in $[0, \frac{2}{5}]$. Note that $f(0) = -(3\varepsilon^5 + 30\varepsilon^6) < 0$. Moreover, if $\varepsilon < \frac{2}{5}\sqrt[5]{\frac{5}{33}}$ then

$$f\left(\frac{2}{5}\right) = -3\varepsilon^5 - 30\varepsilon^6 + \frac{2^5}{5^4} > 0.$$

Indeed, since $\varepsilon < \frac{2}{5} \sqrt[5]{\frac{5}{33}} < 1$, we have that

$$3\varepsilon^5 + 30\varepsilon^6 = 3\varepsilon^5(1+10\varepsilon) < 33\varepsilon^5 < 33\left(\frac{2}{5}\sqrt[5]{\frac{5}{33}}\right) = \frac{2^5}{5^4}.$$

Therefore, since $\frac{1}{4} < \frac{2}{5} \sqrt[5]{\frac{5}{33}}$, for every $\varepsilon \in (0, \frac{1}{4})$ there exists an unique positive solution $s(\varepsilon) \in (0, \frac{2}{5})$ of (2.53). Now we want to estimate $s(\varepsilon)$: note that $f(s(\varepsilon)) = 0$ if and only if

$$s(\varepsilon)^4 = \frac{3\varepsilon^5}{10} \frac{1+10\varepsilon}{1-2s(\varepsilon)}$$

Since $\varepsilon \in (0, \frac{1}{4})$ and $s(\varepsilon) \in (0, \frac{2}{5})$, we deduce that

$$\frac{1+10\varepsilon}{1-2s(\varepsilon)} < \frac{1+10\frac{1}{4}}{1-2\frac{2}{5}} = \frac{35}{2},$$

hence $s(\varepsilon)^4 < \frac{21}{4}\varepsilon^5$. Thus

$$0 < s(\varepsilon) < \sqrt[4]{\frac{21}{4}} \varepsilon^{\frac{5}{4}}.$$
 (2.54)

 \diamond STEP 3: Let us call $\pi^3 := \pi^2 * R^2$ and $\bar{\pi}^3$ its lift to \mathbb{R}^4 (having chosen $s = s(\varepsilon)$ in the definition of Q^1). Then

$$\mathcal{E}(\bar{\pi}^3) = \left(\frac{3}{4}, 0, 0, -\frac{16}{3} s(\varepsilon)^6\right).$$

 \diamond STEP 4: Let us call $\pi^4:=\pi^3*S*Q^2$ and $\bar{\pi}^4$ its lift to \mathbb{R}^4 . Then

$$\mathcal{E}(\bar{\pi}^4) = \left(1, 0, 0, -\frac{16}{3}s(\varepsilon)^6 + \frac{4}{3}r^5\right).$$

Now let us choose $r = r(\varepsilon) := \sqrt[5]{4} s(\varepsilon)^{\frac{6}{5}}$. Therefore $\mathcal{E}(\bar{\pi}^4)_4 = 0$.

Now let us call $\eta^{\varepsilon} := \bar{\pi}^4$ with the choice $s = s(\varepsilon)$ and $r = r(\varepsilon)$. We have that

this curve joins $e_2 = (0, 1, 0, 0)$ to $e_1 = (1, 0, 0, 0)$. Thus it is a competitor for $d(e_2, e_1)$. It only remains to show that, for a suitable $\varepsilon \in (0, \frac{1}{4})$, one has that $L(\eta^{\varepsilon}) < L(\nu) = 2$. Notice that $L(\eta^{\varepsilon}) < 2$ if and only if

$$(2-\sqrt{2})\varepsilon - 4\varepsilon^2 - 4s(\varepsilon) - 8s(\varepsilon)^2 - 8r(\varepsilon) > 0.$$
(2.55)

From (2.54) we deduce that

$$(2 - \sqrt{2})\varepsilon - 4\varepsilon^2 - 4s(\varepsilon) - 8s(\varepsilon)^2 - 8r(\varepsilon) > g(\varepsilon)$$

where

$$g(\varepsilon) := (2 - \sqrt{2})\varepsilon - 4\varepsilon^2 - 4\sqrt[4]{\frac{21}{4}}\varepsilon^{\frac{5}{4}} - 8\sqrt[2]{\frac{21}{4}}\varepsilon^{\frac{5}{2}} - 8\sqrt[5]{4}\left(\frac{21}{4}\right)^{\frac{3}{10}}\varepsilon^{\frac{3}{2}}.$$

Note that there exists $\bar{\varepsilon} \in (0, \frac{1}{4})$ such that $g(\varepsilon) > 0$ for every $\varepsilon \in (0, \bar{\varepsilon})$. This shows that ν is not a length-minimizer.

Figure 2.5: The curve $(\eta_1^{\varepsilon}, \eta_2^{\varepsilon})$.

Bibliography

- A. AGRACHEV, Some open problems in *Geometric Control Theory and Sub-Riemannian Geometry*, Springer INDAM Series, Stefani G., Boscain U., Gauthier J.-P., Sarychev A., Sigalotti M. (Eds.) 2014, 313-332.
- [2] E. LE DONNE, G. P. LEONARDI, R. MONTI, D. VITTONE, *Corners in non-equiregular sub-Riemannian manifolds*. ESAIM Control Optim. Calc. Var. 2015.
- [3] G. P. LEONARDI, R. MONTI, End-point equations and regularity of sub-Riemannian geodesics. Geometric And Functional Analysis, Vol. 18 (2008), 552-582.
- [4] R. MONTGOMERY, Abnormal minimizers. SIAM J. Control Optim., 32, (1994), 1605-1620.
- [5] R. MONTGOMERY, A tour of Subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence, RI, 2002.
- [6] R. MONTI, The regularity problem for sub-Riemannian geodesics, in *Geometric Control Theory and Sub-Riemannian Geometry*, Springer INDAM Series, Stefani G., Boscain U., Gauthier J.-P., Sarychev A., Sigalotti M. (Eds.) 2014, 313-332.
- [7] A. NAGEL, E. M. STEIN, S. WAINGER, Balls and metrics defined by vector fields I: basic properties. Acta Math. 155 (1985), 103-147.
- [8] F. PALMURELLA, Length-minimizing curves on sub-Riemannian manifolds: necessary conditions involving the end-point mapping. Tesi di laurea magistrale, (2014).
- [9] E. PASQUALETTO, Geodesics in Carnot-Carathéodory Spaces: Regular Abnormal Extremals. Tesi di laurea magistrale, (2014).