

Dipartimento di Matematica
Corso di Laurea in Matematica

Non-Minimality for a Class of Angles

Tesi di Laurea Magistrale

Candidato
Giulia Vescovo
Matricola: 1041138

Relatore
Prof. Roberto Monti
Università di Padova

24 Luglio 2015
Anno Accademico 2014/2015

Preface

In this thesis we deal with the problem of regularity of length-minimizing curves in Carnot-Carathéodory spaces.

In the first chapter we study the notion of sub-Riemannian manifold, that is a triple (M, \mathcal{D}, g) where M is a smooth manifold, $\mathcal{D} \subseteq T M$ is a distribution on M and g is a metric on \mathcal{D}. Since we deal with a problem of local nature, we identify M with \mathbb{R}^{n} and \mathcal{D} with a distribution on \mathbb{R}^{n} generated by a global frame of orthonormal smooth vector fields X_{1}, \ldots, X_{r}. We introduce the class of \mathcal{D}-horizontal curves, that are Lipschitz curves γ tangent to the distribution \mathcal{D} at almost every point, i.e. there exists $h \in L^{\infty}\left([0,1], \mathbb{R}^{r}\right)$ (whose components are called controls of γ) such that

$$
\dot{\gamma}(t)=\sum_{i=1}^{r} h_{i}(t) X_{i}(\gamma(t)) \quad \text { for a.e. } t \in[0,1] .
$$

Thus we can define the length of the \mathcal{D}-horizontal curve γ as follows:

$$
L(\gamma):=\int_{0}^{1}|h(t)| d t
$$

We define the Carnot-Carathéodory distance between two points x and y in \mathbb{R}^{n} as the infimum of the lengths of all \mathcal{D}-horizontal curves joining x to y. By the ChowRashevsky Theorem, if \mathcal{D} is bracket-generating then any couple of points in \mathbb{R}^{n} can be connected by a \mathcal{D}-horizontal curve, hence the Carnot-Carathéodory distance is actually a distance on \mathbb{R}^{n}. A length-minimizer joining x to y is a \mathcal{D}-horizontal curve that realizes the distance between x and y. In general, length-minimizers do not exist globally, but we will prove their local existence. Moreover, a length-minimizer is in particular an extremal, that is a \mathcal{D}-horizontal curve which satisfies the firstorder necessary conditions of Pontryagin Maximum Principle. Extremals can be either normal or abnormal: normal extremals are $C^{\infty_{-s m o t h}}$, while strictly abnormal extremals (i.e. extremals that are abnormal but not normal) could develop singularities.

The principal open problem in Geometric Control Theory and Calculus of Variations in Carnot-Carathéodory spaces is the regularity of length-minimizers (see [5], Chapter 10, Paragraph 10.1, or [1] and [6]). Originally - by using a wrong argument - Strichartz proved that all length-minimizers are smooth: by applying Pontryagin Maximum Principle, he forgot the case of abnormal extremals. In 1994 Montgomery exhibited the first example of abnormal length-minimizer (see [4]). In 1995 Liu and

Sussmann discovered the class of regular abnormal extremals, i.e. abnormal extremals that are always locally length-minimizing (see [9]). On the other hand, all known examples of length-minimizers are smooth. Thus, the open questions are the following:

- Are all length-minimizers C^{∞}-smooth?
- Are all length-minimizers C^{1}-smooth?
- Can length-minimizers present angles?

The second chapter contains new results. We prove the non-minimality of angles in a certain class of examples which is not included in the known literature.

Let M be an n-dimensional smooth manifold and let $\mathcal{D} \subseteq T M$ be a bracketgenerating distribution of rank r, for some $r=1, \ldots, n$. Suppose that X_{1}, \ldots, X_{r} constitute a frame of vector fields such that $\mathcal{D}=\operatorname{span}\left\{X_{1}, \ldots, X_{r}\right\}$. For every $\ell \in \mathbb{N}$, let us call \mathcal{D}_{ℓ} (resp. \mathcal{L}_{ℓ}) the distribution spanned by the iterated commutators of X_{1}, \ldots, X_{r} of length equal to ℓ (resp. at most ℓ), so that $\mathcal{D}_{0}=\mathcal{L}_{0}=\{0\}$, $\mathcal{D}_{1}=\mathcal{L}_{1}=\mathcal{D}$ and $\mathcal{L}_{\ell}=\mathcal{D}_{0}+\ldots+\mathcal{D}_{\ell}$.

In [3] it is proved that if (M, \mathcal{D}, g) is a sub-Riemannian manifold, where \mathcal{D} is equiregular (i.e. $\operatorname{dim}\left(\mathcal{D}_{\ell}\right)$ is constant in M) and satisfies

$$
\begin{equation*}
\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right] \subseteq \mathcal{L}_{i+j-1} \quad \text { for every } \quad i, j \geq 2 \text { with } i+j \geq 5 \tag{1}
\end{equation*}
$$

then a \mathcal{D}-horizontal curve on M with a corner-type singularity is not length-minimizing.
Moreover, in [2] it is proved that the same thesis holds if we replace the hypothesis of equiregularity and (1) with the following condition:

$$
\begin{equation*}
\mathcal{L}_{i}(x) \neq \mathcal{L}_{i-1}(x) \Longrightarrow \mathcal{L}_{i+1}(x)=\mathcal{L}_{i}(x) \quad \text { for every } i \geq 1 \text { and } x \in M . \tag{2}
\end{equation*}
$$

In this chapter we study a class of non-equiregular distributions that do not satisfy neither (1) nor (2) but in which angles are not length-minimizers. The main result of the thesis is the following:

Theorem 0.1. Let $\alpha \in \mathbb{N}^{+}, \beta \in \mathbb{N}$ and $\gamma \in \mathbb{N}^{+}$. Let \mathcal{D} be the distribution in \mathbb{R}^{4} of 2 -planes spanned pointwise by the vector fields

$$
\begin{equation*}
X_{1}=\frac{\partial}{\partial x_{1}}, \quad X_{2}=\frac{\partial}{\partial x_{2}}+x_{1}^{\alpha} x_{2}^{\beta} \frac{\partial}{\partial x_{3}}+x_{3}^{\gamma} \frac{\partial}{\partial x_{4}} . \tag{3}
\end{equation*}
$$

Let $\nu:[-1,1] \rightarrow \mathbb{R}^{4}$ be the \mathcal{D}-horizontal curve defined by

$$
\nu(t)= \begin{cases}(0,-t, 0,0) & \text { if } t \in[-1,0], \tag{4}\\ (t, 0,0,0) & \text { if } t \in[0,1] .\end{cases}
$$

Then ν is not length-minimizing.

The proof of the previous theorem consists of the following steps:
\diamond Step 1: Let \mathcal{D} be the distribution generated by (3). We have that

$$
\operatorname{step}(\mathcal{D})=\gamma(\alpha+\beta+1)+1,
$$

in particular \mathcal{D} is bracket-generating in all of \mathbb{R}^{4}.
\diamond Step 2: For the distribution spanned by (3), the following are equivalent:
(i) the distribution is not equiregular and does not satisfy neither (1) nor (2),
(ii) $(\alpha, \beta)=(1,0)$ and $\gamma \geq 2$.
\diamond Step 3: Hereafter, we shall restrict to the case $(\alpha, \beta)=(1,0)$ and $\gamma \geq 2$. The angle ν defined in (4) is a strictly abnormal extremal.
\diamond Step 4: In order to prove that ν is not length-minimizing, we adapt the shortening technique introduced in [3]: we exhibit a \mathcal{D}-horizontal curve joining the points $\nu(-1)=(1,0,0,0)$ and $\nu(1)=(0,1,0,0)$, whose length is strictly smaller than 2, which is the length of ν.

In the case $\gamma \geq 3$ we proceed as follows: first of all, we "cut" the corner ν by considering the \mathcal{D}-horizontal curve ν^{ε} (for some $\varepsilon \in(0,1)$) whose first two components coincide with the polygonal planar curve $(0,1) \rightarrow(0, \varepsilon) \rightarrow(\varepsilon, 0) \rightarrow(1,0)$. The curve ν^{ε} is strictly shorter than ν, but its endpoint has changed into

$$
\left(1,0,-\frac{1}{2} \varepsilon^{2}, \frac{(-1)^{\gamma+1}}{2^{\gamma}} \frac{\varepsilon^{2 \gamma+1}}{2 \gamma+1}\right) .
$$

In order to correct the endpoint, we have to modify ν^{ε} : consider the lift μ^{ε} of the planar curve (depending on suitable positive parameters a, b, c and r) in Figure 1.

Figure 1: The curve ($\mu_{1}^{\varepsilon}, \mu_{2}^{\varepsilon}$).

The endpoint of μ^{ε} is $(0,1,0,0)$ if and only if

$$
c=-\frac{\varepsilon^{2}}{2(b-a)} \quad \text { and } \quad r=r(\varepsilon)
$$

for a uniquely determined function $\varepsilon \mapsto r(\varepsilon)$. For ε sufficiently small, one has that

$$
r(\varepsilon) \sim \begin{cases}\varepsilon^{\frac{2 \gamma+1}{\gamma+2}} & \text { if } \gamma \text { is odd } \tag{5}\\ \varepsilon^{\frac{2 \gamma+1}{\gamma+3}} & \text { if } \gamma \text { is even }\end{cases}
$$

Finally, by means of the previous estimates on $r(\varepsilon)$ we can prove that, for ε sufficiently small, the difference of length ΔL (between ν and μ^{ε}) is strictly positive, precisely

$$
\begin{equation*}
\Delta L=(2-\sqrt{2}) \varepsilon-\frac{\varepsilon^{2}}{a-b}-8 g_{\gamma}(\varepsilon) C_{\gamma} r(\varepsilon)>0 \tag{6}
\end{equation*}
$$

where g_{γ} is a function such that $\lim _{\varepsilon \rightarrow 0^{+}} g_{\gamma}(\varepsilon)=1$. Therefore, ν is not lengthminimizing since μ^{ε} joins the same points and is strictly shorter.

The case $\gamma=2$ is more delicate and interesting. The previous argument does not work. The curve μ^{ε} constructed above is not shorter than ν. Thus we have to find a more refined competitor for ν. To this aim, consider the lift η^{ε} of the planar

Figure 2: The curve $\left(\eta_{1}^{\varepsilon}, \eta_{2}^{\varepsilon}\right)$.
curve (depending on suitable positive parameters s and r) in Figure 2. We show that (for ε sufficiently small) there exists a unique positive number

$$
s(\varepsilon) \in\left(0, \sqrt[4]{\frac{21}{4}} \varepsilon^{\frac{5}{4}}\right)
$$

such that, choosing

$$
s=s(\varepsilon) \quad \text { and } \quad r=\sqrt[5]{4} s(\varepsilon)^{\frac{6}{5}}
$$

the endpoint of η^{ε} is $(0,1,0,0)$ and the difference of length ΔL (between ν and η^{ε}) is strictly positive, precisely

$$
\Delta L=(2-\sqrt{2}) \varepsilon-4 \varepsilon^{2}-4 s(\varepsilon)-8 s(\varepsilon)^{2}-8 r(\varepsilon)>0
$$

proving that also in this case ν is not a length-minimizer.

Acknowledgements

In questa pagina vorrei ringraziare brevemente tutti coloro che, in un modo o nell'altro, mi hanno sostenuta durante tutti i miei studi e durante la stesura di questo lavoro.
Un riconoscimento particolare va ad Enrico che è stato per me di grandissimo aiuto, sempre.
Ringrazio molto i professori Roberto Monti e Giuseppe De Marco che mi hanno dato fiducia e dai quali ho imparato molto.
Grazie a tutti gli amici e colleghi matematici per la preziosa collaborazione e per il tempo passato assieme: Danka, Elçin, Davide, Federico, Luisa e molti altri.
Desidero poi ringraziare: Antonietta Mion, amica speciale ed insegnante di italiano delle elementari, la mia professoressa di matematica del liceo Loretta Reato e tutti gli amici per il loro affetto e supporto psicologico.
Sono profondamente grata ai miei cari genitori che, nonostante tutto, mi hanno incoraggiata a studiare e mi hanno sostenuta in ogni mia attività da sempre. Grazie anche a nonna Natalina, a tutta la mia famiglia e a Leo.

Contents

1 Preliminaries 13
1.1 Sub-Riemannian manifolds 13
1.2 Length-minimizers 15
1.3 Extremal curves 17
1.3.1 The notion of extremal curve. 17
1.3.2 Proof of Pontryagin Maximum Principle 19
1.3.3 The open problem of regularity. 23
2 Non-minimality for a class of angles 25
$2.1 \mathcal{D}$ is globally bracket-generating 27
2.2 When \mathcal{D} satisfies $(A),(B)_{0}$ and $(C)_{0}$ 31
2.2.1 Condition (A) 31
2.2.2 Condition (B) ${ }_{0}$ 33
2.2.3 Condition (C) ${ }_{0}$ 35
2.3 The angle ν is an abnormal extremal 35
2.4 The curve ν is not a length-minimizer 37
2.4.1 The "cut" ν^{ε} 38
2.4.2 The first perturbation ζ^{ε} of ν^{ε} 40
2.4.3 The second perturbation μ^{ε} of ν^{ε} 44
2.4.4 Final considerations 47
2.5 Case $(\alpha, \beta, \gamma)=(1,0,2)$ 50
Bibliography 55

Chapter 1

Preliminaries

1.1 Sub-Riemannian manifolds

Our first aim is to introduce the setting we will work in, namely the sub-Riemannian manifolds, which is a family of abstract manifolds endowed with a Riemannian metric on a suitable sub-bundle (that we will call distribution) of the tangent bundle.

Definition 1.1 (Distribution). Given M an n-dimensional smooth manifold, we define a distribution \mathcal{D} of rank r on M as follows:
(i) $\mathcal{D}(p)$ is an r-dimensional vector subspace of $T_{p} M$ for every $p \in M$,
(ii) for every $p \in M$ there exist an open neighborhood U of p in M and smooth vector fields X_{1}, \ldots, X_{r} on U such that

$$
\begin{equation*}
\mathcal{D}(q)=\operatorname{span}_{T_{q} M}\left\{X_{1}(q), \ldots, X_{r}(q)\right\} \quad \text { for every } q \in U \tag{1.1}
\end{equation*}
$$

We will call X_{1}, \ldots, X_{r} a frame of smooth vector fields of \mathcal{D} and we will denote by $\operatorname{rank}(\mathcal{D}):=r$ the rank of \mathcal{D}. Given a smooth vector field X on M, we write $X \in \operatorname{Sec}(\mathcal{D})$ if $X(q) \in \mathcal{D}(q)$ for every $q \in M$.

Let M be an n-dimensional smooth manifold, let \mathcal{D} be a distribution on M of rank r and let X_{1}, \ldots, X_{r} be a frame of smooth vector fields of \mathcal{D}. For every $\ell \in \mathbb{N}^{+}$ and $i_{1}, \ldots, i_{\ell} \in\{1, \ldots, r\}$, we define

$$
\begin{equation*}
X_{i_{1} \ldots i_{\ell}}:=\left[X_{i_{1}},\left[X_{i_{2}}, \ldots\left[X_{i_{\ell-1}}, X_{i_{\ell}}\right] \ldots\right]\right] \tag{1.2}
\end{equation*}
$$

We say that $X_{i_{1} \ldots i_{\ell}}$ is an iterated commutator of X_{1}, \ldots, X_{r} of length ℓ. For any point $p \in M$, we define

$$
\begin{aligned}
& \mathcal{D}_{0}(p):=\{0\} \\
& \mathcal{D}_{1}(p):=\mathcal{D}(p), \\
& \ldots \\
& \mathcal{D}_{\ell}(p):=\operatorname{span}_{T_{p} M}\left\{X_{i_{1} \ldots i_{\ell}}(p) \in T_{p} M: i_{1}, \ldots, i_{\ell} \in\{1, \ldots r\}\right\} .
\end{aligned}
$$

Finally, let us define

$$
\begin{aligned}
& \mathcal{L}_{0}:=\mathcal{D}_{0}=\{0\}, \\
& \mathcal{L}_{1}:=\mathcal{D}_{0}+\mathcal{D}_{1}=\mathcal{D}, \\
& \ldots \\
& \mathcal{L}_{\ell}:=\mathcal{D}_{1}+\ldots+\mathcal{D}_{\ell} .
\end{aligned}
$$

One can easily prove that \mathcal{D}_{ℓ} and \mathcal{L}_{ℓ} are distributions on M.
Let us define the function $\operatorname{step}(\mathcal{D}, \cdot): M \rightarrow \overline{\mathbb{N}}:=\mathbb{N} \cup\{+\infty\}$ as

$$
\begin{equation*}
\operatorname{step}(\mathcal{D}, p):=\inf \left\{s \in \mathbb{N}: \mathcal{L}_{s}(p)=T_{p} M\right\} \quad \text { for every } \mathrm{p} \in M \tag{1.3}
\end{equation*}
$$

Definition 1.2 (Bracket-generating distribution). A distribution \mathcal{D} on M is said to be bracket-generating (or completely non-integrable) if $\operatorname{step}(\mathcal{D}, M) \subseteq \mathbb{N}$, i.e.

$$
\begin{equation*}
\operatorname{step}(\mathcal{D}, p)<+\infty \quad \text { for every } p \in M \tag{1.4}
\end{equation*}
$$

A bracket-generating distribution \mathcal{D} is of finite step if $\operatorname{step}(\mathcal{D}, \cdot)$ is bounded, and in this case we define $\operatorname{step}(\mathcal{D}):=\|\operatorname{step}(\mathcal{D}, \cdot)\|_{L^{\infty}}$, i.e.

$$
\begin{equation*}
\operatorname{step}(\mathcal{D})=\min \left\{s \in \mathbb{N}: \mathcal{L}_{s}(p)=T_{p} M \text { for every } p \in M\right\}<+\infty \tag{1.5}
\end{equation*}
$$

If X is a topological space and $x \in X$, we indicate by $\mathcal{N}_{X}(x)$ (or briefly $\mathcal{N}(x)$) the set of all open neighborhoods of x in X.

Lemma 1.3. Let X be a topological space. Let $A \in C\left(X, M_{m, n}(\mathbb{R})\right)$, i.e.

$$
A(x)=\left(A_{i, j}(x)\right)_{i, j} \quad \text { for every } x \in X, \text { for suitable } A_{i, j} \in C(X, \mathbb{R})
$$

Let $\mathrm{rk}: M_{m, n}(\mathbb{R}) \rightarrow \mathbb{N}$ be the function that associates to every matrix its rank.
Then $\mathrm{rk} \circ A: X \rightarrow \mathbb{R}$ is lsc (i.e. lower semicontinuous), in other words

$$
\begin{equation*}
\forall x \in X \quad \exists U \in \mathcal{N}(x): \quad \forall y \in U \quad \operatorname{rk}(A(y)) \geq \operatorname{rk}(A(x)) \tag{1.6}
\end{equation*}
$$

Proof. Fix $x \in X$. Let $k:=\operatorname{rk}(A(x))$, hence we can choose $R \subseteq\{1, \ldots, m\}$ and $C \subseteq\{1, \ldots, n\}$ both of cardinality equal to k, such that $\operatorname{det}(M(x)) \neq 0$, where

$$
M(y):=\left(A_{i, j}(y)\right)_{i \in R, j \in C} \in M_{k}(\mathbb{R}) \quad \text { for every } y \in X
$$

By continuity of the function det : $M_{k}(\mathbb{R}) \rightarrow \mathbb{R}$, also $\operatorname{deto} M: X \rightarrow \mathbb{R}$ is continuous. Thus there exists $U \in \mathcal{N}(x)$ such that $\operatorname{det}(M(y)) \neq 0$ for every $y \in U$. This implies that $\operatorname{rk}(A(y)) \geq k$ for every $y \in U$, hence the thesis.

Proposition 1.4. Let \mathcal{D} be a distribution on an n-dimensional smooth manifold M. Then $\operatorname{step}(\mathcal{D}, \cdot): M \rightarrow \overline{\mathbb{N}}$ is usc (i.e. upper semicontinuous), in other words

$$
\begin{equation*}
\forall p \in M \quad \exists U \in \mathcal{N}(p): \quad \forall q \in U \quad \operatorname{step}(\mathcal{D}, q) \leq \operatorname{step}(\mathcal{D}, p) \tag{1.7}
\end{equation*}
$$

Proof. We can assume without loss of generality that $M=\mathbb{R}^{n}$, because of the local nature of the statement. Fix $p \in M$. If $\operatorname{step}(\mathcal{D}, p)=+\infty$ then (1.7) clearly follows. So assume $s:=\operatorname{step}(\mathcal{D}, p) \in \mathbb{N}$, then there exist $Z_{1}, \ldots, Z_{n} \in \operatorname{Sec}\left(\mathcal{L}_{s}\right)$ such that $Z_{1}(p), \ldots, Z_{n}(p)$ is a basis of \mathbb{R}^{n}. For every $q \in \mathbb{R}^{n}$, let us call $M(q) \in M_{n}(\mathbb{R})$ the matrix having $Z_{1}(q), \ldots, Z_{n}(q)$ as columns. Thus $\operatorname{rk}(M(p))=n$. We deduce, from Lemma 1.3, that $M(q)$ has rank equal to n for every q in some $U \in \mathcal{N}(p)$. In particular, $Z_{1}(q), \ldots, Z_{n}(q)$ span all of \mathbb{R}^{n} for every $q \in U$. Therefore

$$
\operatorname{step}(\mathcal{D}, q) \leq \operatorname{step}(\mathcal{D}, p)
$$

for every $q \in U$, proving (1.7).
Definition 1.5. Let M be a smooth n-dimensional manifold. A sub-Riemannian metric on M is a family $g=g_{p}(\cdot, \cdot)$ of inner products on each vector space $\mathcal{D}(p)$, such that $g_{p}(\cdot, \cdot)$ depends smoothly on p. The norm induced by this metric, i.e.

$$
\|v\|_{p}:=g_{p}(v, v)^{1 / 2}
$$

for every $v \in \mathcal{D}(p)$ is called sub-Riemannian norm. The triple (M, \mathcal{D}, g) is called sub-Riemannian manifold.

1.2 Length-minimizers

Hereafter, we will assume that M coincides with \mathbb{R}^{n} and that every frame of smooth vector fields is global (i.e. defined in all of \mathbb{R}^{n}), because of the local nature of the problems that we are going to study. We will denote by $\operatorname{Lip}\left([a, b], \mathbb{R}^{n}\right)$ the set of all Lipschitz curves from $[a, b] \subseteq \mathbb{R}$ to \mathbb{R}^{n}.

Definition 1.6 (\mathcal{D}-horizontal curve). Let \mathcal{D} be a distribution of rank r on \mathbb{R}^{n}, generated by a frame of smooth (linearly indipendent) vector fields X_{1}, \ldots, X_{r}. A curve $\gamma \in \operatorname{Lip}\left([a, b], \mathbb{R}^{n}\right)$ is said to be \mathcal{D}-horizontal if

$$
\begin{equation*}
\dot{\gamma}(t) \in \mathcal{D}(\gamma(t)) \quad \text { for a.e. } t \in[a, b], \tag{1.8}
\end{equation*}
$$

in other words for some $h=\left(h_{1}, \ldots, h_{r}\right) \in \mathrm{L}^{\infty}\left([a, b], \mathbb{R}^{r}\right)$ we have that

$$
\begin{equation*}
\dot{\gamma}(t)=\sum_{i=1}^{r} h_{i}(t) X_{i}(\gamma(t)) \quad \text { for a.e. } t \in[a, b] . \tag{1.9}
\end{equation*}
$$

We will refer to h_{1}, \ldots, h_{r} as controls of γ.
Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold. The length of a \mathcal{D}-horizontal curve $\gamma \in \operatorname{Lip}\left([a, b], \mathbb{R}^{n}\right)$ is defined as

$$
\begin{equation*}
L(\gamma):=\int_{a}^{b} \sqrt{g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} d t . \tag{1.10}
\end{equation*}
$$

Definition 1.7 (Carnot-Carathéodory distance). Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where the distribution \mathcal{D} is bracket-generating. The Carnot-Carathéodory distance between two points $x, y \in \mathbb{R}^{n}$ is given by

$$
\begin{equation*}
d(x, y):=\inf \left\{L(\gamma) \mid \gamma:[a, b] \rightarrow \mathbb{R}^{n} \text { is } \mathcal{D} \text {-horizontal , } \gamma(0)=x, \gamma(1)=y\right\} \tag{1.11}
\end{equation*}
$$

By the Chow-Rashevsky theorem (see Theorem 2.2, p. 24 in [5]), if the distribution \mathcal{D} is bracket-generating, then any couple of points in \mathbb{R}^{n} can be connected by a \mathcal{D}-horizontal curve. Hence the function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0,+\infty)$ is actually a distance on \mathbb{R}^{n}.

Remark 1.8. One can see that the topology induced by the Carnot-Carathéodory distance d coincides with the Euclidean topology of \mathbb{R}^{n} (see Theorem 2.3 p. 24 in [5], or [7]).

Definition 1.9 (Length-minimizer). Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where the distribution \mathcal{D} is bracket-generating. A \mathcal{D}-horizontal curve $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ is a length-minimizer if it realizes the infimum in (1.11), i.e. $d(\gamma(a), \gamma(b))=L(\gamma)$.

In general global length-minimizers do not exist, but the local existence holds true and it is a consequence of Ascoli-Arzelà theorem and of Dunford-Pettis theorem.

Theorem 1.10 (Local existence of length-minimizers in $\left.\mathbb{R}^{n}\right)$. Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where the distribution \mathcal{D} is bracket-generating. Let d be the Carnot-Carathéodory distance defined in (1.11). Let us fix $x \in \mathbb{R}^{n}$.
Then there exists $\rho_{x}>0$ such that the following property hold: for every

$$
y \in B\left(x, \rho_{x}\right):=\left\{z \in \mathbb{R}^{n} \mid d(x, z)<\rho_{x}\right\}
$$

there exists a length-minimizer γ joining x to y.
Proof. By Remark 1.8, we can choose $\rho_{x}>0$ such that

$$
B\left(x, \rho_{x}\right):=\left\{y \in \mathbb{R}^{n} \mid d(x, y)<\rho_{x}\right\}
$$

is an open bounded subset of \mathbb{R}^{n}. Fix $y \in B\left(x, \rho_{x}\right)$. By definition of d there exists a sequence of \mathcal{D}-horizontal curves $\Gamma=\left\{\gamma^{k}\right\}_{k \in \mathbb{N}}$ parametrized on $[a, b]$ joining x to y such that $\lim _{k \rightarrow \infty} L\left(\gamma^{k}\right)=d(x, y)$. Hence there exists $\bar{k} \in \mathbb{N}$ such that $\left[\gamma^{k}\right] \subseteq$ $B\left(x, \rho_{x}\right)$ for every $k \geq \bar{k}$, we argue by contradiction: assume that $\left[\gamma^{k_{j}}\right] \nsubseteq B\left(x, \rho_{x}\right)$ for some subsequence $\left\{\gamma^{k_{j}}\right\}_{j \in \mathbb{N}}$, thus $\gamma^{k_{j}}\left(t^{k_{j}}\right) \notin B\left(x, \rho_{x}\right)$ for some $t_{k_{j}} \in[a, b]$. Then

$$
L\left(\gamma^{k_{j}}\right) \geq L\left(\gamma_{\mid\left[0, t^{k_{j}}\right]}^{k_{j}}\right) \geq d\left(x, \gamma^{k}\left(t^{k_{j}}\right)\right) \geq \rho_{x}
$$

which gives $d(x, y)=\lim _{j \rightarrow \infty} L\left(\gamma^{k_{j}}\right) \geq \rho_{x}$, contradicting $y \in B\left(x, \rho_{x}\right)$.
Without loss of generality we can assume that for every $k \in \mathbb{N}$ the curve γ^{k} is parametrized by constant speed and X_{1}, \ldots, X_{r} is a frame of orthonormal (with
respect to g) vector fields generating \mathcal{D} such that $\operatorname{rank} \mathcal{D}=r$. Hence for every $k \in \mathbb{N}$,

$$
L\left(\gamma^{k}\right)=\int_{a}^{b}\left|h^{k}(t)\right| d t
$$

where $h^{k} \in L^{\infty}\left([a, b], \mathbb{R}^{r}\right)$ are the controls of γ^{k}. Then $\left|h^{k}(t)\right|=L\left(\gamma^{k}\right)$, for almost every $t \in[a, b]$ and for every $k \in \mathbb{N}$. Thus $\left\{\left\|\dot{\gamma}^{k}\right\|_{L^{\infty}} \mid k \geq \bar{k}\right\}$ is bounded. Hence the family Γ is equilipschitz, so in particular it is equicontinuous. Moreover, since $\left[\gamma^{k}\right] \subseteq B\left(x, \rho_{x}\right)$ for every $k \geq \bar{k}, \Gamma$ is bounded. By Ascoli-Arzelà theorem we have that Γ is totally bounded. Note that $\bar{\Gamma}$ is a totally bounded closed subset of the complete space $\left(C\left([a, b], \mathbb{R}^{n}\right),\|\cdot\|_{\infty}\right)$, thus $\bar{\Gamma}$ is also complete. Then, up to a subsequence, $\gamma^{k} \rightarrow \gamma$ uniformly as $k \rightarrow \infty$, for some $\gamma \in \operatorname{Lip}\left([a, b], \overline{B\left(x, \rho_{x}\right)}\right)$.
We can choose $M>0$ such that $\left|h^{k}\right| \leq\left|\dot{\gamma}^{k}\right| \leq\left\|\dot{\gamma}^{k}\right\|_{\infty} \leq M$ a.e. in $[a, b]$ and for every $k \geq \bar{k}$. Fix $\varepsilon>0$ and $E \subseteq[a, b]$ with $\mathcal{L}^{1}(E) \leq \frac{\varepsilon}{M}$, then

$$
\left|\int_{E} h^{k}(t) d t\right| \leq M \mathcal{L}^{1}(E) \leq \varepsilon
$$

i.e. the family of controls $\left\{h^{k}\right\}_{k \geq \bar{k}} \subseteq L^{1}\left([a, b], \mathbb{R}^{r}\right)$ is uniformly integrable. Then, by Dunford-Pettis theorem, up to a subsequence $h^{k} \rightharpoonup h$ as $k \rightarrow \infty$ for some $h \in L^{1}\left([a, b], \mathbb{R}^{r}\right)$. By integrating the equation $\dot{\gamma}^{k}(t)=\sum_{i=1}^{r} h_{i}^{k}(t) X_{i}(\gamma(t))$ with respect to t, we get

$$
\gamma^{k}(t)-x=\sum_{i=1}^{r} \int_{a}^{b} h_{i}^{k}(s) X_{i}(\gamma(s)) d s \quad \text { for every } t \in[a, b]
$$

By letting k go to ∞ we get

$$
\gamma(t)-x=\sum_{i=1}^{r} \int_{a}^{b} h_{i}(s) X_{i}(\gamma(s)) d s \quad \text { for every } t \in[a, b]
$$

By differentiating the above equation with respect to t, we obtain that γ is \mathcal{D} horizontal with controls h :

$$
\dot{\gamma}(t)=\sum_{i=1}^{r} h_{i}(t) X_{i}(\gamma(t)) \quad \text { for a.e. } t \in[a, b]
$$

Note that $\gamma(a)=x$ and $\gamma(b)=y$. Finally, by Fatou Lemma, we have that

$$
L(\gamma)=\|h\|_{L^{1}\left([a, b], \mathbb{R}^{r}\right)} \leq \liminf _{k \rightarrow \infty}\left\|h^{k}\right\|_{L^{1}\left([a, b], \mathbb{R}^{r}\right)}=d(x, y)
$$

so that $L(\gamma)=d(x, y)$ as required.

1.3 Extremal curves

1.3.1 The notion of extremal curve.

Definition 1.11 (Optimal Pair). Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where the distribution \mathcal{D} is bracket-generating. If γ is a length-minimizer with controls h, we say that (γ, h) is an optimal pair.

Remark 1.12. If $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ is a sub-Riemannian manifold and X_{1}, \ldots, X_{r} is a frame of othonormal (with respect to g) vector fields of \mathcal{D}, then a \mathcal{D}-horizontal curve γ with controls h has length equal to

$$
\begin{equation*}
L(\gamma)=\int_{0}^{1}|h(t)| d t \tag{1.12}
\end{equation*}
$$

The 2-length of γ is defined as follows:

$$
\begin{equation*}
L_{2}(\gamma):=\left(\int_{0}^{1}|h(t)|^{2} d t\right)^{\frac{1}{2}} \tag{1.13}
\end{equation*}
$$

The Carnot-Carathéodory distance

$$
d(x, y)=\inf \{L(\gamma) \mid \gamma \text { is } \mathcal{D} \text {-horizontal , } \gamma(0)=x, \gamma(1)=y\}
$$

coincides with the following distance:

$$
\begin{equation*}
d_{2}(x, y):=\inf \left\{L_{2}(\gamma) \mid \gamma \text { is } \mathcal{D} \text {-horizontal, } \gamma(0)=x, \gamma(1)=y\right\} . \tag{1.14}
\end{equation*}
$$

Indeed, note that when γ is parametrized by constant speed c, one has that

$$
L(\gamma)=|h(t)|=c=L_{2}(\gamma) \quad \text { for almost every } t \in[0,1] .
$$

Now we give the definition of extremal curve:
Definition 1.13 (Extremal curve). Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where \mathcal{D} is a bracket-generating distribution of rank r, generated by X_{1}, \ldots, X_{r}. Fix $x, y \in \mathbb{R}^{n}$. Let γ be a competitor in (1.11). We say that γ is an extremal curve if there exist $\xi_{0} \in\{0,1\}$ and a curve $\xi \in \operatorname{Lip}\left([0,1], \mathbb{R}^{n}\right)$ such that the following conditions hold:
(i) for every $t \in[0,1]$

$$
\begin{equation*}
\xi_{0}+|\xi(t)| \neq 0, \tag{1.15}
\end{equation*}
$$

(ii) for almost every $t \in[0,1]$ and for every $i=1, \ldots, r$

$$
\begin{equation*}
\xi_{0} h_{i}(t)+\xi(t) \cdot X_{i}(\gamma(t))=0, \tag{1.16}
\end{equation*}
$$

(iii) for almost every $t \in[0,1]$

$$
\begin{equation*}
\dot{\xi}(t)+\sum_{i=1}^{r} h_{i}(t) X_{i}^{\prime}(\gamma(t))^{T} \xi(t)=0 . \tag{1.17}
\end{equation*}
$$

If γ is an extremal curve and $\xi_{0}=1$ (resp. $\xi_{0}=0$), we say that γ is a normal (resp. abnormal) extremal. We say that γ is a strictly abnormal extremal if it is abnormal but not normal.

In the following theorem we see that length-minimizers are extremal curves, so they satisfy some necessary first-oreder conditions. By Remark 1.12, we can suppose γ parametrized by constant speed, thus we can fix $L^{2}\left([0,1], \mathbb{R}^{r}\right)$ as space of controls.

Theorem 1.14 (Pontryagin Maximum Principle). Consider a sub-Riemannian manifold $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_{1}, \ldots, X_{r}. Assume that X_{1}, \ldots, X_{r} are orthonormal with respect to g.
Let $(\gamma, h) \in \operatorname{Lip}\left([0,1], \mathbb{R}^{n}\right) \times \mathrm{L}^{2}\left([0,1], \mathbb{R}^{r}\right)$ be an optimal pair, with γ parametrized by constant speed. Then γ is an extremal curve.

1.3.2 Proof of Pontryagin Maximum Principle

In order to prove Theorem 1.14, we need some preliminary results and definitions. Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_{1}, \ldots, X_{r}. Assume that X_{1}, \ldots, X_{r} are orthonormal with respect to g.

Let $(\gamma, h) \in \operatorname{Lip}\left([0,1], \mathbb{R}^{n}\right) \times \mathrm{L}^{2}\left([0,1], \mathbb{R}^{r}\right)$ be an optimal pair. Suppose that $x_{0} \in \mathbb{R}^{n}$ is the initial point of γ, i.e. $\gamma(0)=x_{0}$.
For every r-tuple of controls $v \in L^{2}\left([0,1], \mathbb{R}^{r}\right)$, consider the unique solution $\gamma^{v} \in$ $\operatorname{Lip}\left([0,1], \mathbb{R}^{n}\right)$ of the following Cauchy problem:

$$
\left\{\begin{array}{l}
\dot{\gamma}^{v}(t)=\sum_{i=1}^{r} v_{i}(t) X_{i}\left(\gamma^{v}(t)\right) \tag{1.18}\\
\gamma^{v}(0)=x_{0}
\end{array}\right.
$$

for almost every $t \in[0,1]$. For every $t \in[0,1]$, let $\mathcal{E}_{t}: L^{2}\left([0,1], \mathbb{R}^{r}\right) \rightarrow \mathbb{R}^{n}$ be the map defined by

$$
\begin{equation*}
\mathcal{E}_{t}(v):=\gamma^{v}(t) \tag{1.19}
\end{equation*}
$$

We say that the $\operatorname{map} \mathcal{E}:=\mathcal{E}_{1}$ is the endpoint map. Note that $\mathcal{E}(h)=\gamma^{h}(1)=\gamma(1)$. For every $x \in \mathbb{R}^{n}$ consider the unique solution $\gamma_{x} \in \operatorname{Lip}\left([0,1], \mathbb{R}^{n}\right)$ of the following Cauchy problem:

$$
\left\{\begin{array}{l}
\dot{\gamma}_{x}(t)=\sum_{i=1}^{r} h_{i}(t) X_{i}\left(\gamma_{x}(t)\right) \tag{1.20}\\
\gamma_{x}(0)=x
\end{array}\right.
$$

for almost every $t \in[0,1]$. Note that $\gamma_{x_{0}}=\gamma$. The family of maps $\left\{\phi_{t}\right\}_{t \in[0,1]}$, where $\phi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by

$$
\begin{equation*}
\phi_{t}(x):=\gamma_{x}(t) \tag{1.21}
\end{equation*}
$$

is called optimal flow. Note that $\phi_{t}\left(x_{0}\right)=\gamma(t)$ for every $t \in[0,1]$. For every $t \in[0,1]$ we have that the map ϕ_{t} is a C^{1}-diffeomorphism.
Let us define the map $\tilde{\mathcal{E}}_{t}: L^{2}\left([0,1], \mathbb{R}^{r}\right) \rightarrow \mathbb{R}^{n}$ as follows:

$$
\begin{equation*}
\tilde{\mathcal{E}}_{t}(v):=\phi_{t}^{-1}\left(\mathcal{E}_{t}(v)\right) \tag{1.22}
\end{equation*}
$$

The map $\tilde{\mathcal{E}}_{t}$ is called the modified endpoint map of \mathcal{E}_{t}.

Lemma 1.15. Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_{1}, \ldots, X_{r}. Assume that X_{1}, \ldots, X_{r} are orthonormal with respect to g.
Let $(\gamma, h) \in \operatorname{Lip}\left([0,1], \mathbb{R}^{n}\right) \times \operatorname{L}^{2}\left([0,1], \mathbb{R}^{r}\right)$ be an optimal pair. Then for every $v \in L^{2}\left([0,1], \mathbb{R}^{r}\right)$ the following hold:

$$
\begin{equation*}
\frac{\partial}{\partial t} \tilde{\mathcal{E}}_{t}(v)=\phi_{t}^{\prime}\left(\tilde{\mathcal{E}}_{t}(v)\right)^{-1} \sum_{i=1}^{r}\left(v_{i}-h_{i}\right) X_{i}\left(\mathcal{E}_{t}(v)\right) \tag{1.23}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{v} \tilde{\mathcal{E}}_{t}(h)=\int_{0}^{1} \phi_{t}^{\prime}\left(x_{0}\right)^{-1} \sum_{i=1}^{r} v_{i} X_{i}(\gamma(t)) d t \tag{1.24}
\end{equation*}
$$

where \mathcal{E}_{t} and $\tilde{\mathcal{E}}_{t}$ are the maps defined respectively in (1.19) and in (1.22), and the family of maps $\left\{\phi_{t}\right\}_{t \in[0,1]}$ is the optimal flow defined in (1.21).

Proof. First of all, we prove equation (1.23). By differentiating $\mathcal{E}_{t}(v)=\phi_{t}\left(\tilde{\mathcal{E}}_{t}\right)$ with respect to t, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathcal{E}_{t}(v)=\left(\frac{\partial}{\partial t} \phi_{t}\right)\left(\tilde{\mathcal{E}}_{t}(v)\right)+\phi_{t}^{\prime}\left(\tilde{\mathcal{E}}_{t}(v)\right) \frac{\partial}{\partial t} \tilde{\mathcal{E}}_{t}(v) \tag{1.25}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(\frac{\partial}{\partial t} \phi_{t}\right)\left(\tilde{\mathcal{E}}_{t}(v)\right)=\sum_{i=1}^{r} h_{i}(t) X_{i}\left(\phi_{t}\left(\tilde{\mathcal{E}}_{t}(v)\right)\right)=\sum_{i=1}^{r} h_{i}(t) X_{i}\left(\mathcal{E}_{t}(v)\right), \tag{1.26}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathcal{E}_{t}(v)=\sum_{i=1}^{r} v_{i}(t) X_{i}\left(\mathcal{E}_{t}(v)\right) . \tag{1.27}
\end{equation*}
$$

Therefore, by using (1.25), (1.26), (1.27) and since ϕ_{t} is a C^{1}-diffeomorphism, we obtain (1.23).
Now we prove the equation (1.24). By integrating (1.23), with $v=h+u$ for some $u \in \mathrm{~L}^{2}\left([0,1], \mathbb{R}^{r}\right)$, we have that

$$
\begin{equation*}
\tilde{\mathcal{E}}(h+u)=\tilde{\mathcal{E}}_{1}(h+u)=x_{0}+\int_{0}^{1} \phi_{t}^{\prime}\left(\tilde{\mathcal{E}}_{t}(h+u)\right)^{-1} \sum_{i=1}^{r} u_{i} X_{i}\left(\mathcal{E}_{t}(h+u)\right) d t . \tag{1.28}
\end{equation*}
$$

Note that $D_{v} \tilde{\mathcal{E}}_{t}(h)=\left.\frac{\partial}{\partial s} \tilde{\mathcal{E}}_{t}(h+s v)\right|_{s=0}$ for every $v \in L^{2}\left([0,1], \mathbb{R}^{r}\right)$. By (1.28) we obtain

$$
\begin{aligned}
\frac{\partial}{\partial s} \tilde{\mathcal{E}}_{t}(h+s v) & =\int_{0}^{1} \frac{\partial}{\partial s}\left(\phi_{t}^{\prime}\left(\tilde{\mathcal{E}}_{t}(h+s v)\right)^{-1}\right) \sum_{i=1}^{r} s v_{i} X_{i}\left(\mathcal{E}_{t}(h+s v)\right) d t \\
& +\int_{0}^{1} \phi_{t}^{\prime}\left(\tilde{\mathcal{E}}_{t}(h+s v)\right)^{-1} \sum_{i=1}^{r} v_{i} X_{i}\left(\mathcal{E}_{t}(h+s v)\right) d t .
\end{aligned}
$$

Hence

$$
\begin{aligned}
D_{v} \tilde{\mathcal{E}}_{t}(h)=\frac{\partial}{\partial s} \tilde{\mathcal{E}}_{t}(h+s v)_{\mid s=0} & =\int_{0}^{1} \phi_{t}^{\prime}\left(\tilde{\mathcal{E}}_{t}(h)\right)^{-1} \sum_{i=1}^{r} v_{i} X_{i}\left(\mathcal{E}_{t}(h)\right) d t \\
& =\int_{0}^{1} \phi_{t}^{\prime}\left(x_{0}\right)^{-1} \sum_{i=1}^{r} v_{i} X_{i}(\gamma(t)) d t
\end{aligned}
$$

getting the thesis.
The map $\mathcal{F}: L^{2}\left([0,1], \mathbb{R}^{r}\right) \rightarrow \mathbb{R}^{n+1}$ defined by

$$
\begin{equation*}
\mathcal{F}(v):=(\mathcal{L}(v), \mathcal{E}(v)) \tag{1.29}
\end{equation*}
$$

where \mathcal{E} is the endpoint map and

$$
\begin{equation*}
\mathcal{L}(v):=\frac{1}{2} \int_{0}^{1}|v(t)|^{2} d t \tag{1.30}
\end{equation*}
$$

is called the extended endpoint mapping. Moreover the map

$$
\tilde{\mathcal{F}}: L^{2}\left([0,1], \mathbb{R}^{r}\right) \rightarrow \mathbb{R}^{n+1}
$$

defined by

$$
\begin{equation*}
\tilde{\mathcal{F}}(v):=(\mathcal{L}(v), \tilde{\mathcal{E}}(v)) \tag{1.31}
\end{equation*}
$$

is called the modified extended endpoint mapping.
We denote by $B_{n}(x, r)$ the open ball in \mathbb{R}^{n} of center x and radius r.
Lemma 1.16. Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_{1}, \ldots, X_{r}. Assume that X_{1}, \ldots, X_{r} are orthonormal with respect to g.
Let $(\gamma, h) \in \operatorname{Lip}\left([0,1], \mathbb{R}^{n}\right) \times L^{2}\left([0,1], \mathbb{R}^{r}\right)$ be an optimal pair. Then the map

$$
\mathcal{F}: L^{2}\left([0,1], \mathbb{R}^{r}\right) \rightarrow \mathbb{R}^{n+1}
$$

is not open at $v=h$.
Proof. Suppose by contradiction that \mathcal{F} is open at $v=h$. Let U be an open neighborhood of h in $L^{2}\left([0,1], \mathbb{R}^{r}\right)$, then $\mathcal{F}(U)$ is an open neighborhood of $\mathcal{F}(h)$ in \mathbb{R}^{n+1}. Choose $r>0$ such that $B_{n+1}(\mathcal{F}(h), r) \subseteq \mathcal{F}(U)$. So there exists $\varepsilon>0$ such that

$$
\mathcal{F}(h)-\varepsilon e_{1} \in B_{n+1}(\mathcal{F}(h), r) \subseteq \mathcal{F}(U)
$$

where $e_{1}=(1,0, \ldots, 0) \in \mathbb{R}^{n+1}$. Hence $(\mathcal{L}(v)-\varepsilon, \mathcal{E}(v)) \in \mathcal{F}(U)$. Then there exists $u \in L^{2}\left([0,1], \mathbb{R}^{r}\right)$ such that $\mathcal{F}(u)=(\mathcal{L}(v)-\varepsilon, \mathcal{E}(v))$, contradicting the fact that γ is a length-minimizer.

Lemma 1.17. Let X, Y be Banach spaces, with $\operatorname{dim}(Y)=n$. Let $p \in X$. Assume that $F: X \rightarrow Y$ is a differentiable function and that $d F(p): X \rightarrow Y$ is surjective. Then F is open at p.

Proof. We can assume without loss of generality $p=0$. Since $d F(0): X \rightarrow Y$ is surjective, we can choose $v_{1}, \ldots, v_{n} \in X$ such that $d F\left(v_{1}\right), \ldots, d F\left(v_{n}\right)$ is a basis of Y. Let $V \leq X$ be the linear subspace of X generated by v_{1}, \ldots, v_{n}. We have that

$$
d\left(\left.F\right|_{V}\right)(0)=\left.d F(0)\right|_{V}: V \rightarrow Y
$$

is a linear isomorphism between V and Y. Thus $G:=\left.F\right|_{V}$ is open at 0 , by the Inverse Function theorem.
Now let $U \subseteq X$ be a neighborhood of 0 in X. Hence $U \cap V$ is a neighborhood of 0 in V. Since G is open at 0 , one has that $W:=G(U \cap V)=F(U \cap V)$ is a neighborhood of 0 in Y. Thus also $F(U) \supseteq W$ is a neighborhood of 0 in Y. We deduce that F is open at 0 .

We are now ready to prove the above-stated Pontryagin Maximum Principle.
Proof of Theorem 1.14. Let (γ, h) be an optimal pair. By Lemma 1.16 we deduce that \mathcal{F} is not open at $v=h$. Since $\phi_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a C^{1}-diffeomorphism, also $\tilde{\mathcal{F}}$ is not open at $v=h$. Hence, by Lemma 1.17, we have that $d \tilde{\mathcal{F}}(h)$ is not surjective. Thus we can choose $\xi_{0} \in \mathbb{R}$ and $\xi(0) \in \mathbb{R}^{n}$ such that $\xi_{0}+|\xi(0)| \neq 0$ and

$$
D_{v} \tilde{\mathcal{F}}(h) \cdot\left(\xi_{0}, \xi(0)\right)=0
$$

for every $v \in L^{2}\left([0,1], \mathbb{R}^{r}\right)$. Explicitly,

$$
\begin{equation*}
0=D_{v} \tilde{\mathcal{F}}(h) \cdot\left(\xi_{0}, \xi(0)\right)=\xi_{0} D_{v} \mathcal{L}(h)+\xi(0) D_{v} \tilde{\mathcal{E}}(h) \tag{1.32}
\end{equation*}
$$

for every $v \in L^{2}\left([0,1], \mathbb{R}^{r}\right)$. Note that

$$
D_{v} \mathcal{L}(h)=\left.\frac{\partial}{\partial s} \mathcal{L}(h+s v)\right|_{s=0}=\int_{0}^{1} \sum_{i=1}^{r} v_{i}(t) h_{i}(t) d t
$$

for every $v \in L^{2}\left([0,1], \mathbb{R}^{r}\right)$. Then, by (1.24), we can write (1.32) as follows:

$$
\begin{equation*}
\int_{0}^{1} \sum_{i=1}^{r} v_{i}(t)\left\{\xi_{0} h_{i}(t)+\xi(0) \cdot \phi_{t}^{\prime}\left(x_{0}\right)^{-1} X_{i}(\gamma(t))\right\} d t=0 \tag{1.33}
\end{equation*}
$$

for every $v \in L^{2}\left([0,1], \mathbb{R}^{r}\right)$. Now let $\xi:[0,1] \rightarrow \mathbb{R}^{n}$ be the Lipschitz curve defined by

$$
\begin{equation*}
\xi(t):=\left[\phi_{t}^{\prime}\left(x_{0}\right)^{-1}\right]^{T} \xi(0) . \tag{1.34}
\end{equation*}
$$

Hence ξ satisfies (1.15): indeed if $\xi(t)=0$ for some $t \in[0,1]$ then $\xi(0)=0$. By (1.33) and (1.34), we obtain (1.16): for almost every $t \in[0,1]$

$$
\xi_{0} h_{i}(t)+\xi(t) \cdot X_{i}(\gamma(t))=0
$$

Now we prove (1.17). By differentiating (with respect to t) the following identity

$$
\left[\phi_{t}^{\prime}\left(x_{0}\right)\right]^{T} \xi(t)=\xi(0), \quad t \in[0,1],
$$

we get

$$
\begin{equation*}
\left[\phi_{t}^{\prime}\left(x_{0}\right)\right]^{T} \dot{\xi}(t)+\left[\frac{d}{d t} \phi_{t}^{\prime}\left(x_{0}\right)\right]^{T} \xi(t)=0 \quad \text { for a.e. } t \in[0,1] \tag{1.35}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\frac{d}{d t} \phi_{t}^{\prime}\left(x_{0}\right) & =\left.\left(\frac{d}{d t} \phi_{t}(x)\right)^{\prime}\right|_{x=x_{0}}=\left.\left(\sum_{i=1}^{r} h_{i}(t) X_{i}\left(\phi_{t}(x)\right)\right)^{\prime}\right|_{x=x_{0}} \\
& =\left.\left(\sum_{i=1}^{r} h_{i}(t)\left(X_{i}\left(\phi_{t}(x)\right)\right)^{\prime}\right)\right|_{x=x_{0}}=\sum_{i=1}^{r} h_{i}(t) X_{i}^{\prime}(\gamma(t)) \phi_{t}^{\prime}\left(x_{0}\right)
\end{aligned}
$$

Then, by (1.35) we have that

$$
\left[\phi_{t}^{\prime}\left(x_{0}\right)\right]^{T} \dot{\xi}(t)+\left[\phi_{t}^{\prime}\left(x_{0}\right)\right]^{T} \sum_{i=1}^{r} h_{i}(t) X_{i}^{\prime}(\gamma(t))^{T} \xi(t)=0
$$

for almost every $t \in[0,1]$, getting (1.17).

1.3.3 The open problem of regularity.

We collect here some of the most important known facts about the delicate problem of regularity of length-minimizers:

- We saw in Theorem 1.14 that every length-minimizer is an extremal curve. Thus the focus is moved to study the properties of regularity of extremal curves.
- It is simple to prove (see below) that every normal extremal is smooth, but there are length-minimizers that are strictly abnormal extremals, see [4].
- There are examples of (strictly) abnormal extremals that are not smooth but that are not length-minimizers.
- All known examples of strictly abnormal length-minimizers are smooth.

The problem of regularity of length-minimizers is still open. We now prove that every normal extremal is C^{∞} smooth.

Theorem 1.18. Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold, where \mathcal{D} is a distribution of rank r with global frame of smooth vector fields X_{1}, \ldots, X_{r}. Assume that X_{1}, \ldots, X_{r} are orthonormal with respect to g. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be a normal extremal with controls h and dual curve ξ. Then $\gamma \in C^{\infty}\left([0,1], \mathbb{R}^{n}\right)$.
Proof. Note that γ and ξ are continuous. Then by (1.16) we deduce that h_{i} is continuous for every $i=1, \ldots, r$. Hence (1.17) implies that ξ is C^{1} and (1.9) implies that γ is C^{1}.
Now, by (1.16) we deduce that h_{i} is continuous for every $i=1, \ldots, r$. Hence (1.17) implies that ξ is C^{2} and (1.9) implies that γ is C^{2}, and so on. By repeating this argument, we deduce that γ is smooth.

In the next chapter we will study a class of abnormal extremals presenting cornertype singularities.

Chapter 2

Non-minimality for a class of angles

One of the main open problems in the study of Carnot-Carathéodory spaces is the following: is every length-minimizer smooth or not? To this purpose it was proved, in the papers [3] and [2], that - under suitable assumptions - curves with a cornertype singularity cannot be length-minimizing.

We shall makes use of some definitions: given a sub-Riemannian manifold (M, \mathcal{D}, g), we introduce the following conditions
(A) the distribution \mathcal{D} is equiregular, i.e. for every $\ell \in \mathbb{N}$
$\operatorname{dim} \mathcal{D}_{\ell}(p)$ is independent of the point $p \in M$.
(B) $)_{x}$ For some $x \in M$, one has that

$$
\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right](x) \subseteq \mathcal{L}_{i+j-1}(x) \quad \text { for every } \quad i, j \geq 2 \text { with } i+j \geq 5
$$

$(\mathrm{C})_{x}$ For some $x \in M$, one has that

$$
\mathcal{L}_{i}(x) \neq \mathcal{L}_{i-1}(x) \Longrightarrow \mathcal{L}_{i+1}(x)=\mathcal{L}_{i}(x) \quad \text { for every } i \geq 1
$$

The following result was proved in [3]:
Theorem 2.1. Let (M, \mathcal{D}, g) be a sub-Riemannian manifold satisfying (A) and $(B)_{x}$ for some $x \in M$. Then any extremal with a corner-type singularity in x is not lengthminimizing.

The following result was proved in [2]:
Theorem 2.2. Let (M, \mathcal{D}, g) be a sub-Riemannian manifold satisfying $(C)_{x}$ for some $x \in M$. Then any extremal with a corner-type singularity in x is not lengthminimizing.

The aim of this chapter is to provide an example of an extremal ν in \mathbb{R}^{4}, having an angle in a point $x \in \mathbb{R}^{4}$, which is not a length-minimizer even if the underlying distribution \mathcal{D} does not satisfy any of the conditions $(\mathrm{A}),(\mathrm{B})_{x}$ and $(\mathrm{C})_{x}$. This is the sketch of what we will prove in the following sections:

Section 2.1. Fix $\alpha \in \mathbb{N}^{+}, \beta \in \mathbb{N}$ and $\gamma \in \mathbb{N}^{+}$. We call \mathcal{D} the 2-dimensional distribution in \mathbb{R}^{4} generated by

$$
\left\{\begin{array}{l}
X_{1}(x)=(1,0,0,0), \\
X_{2}(x)=\left(0,1, x_{1}^{\alpha} x_{2}^{\beta}, x_{3}^{\gamma}\right),
\end{array} \quad \text { for every } x \in \mathbb{R}^{4}\right.
$$

We prove that \mathcal{D} is bracket-generating in all of \mathbb{R}^{4}, with step equal to $\gamma(\alpha+\beta+1)+1$.
Section 2.2. We study when \mathcal{D} satisfies the above conditions $(A),(B)_{0}$ and $(C)_{0}$, namely:

- \mathcal{D} satisfies (A) if and only if $(\alpha, \beta, \gamma)=(1,0,1)$.
- \mathcal{D} satisfies $(B)_{0}$ if and only if $\gamma=1$.
- \mathcal{D} satisfies $(\mathrm{C})_{0}$ if and only if $(\alpha, \beta) \neq(1,0)$ and $\gamma \geq 2$.

Hence we restrict our attention to the case $(\alpha, \beta)=(1,0)$ and $\gamma \geq 2$, in such a way that none of $(\mathrm{A}),(\mathrm{B})_{0}$ and $(\mathrm{C})_{0}$ is satisfied.
Section 2.3. We introduce the \mathcal{D}-horizontal curve ν defined as follows:

$$
\nu(t)= \begin{cases}(0,-t, 0,0) & \text { if } t \in[-1,0] \\ (t, 0,0,0) & \text { if } t \in[0,1]\end{cases}
$$

Clearly, ν has an angle in $x=0$. We prove that ν is a strictly abnormal extremal if and only if $(\alpha, \gamma) \neq(1,1)$.
Section 2.4. We prove that ν is not a length-minimizer when $(\alpha, \beta)=(1,0)$ and $\gamma \geq 3$. We proceed as follows:

- first of all, we "cut" the corner ν with a suitable curve ν^{ε} (depending on a parameter $0<\varepsilon<1$). The length of ν^{ε} is strictly smaller than the one of ν, but the endpoint of ν^{ε} is perturbed, since its third and fourth components are non-null.
- In order to correct the third component of the endpoint of ν^{ε}, we introduce a new curve ζ^{ε} (depending also on parameters a, b and c), obtained by perturbing ν^{ε} with a rectangle. For suitable choices of the parameters, ζ^{ε} is strictly shorter than ν.
- Finally, by concatenating ζ^{ε} with a suitable circuit, we obtain a curve μ^{ε} (depending also on parameters r and s) whose third component remains equal to 0 and whose fourth component is sent to 0 . For ε sufficiently small, the length of μ^{ε} remains strictly smaller than the length of ν.

Therefore, for a suitable $\varepsilon>0$, we have that ν and μ^{ε} join the same two points and that $L\left(\mu^{\varepsilon}\right)<L(\nu)$, proving that ν is not a length-minimizer.
Section 2.5. We deal with the case $(\alpha, \beta, \gamma)=(1,0,2)$, proving that ν is not a length-minimizer also in this case (by exhibiting a suitable curve η^{ε} obtained with techniques analogous to that of Section 2.4).

$2.1 \mathcal{D}$ is globally bracket-generating

First of all, we prove that the distribution \mathcal{D} introduced above has finite step in $0 \in \mathbb{R}^{4}$. More precisely, two suitable iterated commutators of X_{1} and X_{2} of length $\alpha+\beta+1$ and $\gamma(\alpha+\beta+1)+1$, respectively, are multiples of e_{3} and e_{4}, respectively, when evaluated in $x=0$. We deduce that \mathcal{D} has step smaller than or equal to $\gamma(\alpha+\beta+1)+1$ in 0 .

Lemma 2.3. Let $\alpha \in \mathbb{N}^{+}, \beta \in \mathbb{N}, \gamma \in \mathbb{N}^{+}$. Let \mathcal{D} be the 2 -dimensional distribution in \mathbb{R}^{4} generated by

$$
\left\{\begin{array}{l}
X_{1}(x)=(1,0,0,0), \tag{2.1}\\
X_{2}(x)=\left(0,1, x_{1}^{\alpha} x_{2}^{\beta}, x_{3}^{\gamma}\right),
\end{array} \quad \text { for every } x \in \mathbb{R}^{4} .\right.
$$

Then \mathcal{D} has step smaller than or equal to $\gamma(\alpha+\beta+1)+1$ in $0 \in \mathbb{R}^{4}$.
Proof. Step 1: We have that $X_{1}(0)=e_{1}$ and $X_{2}(0)=e_{2}$, so we want to obtain e_{3} and e_{4}. Let us take a vector field V in \mathbb{R}^{4} of the form $V=(0,0, p, q)$, where $p \in \mathbb{N}\left[x_{1}, x_{2}\right]$ and $q \in(-\mathbb{N})\left[x_{1}, x_{2}, x_{3}\right]$. Then a simple computation yields

$$
\left\{\begin{array}{l}
{\left[X_{1}, V\right]=\left(0,0, \frac{\partial p}{\partial x_{1}}, \frac{\partial q}{\partial x_{1}}\right),} \tag{2.2}\\
{\left[X_{2}, V\right]=\left(0,0, \frac{\partial p}{\partial x_{2}}, \frac{\partial q}{\partial x_{2}}+\frac{\partial q}{\partial x_{3}} x_{1}^{\alpha} x_{2}^{\beta}+\gamma(-p) x_{3}^{\gamma-1}\right) .}
\end{array}\right.
$$

Hence both $\left[X_{1}, V\right]$ and $\left[X_{2}, V\right]$ have the same form of V.
Note that every iterated commutator of X_{1} and X_{2} of length at least 2 has this form, since

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=\left(0,0, \alpha x_{1}^{\alpha-1} x_{2}^{\beta}, 0\right) \tag{2.3}
\end{equation*}
$$

Moreover, let us write $L_{i}(Y):=\left[X_{i}, Y\right]$ for every vector field Y in \mathbb{R}^{4} and $i=1,2$. Finally, we say that a polynomial $q \in(-\mathbb{N})\left[x_{1}, x_{2}, x_{3}\right]$ contains $a \in(-\mathbb{N})\left[x_{1}, x_{2}, x_{3}\right]$ if a is an addendum of q and $q-a \in(-\mathbb{N})\left[x_{1}, x_{2}, x_{3}\right]$.
STEP 2: By applying α times the first equation of (2.2) to $V=X_{2}$, we can easily deduce that $L_{1}^{\alpha}\left(X_{2}\right)=\left(0,0, \alpha!x_{2}^{\beta}, 0\right)$.
Now, by applying $i=1, \ldots, \beta$ times the second equation of (2.2) to $V=L_{1}^{\alpha}\left(X_{2}\right)$, we obtain a vector field whose third component is $\alpha!\beta(\beta-1) \cdots(\beta-i+1) x_{2}^{\beta-i}$ and whose fourth component is a multiple of $x_{2}^{\beta-i+1}$. Thus the third component of the vector field

$$
\begin{equation*}
X_{3}:=L_{2}^{\beta}\left(L_{1}^{\alpha}\left(X_{2}\right)\right) \tag{2.4}
\end{equation*}
$$

is $\alpha!\beta!$ and its fourth component is a multiple of x_{2}, in particular $X_{3}(0)=\alpha!\beta!e_{3}$. Step 3: It only remains to find an iterated commutator of X_{1}, X_{2} having a non-zero fourth component when evaluated at $0 \in \mathbb{R}^{4}$.
By applying γ times the second equation of (2.2) to $V=\left[X_{1}, X_{2}\right]$, we get that the fourth component of $L_{2}^{\gamma}\left(\left[X_{1}, X_{2}\right]\right)$ contains $-\alpha \gamma!x_{1}^{\gamma \alpha-1} x_{2}^{\gamma \beta}$.
Moreover, by applying (other) $\gamma \beta$ times the second equation of (2.2) to the vector field $V=L_{2}^{\gamma}\left(\left[X_{1}, X_{2}\right]\right)$, we obtain that the fourth component of $L_{2}^{\gamma(\beta+1)}\left(\left[X_{1}, X_{2}\right]\right)$ contains the addendum $-\alpha \gamma!(\gamma \beta)!x_{1}^{\gamma \alpha-1}$.
Finally, by applying $\gamma \alpha-1$ times the first equation of (2.2) to $V=L_{2}^{\gamma(\beta+1)}\left(\left[X_{1}, X_{2}\right]\right)$, we get that the fourth component of

$$
\begin{equation*}
X_{4}:=L_{1}^{\gamma \alpha-1}\left(L_{2}^{\gamma(\beta+1)}\left(\left[X_{1}, X_{2}\right]\right)\right) \tag{2.5}
\end{equation*}
$$

contains $m:=-\alpha \gamma!(\gamma \beta)!(\gamma \alpha-1)!\in-\mathbb{N}$.
We infer that the fourth component of $X_{4}(0)$ is smaller than or equal to m, in particular it is non-zero. So $X_{1}(0), X_{2}(0), X_{3}(0), X_{4}(0)$ span \mathbb{R}^{4}. Since the commutator X_{3} has length $\alpha+\beta+1$ and the commutator X_{4} has length $\gamma(\alpha+\beta+1)+1>\alpha+\beta+1$, we get the thesis.

Remark 2.4. Actually, the step in $0 \in \mathbb{R}^{4}$ of the distribution \mathcal{D} of Lemma 2.3 is exactly equal to $\gamma(\alpha+\beta+1)+1$. It suffices to show that $e_{4} \in \mathcal{L}_{s}(0)$ implies $s \geq \gamma(\alpha+\beta+1)+1$.

We need first to find an iterated commutator of the vector fields X_{1} and X_{2} whose fourth component is a non-null polynomial, then to commute it again until we get a non-null constant term in the fourth entry.
The iterated commutator with a non-null fourth entry of shortest length is

$$
V(x):=\left[X_{2},\left[X_{1}, X_{2}\right]\right](x)=\left(0,0, \alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1},-\alpha \gamma x_{1}^{\alpha-1} x_{2}^{\beta} x_{3}^{\gamma-1}\right) .
$$

By observing (2.2), we deduce that we need to commute V at least $\gamma-1$ times with respect to X_{2} to get an addendum of its fourth entry having degree 0 in x_{3}, and the degree in x_{1} (respectively in x_{2}) of this addendum increases of at least $\alpha(\gamma-1)$ (respectively $\beta(\gamma-1)$).
Thus we need to commute V at least $\alpha-1+\alpha(\gamma-1)$ times with respect to X_{1} and at least $\beta+\beta(\gamma-1)$ times with respect to X_{2}, in order to get a non-null constant term on the fourth component.
Therefore, to obtain e_{4} we need a commutator of length at least

$$
3+(\gamma-1)+(\alpha-1+\alpha(\gamma-1))+(\beta+\beta(\gamma-1))=\gamma(\alpha+\beta+1)+1
$$

as stated above.
In the following lemma, we will infer from the finiteness of $\operatorname{step}(\mathcal{D}, 0)$ that \mathcal{D} is bracket-generating in a suitable neighborhood of 0 , by using the upper semicontinuity of the function $x \mapsto \operatorname{step}(\mathcal{D}, x)$.

Lemma 2.5. Let $\alpha, \beta, \gamma, X_{1}, X_{2}$ and \mathcal{D} be as in Lemma 2.3. Then \mathcal{D} is bracketgenerating in a suitable neighborhood of $0 \in \mathbb{R}^{4}$.

Proof. By Lemma 2.3 and Remark 2.4, we have that

$$
\operatorname{step}(\mathcal{D}, 0)=\gamma(\alpha+\beta+1)+1<+\infty
$$

Thus, by Proposition 1.7, there exists $U \in \mathcal{N}(0)$ such that

$$
\operatorname{step}(\mathcal{D}, x) \leq \operatorname{step}(\mathcal{D}, 0)<+\infty
$$

for every $x \in U$. Hence the distribution \mathcal{D} is bracket-generating in U, as required.

Actually, \mathcal{D} is bracket-generating in all of \mathbb{R}^{4}. In order to do this, we shall need the following definitions.

Fix $\omega \in\left(\mathbb{N}^{+}\right)^{n}$. For every $\lambda>1$, we define the λ-dilation $\delta_{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ as

$$
\begin{equation*}
\delta_{\lambda}(x):=\left(\lambda^{\omega_{1}} x_{1}, \ldots, \lambda^{\omega_{n}} x_{n}\right) \quad \text { for every } x \in \mathbb{R}^{n} \tag{2.6}
\end{equation*}
$$

Note that δ_{λ} is a diffeomorphism and that $\delta_{\lambda}^{-1}=\delta_{\lambda^{-1}}$.
For every $r>0$, let us define $B_{\lambda}(r):=\delta_{\lambda}(B(r))$, where $B(r)$ is the open ball in \mathbb{R}^{n} of center 0 and radius r. Clearly

$$
\begin{equation*}
\bigcup_{\lambda>1} B_{\lambda}(r)=\mathbb{R}^{n} \quad \text { for every } r>0 \tag{2.7}
\end{equation*}
$$

Now let X be a smooth vector field in \mathbb{R}^{n}. We call λ-transform of X the vector field $\delta_{\lambda} X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
\begin{equation*}
\delta_{\lambda} X(x):=\delta_{\lambda}^{\prime}\left(\delta_{\lambda}^{-1}(x)\right) X\left(\delta_{\lambda}^{-1}(x)\right) \quad \text { for every } x \in \mathbb{R}^{n} \tag{2.8}
\end{equation*}
$$

One has that $\delta_{\lambda}^{\prime}\left(\delta_{\lambda}^{-1}(x)\right)=D_{\lambda}$ for every $x \in \mathbb{R}^{n}$, where

$$
D_{\lambda}=\left(\begin{array}{cccc}
\lambda^{\omega_{1}} & 0 & \cdots & 0 \\
0 & \lambda^{\omega_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda^{\omega_{n}}
\end{array}\right)
$$

Hence (2.8) reads as

$$
\begin{equation*}
\delta_{\lambda} X(x)=D_{\lambda} X\left(\delta_{\lambda^{-1}}(x)\right) \quad \text { for every } x \in \mathbb{R}^{n} \tag{2.9}
\end{equation*}
$$

The λ-transform satisfies the following properties:

- if X_{1}, \ldots, X_{k} (with $1 \leq k \leq n$) are linearly indipendent vector fields in an open $\Omega \subseteq \mathbb{R}^{n}$, then $\delta_{\lambda} X_{1}, \ldots, \delta_{\lambda} X_{k}$ are linearly indipendent in $\delta_{\lambda}(\Omega)$,
- for any vector fields X, Y in \mathbb{R}^{n}, we have that

$$
\begin{equation*}
\delta_{\lambda}[X, Y]=\left[\delta_{\lambda} X, \delta_{\lambda} Y\right] \tag{2.10}
\end{equation*}
$$

The first statement follows from invertibility of D_{λ}. For the second one, note that for every $x \in \mathbb{R}^{n}$ we have

$$
\left(\delta_{\lambda} X\right)^{\prime}(x)=D_{\lambda} X^{\prime}\left(\delta_{\lambda^{-1}}(x)\right) D_{\lambda^{-1}}=D_{\lambda} D_{\lambda^{-1}} X^{\prime}\left(\delta_{\lambda^{-1}}(x)\right)=X^{\prime}\left(\delta_{\lambda^{-1}}(x)\right)
$$

where we used the facts that $D_{\lambda} D_{\lambda^{-1}}=\mathbb{I}_{n}$ and that a diagonal matrix commutes with every other matrix. Hence for every $x \in \mathbb{R}^{n}$ we get

$$
\begin{aligned}
{\left[\delta_{\lambda} X, \delta_{\lambda} Y\right](x) } & =\left(\delta_{\lambda} Y\right)^{\prime}(x) \delta_{\lambda} X(x)-\left(\delta_{\lambda} X\right)^{\prime}(x) \delta_{\lambda} Y(x) \\
& =Y^{\prime}\left(\delta_{\lambda^{-1}}(x)\right) D_{\lambda} X\left(\delta_{\lambda^{-1}}(x)\right)-X^{\prime}\left(\delta_{\lambda^{-1}}(x)\right) D_{\lambda} Y\left(\delta_{\lambda^{-1}}(x)\right) \\
& =D_{\lambda}[X, Y]\left(\delta_{\lambda^{-1}}(x)\right)=\delta_{\lambda}[X, Y](x)
\end{aligned}
$$

obtaining the second statement above.

By using the above definitions, we can prove that:
Lemma 2.6. Let $\alpha, \beta, \gamma, X_{1}, X_{2}$ and \mathcal{D} be as in Lemma 2.3. Then \mathcal{D} is bracketgenerating in all of \mathbb{R}^{4}.

Proof. By Lemma 2.5, the distribution \mathcal{D} is bracket-generating in $B(r)$ for some $r>0$. Let δ_{λ} be as in (2.6) with $\omega=(1,1, \alpha+\beta+1, \gamma(\alpha+\beta+1)+1)$. Hence for every $x \in B(r)$ we get

$$
\begin{aligned}
\delta_{\lambda} X_{1}\left(\delta_{\lambda}(x)\right) & =(\lambda, 0,0,0)=\lambda(1,0,0,0)=\lambda X_{1}\left(\delta_{\lambda}(x)\right) \\
\delta_{\lambda} X_{2}\left(\delta_{\lambda}(x)\right) & =\left(0, \lambda, \lambda^{\alpha+\beta+1} x_{1}^{\alpha} x_{2}^{\beta}, \lambda^{\gamma(\alpha+\beta+1)+1} x_{3}^{\gamma}\right) \\
& =\lambda\left(0,1,\left(\lambda x_{1}\right)^{\alpha}\left(\lambda x_{2}\right)^{\beta},\left(\lambda^{\gamma(\alpha+\beta+1)} x_{3}\right)^{\gamma}\right)=\lambda X_{2}\left(\delta_{\lambda}(x)\right)
\end{aligned}
$$

Let X_{3} and X_{4} be as in (2.4) and (2.5), thus by applying the previous identites and (2.10) we have that

$$
\begin{aligned}
& \delta_{\lambda} X_{3}\left(\delta_{\lambda}(x)\right)=\lambda^{\alpha+\beta+1} X_{3}\left(\delta_{\lambda}(x)\right) \\
& \delta_{\lambda} X_{4}\left(\delta_{\lambda}(x)\right)=\lambda^{\gamma(\alpha+\beta+1)+1} X_{4}\left(\delta_{\lambda}(x)\right)
\end{aligned}
$$

for every $x \in B(r)$. Then one has

$$
\begin{aligned}
& \delta_{\lambda} X_{1}=\lambda X_{1} \\
& \delta_{\lambda} X_{2}=\lambda X_{2} \\
& \delta_{\lambda} X_{3}=\lambda^{\alpha+\beta+1} X_{3} \\
& \delta_{\lambda} X_{4}=\lambda^{\gamma(\alpha+\beta+1)+1} X_{4}
\end{aligned}
$$

in all of $B_{\lambda}(r)$. Now note that

$$
\begin{gathered}
X_{1}, \ldots, X_{4} \text { are linearly indipendent in } B(r) \\
\text { if and only if } \\
\delta_{\lambda} X_{1}, \ldots, \delta_{\lambda} X_{4} \text { are linearly indipendent in } B_{\lambda}(r) \\
\text { if and only if } \\
X_{1}, \ldots, X_{4} \text { are linearly indipendent in } B_{\lambda}(r)
\end{gathered}
$$

Therefore we get the thesis by arbitrarity of $\lambda>1$ and by (2.7).
We finally collect all of the results seen in this section in the following theorem:
Theorem 2.7. Let $\alpha \in \mathbb{N}^{+}, \beta \in \mathbb{N}, \gamma \in \mathbb{N}^{+}$. Let \mathcal{D} be the 2-dimensional distribution in \mathbb{R}^{4} generated by

$$
\left\{\begin{array}{l}
X_{1}(x)=(1,0,0,0), \tag{2.11}\\
X_{2}(x)=\left(0,1, x_{1}^{\alpha} x_{2}^{\beta}, x_{3}^{\gamma}\right),
\end{array} \quad \text { for every } x \in \mathbb{R}^{4}\right.
$$

Then the distribution \mathcal{D} is bracket-generating in all of \mathbb{R}^{4} and

$$
\operatorname{step}(\mathcal{D})=\gamma(\alpha+\beta+1)+1
$$

Proof. By Lemma 2.6, the distribution \mathcal{D} is bracket-generating in all of \mathbb{R}^{4}. Note that

$$
\operatorname{step}(\mathcal{D}, x) \leq \operatorname{step}(\mathcal{D}, 0)=\gamma(\alpha+\beta+1)+1 \quad \text { for every } x \in \mathbb{R}^{4}
$$

Thus we deduce that $\operatorname{step}(\mathcal{D})=\gamma(\alpha+\beta+1)+1$.

2.2 When \mathcal{D} satisfies (A), (B) $)_{0}$ and (C) ${ }_{0}$

The aim of this section is to study for which values of α, β and γ the distribution \mathcal{D}, defined in 2.11, satisfies the conditions $(A),(B)_{0}$ and $(C)_{0}$.

2.2.1 Condition (A)

For the sake of clarity, we repeat the definition of equiregularity of a distribution (in the case $M=\mathbb{R}^{n}$).

Definition 2.8. Let $\left(\mathbb{R}^{n}, \mathcal{D}, g\right)$ be a sub-Riemannian manifold. Then the distribution \mathcal{D} is said to be equiregular if $\operatorname{dim} \mathcal{D}_{\ell}(p)$ is independent of the point $p \in \mathbb{R}^{n}$, for every $\ell \in \mathbb{N}$.

One has that:
Theorem 2.9. Let $\alpha, \beta, \gamma, X_{1}, X_{2}$ and \mathcal{D} be as in Theorem 2.7.
Then the distribution \mathcal{D} is equiregular if and only if $(\alpha, \beta, \gamma)=(1,0,1)$.

Proof. Clearly, $\operatorname{dim} \mathcal{D}_{0}(x)=0$ and $\operatorname{dim} \mathcal{D}_{1}(x)=2$ for every $x \in \mathbb{R}^{4}$. We have that

$$
\begin{aligned}
X_{12}(x) & =\left(0,0, \alpha x_{1}^{\alpha-1} x_{2}^{\beta}, 0\right) \\
X_{112}(x) & =\left(0,0, \alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{\beta}, 0\right) \\
X_{212}(x) & =\left(0,0, \alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1},-\alpha \gamma x_{1}^{\alpha-1} x_{2}^{\beta} x_{3}^{\gamma-1}\right)
\end{aligned}
$$

for every $x \in \mathbb{R}^{4}$.
Case 1: Suppose $(\alpha, \beta, \gamma)=(1,0,1)$. For every $x \in \mathbb{R}^{4}$ we have that

$$
\begin{aligned}
X_{12}(x) & =e_{3} \\
X_{112}(x) & =0 \\
X_{212}(x) & =-e_{4}
\end{aligned}
$$

Then

$$
\operatorname{dim} \mathcal{D}_{2}(x)=\operatorname{dim} \mathcal{D}_{3}(x)=1 \quad \text { for every } x \in \mathbb{R}^{4}
$$

Hence \mathcal{D} is equiregular.
CASE 2: Suppose $(\alpha, \beta)=(1,0)$ and $\gamma \geq 2$.
Since $X_{112}(x)=0$ and $X_{212}(x)=\left(0,0,0,-\gamma x_{3}^{\gamma-1}\right)$ for every $x \in \mathbb{R}^{4}$, we find that

$$
\begin{aligned}
X_{112}(0) & =0 \\
X_{212}\left(e_{3}\right) & =-\gamma e_{4}
\end{aligned}
$$

Thus

$$
0=\operatorname{dim} \mathcal{D}_{3}(0) \neq \operatorname{dim} \mathcal{D}_{3}\left(e_{3}\right)=1
$$

Hence \mathcal{D} is not equiregular.
CASE 3: Suppose $(\alpha, \gamma)=(1,1)$ and $\beta \geq 1$.
Since $X_{12}(x)=\left(0,0, x_{2}^{\beta}, 0\right)$ for every $x \in \mathbb{R}^{4}$, we have that

$$
\begin{aligned}
X_{12}(0) & =0 \\
X_{12}\left(e_{2}\right) & =e_{3}
\end{aligned}
$$

Thus

$$
0=\operatorname{dim} \mathcal{D}_{2}(0) \neq \operatorname{dim} \mathcal{D}_{2}\left(e_{2}\right)=1
$$

Hence \mathcal{D} is not equiregular.
Case 4: Suppose $\alpha \geq 2$.
Note that $X_{12}(0)=0$ and $X_{12}\left(e_{1}+e_{2}\right)=\alpha e_{3}$. Then

$$
0=\operatorname{dim} \mathcal{D}_{2}(0) \neq \operatorname{dim} \mathcal{D}_{2}\left(e_{1}+e_{2}\right)=1
$$

Hence \mathcal{D} is not equiregular.

2.2.2 Condition (B) ${ }_{0}$

Now we are interested in studying for which values of α, β and γ our distribution \mathcal{D} satisfies condition $(\mathrm{B})_{0}$.
We will see that - in the case $\gamma=1$ - the Lie brackets of two iterated commutators of X_{1} and X_{2}, both having length greater than or equal to 2 , is null. By using this fact, we will prove that in this case (B) $)_{x}$ holds for every $x \in \mathbb{R}^{4}$.

Lemma 2.10. Let $\alpha, \beta, \gamma, X_{1}, X_{2}$ and \mathcal{D} be as in Theorem 2.7. Assume that $\gamma=1$. Then the distribution \mathcal{D} satisfies $(\mathrm{B})_{x}$ for every $x \in \mathbb{R}^{4}$, namely

$$
\begin{equation*}
\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right](x) \subseteq \mathcal{L}_{i+j-1}(x) \quad \text { for every } i, j \geq 2 \text { with } i+j \geq 5 \tag{2.12}
\end{equation*}
$$

for every $x \in \mathbb{R}^{4}$.
Proof. Note that in this case (2.2) reads as

$$
\left\{\begin{array}{l}
{\left[X_{1}, V\right]=\left(0,0, \frac{\partial p}{\partial x_{1}}, \frac{\partial q}{\partial x_{1}}\right)} \tag{2.13}\\
{\left[X_{2}, V\right]=\left(0,0, \frac{\partial p}{\partial x_{2}}, \frac{\partial q}{\partial x_{2}}+\frac{\partial q}{\partial x_{3}} x_{1}^{\alpha} x_{2}^{\beta}-p\right)}
\end{array}\right.
$$

for every vector field $V=(0,0, p, q)$, with $p, q \in \mathbb{Z}\left[x_{1}, x_{2}\right]$.
Now observe that, from (2.13), the following facts hold:

- the first and the second entry of every iterated commutator of length greater than or equal to 2 are null,
- the variables x_{3} and x_{4} do not appear in the iterated commutators of length greater than or equal to 2 .

Hence, if V and W are two iterated commutators of X_{1} and X_{2} of length at least 2 (thus $V=(0,0, p, q), W=\left(0,0, p^{\prime}, q^{\prime}\right)$ for some $\left.p, p^{\prime}, q, q^{\prime} \in \mathbb{Z}\left[x_{1}, x_{2}\right]\right)$, then

$$
\begin{aligned}
{[V, W]=} & \left(p \frac{\partial p^{\prime}}{\partial x_{3}}-p^{\prime} \frac{\partial p}{\partial x_{3}}\right) \frac{\partial}{\partial x_{3}}+\left(p \frac{\partial q^{\prime}}{\partial x_{3}}-p^{\prime} \frac{\partial q}{\partial x_{3}}\right) \frac{\partial}{\partial x_{3}}+ \\
& \left(q \frac{\partial p^{\prime}}{\partial x_{4}}-q^{\prime} \frac{\partial p}{\partial x_{4}}\right) \frac{\partial}{\partial x_{4}}+\left(q \frac{\partial q^{\prime}}{\partial x_{4}}-q^{\prime} \frac{\partial q}{\partial x_{4}}\right) \frac{\partial}{\partial x_{4}}=0
\end{aligned}
$$

Now fix $i, j \geq 2$ with $i+j \geq 5$ and fix $x \in \mathbb{R}^{4}$. We deduce from the above computation that

$$
\begin{equation*}
\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right](x)=\left[\mathcal{L}_{1}, \mathcal{L}_{j}\right](x)+\left[\mathcal{L}_{i}, \mathcal{L}_{1}\right](x) . \tag{2.14}
\end{equation*}
$$

Since $\left[\mathcal{L}_{i}, \mathcal{L}_{1}\right](x)=\left[\mathcal{L}_{1}, \mathcal{L}_{i}\right](x)$ and by definition of $\mathcal{L}_{1}(x), \mathcal{L}_{2}(x), \mathcal{L}_{3}(x), \ldots$, we find that

$$
\begin{equation*}
\left[\mathcal{L}_{1}, \mathcal{L}_{j}\right](x)+\left[\mathcal{L}_{i}, \mathcal{L}_{1}\right](x)=\mathcal{L}_{j+1}(x)+\mathcal{L}_{i+1}(x) . \tag{2.15}
\end{equation*}
$$

Given that $s \mapsto \mathcal{L}_{s}(x)$ is a lattice homomorphism between \mathbb{N} (with \leq) and the grassmanian of \mathbb{R}^{4} (with \subseteq), we have that

$$
\begin{equation*}
\mathcal{L}_{j+1}(x)+\mathcal{L}_{i+1}(x)=\mathcal{L}_{\max \{i, j\}+1}(x) . \tag{2.16}
\end{equation*}
$$

Finally, one has that $j \geq 2$ implies $i+1 \leq i+j-1$, and similarly $i \geq 2$ implies $j+1 \leq i+j-1$, thus $\max \{i, j\}+1 \leq i+j-1$ and accordingly

$$
\begin{equation*}
\mathcal{L}_{\max \{i, j\}+1}(x) \subseteq \mathcal{L}_{i+j-1}(x) \tag{2.17}
\end{equation*}
$$

Therefore (2.14), (2.15), (2.16) and (2.17) give $\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right](x) \subseteq \mathcal{L}_{i+j-1}(x)$. This show that condition $(\mathrm{B})_{x}$ holds for every $x \in \mathbb{R}^{4}$.

Conversely, when $\gamma \geq 2$ condition (B$)_{0}$ is not satisfied, indeed by commuting X_{3} (defined in (2.4), of length $i=\alpha+\beta+1$) with a suitable iterated commutator of length $j=\gamma(\alpha+\beta+1)-(\alpha+\beta)$, we obtain a vector field Z such that $Z(0)$ is a multiple of e_{4}. Thus the vector e_{4} - which does not belong to $\mathcal{L}_{i+j-1}(0)=\mathcal{L}_{\gamma(\alpha+\beta+1)}(0)$ surely belongs to $\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right](0)$.

Proposition 2.11. Let $\alpha, \beta, \gamma, X_{1}, X_{2}$ and \mathcal{D} be as in Theorem 2.7. Then condition $(\mathrm{B})_{0}$ is satisfied if and only if $\gamma=1$.

Proof. Step 1: Suppose $\gamma \geq 2$. As seen in Lemma 2.3, we have that the iterated commutator $X_{3}:=L_{2}^{\beta}\left(L_{1}^{\alpha}\left(X_{2}\right)\right)$ is of the form

$$
X_{3}(x)=\left(0,0, \alpha!\beta!, x_{2} f\left(x_{1}, x_{2}, x_{3}\right)\right) \quad \text { for every } x \in \mathbb{R}^{4}
$$

for some $f \in(-\mathbb{N})\left[x_{1}, x_{2}, x_{3}\right]$. Then, arguing similarly to what we did in the proof of Lemma 2.3 and using (2.2), we deduce that:

- the fourth component of $L_{2}\left(X_{3}\right)$ contains $-\alpha!\beta!\gamma x_{3}^{\gamma-1}$,
- the fourth component of $L_{2}^{\gamma-2}\left(L_{2}\left(X_{3}\right)\right)$ contains $-\alpha!\beta!\gamma!x_{1}^{\alpha(\gamma-2)} x_{2}^{\beta(\gamma-2)} x_{3}$,
- the fourth component of $L_{2}^{\beta(\gamma-2)}\left(L_{2}^{\gamma-1}\left(X_{3}\right)\right)$ contains

$$
-\alpha!\beta!\gamma!(\beta(\gamma-2))!x_{1}^{\alpha(\gamma-2)} x_{3}
$$

- the fourth component of $V:=L_{1}^{\alpha(\gamma-2)}\left(L_{2}^{\beta(\gamma-2)+(\gamma-1)}\left(X_{3}\right)\right)$ contains

$$
\begin{equation*}
-\alpha!\beta!\gamma!(\beta(\gamma-2))!(\alpha(\gamma-2))!x_{3} \tag{2.18}
\end{equation*}
$$

Since we have commuted $\alpha(\gamma-2)+\beta(\gamma-2)+(\gamma-1) \geq 1$ times the vector field X_{3} (with either X_{1} or X_{2}) in order to obtain V, we have that the third component of V vanishes, so $V=(0,0,0, q)$ for some $q \in(-\mathbb{N})\left[x_{1}, x_{2}, x_{3}\right]$ containing the addendum (2.18). A simple computation gives

$$
Z:=\left[X_{3}, V\right]=\left(0,0,0, \alpha!\beta!\frac{\partial q}{\partial x_{3}}\right)
$$

Hence the fourth component of Z contains

$$
-(\alpha!)^{2}(\beta!)^{2} \gamma!(\beta(\gamma-2))!(\alpha(\gamma-2))!.
$$

which implies that $Z(0)$ is a non null multiple of e_{4}. Moreover the length of X_{3} is $i:=\alpha+\beta+1$ and the length of V is $j:=\gamma(\alpha+\beta+1)-(\alpha+\beta)$ (note that $i \geq 2$ and $j=(\alpha+\beta)(\gamma-1)+\gamma \geq 3$, thus $i+j \geq 5)$.
Since $Z \in \operatorname{Sec}\left(\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right]\right)$, one has that $e_{4} \in\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right](0)$, but

$$
e_{4} \notin \mathcal{L}_{i+j-1}(0)=\mathcal{L}_{\gamma(\alpha+\beta+1)}(0)
$$

by Remark 2.4. In other words, $(\mathrm{B})_{0}$ does not hold when $\gamma \geq 2$.
Step 2: Suppose $\gamma=1$. By Lemma 2.10 we have that condition $(B)_{0}$ is satisfied.

2.2.3 Condition (C) ${ }_{0}$

By using Lemma 2.3, it is simple to prove that condition (C) $)_{0}$ is satisfied if and only if $(\alpha, \beta) \neq(1,0)$ and $\gamma \geq 2$.

Proposition 2.12. Let $\alpha, \beta, \gamma, X_{1}, X_{2}$ and \mathcal{D} be as in Theorem 2.7.
Then condition $(\mathrm{C})_{0}$ is not satisfied if and only if either $(\alpha, \beta)=(1,0)$ or $\gamma=1$.

Proof. We deduce from Lemma 2.3 and Remark 2.4 that

$$
\begin{aligned}
\mathcal{L}_{0}(0) & \neq \mathcal{L}_{1}(0)=\ldots=\mathcal{L}_{\alpha+\beta}(0) \neq \mathcal{L}_{\alpha+\beta+1}(0) \\
& =\ldots=\mathcal{L}_{\gamma(\alpha+\beta+1)}(0) \neq \mathcal{L}_{\gamma(\alpha+\beta+1)+1}(0)=\ldots
\end{aligned}
$$

Note that $\mathcal{L}_{i}(0) \neq \mathcal{L}_{i-1}(0)$ only for

$$
\begin{aligned}
& i=1 \\
& i=\alpha+\beta+1 \\
& i=\gamma(\alpha+\beta+1)+1
\end{aligned}
$$

Then condition $(\mathrm{C})_{0}$ does not hold if and only if either $\alpha+\beta=1$ (i.e. $\left.(\alpha, \beta)=(1,0)\right)$ or $\gamma(\alpha+\beta+1)=\alpha+\beta+1$ (i.e. $\gamma=1$).

Hence in this section we proved that:
Corollary 2.13. Let $\alpha, \beta, \gamma, X_{1}, X_{2}$ and \mathcal{D} be as in Theorem 2.7.
Then none of the conditions $(\mathrm{A}),(\mathrm{B})_{0}$ and $(\mathrm{C})_{0}$ is satisfied if and only if $(\alpha, \beta)=$ $(1,0)$ and $\gamma \geq 2$.

Proof. It follows from Theorem 2.9, from Proposition 2.11 and from Proposition 2.12.

2.3 The angle ν is an abnormal extremal

First of all, we give the definition of corner.

Definition 2.14 (Corner). Let $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ be a Lipschitz curve. We denote by $\dot{\gamma}_{L}(t)$ and $\dot{\gamma}_{R}(t)$ the left derivative and the right derivative, respectively, of γ at the time $t \in[a, b]$, whenever they exist. Explicitly,

$$
\begin{aligned}
& \dot{\gamma}_{L}(t):=\lim _{h \rightarrow 0^{+}} \frac{\gamma(t+h)-\gamma(t)}{h} \\
& \dot{\gamma}_{R}(t):=\lim _{h \rightarrow 0^{-}} \frac{\gamma(t+h)-\gamma(t)}{h} .
\end{aligned}
$$

We say that γ has a corner (or an angle) at the point $x=\gamma(t)$, for some $t \in[a, b]$, if there exist $\dot{\gamma}_{L}(t), \dot{\gamma}_{R}(t)$ and $\dot{\gamma}_{L}(t), \dot{\gamma}_{R}(t)$ are linearly independent.

In the next proposition, we introduce an extremal ν having a corner at $0 \in \mathbb{R}^{4}$ and we study, by using Pontryagin Maximum Principle, for which values of α, β and γ the curve ν is a (strictly) abnormal extremal.

Figure 2.1: The projection of ν on the plane $x_{1} x_{2}$.

Proposition 2.15. Let $\alpha, \beta, \gamma, X_{1}, X_{2}$ and \mathcal{D} be as in Theorem 2.7.
Then the \mathcal{D}-horizontal curve

$$
\nu(t)= \begin{cases}(0,-t, 0,0) & \text { if } t \in[-1,0], \tag{2.19}\\ (t, 0,0,0) & \text { if } t \in[0,1],\end{cases}
$$

is a strictly abnormal extremal if and only if either $\alpha>1$ or $\gamma>1$. Note that ν has a corner at the point $0 \in \mathbb{R}^{4}$.

Proof. The curve ν is actually \mathcal{D}-horizontal, with controls

$$
h(t)= \begin{cases}(0,-1) & \text { if } t \in[-1,0] \\ (1,0) & \text { if } t \in(0,1]\end{cases}
$$

In order to prove that the curve ν is an abnormal extremal, we want to find a dual curve ξ which satisfies the following necessary conditions (of Pontryagin Maximum Principle):

$$
\begin{gather*}
\xi(t) \cdot X_{i}(\nu(t))=0 \quad \text { for every } t \in[-1,1] \text { and } i=1,2 \tag{2.20}\\
\xi(t) \neq 0 \quad \text { for every } t \in[-1,1] \tag{2.21}\\
\dot{\xi}(t)=-\left(h_{1}(t) X_{1}^{\prime}(\nu(t))+h_{2}(t) X_{2}^{\prime}(\nu(t))\right)^{T} \xi(t) \quad \text { for a.e. } t \in[-1,1] \tag{2.22}
\end{gather*}
$$

In this case, (2.20) and (2.22) read as

$$
\begin{equation*}
\xi_{1}(t)=\xi_{2}(t)=0 \quad \text { for every } t \in[-1,1] \tag{2.23}
\end{equation*}
$$

and

$$
\begin{cases}\dot{\xi}(t)=X_{2}^{\prime}(\nu(t))^{T} \xi(t) & \text { for a.e. } t \in[-1,0] \tag{2.24}\\ \dot{\xi}(t)=0 & \text { for a.e. } t \in(0,1]\end{cases}
$$

respectively. We have that

$$
X_{2}^{\prime}(\nu(t))^{T}=\left(\begin{array}{cccc}
0 & 0 & \alpha \nu_{1}(t)^{\alpha-1} \nu_{2}(t)^{\beta} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \gamma \nu_{3}(t)^{\gamma-1} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Hence:
Case 1: Suppose $\alpha>1, \gamma=1$. We get $\xi(t)=(0,0, \mu(t \wedge 0)+\lambda, \mu)$ for every $t \in[-1,1]$, for any $\lambda, \mu \in \mathbb{R}$ with $(\lambda, \mu) \neq(0,0)$.
CASE 2: Suppose $\alpha=1, \gamma>1$. We get $\xi(t)=(0,0,0, \mu)$ for every $t \in[-1,1]$, for any $\mu \neq 0$.
Case 3: Suppose $\alpha, \gamma>1$. We get that $\xi(t)=(0,0, \lambda, \mu)$ for every $t \in[-1,1]$, for any $\lambda, \mu \in \mathbb{R}$ with $(\lambda, \mu) \neq(0,0)$.
CASE 4: Suppose $\alpha=\gamma=1$. We obtain that $\xi(t)=(0,0,0,0)$ for every $t \in[-1,1]$. Thus in this case the curve ν is not an abnormal extremal, by (2.21).
Finally, ν is not a normal extremal, because it is not smooth in $t=0$, hence the thesis.

2.4 The curve ν is not a length-minimizer

As a consequence of Section 2.3 and Section 2.2, we are interested in studying \mathcal{D} in the case $(\alpha, \beta)=(1,0)$ and $\gamma \geq 2$. Explicitly, $\mathcal{D}=\operatorname{span}\left\{X_{1}, X_{2}\right\}$ where

$$
\left\{\begin{array}{l}
X_{1}(x)=(1,0,0,0) \tag{2.25}\\
X_{2}(x)=\left(0,1, x_{1}, x_{3}^{\gamma}\right)
\end{array}\right.
$$

for every $x \in \mathbb{R}^{4}$.
By Remark 2.4 we have that $\operatorname{step}(\mathcal{D})=2 \gamma+1$. By Proposition 2.15 we have that the angle ν (defined in (2.19)) is a strictly abnormal extremal. The aim of this section is to find a \mathcal{D}-horizontal curve joining the points $\nu(-1)=(0,1,0,0)$ and $\nu(1)=(1,0,0,0)$ with length strictly smaller than that of ν.

2.4.1 The "cut" ν^{ε}

Figure 2.2: The curve $\left(\nu_{1}^{\varepsilon}, \nu_{2}^{\varepsilon}\right)$.

The first step is to construct a \mathcal{D}-horizontal curve starting from the same initial point of ν, whose length is strictly smaller than that of ν. The problem is that this new curve and ν have a different endpoint, hence we will need further corrections.

Fix $0<\varepsilon<1$. Consider the polygonal planar curve $\left(\nu_{1}^{\varepsilon}, \nu_{2}^{\varepsilon}\right):[-1,1] \rightarrow \mathbb{R}^{2}$ obtained by the concatenation of the segment joining $(0,1)$ to $(0, \varepsilon)$, the segment joining $(0, \varepsilon)$ to $(\varepsilon, 0)$ and finally the segment joining $(\varepsilon, 0)$ to $(1,0)$.
A parametrization of $\left(\nu_{1}^{\varepsilon}, \nu_{2}^{\varepsilon}\right)$ can be chosen as follows:

$$
\left(\nu_{1}^{\varepsilon}, \nu_{2}^{\varepsilon}\right)(t):= \begin{cases}(0,-t) & \text { if } t \in[-1,-\varepsilon] \\ \left(\frac{t+\varepsilon}{2}, \frac{\varepsilon-t}{2}\right) & \text { if } t \in[-\varepsilon, \varepsilon] \\ (t, 0) & \text { if } t \in[\varepsilon, 1]\end{cases}
$$

We want to find the lift $\nu^{\varepsilon}=\left(\nu_{1}^{\varepsilon}, \nu_{2}^{\varepsilon}, \nu_{3}^{\varepsilon}, \nu_{4}^{\varepsilon}\right):[-1,1] \rightarrow \mathbb{R}^{4}$ of $\left(\nu_{1}^{\varepsilon}, \nu_{2}^{\varepsilon}\right)$ starting from the point $(0,1,0,0)$, i.e.
(i) ν^{ε} is \mathcal{D}-horizontal, thus

$$
\begin{aligned}
\dot{\nu}^{\varepsilon}(t) & =h_{1}(t) X_{1}\left(\nu^{\varepsilon}(t)\right)+h_{2}(t) X_{2}\left(\nu^{\varepsilon}(t)\right) \\
& =h_{1}(t)(1,0,0,0)+h_{2}(t)\left(0,1, \nu_{1}^{\varepsilon}(t), \nu_{3}^{\varepsilon}(t)^{\gamma}\right)
\end{aligned}
$$

for almost every $t \in[-1,1]$ and for suitable controls $h \in \mathrm{~L}^{\infty}\left([-1,1], \mathbb{R}^{2}\right)$,
(ii) $\nu^{\varepsilon}(-1)=(0,1,0,0)$.

We deduce from (i) that

$$
\begin{equation*}
h=\left(h_{1}(t), h_{2}(t)\right)=\left(\nu_{1}^{\dot{\varepsilon}}(t), \dot{\nu}_{2}^{\dot{\varepsilon}}(t)\right) \quad \text { for almost every } t \in[-1,1] . \tag{2.26}
\end{equation*}
$$

\diamond CASE $t \in[-1,-\varepsilon]$.
By (i) and (2.26) we have that $\nu_{3}^{\varepsilon}(t)=0$ and $\nu_{4}^{\varepsilon}(t)=-\nu_{3}^{\varepsilon}(t)^{\gamma}$ for almost every $t \in[-1,-\varepsilon]$. By (ii) it follows that

$$
\nu_{3}^{\varepsilon}(t)=\nu_{3}^{\varepsilon}(-1)=0 \quad \text { for every } t \in[-1,-\varepsilon],
$$

hence

$$
\nu_{4}^{\varepsilon}(t)=\nu_{4}^{\varepsilon}(-1)=0 \quad \text { for every } t \in[-1,-\varepsilon] .
$$

$\diamond \operatorname{CASE} t \in[-\varepsilon, \varepsilon]$.
We have that $\nu_{3}^{\dot{\varepsilon}}(t)=-\frac{1}{2} \nu_{1}^{\varepsilon}(t)=-\frac{1}{4}(t+\varepsilon)$ and $\nu_{4}^{\dot{\varepsilon}}(t)=-\frac{1}{2} \nu_{3}^{\varepsilon}(t)^{\gamma}$ for almost every $t \in[-\varepsilon, \varepsilon]$. Therefore for every $t \in[-\varepsilon, \varepsilon]$

$$
\nu_{3}^{\varepsilon}(t)=\nu_{3}^{\varepsilon}(-\varepsilon)-\frac{1}{4} \int_{-\varepsilon}^{t}(y+\varepsilon) d y=-\frac{1}{8}(t+\varepsilon)^{2}
$$

and

$$
\nu_{4}^{\varepsilon}(t)=-\frac{1}{2} \nu_{3}^{\varepsilon}(t)^{\gamma}=\frac{(-1)^{\gamma+1}}{2^{3 \gamma+1}}(t+\varepsilon)^{2 \gamma} .
$$

Then for every $t \in[-\varepsilon, \varepsilon]$

$$
\nu_{4}^{\varepsilon}(t)=\nu_{4}^{\varepsilon}(-\varepsilon)+\frac{(-1)^{\gamma+1}}{2^{3 \gamma+1}} \int_{-\varepsilon}^{t}(s+\varepsilon)^{2 \gamma} d s=\frac{(-1)^{\gamma+1}}{2^{3 \gamma+1}} \frac{(t+\varepsilon)^{2 \gamma+1}}{2 \gamma+1} .
$$

\diamond CASE $t \in[\varepsilon, 1]$.
We find that $\dot{\nu}_{3}^{\dot{\varepsilon}}(t)=0$ and $\dot{\nu}_{4}^{\dot{\varepsilon}}(t)=0$ for almost every $t \in[\varepsilon, 1]$. Therefore

$$
\nu_{3}^{\varepsilon}(t)=\nu_{3}^{\varepsilon}(\varepsilon)=-\frac{1}{2} \varepsilon^{2} \quad \text { for every } t \in[\varepsilon, 1]
$$

and

$$
\nu_{4}^{\varepsilon}(t)=\nu_{4}^{\varepsilon}(\varepsilon)=\frac{(-1)^{\gamma+1}}{2^{\gamma}} \frac{\varepsilon^{2 \gamma+1}}{2 \gamma+1} \quad \text { for every } t \in[\varepsilon, 1] .
$$

Then the lift of $\left(\nu_{1}^{\varepsilon}, \nu_{2}^{\varepsilon}\right)$ is

$$
\nu^{\varepsilon}(t)= \begin{cases}(0,-t, 0,0) & \text { if } t \in[-1,-\varepsilon], \\ \left(\frac{t+\varepsilon}{2}, \frac{\varepsilon-t}{2},-\frac{1}{8}(t+\varepsilon)^{2}, \frac{(-1)^{\gamma+1}}{2^{3 \gamma+1}} \frac{(t+\varepsilon)^{2 \gamma+1}}{2 \gamma+1}\right) & \text { if } t \in[-\varepsilon, \varepsilon], \\ \left(t, 0,-\frac{1}{2} \varepsilon^{2}, \frac{(-1)^{\gamma+1}}{2^{\gamma}} \frac{\varepsilon^{2 \gamma+1}}{2 \gamma+1}\right) & \text { if } t \in[\varepsilon, 1] .\end{cases}
$$

Note that the endpoint of ν^{ε} is not $\nu(1)=(1,0,0,0)$, indeed

$$
\begin{equation*}
\nu_{3}^{\varepsilon}(1)=-\frac{1}{2} \varepsilon^{2} \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{4}^{\varepsilon}(1)=\frac{(-1)^{\gamma+1}}{2^{\gamma}} \frac{\varepsilon^{2 \gamma+1}}{2 \gamma+1} \tag{2.28}
\end{equation*}
$$

Moreover, the length of ν is $L(\nu)=2$, while the length of ν^{ε} is $L\left(\nu^{\varepsilon}\right)=2(1-\varepsilon)+\sqrt{2} \varepsilon$. Hence ν^{ε} is strictly shorter than ν, precisely

$$
\begin{equation*}
L(\nu)-L\left(\nu^{\varepsilon}\right)=(2-\sqrt{2}) \varepsilon>0 \tag{2.29}
\end{equation*}
$$

2.4.2 The first perturbation ζ^{ε} of ν^{ε}

Figure 2.3: The curve $\left(\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon}\right)$.
In order to correct the third component of the endpoint of ν^{ε}, we now construct a curve ζ^{ε} (obtained by modifying ν^{ε} with a rectangle), which depends on some
parameters of position.
Take $0<\varepsilon<b<a<1$ and suppose $c<\frac{a-b}{2}$. Consider the polygonal planar curve $\left(\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon}\right)$ joining the following points:

$$
(0,1) \rightarrow(0, \varepsilon) \rightarrow(\varepsilon, 0) \rightarrow(b, 0) \rightarrow(b,-c) \rightarrow(a,-c) \rightarrow(a, 0) \rightarrow(1,0) .
$$

Then $\left(\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon}\right)$ can be parametrized as follows:

$$
\left(\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon}\right)(t):= \begin{cases}(0,-t) & \text { if } t \in[-1,-\varepsilon], \\ \left(\frac{t+\varepsilon}{2}, \frac{\varepsilon-t}{2}\right) & \text { if } t \in[-\varepsilon, \varepsilon], \\ (t, 0) & \text { if } t \in[\varepsilon, b], \\ (b, b-t) & \text { if } t \in[b, b+c], \\ \left(\frac{a-b}{a-b-2 c} t-\frac{c(a+b)}{a-b-2 c},-c\right) & \text { if } t \in[b+c, a-c], \\ (a, t-a) & \text { if } t \in[a-c, a], \\ (t, 0) & \text { if } t \in[a, 1] .\end{cases}
$$

We now calculate the lift $\zeta^{\varepsilon}=\left(\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon}, \zeta_{3}^{\varepsilon}, \zeta_{4}^{\varepsilon}\right):[-1,1] \rightarrow \mathbb{R}^{4}$ of $\left(\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon}\right)$ starting from the point $(0,1,0,0)$. Since ζ^{ε} must be \mathcal{D}-horizontal, we impose that

$$
\begin{equation*}
\dot{\zeta}_{3}^{\varepsilon}=\dot{\zeta}_{2}^{\varepsilon} \zeta_{1}^{\varepsilon} \tag{2.30}
\end{equation*}
$$

and that

$$
\begin{equation*}
\dot{\zeta}_{4}^{\varepsilon}=\dot{\zeta}_{2}^{\varepsilon} \zeta_{3}^{\gamma} \tag{2.31}
\end{equation*}
$$

almost everywhere in $[-1,1]$.
\diamond CASE $t \in[-1, b]$.
Clearly $\zeta^{\varepsilon}(t)=\nu^{\varepsilon}(t)$ for every $t \in[-1, b]$.
\diamond CASE $t \in[b, b+c]$.
By (2.30) we have $\dot{\zeta_{3}^{z}}(t)=-b$ for almost every $t \in[b, b+c]$. Then for every $t \in[b, b+c]$

$$
\zeta_{3}^{\varepsilon}(t)=\zeta_{3}^{\varepsilon}(b)-\int_{b}^{t} b d y=-\frac{\varepsilon^{2}}{2}-b(t-b) .
$$

By (2.31) we find that $\dot{\zeta}_{4}^{\varepsilon}(t)=(-1)^{\gamma+1}\left(b(t-b)+\frac{\varepsilon^{2}}{2}\right)^{\gamma}$ for almost every $t \in[b, b+c]$. Hence for every $t \in[b, b+c]$

$$
\begin{aligned}
\zeta_{4}^{\varepsilon}(t) & =\frac{(-1)^{\gamma+1}}{2^{\gamma}} \frac{\varepsilon^{2 \gamma+1}}{2 \gamma+1}+(-1)^{\gamma+1} \int_{b}^{t}\left(b(y-b)+\frac{\varepsilon^{2}}{2}\right)^{\gamma} d y \\
& =(-1)^{\gamma+1} \frac{\varepsilon^{2 \gamma+1}}{2^{\gamma}}\left(\frac{1}{2 \gamma+1}-\frac{\varepsilon}{2 b(\gamma+1)}\right)+\frac{(-1)^{\gamma+1}}{b(\gamma+1)}\left(b(t-b)+\frac{\varepsilon^{2}}{2}\right)^{\gamma+1} .
\end{aligned}
$$

\diamond CASE $t \in[b+c, a-c]$.
By (2.30) and (2.31) we deduce that for every $t \in[b+c, a-c]$

$$
\zeta_{3}^{\varepsilon}(t)=\zeta_{3}^{\varepsilon}(b+c)=-b c-\frac{\varepsilon^{2}}{2}
$$

and that

$$
\begin{aligned}
\zeta_{4}^{\varepsilon}(t) & =\zeta_{4}^{\varepsilon}(b+c) \\
& =(-1)^{\gamma+1} \frac{\varepsilon^{2 \gamma+1}}{2^{\gamma}}\left(\frac{1}{2 \gamma+1}-\frac{\varepsilon}{2 b(\gamma+1)}\right)+\frac{(-1)^{\gamma+1}}{b(\gamma+1)}\left(b c+\frac{\varepsilon^{2}}{2}\right)^{\gamma+1} .
\end{aligned}
$$

\diamond CASE $t \in[a-c, a]$.
By (2.30) we have $\dot{\zeta}_{3}^{\dot{\varepsilon}}(t)=a$ for almost every $t \in[a-c, a]$. Then

$$
\zeta_{3}^{\varepsilon}(t)=-b c-\frac{\varepsilon^{2}}{2}+a(t-a+c)
$$

for every $t \in[a-c, a]$. Thus, by (2.31), we find that $\dot{\zeta}_{4}^{\varepsilon}(t)=\left(-b c-\frac{\varepsilon^{2}}{2}+a(t-a-c)\right)^{\gamma}$ for almost every $t \in[a-c, a]$. Hence for every $t \in[a-c, a]$

$$
\begin{aligned}
\zeta_{4}^{\varepsilon}(t)= & (-1)^{\gamma+1} \frac{\varepsilon^{2 \gamma+1}}{2^{\gamma}}\left(\frac{1}{2 \gamma+1}-\frac{\varepsilon}{2 b(\gamma+1)}\right)+\frac{(-1)^{\gamma+1}}{b(\gamma+1)}\left(b c+\frac{\varepsilon^{2}}{2}\right)^{\gamma+1} \\
& +\frac{1}{a(\gamma+1)}\left(\left(a(t-a+c)-b c-\frac{\varepsilon^{2}}{2}\right)^{\gamma+1}-\left(-b c-\frac{\varepsilon^{2}}{2}\right)^{\gamma+1}\right) .
\end{aligned}
$$

\diamond CASE $t \in[a, 1]$.
By (2.30) and (2.31) we deduce that for every $t \in[a, 1]$

$$
\zeta_{3}^{\varepsilon}(t)=\zeta_{3}^{\varepsilon}(a)=-b c-\frac{\varepsilon^{2}}{2}+a c
$$

and

$$
\begin{aligned}
\zeta_{4}^{\varepsilon}(t)= & (-1)^{\gamma+1} \frac{\varepsilon^{2 \gamma+1}}{2^{\gamma}}\left(\frac{1}{2 \gamma+1}-\frac{\varepsilon}{2 b(\gamma+1)}\right)+\frac{(-1)^{\gamma+1}}{b(\gamma+1)}\left(b c+\frac{\varepsilon^{2}}{2}\right)^{\gamma+1} \\
& +\frac{1}{a(\gamma+1)}\left(\left(a c-b c-\frac{\varepsilon^{2}}{2}\right)^{\gamma+1}-\left(-b c-\frac{\varepsilon^{2}}{2}\right)^{\gamma+1}\right) .
\end{aligned}
$$

Thus we deduce that

$$
\zeta_{3}^{\varepsilon}(1)=-b c-\frac{\varepsilon^{2}}{2}+a c .
$$

Hence, if we choose

$$
\begin{equation*}
c=\frac{\varepsilon^{2}}{2(a-b)} \tag{2.32}
\end{equation*}
$$

we have that $\zeta_{3}^{\varepsilon}(1)=0$. Hereafter, we will always fix $c=\frac{\varepsilon^{2}}{2(a-b)}$. By (2.32) one has that

$$
\begin{equation*}
\lambda(\varepsilon):=\zeta_{4}^{\varepsilon}(1)=\frac{(-1)^{\gamma+1}}{2^{\gamma}(2 \gamma+1)} \varepsilon^{2 \gamma+1}\left(1+\varepsilon \frac{2 \gamma+1}{2 b(\gamma+1)}\left(\frac{a^{\gamma}}{(a-b)^{\gamma}}-1\right)\right) . \tag{2.33}
\end{equation*}
$$

Remark 2.16. We give a geometric interpretation of the third entry of every \mathcal{D} horizontal curve, which is consistent with what we observe in the previous section. Namely, the third component furnishes information about the area enclosed by the first two entries in \mathbb{R}^{2}. In order to give a geometric meaning to the third component of a \mathcal{D}-horizontal curve, we shall make use of the well-known Green's Formula:

Theorem 2.17. Let $\mu:[a, b] \rightarrow \mathbb{R}^{2}$ be a continuous, piecewise C^{1} circuit in \mathbb{R}^{2}. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a vector field of class C^{1}. Let us call D the region in \mathbb{R}^{2} enclosed by the curve μ. Then

$$
\begin{equation*}
\int_{\mu} F \cdot n_{\mu} d \mu=\int_{D} \operatorname{div} F(x, y) d x d y \tag{2.34}
\end{equation*}
$$

where:

- $\int_{\mu} F \cdot n_{\mu} d \mu:=\int_{a}^{b} F(\mu(t)) \cdot n_{\mu}(\mu(t))|\dot{\mu}(t)| d t$ is the path integral of F along μ, - n_{μ} is the unit external normal to D, explicitly

$$
\begin{equation*}
n_{\mu}(\mu(t)):=\frac{\left(\dot{\mu}_{2}(t),-\dot{\mu}_{1}(t)\right)}{\sqrt{\dot{\mu}_{1}(t)^{2}+\dot{\mu}_{2}(t)^{2}}} \tag{2.35}
\end{equation*}
$$

for every $t \in[a, b]$ such that $\dot{\mu}(t)$ exists non-null and arbitrarily defined elsewhere.

Let $\mu:\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}^{4}$ be a \mathcal{D}-horizontal curve such that $\left(\mu_{1}\left(t_{1}\right), \mu_{2}\left(t_{1}\right), \mu_{3}\left(t_{1}\right)\right)=$ $(0,1,0)$ and $\left(\mu_{1}\left(t_{2}\right), \mu_{2}\left(t_{2}\right)\right)=(1,0)$. Let $\sigma:[0,1] \rightarrow \mathbb{R}^{2}$ be the segment joining $(1,0)$ to $(0,1)$, defined by

$$
\sigma(t):=(1-t, t) \quad \text { for every } t \in[0,1] .
$$

Hence the curve obtained by concatenating $\left(\mu_{1}, \mu_{2}\right)$ and σ is a circuit in \mathbb{R}^{2}. Let us call D the region enclosed by such curve. Thus for every $F \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ one has

$$
\begin{aligned}
\int_{D} \operatorname{div} F(x, y) d x d y= & \int_{t_{1}}^{t_{2}} F\left(\mu_{1}(t), \mu_{2}(t)\right) \cdot n_{\left(\mu_{1}, \mu_{2}\right)}\left(\mu_{1}(t), \mu_{2}(t)\right)\left|\left(\dot{\mu}_{1}, \dot{\mu}_{2}\right)(t)\right| d t \\
& +\int_{0}^{1} F(\sigma(t)) \cdot n_{\sigma}(\sigma(t))|\dot{\sigma}(t)| d t .
\end{aligned}
$$

Note that

$$
n_{\sigma}(\sigma(t))=\frac{(1,1)}{\sqrt{2}} \quad \text { for every } t \in(0,1)
$$

Now take $F(x, y):=(x, 0)$ for every $(x, y) \in \mathbb{R}^{2}$. Thus $\operatorname{div} F=1$ and accordingly

$$
\mathcal{A}(D):=\int_{D} d x d y=\int_{t_{1}}^{t_{2}} \mu_{1}(t) \dot{\mu}_{2}(t) d t+\int_{0}^{1}(1-t) d t
$$

Since μ is a \mathcal{D}-horizontal curve, one has that $\dot{\mu}_{3}=\mu_{1} \dot{\mu}_{2}$ a.e. in $[a, b]$. Therefore $\mu_{3}(b)=\int_{t_{1}}^{t_{2}} \dot{\mu}_{3}(t) d t=\int_{t_{1}}^{t_{2}} \mu_{1}(t) \dot{\mu}_{2}(t) d t$, which gives

$$
\mathcal{A}(D)=\mu_{3}\left(t_{2}\right)+\frac{1}{2} .
$$

This equality can be interpreted in the following way: the third component of μ at the final time t_{2} is equal to 0 if and only if the (signed) area enclosed by $\left(\mu_{1}, \mu_{2}\right)$ (concatenated with the segment joining $(0,1)$ to $(1,0))$ is equal to $\frac{1}{2}$. Notice that this is coherent with what we saw in the previous section for the curves ζ^{ε} and μ^{ε}. For example, note that - by (2.32) - the area of the rectangle of vertices $(b, 0),(b,-c),(a,-c),(a, 0)$ coincides with the area of the triangle of vertices $(0, \varepsilon),(0,0),(\varepsilon, 0)$.

2.4.3 The second perturbation μ^{ε} of ν^{ε}

We now concatenate ζ^{ε} with a suitable circuit, obtaining a new curve μ^{ε}, in such a way that the fourth component of the endpoint becomes equal to 0 , but leaving unchanged its third component.

Figure 2.4: The curve ($\mu_{1}^{\varepsilon}, \mu_{2}^{\varepsilon}$).

Fix two parameters $r, s>0$. To get $\left(\mu_{1}^{\varepsilon}, \mu_{2}^{\varepsilon}\right)$, we add to $\left(\zeta_{1}^{\varepsilon}, \zeta_{2}^{\varepsilon}\right)$ the polygonal planar curve joining the following points:

$$
\begin{aligned}
& (1,0) \rightarrow(1+r, 0) \rightarrow(1+r,-s) \rightarrow(1,-s) \rightarrow(1, s) \rightarrow \\
& \rightarrow(1-r, s) \rightarrow(1-r, 0) \rightarrow(1,0)
\end{aligned}
$$

We parametrize ($\mu_{1}^{\varepsilon}, \mu_{2}^{\varepsilon}$) on the interval $[-1,1+4 r+4 s]$ as follows:

$$
\left(\mu_{1}^{\varepsilon}, \mu_{2}^{\varepsilon}\right)(t):= \begin{cases}\left(\zeta_{1}^{\varepsilon}(t), \zeta_{2}^{\varepsilon}(t)\right) & \text { if } t \in[-1,1], \\ (t, 0) & \text { if } t \in[1,1+r], \\ (1+r, r-t+1) & \text { if } t \in[1+r, 1+r+s], \\ (-t+2+s+2 r,-s) & \text { if } t \in[1+r+s, 1+2 r+s], \\ (1, t-1-2 r-2 s) & \text { if } t \in[1+2 r+s, 1+2 r+3 s], \\ (-t+2+2 r+3 s, s) & \text { if } t \in[1+2 r+3 s, 1+3 r+3 s], \\ (1-r,-t+1+3 r+4 s) & \text { if } t \in[1+3 r+3 s, 1+3 r+4 s], \\ (t-4 r-4 s, 0) & \text { if } t \in[1+3 r+4 s, 1+4 r+4 s] .\end{cases}
$$

We now want to compute the lift $\mu^{\varepsilon}=\left(\mu_{1}^{\varepsilon}, \mu_{2}^{\varepsilon}, \mu_{3}^{\varepsilon}, \mu_{4}^{\varepsilon}\right):[-1,1+4 r+4 s] \rightarrow \mathbb{R}^{4}$ of the curve ($\mu_{1}^{\varepsilon}, \mu_{2}^{\varepsilon}$). Since μ^{ε} must be \mathcal{D}-horizontal, we impose that

$$
\begin{equation*}
\dot{\mu}_{3}^{\varepsilon}=\dot{\mu}_{2}^{\varepsilon} \mu_{1}^{\varepsilon} \tag{2.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\mu}_{4}^{\varepsilon}=\dot{\mu}_{2}^{\varepsilon}\left(\mu_{3}^{\varepsilon}\right)^{\gamma} \tag{2.37}
\end{equation*}
$$

almost everywhere in $[-1,1+4 r+4 s]$.
\diamond Case $t \in[-1,1]$.
Clearly $\mu^{\varepsilon}(t)=\zeta^{\varepsilon}(t)$ for every $t \in[-1,1]$.
\diamond CASE $t \in[1,1+r]$.
By (2.36) and (2.37) we have that for every $t \in[1,1+r]$

$$
\begin{aligned}
& \mu_{3}^{\varepsilon}(t)=\mu_{3}^{\varepsilon}(1)=0 \\
& \mu_{4}^{\varepsilon}(t)=\mu_{4}^{\varepsilon}(1)=\lambda(\varepsilon) .
\end{aligned}
$$

\diamond CASE $t \in[1+r, 1+r+s]$.
By (2.36) we see that $\dot{\mu}_{3}^{\varepsilon}(t)=-(1+r)$ for almost every $t \in[1+r, 1+r+s]$. Thus

$$
\mu_{3}^{\varepsilon}(t)=-(1+r)(t-r-1) \quad \text { for every } t \in[1+r, 1+r+s] .
$$

Therefore, by (2.37) we deduce that $\dot{\mu}_{4}^{\varepsilon}(t)=(-1)^{\gamma+1}(1+r)^{\gamma}(t-r-1)^{\gamma}$ for almost every $t \in[1+r, 1+r+s]$. Thus

$$
\mu_{4}^{\varepsilon}(t)=\lambda(\varepsilon)+\frac{(-1)^{\gamma+1}}{\gamma+1}(1+r)^{\gamma}(t-r-1)^{\gamma+1} \quad \text { for every } t \in[1+r, 1+r+s] .
$$

\diamond CASE $t \in[1+r+s, 1+2 r+s]$.
By (2.36) and (2.37) we deduce that for every $t \in[1+r+s, 1+2 r+s]$

$$
\begin{aligned}
& \mu_{3}^{\varepsilon}(t)=\mu_{3}^{\varepsilon}(1+r+s)=-s(1+r) \\
& \mu_{4}^{\varepsilon}(t)=\mu_{4}^{\varepsilon}(1+r+s)=\lambda(\varepsilon)+\frac{(-1)^{\gamma+1}}{\gamma+1}(1+r)^{\gamma} s^{\gamma+1}
\end{aligned}
$$

\diamond CASE $t \in[1+2 r+s, 1+2 r+3 s]$.
By (2.36) we have that $\dot{\mu}_{3}^{\varepsilon}(t)=1$ for almost every $t \in[1+2 r+s, 1+2 r+3 s]$. Then

$$
\mu_{3}^{\varepsilon}(t)=-s(1+r)+(t-1-2 r-s) \quad \text { for every } t \in[1+2 r+s, 1+2 r+3 s]
$$

By (2.37) we have that $\dot{\mu}_{4}^{\varepsilon}(t)=((t-1-2 r-s)-s(1+r))^{\gamma}$ for almost every $t \in[1+2 r+s, 1+2 r+3 s]$. Then for every $t \in[1+2 r+s, 1+2 r+3 s]$

$$
\begin{aligned}
\mu_{4}^{\varepsilon}(t)= & \lambda(\varepsilon)+\frac{(-1)^{\gamma+1}}{\gamma+1}(1+r)^{\gamma} s^{\gamma+1} \\
& +\frac{1}{(\gamma+1)}\left((t-1-2 r-s-s(1+r))^{\gamma+1}-(-s(1+r))^{\gamma+1}\right)
\end{aligned}
$$

\diamond CASE $t \in[1+2 r+3 s, 1+3 r+3 s]$.
By (2.36) and (2.37) we deduce that for every $t \in[1+2 r+3 s, 1+3 r+3 s]$

$$
\begin{aligned}
\mu_{3}^{\varepsilon}(t)= & \mu_{3}^{\varepsilon}(1+2 r+3 s)=s(1-r) \\
\mu_{4}^{\varepsilon}(t)= & \mu_{4}(1+2 r+3 s)=\lambda(\varepsilon)+\frac{(-1)^{\gamma+1}}{\gamma+1}(1+r)^{\gamma} s^{\gamma+1} r \\
& +\frac{1}{(\gamma+1)} s^{\gamma+1}(1-r)^{\gamma+1}
\end{aligned}
$$

\diamond CASE $t \in[1+3 r+3 s, 1+3 r+4 s]$.
By (2.36) we have that $\dot{\mu}_{3}^{\varepsilon}(t)=(r-1)$ for almost every $t \in[1+3 r+3 s, 1+3 r+4 s]$.
Then

$$
\mu_{3}^{\varepsilon}(t)=(1-r)(-t+1+3 r+4 s) \quad \text { for every } t \in[1+3 r+3 s, 1+3 r+4 s]
$$

By (2.37) we have that $\dot{\mu}_{4}^{\varepsilon}(t)=-(1-r)^{\gamma}(-t+1+3 r+4 s)^{\gamma}$ for almost every $t \in[1+3 r+3 s, 1+3 r+4 s]$. Thus for every $t \in[1+3 r+3 s, 1+3 r+4 s]$

$$
\begin{aligned}
\mu_{4}^{\varepsilon}(t)= & \lambda(\varepsilon)+\frac{(-1)^{\gamma+1}}{\gamma+1}(1+r)^{\gamma} s^{\gamma+1} r \\
& +\frac{1}{(\gamma+1)} s^{\gamma+1}(1-r)^{\gamma+1}+\frac{(1-r)^{\gamma}}{\gamma+1}\left((-t+1+3 r+4 s)^{\gamma+1}-s^{\gamma+1}\right)
\end{aligned}
$$

\diamond CASE $t \in[1+3 r+4 s, 1+4 r+4 s]$.
By (2.36) and (2.37) we deduce that for every $t \in[1+3 r+4 s, 1+4 r+4 s]$

$$
\begin{aligned}
\mu_{3}^{\varepsilon}(t)= & \mu_{3}^{\varepsilon}(1+3 r+4 s)=0 \\
\mu_{4}^{\varepsilon}(t)= & \lambda(\varepsilon)+\frac{(-1)^{\gamma+1}}{\gamma+1}(1+r)^{\gamma} s^{\gamma+1} r+\frac{1}{(\gamma+1)} s^{\gamma+1}(1-r)^{\gamma+1} \\
& -\frac{(1-r)^{\gamma}}{\gamma+1} s^{\gamma+1}
\end{aligned}
$$

Therefore, we conclude that

$$
\begin{aligned}
& \mu_{3}^{\varepsilon}(1+4 r+4 s)=0 \\
& \mu_{4}^{\varepsilon}(1+4 r+4 s)=\lambda(\varepsilon)-\frac{(-1)^{\gamma+1}}{(\gamma+1)} r s^{\gamma+1}\left((r+1)^{\gamma}-(r-1)^{\gamma}\right)
\end{aligned}
$$

Note that $\mu_{4}^{\varepsilon}(1+4 r+4 s)=0$ if and only if

$$
\begin{equation*}
\lambda(\varepsilon)=\frac{(-1)^{\gamma+1}}{(\gamma+1)} r s^{\gamma+1}\left((r+1)^{\gamma}-(r-1)^{\gamma}\right) \tag{2.38}
\end{equation*}
$$

Moreover, the length of μ^{ε} is

$$
L\left(\mu^{\varepsilon}\right)=2(1-\varepsilon)+\varepsilon \sqrt{2}+2 c+4 r+4 s
$$

2.4.4 Final considerations

Now let us fix $r=s$ in the definition of μ^{ε}. Recall that $c<\frac{a-b}{2}$ and $c=\frac{\varepsilon^{2}}{2(a-b)}$, thus $\varepsilon<a-b$. Hence - given that also $\varepsilon<b$ - we shall take $0<\varepsilon<\bar{\varepsilon}:=\min \{b, a-b\}$.

Let us define

$$
\begin{equation*}
\Psi(\varepsilon):=\frac{\varepsilon^{2 \gamma+1}}{2^{\gamma}(2 \gamma+1)}(1+\varepsilon k) \quad \text { for every } \varepsilon \in(0, \bar{\varepsilon}) \tag{2.39}
\end{equation*}
$$

where $k:=\frac{2 \gamma+1}{2 b(\gamma+1)} \frac{a^{\gamma}-(a-b)^{\gamma}}{(a-b)^{\gamma}}>0$, and

$$
\begin{equation*}
\Phi(r):=\frac{r^{\gamma+2}}{(\gamma+1)}\left((r+1)^{\gamma}-(r-1)^{\gamma}\right) \quad \text { for every } r>0 \tag{2.40}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\Phi(r)=\frac{r^{\gamma+2}}{(\gamma+1)} \sum_{i=0}^{\gamma}\binom{\gamma}{i} r^{i}\left(1-(-1)^{\gamma-i}\right) \quad \text { for every } r>0 \tag{2.41}
\end{equation*}
$$

We deduce from (2.38) that, given $\varepsilon \in(0, \bar{\varepsilon})$, one has that

$$
\mu_{4}^{\varepsilon}(1+8 r)=0 \quad \text { if and only if } \quad \Psi(\varepsilon)=\Phi(r)
$$

Hence our task is to find, for $\varepsilon \in(0, \bar{\varepsilon})$ sufficiently small, a suitable $r>0$ (if it exists) such that both $\Psi(\varepsilon)=\Phi(r)$ and $L\left(\mu^{\varepsilon}\right)<L(\nu)$.
Note that $\Psi(\varepsilon)>0$ for every $\varepsilon \in(0, \bar{\varepsilon})$ and that $\Phi:(0,+\infty) \rightarrow(0,+\infty)$ is a polynomial function with positive coefficients such that $\Phi(0)=0$, in particular Φ is strictly increasing and continuous. Given that $\lim _{r \rightarrow+\infty} \Phi(r)=+\infty$ and $\lim _{r \rightarrow 0^{+}} \Phi(r)=0$, for every $\varepsilon \in(0, \bar{\varepsilon})$ there exists a unique $r(\varepsilon)>0$ such that

$$
\begin{equation*}
\Psi(\varepsilon)=\Phi(r(\varepsilon)) \tag{2.42}
\end{equation*}
$$

By (2.42) we deduce that $\lim _{\varepsilon \rightarrow 0^{+}} \Phi(r(\varepsilon))=\lim _{\varepsilon \rightarrow 0^{+}} \Psi(\varepsilon)=0$, hence necessarily

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} r(\varepsilon)=0 \tag{2.43}
\end{equation*}
$$

We now study what happens to the length of μ^{ε} when we choose $r=r(\varepsilon)$. We distinguish three cases:
\diamond CASE $\gamma=2$.
We have that

$$
\begin{aligned}
\Phi(r) & =\frac{4}{3} r^{5} \\
\Psi(\varepsilon) & =\frac{\varepsilon^{5}}{20}(1+\varepsilon k)
\end{aligned}
$$

In this case, we can explicitly compute the function $r:(0, \bar{\varepsilon}) \rightarrow(0,+\infty)$. Namely

$$
r(\varepsilon)=\sqrt[5]{\frac{3(1+\varepsilon k)}{80}} \varepsilon
$$

Note that μ^{ε} is strictly shorter than ν if and only if

$$
\begin{equation*}
L(\nu)-L\left(\mu^{\varepsilon}\right)=(2-\sqrt{2}) \varepsilon-\frac{\varepsilon^{2}}{a-b}-8 \sqrt[5]{\frac{3(1+\varepsilon k)}{80}} \varepsilon>0 \tag{2.44}
\end{equation*}
$$

Since $k>0$, we have that

$$
(2-\sqrt{2}) \varepsilon-\frac{\varepsilon^{2}}{a-b}-8 \sqrt[5]{\frac{3(1+\varepsilon k)}{80}} \varepsilon<\left(2-\sqrt{2}-8 \sqrt[5]{\frac{3}{80}}\right) \varepsilon-\frac{\varepsilon^{2}}{a-b}
$$

But the right hand side is positive if and only if $\varepsilon<(a-b)\left(2-\sqrt{2}-8 \sqrt[5]{\frac{3}{80}}\right)<0$, which is impossible because $\varepsilon \in(0, \bar{\varepsilon})$. Hence (2.44) is not satisfied in the case $\gamma=2$.
\diamond CASE $\gamma \geq 3$ ODD.
We have that

$$
\Phi(r)=\frac{2}{(\gamma+1)} \sum_{i=0}^{\frac{(\gamma-1)}{2}}\binom{\gamma}{2 i} r^{\gamma+2+2 i}=\frac{2 r^{\gamma+2}}{\gamma+1}\left(1+r^{2} p(r)\right)
$$

for a suitable polynomial $p \in \mathbb{N}[r]$. Equation (2.42) yields

$$
\begin{equation*}
r(\varepsilon)=g_{\gamma}(\varepsilon) C_{\gamma} \varepsilon^{\frac{2 \gamma+1}{\gamma+2}} \tag{2.45}
\end{equation*}
$$

where

$$
C_{\gamma}:=\sqrt[\gamma+2]{\frac{\gamma+1}{2^{\gamma+1}(2 \gamma+1)}}
$$

and

$$
g_{\gamma}(\varepsilon):=\sqrt[\gamma+2]{\frac{1+\varepsilon k}{1+r(\varepsilon)^{2} p(r(\varepsilon))}}
$$

In order to prove that ν is not a length minimizer, we have to verify that

$$
L\left(\mu^{\varepsilon}\right)<L(\nu),
$$

which is equivalent to

$$
\begin{equation*}
(2-\sqrt{2}) \varepsilon-\frac{\varepsilon^{2}}{a-b}-8 g_{\gamma}(\varepsilon) C_{\gamma} \varepsilon^{\frac{2 \gamma+1}{\gamma+2}}>0 \tag{2.46}
\end{equation*}
$$

By collecting ε, we have that (2.46) is equivalent to

$$
\begin{equation*}
(2-\sqrt{2})-\frac{\varepsilon}{a-b}-8 g_{\gamma}(\varepsilon) C_{\gamma} \varepsilon^{\frac{\gamma-1}{\gamma+2}}>0 \tag{2.47}
\end{equation*}
$$

Note that, since $\gamma>1$, one has

$$
\frac{\gamma-1}{\gamma+2}>0
$$

and note that $\lim _{\varepsilon \rightarrow 0^{+}} g_{\gamma}(\varepsilon)=1$. Hence the limit of the left hand side of (2.47) as $\varepsilon \rightarrow 0^{+}$is $2-\sqrt{2}>0$, proving that there exists $\varepsilon_{\gamma} \in(0, \bar{\varepsilon}]$ such that (2.47) is satisfied for every $\varepsilon \in\left(0, \varepsilon_{\gamma}\right)$.
\diamond Case $\gamma \geq 4$ Even.
We have that

$$
\Phi(r)=\frac{2}{(\gamma+1)} \sum_{i=0}^{\frac{(\gamma-2)}{2}}\binom{\gamma}{2 i+1} r^{\gamma+2+(2 i+1)}=\frac{2 r^{\gamma+3}}{\gamma+1}\left(1+r^{2} q(r)\right)
$$

for a suitable polynomial $q \in \mathbb{N}[r]$. Equation (2.42) yields

$$
\begin{equation*}
r(\varepsilon)=g_{\gamma}(\varepsilon) C_{\gamma} \varepsilon^{\frac{2 \gamma+1}{\gamma+3}} \tag{2.48}
\end{equation*}
$$

where

$$
C_{\gamma}:=\sqrt[\gamma+2]{\frac{\gamma+1}{2^{\gamma+1} \gamma(2 \gamma+1)}}
$$

and

$$
g_{\gamma}(\varepsilon):=\sqrt[\gamma+2]{\frac{1+\varepsilon k}{1+r(\varepsilon)^{2} q(r(\varepsilon))}}
$$

In order to prove that ν is not a length minimizer, we have to verify that

$$
L\left(\mu^{\varepsilon}\right)<L(\nu),
$$

which is equivalent to

$$
\begin{equation*}
(2-\sqrt{2}) \varepsilon-\frac{\varepsilon^{2}}{a-b}-8 g_{\gamma}(\varepsilon) C_{\gamma} \varepsilon^{\frac{2 \gamma+1}{\gamma+3}}>0 \tag{2.49}
\end{equation*}
$$

By collecting ε, we have that (2.49) is equivalent to

$$
\begin{equation*}
(2-\sqrt{2})-\frac{\varepsilon}{a-b}-8 g_{\gamma}(\varepsilon) C_{\gamma} \varepsilon^{\frac{\gamma-2}{\gamma+3}}>0 \tag{2.50}
\end{equation*}
$$

Note that, since $\gamma>2$, one has

$$
\frac{\gamma-2}{\gamma+3}>0
$$

and note that $\lim _{\varepsilon \rightarrow 0^{+}} g_{\gamma}(\varepsilon)=1$. Hence the limit of the left hand side of (2.50) as $\varepsilon \rightarrow 0^{+}$is $2-\sqrt{2}>0$, proving that there exists $\varepsilon_{\gamma} \in(0, \bar{\varepsilon}]$ such that (2.50) is satisfied for every $\varepsilon \in\left(0, \varepsilon_{\gamma}\right)$.

We finally summarize what we did in this section: we proved that
Theorem 2.18. Let $\gamma \in \mathbb{N}^{+}$with $\gamma \geq 3$. Let \mathcal{D} be the distribution in \mathbb{R}^{4} generated by

$$
\left\{\begin{array}{l}
X_{1}(x)=(1,0,0,0), \\
X_{2}(x)=\left(0,1, x_{1}, x_{3}^{\gamma}\right),
\end{array}\right.
$$

for every $x \in \mathbb{R}^{4}$. Let $\nu:[-1,1] \rightarrow \mathbb{R}^{4}$ be the strictly abnormal extremal for \mathcal{D} defined by

$$
\nu(t)= \begin{cases}(0,-t, 0,0) & \text { if } t \in[-1,0] \tag{2.51}\\ (t, 0,0,0) & \text { if } t \in[0,1]\end{cases}
$$

so that ν has a corner at 0 . Then ν is not length-minimizing.

2.5 Case $(\alpha, \beta, \gamma)=(1,0,2)$

In this section we shall make use of the following definitions:

- Given $\sigma^{1} \in \operatorname{Lip}\left([a, b], \mathbb{R}^{n}\right)$ and $\sigma^{2} \in \operatorname{Lip}\left([c, d], \mathbb{R}^{n}\right)$ such that $\sigma^{1}(b)=\sigma^{2}(c)$, the concatenation $\sigma^{1} * \sigma^{2} \in \operatorname{Lip}\left([a, b+d-c], \mathbb{R}^{n}\right)$ between σ^{1} and σ^{2} is defined by

$$
\left(\sigma^{1} * \sigma^{2}\right)(t):= \begin{cases}\sigma^{1}(t) & \text { if } t \in[a, b] \\ \sigma^{2}(t-b+c) & \text { if } t \in[b, b+d-c]\end{cases}
$$

If \mathcal{D} is a distribution on \mathbb{R}^{n}, generated by a global frame of orthonormal vector fields, and σ^{1}, σ^{2} are \mathcal{D}-horizontal, then also $\sigma^{1} * \sigma^{2}$ is \mathcal{D}-horizontal and satisfies $L\left(\sigma^{1} * \sigma^{2}\right)=L\left(\sigma^{1}\right)+L\left(\sigma^{2}\right)$.
Since $*$ is associative, for any Lipschitz curves σ^{1}, σ^{2} and σ^{3}, we will write $\sigma^{1} * \sigma^{2} * \sigma^{3}$ instead of $\left(\sigma^{1} * \sigma^{2}\right) * \sigma^{3}$.

- Given $\sigma \in \operatorname{Lip}\left([a, b], \mathbb{R}^{n}\right)$, we will denote by

$$
\begin{equation*}
\mathcal{E}(\sigma):=\sigma(b) \tag{2.52}
\end{equation*}
$$

its endpoint.

- With abuse of notation, for every $x, y \in \mathbb{R}^{n}$ we will denote by $[x, y]$ the following parametrization of the segment joining x to y :

$$
[x, y](t):=(1-t) x+t y \quad \text { for every } t \in[0,1] .
$$

In Section 2.4 we showed that the \mathcal{D}-horizontal angle ν (where ν is defined in (2.19) and \mathcal{D} is defined in Theorem 2.18) is not a length-minimizer for $\gamma \geq 3$. However, the same technique doesn't show that ν is not a length-minimizer in the case $\gamma=2$, since there was a problem in the balance of length (see Subsection 2.4.4). The aim of this section is to provide an example of a curve η^{ε}, which shows that ν is not a length-minimizer also in the case $\gamma=2$.
In order to do this, let us fix $\varepsilon<\frac{1}{4}$. We want to concatenate the following planar curves:

- We follow the "cut" ν^{ε} (defined in Subsection 2.4.1) from $(0,1)$ to $\left(\frac{1}{4}, 0\right)$, i.e. we consider

$$
\left.\nu^{\varepsilon}\right|_{\left[-1, \frac{1}{4}\right]} .
$$

- The rectangle R^{1} joining the following points:

$$
\left(\frac{1}{4}, 0\right) \rightarrow\left(\frac{1}{4},-2 \varepsilon^{2}\right) \rightarrow\left(\frac{1}{2},-2 \varepsilon^{2}\right) \rightarrow\left(\frac{1}{2}, 0\right)
$$

- The square Q^{1} (of suitable side $s>0$) joining the following points:

$$
\left(\frac{1}{2}, 0\right) \rightarrow\left(\frac{1}{2}, s\right) \rightarrow\left(\frac{1}{2}+s, s\right) \rightarrow\left(\frac{1}{2}+s, 0\right) \rightarrow\left(\frac{1}{2}, 0\right)
$$

- The rectangle R^{2} joining the following points:

$$
\left(\frac{1}{2}, 0\right) \rightarrow\left(\frac{1}{2},-4 s^{2}\right) \rightarrow\left(\frac{3}{4},-4 s^{2}\right) \rightarrow\left(\frac{3}{4}, 0\right)
$$

- The segment $S:=\left[\left(\frac{3}{4}, 0\right),(1,0)\right]$.
- The curve Q^{2} (of suitable parameter $r>0$) joining the following points:

$$
\begin{aligned}
& (1,0) \rightarrow(1+r, 0) \rightarrow(1+r,-r) \rightarrow \\
& (1,-r) \rightarrow(1, r) \rightarrow(1-r, r) \rightarrow(1-r, 0) \rightarrow(1,0)
\end{aligned}
$$

We parametrize the above-mentioned curves as follows:

$$
R^{1}(t):= \begin{cases}\left(\frac{1}{4},-t\right) & \text { if } t \in\left[0,2 \varepsilon^{2}\right], \\ \left(t-2 \varepsilon^{2}+\frac{1}{4},-2 \varepsilon^{2}\right) & \text { if } t \in\left[2 \varepsilon^{2}, 2 \varepsilon^{2}+\frac{1}{4}\right], \\ \left(\frac{1}{2}, t-4 \varepsilon^{2}-\frac{1}{4}\right) & \text { if } t \in\left[2 \varepsilon^{2}+\frac{1}{4}, 4 \varepsilon^{2}+\frac{1}{4}\right]\end{cases}
$$

$$
\begin{gathered}
Q^{1}(t):= \begin{cases}\left(\frac{1}{2}, t\right) & \text { if } t \in[0, s], \\
\left(t+\frac{1}{2}-s, s\right) & \text { if } t \in[s, 2 s], \\
\left(\frac{1}{2}+s,-t+3 s\right) & \text { if } t \in[2 s, 3 s], \\
\left(-t+4 s+\frac{1}{2}, 0\right) & \text { if } t \in[3 s, 4 s],\end{cases} \\
R^{2}(t):= \begin{cases}\left(\frac{1}{2},-t\right) & \text { if } t \in\left[0,4 s^{2}\right], \\
\left(t-4 s^{2}+\frac{1}{2},-4 s^{2}\right) & \text { if } t \in\left[4 s^{2}, 4 s^{2}+\frac{1}{4}\right], \\
\left(\frac{3}{4}, t-8 s^{2}-\frac{1}{4}\right) & \text { if } t \in\left[4 s^{2}+\frac{1}{4}, 8 s^{2}+\frac{1}{4}\right] . \\
(r+1, r-t) & \text { if } t \in[r, 2 r], \\
(-t+3 r+1,-r) & \text { if } t \in[2 r, 3 r], \\
(1, t-4 r) & \text { if } t \in[3 r, 5 r], \\
(-t+5 r+1, r) & \text { if } t \in[5 r, 6 r], \\
(1-r,-t+7 r) & \text { if } t \in[6 r, 7 r], \\
(t+1-8 r, 0) & \text { if } t \in[7 r, 8 r] .\end{cases}
\end{gathered}
$$

We want to choose $s, r>0$ in such a way that, having called η^{ε} the lift of the concatenated curve

$$
\left.\nu^{\varepsilon}\right|_{\left[-1, \frac{1}{4}\right]} * R^{1} * Q^{1} * R^{2} * S * Q^{2},
$$

one has that $\mathcal{E}\left(\eta^{\varepsilon}\right)=(1,0,0,0)$. We proceed in the following way: \diamond Step 1: Let us call $\pi^{1}:=\left.\nu^{\varepsilon}\right|_{\left[-1, \frac{1}{4}\right]} * R^{1}$ and $\bar{\pi}^{1}$ its lift to \mathbb{R}^{4}. Then

$$
\mathcal{E}\left(\bar{\pi}^{1}\right)=\left(\frac{1}{2}, 0,0,-\frac{\varepsilon^{5}}{20}-\frac{\varepsilon^{6}}{2}\right) .
$$

\diamond Step 2: Let us call $\pi^{2}:=\pi^{1} * Q^{1}$ and $\bar{\pi}^{2}$ its lift to \mathbb{R}^{4}. We want to find $s>0$ in such a way that the fourth component of

$$
\mathcal{E}\left(\bar{\pi}^{2}\right)=\left(\frac{1}{2}, 0,-s^{2},-\frac{\varepsilon^{5}}{20}-\frac{\varepsilon^{6}}{2}+\frac{1-2 s}{6} s^{4}\right)
$$

is equal to 0 . Note that $\mathcal{E}\left(\bar{\pi}^{2}\right)_{4}=0$ if and only if

$$
\begin{equation*}
f(s):=-3 \varepsilon^{5}-30 \varepsilon^{6}+10 s^{4}-20 s^{5}=0 \tag{2.53}
\end{equation*}
$$

By differentiating f with respect to s, we obtain that

$$
\frac{d}{d s} f(s)=40 s^{3}-100 s^{4}>0
$$

when $s \in\left(0, \frac{2}{5}\right)$, hence f is strictly increasing in $\left[0, \frac{2}{5}\right]$.
Note that $f(0)=-\left(3 \varepsilon^{5}+30 \varepsilon^{6}\right)<0$. Moreover, if $\varepsilon<\frac{2}{5} \sqrt[5]{\frac{5}{33}}$ then

$$
f\left(\frac{2}{5}\right)=-3 \varepsilon^{5}-30 \varepsilon^{6}+\frac{2^{5}}{5^{4}}>0
$$

Indeed, since $\varepsilon<\frac{2}{5} \sqrt[5]{\frac{5}{33}}<1$, we have that

$$
3 \varepsilon^{5}+30 \varepsilon^{6}=3 \varepsilon^{5}(1+10 \varepsilon)<33 \varepsilon^{5}<33\left(\frac{2}{5} \sqrt[5]{\frac{5}{33}}\right)=\frac{2^{5}}{5^{4}}
$$

Therefore, since $\frac{1}{4}<\frac{2}{5} \sqrt[5]{\frac{5}{33}}$, for every $\varepsilon \in\left(0, \frac{1}{4}\right)$ there exists an unique positive solution $s(\varepsilon) \in\left(0, \frac{2}{5}\right)$ of (2.53). Now we want to estimate $s(\varepsilon)$: note that $f(s(\varepsilon))=0$ if and only if

$$
s(\varepsilon)^{4}=\frac{3 \varepsilon^{5}}{10} \frac{1+10 \varepsilon}{1-2 s(\varepsilon)}
$$

Since $\varepsilon \in\left(0, \frac{1}{4}\right)$ and $s(\varepsilon) \in\left(0, \frac{2}{5}\right)$, we deduce that

$$
\frac{1+10 \varepsilon}{1-2 s(\varepsilon)}<\frac{1+10 \frac{1}{4}}{1-2 \frac{2}{5}}=\frac{35}{2}
$$

hence $s(\varepsilon)^{4}<\frac{21}{4} \varepsilon^{5}$. Thus

$$
\begin{equation*}
0<s(\varepsilon)<\sqrt[4]{\frac{21}{4}} \varepsilon^{\frac{5}{4}} \tag{2.54}
\end{equation*}
$$

\diamond STEP 3: Let us call $\pi^{3}:=\pi^{2} * R^{2}$ and $\bar{\pi}^{3}$ its lift to \mathbb{R}^{4} (having chosen $s=s(\varepsilon)$ in the definition of Q^{1}). Then

$$
\mathcal{E}\left(\bar{\pi}^{3}\right)=\left(\frac{3}{4}, 0,0,-\frac{16}{3} s(\varepsilon)^{6}\right) .
$$

\diamond Step 4: Let us call $\pi^{4}:=\pi^{3} * S * Q^{2}$ and $\bar{\pi}^{4}$ its lift to \mathbb{R}^{4}. Then

$$
\mathcal{E}\left(\bar{\pi}^{4}\right)=\left(1,0,0,-\frac{16}{3} s(\varepsilon)^{6}+\frac{4}{3} r^{5}\right)
$$

Now let us choose $r=r(\varepsilon):=\sqrt[5]{4} s(\varepsilon)^{\frac{6}{5}}$. Therefore $\mathcal{E}\left(\bar{\pi}^{4}\right)_{4}=0$.

Now let us call $\eta^{\varepsilon}:=\bar{\pi}^{4}$ with the choice $s=s(\varepsilon)$ and $r=r(\varepsilon)$. We have that
this curve joins $e_{2}=(0,1,0,0)$ to $e_{1}=(1,0,0,0)$. Thus it is a competitor for $d\left(e_{2}, e_{1}\right)$. It only remains to show that, for a suitable $\varepsilon \in\left(0, \frac{1}{4}\right)$, one has that $L\left(\eta^{\varepsilon}\right)<L(\nu)=2$. Notice that $L\left(\eta^{\varepsilon}\right)<2$ if and only if

$$
\begin{equation*}
(2-\sqrt{2}) \varepsilon-4 \varepsilon^{2}-4 s(\varepsilon)-8 s(\varepsilon)^{2}-8 r(\varepsilon)>0 \tag{2.55}
\end{equation*}
$$

From (2.54) we deduce that

$$
(2-\sqrt{2}) \varepsilon-4 \varepsilon^{2}-4 s(\varepsilon)-8 s(\varepsilon)^{2}-8 r(\varepsilon)>g(\varepsilon)
$$

where

$$
g(\varepsilon):=(2-\sqrt{2}) \varepsilon-4 \varepsilon^{2}-4 \sqrt[4]{\frac{21}{4}} \varepsilon^{\frac{5}{4}}-8 \sqrt[2]{\frac{21}{4}} \varepsilon^{\frac{5}{2}}-8 \sqrt[5]{4}\left(\frac{21}{4}\right)^{\frac{3}{10}} \varepsilon^{\frac{3}{2}}
$$

Note that there exists $\bar{\varepsilon} \in\left(0, \frac{1}{4}\right)$ such that $g(\varepsilon)>0$ for every $\varepsilon \in(0, \bar{\varepsilon})$.
This shows that ν is not a length-minimizer.

Figure 2.5: The curve $\left(\eta_{1}^{\varepsilon}, \eta_{2}^{\varepsilon}\right)$.

Bibliography

[1] A. Agrachev, Some open problems in Geometric Control Theory and SubRiemannian Geometry, Springer INDAM Series, Stefani G., Boscain U., Gauthier J.-P., Sarychev A., Sigalotti M. (Eds.) 2014, 313-332.
[2] E. Le Donne, G. P. Leonardi, R. Monti, D. Vittone, Corners in nonequiregular sub-Riemannian manifolds. ESAIM Control Optim. Calc. Var. 2015.
[3] G. P. Leonardi, R. Monti, End-point equations and regularity of subRiemannian geodesics. Geometric And Functional Analysis, Vol. 18 (2008), 552-582.
[4] R. Montgomery, Abnormal minimizers. SIAM J. Control Optim., 32, (1994), 1605-1620.
[5] R. Montgomery, A tour of Subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence, RI, 2002.
[6] R. Monti, The regularity problem for sub-Riemannian geodesics, in Geometric Control Theory and Sub-Riemannian Geometry, Springer INDAM Series, Stefani G., Boscain U., Gauthier J.-P., Sarychev A., Sigalotti M. (Eds.) 2014, 313-332.
[7] A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields I: basic properties. Acta Math. 155 (1985), 103-147.
[8] F. Palmurella, Length-minimizing curves on sub-Riemannian manifolds: necessary conditions involving the end-point mapping. Tesi di laurea magistrale, (2014).
[9] E. Pasqualetto, Geodesics in Carnot-Carathéodory Spaces: Regular Abnormal Extremals. Tesi di laurea magistrale, (2014).

