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Introduction

The Plateau’s problem is a fundamental topic in geometric measure theory, it was
named after the Belgian physicist Joseph Plateau (1801-1833) who was interested in the
study of soap bubbles. The classical Plateau’s problem aims to find a surface in R3 of
minimal area which spans a given curve Γ. But today, we can consider a more general
case, that is given an M − 1-dimensional manifold Γ in an M -dimensional Riemannian
manifold MN(M < N), find an M -dimensional surface Σ ⊂ MN of minimal area such
that ∂Σ = Γ.

Over the years, several approaches have been developed to solve Plateau’s problem.
The first one is the parametrized approach, which was developed by Garnier, Douglas and
Radó in [14], [15] and [16]. The method is to use disk parameterizations. When dealing
with a smooth simple loop Γ in R3, we try to represent the surface using functions f
that map the unit disk in R2 to R3. The area of the surface is calculated by the integral
of its Jacobian determinant. Douglas was able to prove the existence of a function
f that minimizes this area by using the harmonic extension under certain regularity
conditions. However, this approach has some drawbacks. The first one is that getting
reasonably normalized parameterizations will be much harder for higher dimensional
sets, thus making existence results in these dimensions much less likely. The second one
is that many physical solutions of Plateau’s problem are not parameterized by disks.
And also the solutions obtained from this method may cross themselves in ways that
are not seen in real world soap films, which means they don’t accurately represent the
physical situation, see page 116 in chapter 8 of [23] by G.David.

The second one is the set theoretical approach, which was developed by Reifenberg
in [17]. Here, for anM -dimensional surface, the area is defined using theM -dimensional
Hausdorff measure HM . A closed set E is considered to be bounded by a given (M − 1)-
dimensional set Γ based on homology conditions, that is requiring the homomorphism
i∗ : HM−1(Γ,Z) → HM−1(E,Z) induced by the inclusion i to be trivial. This is a good
framework to study soap bubbles, but there are still many open questions. For instance,
we don’t know much about the existence of solutions for other homologies and groups
like Z.

The third one is the distributional approach, which is also the one that is studied
in this thesis. This approach was developed by Federer and Fleming [5] in the 1960s,
where they invented a powerful tool: Currents. Currents are the dual of differential
forms and have proven to be a natural framework for formulating extremal problems
in geometry. Let RN be our ambient space, an M -dimensional (M ≤ N) current T
is a linear functional on DM(RN), the space of M -dimensional differential forms with
compact support. The boundary ∂T of T is defined by

∂T (ω) = T (dω) ∀ω ∈ DM(RN).
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Then Plateau’s problem is to find an M -current with minimal “area” (here the notion
of area will be the mass) such that ∂T = S for some given M − 1-dimensional current
S. A natural idea to prove the existence of solutions to the Plateau’s problem is to use
the direct method from calculus of variation. Due to the definition of mass

M(T ) = sup
ω∈DM (RN)

|ω|≤1

T (ω),

the lower semicontinuity of mass is obvious. Then by using the Banach-Alaoglu theorem,
the existence of solutions to the Plateau’ problem is obtained. However, general currents
don’t have that much geometric information, more precisely, they are too far away from
smooth surfaces of RN . In this case, we have to find a class of currents that are closer
to these surfaces. The right objects will be Integral currents.

Integral currents are Integer-Multiplicity (rectifiable) M -currents with finite mass
and finite boundary mass. Roughly speaking, integral currents are the countable union
of “pieces” of C1-manifolds with integer multiplicity. Let U be an open set of RN , T is
an Integer-Multiplicity (rectifiable) M -current if there exist S, θ, ξ such that

T (ω) =

∫
S

⟨ω(x), ξ(x)⟩θ(x)dHM(x) ∀ω ∈ DM(U),

where

1. S is a HM -measurable and M -rectifiable subset of U with HM(S ∩K) < +∞ for
all K ⊆ U compact;

2. θ is a locally HM -integrable, nonnegative, integer-valued function;

3. ξ : S →
∧
M RN is a HM -measurable function such that for HM -almost every point

x ∈ S, ξ(x) is a simple unit M -vector on the approximate tangent space TxS of S.

Our goal is to prove the compactness theorem of IM(RN), the space of Integral cur-
rents, which is stated as the following: Let {Tj} ⊂ DM(RN) be a sequence of uniformly
bounded Integral currents, Then there is an Integral current T ∈ DM(RN) and a subse-
quence {Tj′} such that Tj → T weakly. Using again the direct method, we obtain the
existence of solutions to the Plateau’s problem. The proof of the compactness theorem
is complicated and will be divided into several steps.

The first step will be the deformation theorem, which is one of the fundamental
results of the theory of currents. It provides a useful approximation of a current T by
a polyhedral chain P lying on a certain M -skeleton such that the error is of the form
T −P = ∂R+S. The main error term is ∂R, where R is the (M+1)-dimensional surface
through which T is deformed to P . The other error term S arises in moving ∂T into the
skeleton, this is called the weak polyhedral approximation. The isoperimetric inequality
is also an important result yielded by the deformation theorem.

The next step of the proof of the compactness theorem will be an induction argument
on the dimension of the currents. In the case M = 0, the compactness is just a result of
Bolzano-Weierstrass theorem. Now we assume the compactness theorem is valid for the
dimension of M − 1, then we can use the induction assumption and the weak polyhedral
approximation to get that every ∂Tj is an Integral current (this result is called the
boundary rectifiability theorem), and so is ∂T . Then by Homotopy Formula, we can
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assume that ∂T = 0. Finally, using some preliminary lemmas such as the Density
Lemma and the Rectifiability Criterion, we can conclude that T ∈ DM(RN) is indeed an
Integral current.

The Integral currents approach has the advantage of providing existence results in
all dimensions, and solutions are very regular away from a small singular set. See [18],
[19], [20], [21], [22], [24] and [25]. However, mass-minimizers may not be a perfect model
for soap films as the mass may not be the right notion of area, and some soap films with
interior singularities cannot be described by mass-minimizers. Also, the fact that the
notion of current inherently involves an orientation is problematic for certain examples,
such as Möbius films.

The thesis will focus on the theory of current in Euclidean spaces, but in fact, currents
could be generalized to metric spaces. In the 1990s, De Giorgi’s paper [13] formulated
a generalized Plateau’s problem in any metric space E using only the metric structure,
having done so, he raised some natural questions about the existence of solutions to the
generalized Plateau problem in metric or in Banach and Hilbert spaces. See also [26].
In metric spaces, the concept of currents is extended in a more abstract way. Since
metric spaces lack a differentiable structure, currents are no longer defined as the dual
of differential forms. Instead, following De Giorgi’s approach, currents are defined in
terms of metric functionals. Metric functionals are functions T defined on (M + 1)-
tuples ω = (f0, f1, · · · , fM), where M is the dimension, fi are Lipschitz functions in the
metric space E, and f0 is also bounded, the space of these (M + 1)-tuples is denoted by
DM(E). Then, an M -currents T is a function T : DM(E) → R satisfying the following
three conditions:

1) T is (M + 1)-linear;

2) continuity with respect to pointwise convergence in the last M arguments with
uniform Lipschitz bounds;

3) locality, that is T (f0, f1, · · · , fM) = 0 whenever some fi (i ̸= 0) is a constant on a
neighborhood of the support of f0.

The mass of a current T denoted by ||T || in this context is defined as the least measure
µ satisfying

|T (f0, f1, · · · , fM)| ≤
M∏
i=1

Lip(fi)

∫
E

|f0|dµ.

In metric spaces, the class of rectifiable currents RM(E) can be defined as

RM(E) = {T : ||T || ≪ HM and is concentrated on a countably HM -rectifiable set},

and the class of Integer-Multiplicity rectifiable currents Ik(E) is defined based on the
property that the pushforward φ#(T ⌊A) ∈ DM(RM) has Integer-Multiplicity for any
Borel set A ⊂ E, and Lipschitz map φ : E → RM . Similar to the Euclidean case, the
pushforward is defined by

φ#T (f0, f1, · · · , fM) = T (φ ◦ f0, f1 ◦ φ, · · · , fM ◦ φ),

and the boundary of T is defined by

∂T (ω) = T (dω) ∀ω ∈ DM(E),
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where dω is the exterior differential defined by

dω = d(f0, f1, · · · , fM) := (1.f0, f1, · · · , fM) ∈ DM+1(E).

In [11], Ambrosio and Kirchheim proved that the closure theorem and boundary
rectifiability theorem for Integer-Multiplicity rectifiable currents hold in any complete
metric space, which is a significant result as it shows that these are general phenomena
independent of the Euclidean-like homogeneous structure. Finally, in chapter 8 and
chapter 10 of [11], the existence of solutions to the generalized Plateau’s problem

min{||T ||(E) : T ∈ IM+1(E), ∂T = S}

was proven.
The theory of currents remains an active area of research. As we mentioned before,

integral currents can be approximated by polyhedral chains. A natural question arises:
Can integral currents be approximated by smooth manifolds? A recent work [27] by De
Lellis and his collaborators provides an answer: Each integral cycle T (integral current
with ∂T = 0) in a Riemannian manifold M can be approximated by an integral cycle
in the same homology class which is a smooth submanifold Σ of nearly the same area,
up to a singular set of codimension 5. Moreover, if the homology class τ is representable
by a smooth submanifold (there exists a smooth embedding f : Σ → M such that the
fundamental class of Σ equals τ), then Σ can be chosen free of singularities.

Assume N,M ∈ N+ are positive integers, M is a connected smooth oriented closed
Riemannian manifold of dimensionM +N , τ is a nonzero element of theM -dimensional
integral homology group HM(M,Z) and T is an integral current (hence a cycle) repre-
senting τ . Then there is a sequence of smooth triangulations Kj of M and a sequence of
smooth embedded oriented M -dimensional submanifolds (Σj)j in M\KM−5

j such that

1. [|Σj|] → T in the sense of currents,

2. limj→∞HM(Σj) = M(T ),

3. ∂[|Σj|] = 0 and [|Σj|] is in the same homology class as T .

This theorem provides a stronger approximation result than polyhedral chains.
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Chapter 1

Preliminary Tools

1.1 Analytical Tools

Denote the set of continuous functions with compact support in RN by

Cc(RN) = {f ∈ C(Rn) : supp f ⊂ RN compact}

where C(RN) is the space of continuous functions f : RN → R and

supp f = {x ∈ RN : f(x) ̸= 0}

is the support of f . Because all elements of C(RN) are bounded functions, we may equip
C(RN) with the norm

∥f∥ = sup
x∈RN

|f(x)|.

Linear functionals on Cc(RN) are described by the following

Theorem 1.1.1 (Riesz Representation Theorem). Let L : Cc(RN) → R be a linear
functional satisfying

M = sup

{
|L(ϕ)| : ϕ ∈ Cc(RN), sup

x∈RN

|ϕ(x)| ≤ 1

}
<∞.

Then there exists a Radon measure λ on RN and a λ-measurable function g : RN → R
such that

1. λ(RN) =M , 2. L(ϕ) =
∫
RN ϕgdλ, for all ϕ ∈ Cc(RN).

One can find the proof on page 116 of [1].
We call φ a mollifier if

• φ ∈ C∞(RN);

• φ ≥ 0;

• suppφ ⊆ B(0, 1);

•
∫
RN

φ(x)dx = 1;

• φ(x) = φ(−x).
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For σ > 0 we set φσ(x) = σ−Nφ(x/σ) and we call {φσ}σ>0 a family of mollifiers. In case
f ∈ L1

loc(RN) and σ > 0, we define

fσ(x) = f ∗ φσ(x) =
∫
RN

f(z)φσ(x− z)dz =

∫
RN

f(x− z)φσ(z)dz.

Theorem 1.1.2. We have fσ ∈ C∞ and fσ converges to f as σ → 0+ in the following
senses:

• fσ → f pointwise almost everywhere;

• fσ → f in the L1
loc topology;

• If f is continuous then fσ converges uniformly on compact sets to f .

The reference[7] contains details of these assertions.
Next, we will introduce the notion of weak topology, which is very important in

functional analysis.
Let V be a normed space, the space of continuous linear functional on V is denoted

by V ∗, it is equipped with the operator norm. A sequence (Tn) ⊂ V ∗ is said to converge
weakly-∗ to T ∈ V ∗ if

Tn(v) → T (v) for all v ∈ V.

In this case, we use the notation: Tn
∗
⇀ T .

The proof of the following propsition is easy:

Proposition 1.1.1. Let T, Tn ∈ V ∗, n ∈ N. Then

1. If Tn → T , then Tn
∗
⇀ T .

2. If Tn
∗
⇀ T , then ∥T∥ ≤ lim infn→∞ ∥Tn∥.

The most important fact about the weak-∗ topology is the following compactness
result:

Theorem 1.1.3 (Banach-Alaoglu). Let V be a separable normed space and (Tn) ⊂ V ∗

a sequence satisfying
sup
n∈N

∥Tn∥ <∞.

Then there exists a subsequence (Tnk
) and T ∈ V ∗ such that

Tnk

∗
⇀ T.

For the proof, see Theorem 3.17 in [9].
Next we will introduce the BV functions, let U ⊂ RN be an open set and u ∈ L1(U).

We can define∫
U

|Du| := sup
|g(x)|≤1

{∫
U

u div gdx : g = (g1, · · · , gN) ∈ C1(U,RN), supp g ⊂ U

}
.

Then u is said to have bounded variation in U(u is a BV function in U) if
∫
U
|Du| <

∞, and the space of these functions is denoted by BV (U) := {u ∈ L1(U) :
∫
U
|Du| <∞}.
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Moreover, the total variation measure |Du| of u is defined by

|Du|(A) =
∫
A

|D(u)|

for A ⊂ RN open. We also have the local version which is BVloc(U) := {u ∈ L1
loc(U) :∫

U ′ |Du| <∞ for U ′ ⊂⊂ U}.
The space BV (U) equipped with the BV norm

||u||BV := ||u||L1(U) +

∫
U

|Du|

is a Banach space.

Theorem 1.1.4 (Compactness theorem for BV functions). Let U ⊂ RN be open, bounded
with Lipschitz boundary and assume {fk}+∞

k=1 is a sequence in BV (U) such that ||fk||BV <
+∞. Then there exists a subsequence {fkj}+∞

j=1 and a function f ∈ BV (U) such that

fkj → f in L1(U).

One can find the content of BV functions and this theorem in [10]. The next theorem
gives us some information on smooth approximations to BV functions.

Theorem 1.1.5. Let Ω ⊂ RN be open and f ∈ BV (Ω). Then there exists a sequence of
functions f1, f2, . . . in C

∞(Ω) such that

1. fi → f in L1(Ω),

2.
∫
Ω
|Dfi| →

∫
Ω
|Df |,

3. Dfi → Df .

For the proof, see Theorem 3.6.12 in[10].
Next we introduce the Poincaré Inequalities. We begin with a version for smooth

functions. Let LN denote the standard N -dimensional Lebesgue measure. If f is a
Lebesgue measurable function and U is a subset of the domain of f such that LN(U).
Then the average of f over U is defined by

fU =
1

LN(U)

∫
U

f(t)dt. (1.1)

Lemma 1.1.1. Let U be a bounded, convex, open subset of RN . Let f be a continuously
differentiable function on U . Then there is a constant c = c(U) such that∫

U

|f(t)− fU(t)| dt ≤ c ·
∫
U

|Df(t)| dt.

Next we wish to replace the average fU in the statement of the lemma with a more
arbitrary constant.

Lemma 1.1.2. Let β ∈ R and 0 < θ < 1 be constants. Let f and U be as in Lemma
1.1.1, and let fU be as in (1.1). Assume that

LN{x ∈ U : f(x) ≥ β} ≥ θLN(U)
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and
LN{x ∈ U : f(x) ≤ β} ≥ θLN(U).

Then there is a constant C = C(θ) such that∫
U

|f(x)− β| dx ≤ θ−1(1 + θ) ·
∫
U

|f(x)− fU | dx.

Theorem 1.1.6. Let U be a bounded, convex, open subset of RN . Let β, θ be as in
Lemma 1.1.2. Let f be a continuously differentiable function on U . Then∫

U

|f(x)− β| dx ≤ c ·
∫
U

|Df(x)| dx.

Theorem 1.1.7. Let U be a bounded, convex, open subset of RN . Let β, θ be as in
Lemma 1.1.2. Let u ∈ BV (U), then∫

U

|u− β| dLN ≤ c ·
∫
U

|Du|.

Theorem 1.1.8. Let U ⊆ RN be a bounded, open, and convex domain. If u ∈ BVloc(RN)
with suppu ⊆ U , then there is a constant c = c(U) such that∫

RN

|Du(x)| dx ≤ c ·
(∫

U

|Du|+
∫
U

|u(x)| dx
)
.

One can find the proof of these lemmas and theorems in section 5.5 of [1].

1.2 Algebraic Tools

Current are the dual of differential forms. To define differential forms, we need some
exterior algebra. We first introduce the space of M -vectors in RN .

M -vectors are a kind of “products” of vectors. Given v1, v2 ∈ RN , a geometric
interpretation of the 2-vector v1 ∧ v2 is the oriented parallelogram spanned by vectors
v1 and v2. If v1 = λv2 for some λ ∈ R, then the parallelogram is degenerate, and we
have v1 ∧ v2 = 0. Similarly, a 3-vector v1 ∧ v2 ∧ v3 can be interpreted as an oriented
parallelepiped spanned by vectors v1, v2, v3 ∈ RN .

We generalize this observation:

1. Define an equivalence relation ∼ on

(RN)M = RN × RN × · · · × RN︸ ︷︷ ︸
M−factors

by requiring, for all a ∈ R, 1 ≤ i < j ≤ m and ui ∈ RN ,

(a)
(u1, ..., aui, ..., uj, ..., uM) ∼ (u1, ..., ui, ..., auj, ..., uM),

(b)
(u1, ..., ui, ..., uj, ..., uM) ∼ (u1, ..., ui + auj, ..., uj, ..., uM),
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(c)
(u1, ..., ui, ..., uj, ..., uM) ∼ (u1, ...,−uj, ..., ui, ..., uM).

Extend the resulting relation to be symmetric and transitive.

2. The equivalence class of (u1, u2, ..., uM) under ∼ is denoted by u1 ∧ u2 ∧ · · · ∧ uM .
We call u1∧u2∧· · ·∧uM a simpleM -vector, the symbol ∧ is called exterior product
(or wedge product).

3. On the vector space of formal linear combinations of simple M -vectors, we define
the equivalence relation ≈ by extending the relation defined by requiring

(a) a(u1 ∧ u2 ∧ · · · ∧ uM) ≈ (au1) ∧ u2 ∧ · · · ∧ uM .

(b) (u1 ∧ u2 ∧ · · · ∧ uM) + (v1 ∧ u2 ∧ · · · ∧ uM) ≈ (u1 + v1) ∧ u2 ∧ · · · ∧ uM .

4. The equivalence classes of formal linear combinations of simple M -vectors under
≈ are the M -vectors in RN . The vector space of M -vectors in RN is denoted by∧
M(RN), and one can observe that it is also the space of all linear combinations∑

1≤i1<···<iM≤N

ai1...iM ei1 ∧ · · · ∧ eiM ,

where ai1...iM ∈ R, and {e1, . . . , eN} is the standard basis of RN .

5. The exterior product ∧ defined by the following:

∧ :
∧

K
(RN)×

∧
M
(RN) →

∧
K+M

(RN)

(u1 ∧ · · · ∧ uK) ∧ (v1 ∧ · · · ∧ vM) 7→ uK ∧ · · · ∧ uK ∧ v1 ∧ · · · ∧ vM

is an anticommutative, multilinear multiplication, and the exterior algebra of RN ,
denoted by

∧
∗(RN), is the direct sum of

∧
i(RN), i.e.∧

∗
(RN) =

∧
0
(RN)⊕

∧
1
(RN)⊕ · · · .

One can show that {ei1 ∧ · · · ∧ eiM} is the basis of
∧
M(RN), and since it is defined

by the strictly increasing sequences i1 < · · · < iM , then

dim
∧

M
(RN) =

(
N

M

)
.

If M = N , e1 ∧ · · · ∧ eN is the only basis vector, and therefore

dim
∧

N
(RN) = 1.

So we identify
∧
N(RN) = R. Similarly,

∧
1(RN) = span(e1, . . . , eN) = RN . We also

define
∧

0(RN) = R and
∧
K(RN) = {0} for K > N .

For a, b, c ∈ R, u, v ∈
∧
K(RN), w ∈

∧
M(RN), one can easily check that the exterior

product has the following properties:

(a) Multilinearity:
(au+ bv) ∧ cw = ac(u ∧ w) + bc(v ∧ w),

9



au ∧ (bv + cw) = ab(u ∧ v) + ac(u ∧ w),

(b) Associativity:
u ∧ (v ∧ w) = (u ∧ v) ∧ w,

(c) Anticommutativity:
u ∧ w = (−1)KMv ∧ w

Since the M -vectors ei1 ∧ · · · ∧ eiM , 1 ≤ i1 < · · · < iM ≤ N , form a basis of∧
M(RN), we may equip it with an inner product ⟨·, ·⟩ such that these M -vectors form

an orthonormal basis. This peoduct can defined in the following way:
Denote ∧

(N,M) = {(i1, ..., iM) ∈ NM : 1 ≤ i1 < ... < iM ≤ N},

and eI = ei1 ∧ ... ∧ eiM for I = (i1, ..., iM) ∈
∧
(N,M). Then for aI , bI ∈ R, the inner

product is defined by letting

⟨
∑

I∈
∧
(N,M)

aIeI ,
∑

J∈
∧
(N,M)

bJeJ⟩ =
∑

I∈
∧
(N,M)

aIbI ,

and the norm is defined by
|v| =

√
⟨v, v⟩,

for v ∈
∧
M(RN).

If v is a simple M -vector, that is v = v1 ∧ · · · ∧ vM , then

|v| = |v1 ∧ · · · ∧ vM |

is the M -dimensional volume of the parallelepiped spanned by v1, . . . , vM . In particular,

|v1 ∧ · · · ∧ vM | = 0

if and only if v1, . . . , vM are linearly dependent.
Once we have M -vectors, we can define the M -covectors by the following way.
Let

∧1(RN) denote the dual of RN (
∧1(RN) = (RN)∗) and let dx1, . . . , dxN denote

the dual basis of e1, . . . , eN . That is,

dxi(ej) = δij =

{
1, if i = j;

0, if i ̸= j.

Then we define the vector space∧M
(RN) =

∧
M

(∧1
(RN)

)
as above by replacing ei with dxi. The elements∑

i1<···<iM

ai1...iMdxi1 ∧ · · · ∧ dxiM =
∑

I∈
∧
(N,M)

aIdxI

of
∧M(RN) are called M -covectors. The space

∧M(RN) has the induced inner product
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defined by 〈 ∑
I∈

∧
(N,M)

aIdxI ,
∑

J∈
∧
(N,M)

bJdxJ

〉
=

∑
I∈

∧
(N,M)

aIbI ,

such that the M -covectors dxI = dxi1 ∧ · · · ∧ dxiM , 1 ≤ i1 < · · · < iM ≤ N , form an
orthonormal basis. We have the norm induced by this inner product.

|ω| =
√

⟨ω, ω⟩,

for ω ∈
∧M(RN).∧M(RN) is the dual space of

∧
M(RN),

∧0(RN) = R,
∧1(RN) = RN and

∧M(RN) =
{0} if M > N .

11



Chapter 2

Currents in Euclidean space

2.1 Basic Facts

We start with the definition of an M -differential form.

Definition 2.1.1. Let U ⊂ RN be an open set and aI(x) be a function. The mapping

ξ : U →
∧

M
(RN)

x 7→
∑

I∈
∧
(N,M)

aI(x)eI

is an M-vector field in U , and the mapping

α : U →
∧M

(RN)

x 7→
∑

I∈
∧
(N,M)

aI(x)dxI

is an M-differential form (or M-covector field) in U .
We also define the norms on the spaces of M-vector fields and M-differential forms

by:
||ξ|| = sup

x∈U

√
⟨ξ(x), ξ(x)⟩

and
|α| = sup

x∈U

√
⟨α(x), α(x)⟩,

respectively.

If U ⊂ RN is open and

α =
∑

I∈
∧
(N,M)

aI(x)dxI ,

where the functions aI are C
∞-smooth, we say that α is a C∞-smooth differentialM -form

in U .
The space of all C∞-smooth differential M -forms in U will be denoted by EM(U).
Since

∧0(RN) = R, we have E0(U) = C∞(U,R). If f : U → R is C∞, f ∈ E0(U), its
differential df : U →

∧1(RN) is a C∞ smooth differential 1-form such that at a point

12



x ∈ U , df(x) : RN → R is the linear mapping defined by

df(x)v = ⟨∇f(x), v⟩, v ∈ RN ,

that is

df =
N∑
i=1

∂f

∂xi
dxi.

Moreover, dxi is the differential of the ith coordinate function x 7→ xi.

Definition 2.1.2. Let
α =

∑
I∈

∧
(N,M)

αIdxI

be a C∞-smooth differential M -form. The exterior derivative of α is the (M + 1)-form

dα =
∑

I∈
∧
(N,M)

dαI ∧ dxI =
∑

I∈
∧
(N,M)

N∑
i=j

∂αI
∂xj

dxj ∧ dxI .

In particular, df is the exterior derivative of a 0-form f .

Using the facts that
∂2αI
∂xi∂xj

=
∂2αI
∂xj∂xi

and dxi ∧ dxj = −dxj ∧ dxi, we obtain d2α = d(dα) = 0.

Definition 2.1.3 (Pull-Back). Let U ⊂ RN and V ⊂ RD be open sets and f =
(f 1, . . . , fD) : U → V a C∞-smooth mapping. The pull-back of the differential M -form
α in V ,

α =
∑

1≤i1<···<iM≤D

αi1···iMdxi1 ∧ · · · ∧ dxiM ,

is the differential M -form f ∗α in U defined by

f ∗α =
∑

1≤i1<···<iM≤D

(αi1···iM ◦ f)df i1 ∧ · · · ∧ df iM ,

where

df j =
N∑
i=1

∂f j

∂xi
dxi.

Notice that we do not require α being smooth. The pull-back and the exterior
derivative commute for smooth α, that is

f ∗(dα) = d(f ∗α).

For U ⊂ RN , let DM(U) ⊂ EM(U) denote the space of all C∞-smooth differential
M -forms in U with compact support, that is, if

α =
∑

I∈
∧
(N,M)

αIdxI ,

13



then each αI is C
∞-smooth and there exists a compact setK ⊂ U such that suppαI ⊂ K

for every I, i.e., αI ∈ C∞
c (K).

The normed space (DM(U), | · |) is separable and the topology induced by the norm
is different from the locally convex topology which is defined by the following.

We endow DM(U) with the locally convex topology by saying that a sequence αk ∈
DM(U), k ∈ N,

αk =
∑

I∈
∧
(N,M)

αkIdxI

converges to

α =
∑

I∈
∧
(N,M)

αIdxI ∈ DM(U)

if there exists a compact set K ⊂ U such that

suppαk :=
⋃

I∈
∧
(N,M)

supp αkI ⊂ K ∀k

and
∂|J |αkI
∂xJ

→ ∂|J |αI
∂xJ

uniformly as k → ∞ for every multi-index J = j1 · · · jN .
Once we have the differential forms, we could define the currents.

Definition 2.1.4. An M -current T in an open set U ⊆ RN is a continuous(with respect
to the locally convex topology) linear functional on on DM(U):

T : DM(U) → R.

The space of M -currents in U is denoted by DM(U), and the support of T is the set:

sptT = U \
⋃

{V: V ⊆ RN open, T (ω) = 0 ∀ω ∈ DM(U), suppω ⊆ V }

EachM -current T ∈ DM(U) is continuous with respect to the locally convex topology,
but not necessary continuous with respect to the norm topology of DM(U).

Definition 2.1.5. If M ≥ 1, the boundary of an M -current T ∈ DM(U) is the (M − 1)-
current ∂T ∈ DM−1(U) defined by

∂T (ω) = T (dω),

for all ω ∈ DM−1(U). Since d2 = 0, we have ∂2T = ∂(∂T ) = 0, we also define ∂T = 0
for all T ∈ D0(U).

Definition 2.1.6. Let T ∈ DM(U), if ϕ ∈ Ek(U) and k ≤M , then we can define

T ⌊ϕ ∈ DM−k(U)

by letting for all ω ∈ DM−K(U)

(T ⌊ϕ)(ω) = T (ϕ ∧ ω).
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Now, let ξ be the a p-vector field with C∞-coefficients on U. Then we define

T ∧ ξ ∈ DM+p(U)

by letting
(T ∧ ξ)(ω) = T (ξ⌋ω)

for all ω ∈ DM+p(U), where ξ⌋ω ∈ DM(U) is the interior product, characterized by
⟨ξ⌋ω, α⟩ = ⟨ω, α ∧ ξ⟩ for each α ∈

∧
M(RN).

Since T is a linear functional on DM(U), we can define the partial derivatives of T
in the sense of distribution.

Definition 2.1.7. Let f ∈ C∞
c (U) and T ∈ DM(U), the partial derivatives DxjT ∈

DM(U) of T are defined by

DxjT (fdxI) = −T [(Dxjf)dxI ],

where I ∈
∧
(N,M), 1 ≤ j ≤ N and Dxjf is the classical partial derivative of the

function f .

Proposition 2.1.1. Suppose that ϕ and ξ have C∞-coefficients on U , where ϕ is a
k-form and ξ is a p-vector field. Then

(1) d(∂T ) = 0 if dimT ≥ 2;

(2) (∂T )ϕ = T ⌊dϕ+ (−1)k∂(T ⌊ϕ);

(3) ∂T = −
N∑
j=1

(DxjT )⌊dxj if dimT ≥ 1;

(4) T =
∑

J∈
∧
(N,M)

[T ⌊dxJ ] ∧ eJ ;

(5) Dxj(T ⌊ϕ) = (DxjT )⌊ϕ+ T ⌊(∂ϕ/∂xj);
(6) Dxj(T ∧ ξ) = (DxjT ) ∧ ξ + T ∧ (∂ξ/∂xj);

(7) (T ∧ ξ)⌊ϕ = T ∧ (ξ⌊ϕ) if dimT = 0 and k ≤ p;

(8) ∂(T ∧ ξ) = −T ∧ div ξ −
N∑
j=1

(DxjT ) ∧ (ξ⌊dxj) if dimT = 0 ≤ p.

In the above, the partial derivatives ∂ϕ/∂xj of the form ϕ and ∂ξ/∂xj of the vector
field ξ are obtained by differentiating the coefficient functions and we say that dimT =M
if T ∈ DM(U).

One can easily verify the above proposition by linearity.

2.1.1 Currents Representable by Integration

We want figure out what kinds of currents could be represented by integration. Let
U ∈ RN be an open set, we start from 0-currents:

Lemma 2.1.1. Let T ∈ D0(U), if for each open set W ⊂⊂ U there exists a positive real
number M <∞ such that

|T (ϕ)| ≤M ||ϕ||∞ (2.1)
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holds for all ϕ ∈ C∞
c (U), then there exists a total variation measure µT , such that

T (ϕ) =

∫
U

ϕdµT . (2.2)

Proof. Since C∞
c (U) is dense in Cc(U), by Hahn-Banach Theorem. T can be extended

to a continuous functional in Cc(U). Then by Theorem 1.1.1, the lemma holds.

Next, we endow DM(U) with the mass-norm:

Definition 2.1.8. Let T ∈ DM(U). We define the mass of T on the open set U by

M(T ) = sup
ω∈DM (U)

|ω|≤1

T (ω).

If W ⊆ U is an open subset, then we have the local mass given by

MW (T ) = sup
|ω|≤1,ω∈DM (W )

suppω⊂W

T (ω).

Since (DM , | · |) is a normed space, its dual space {T ∈ DM(U) : M(T ) < ∞} is a
Banach space. Now, we can prove the representation theorem for M -currents:

Theorem 2.1.1 (Representation theorem). If T ∈ DM(U) andMW (T ) <∞ for all open
W ⊂⊂ U , then there exists a Radon measure µT on U and a µT -measurable M-vector
field T⃗ : U →

∧
M(RN) such that |T⃗ | = 1 µT -almost everywhere such that

T (ω) =

∫
U

⟨ω(x), T⃗ (x)⟩dµT (x)

for all ω ∈ DM(U). Moreover, the measure µT , which we call the total variation measure
associated with T , is characterized by the identity

µT (W ) = sup
|ω|≤1,ω∈DM (W )

suppω⊂W

T (ω) =MW (T )

in particular, µT (U) =M(T ).

Proof. If MW (T ) < ∞ for all open W ⊂⊂ U , then, for each sequence J ∈
∧
(N,M)

the 0-dimensional current T ⌊dxJ satisfies the condition (2.1) and thus defines a total
variation measure µjJ and function fJ as in (2.2). Using the identity

T =
∑

J∈
∧
(N,M)

[T ⌊dxJ ] ∧ eJ

together the total variation measures µfJ and functions fJeJ and normalizing the re-
sulting function, we obtain the Radon measure µT and the µT -measurable vector field
T⃗ .

The total variation measure µT will also be denoted by ∥T∥ and the vector field T⃗ is
called the orientation function.
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Definition 2.1.9 (Restrictions of currents). If T ∈ DM(U), M(T ) < ∞, and A ⊆ RN

is Borel, then the restriction of T to A is the m-current T ⌊A ∈ DM(U),

(T ⌊A)(ω) =
∫
A

⟨T⃗ (x), ω(x)⟩dµT (x), ω ∈ DM(U),

where T⃗ and µT are as in the theorem above. Similarly, if g is a µT -integrable function,
we also define T ⌊g ∈ DM(U), the interior multiplication by g, by

(T ⌊g)(ω) =
∫
U

g(x)⟨T⃗ (x), ω(x)⟩dµT (x), ω ∈ DM(U).

2.1.2 Plateau’s Problem for Normal Currents

First, we say something about the topology induced by the mass.

Definition 2.1.10. A sequence {Tk} ⊂ DM(U) is said to converge weakly to T ∈ DM(U)
if

Tk(ω) → T (ω) for every ω ∈ DM(U), as k → +∞.

We write Tk ⇀ T .
Notice that if T, Tk have finite mass, then this is just the weak-∗ convergence in the

dual space ({T ∈ DM(U) :M(T ) <∞},M(·)).

A simple but important property is following:

Theorem 2.1.2. (Lower semicontinuity of mass). If a sequence {Tk} ⊂ DM(U) con-
verges weakly to T ∈ DM(U), then

M(T ) ≤ lim inf
k→∞

M(Tk).

Proof. For every ω ∈ DM(U) with |ω| ≤ 1 we have

T (ω) = lim
k→∞

Tk(ω) ≤ lim inf
k→∞

M(Tk)

and hence M(T ) ≤ lim inf
k→∞

M(Tk).

We can now solve Plateau’s problem in a very weak sense.

Definition 2.1.11 (Normal currents). Let T ∈ DM(U), we define N(T ) = M(T ) +
M(∂T ), the space {T ∈ DM(U) : N(T ) < ∞} is denoted by NM(U) and elements in
this space are called normal M -currents in U .

Theorem 2.1.3 (Plateau’s problem for normal currents). Let S ∈ NM(U), then there
exists T ∈ NM(U) such that ∂T = ∂S and

M(T ) = inf{M(S ′) : S ′ ∈ NM(U), ∂S ′ = ∂S}.

Proof. Let {Tk} ⊂ NM(U) be a mass minimizing sequence with ∂Tk = ∂S for all k ∈ N.
Thus

M(Tk) → L := inf{M(S ′) : S ′ ∈ NM(U), ∂S ′ = ∂S}.
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By the Banach-Alaoglu Theorem 1.1.3, there exists a subsequence (Tkj) and T ∈ NM(U)
such that

Tkj ⇀ T.

Since Tkj ⇀ T , it follows that ∂Tkj ⇀ ∂T and hence ∂T = ∂S, in particular, T ∈ NM(U).
By the lower semi-continuity of mass, we have

M(T ) ≤ lim inf
j→∞

M(Tkj) = L.

Thus T is a mass minimizing current with boundary ∂S. This theorem is not satisfy-
ing because normalM -currents are in general very far fromM -dimensional submanifolds.

2.1.3 Association with Oriented Submanifold

Firstly, we fix some notation. For S ≥ 0, we denote the S-dimensional Hausdorff
measure by HS. Let N ∈ N, if the N -dimensional Lebesgue measure is denoted by LN ,
then we have that HN = LN .

Not every normal M -current is associated with M -dimensional submanifold, see the
following example:

Example 2.1.1. The 1-current on R2 given by

T (ω) :=

∫
[0,1]2

⟨ω, e1⟩dL2(x)

Satisfies M(T ) = 1 and M(∂T ) = 2 since

∂T (f) = T (df) =

∫
[0,1]2

∂f

∂x
(x, y)dxdy =

∫ 1

0

[f(1, y)− f(0, y)] dy,

So T ∈ N1(R2), but this current is not associated with any 1-dimensional submanifold.

Actually, we can construct a class of currents that are associated with oriented sub-
manifolds of RN . Suppose that S is a C1 oriented M -dimensional submanifold. Here S
being oriented means that for each point x ∈ S there is a set of M orthonormal tangent
vectors ξ1(x), ξ2(x), ..., ξM(x) such that

S⃗(x) = ξ1(x) ∧ ξ2(x) ∧ ... ∧ ξM(x)

defines a continuous vector field S⃗ : S →
∧
M(RN). We define the current [|S|] ∈

DM(RN) by setting

[|S|](ω) =
∫
S

⟨ω, S⃗⟩dHM .

As a special case of this definition, we can take S to be a Lebesgue measurable subset
of RN and define

[|S|](ω) =
∫
S

⟨ω, e1 ∧ e2 ∧ ... ∧ eN⟩dLN ,

for ω ∈ DN(RN).
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In case S is an oriented submanifold with oriented boundary, the classical Stokes’s
theorem tells us that

[|S|](dω) = [|∂oS|](ω),

where ∂oS is the oriented boundary of S. By the definition of the boundary of a current
we have

[|S|](dω) = (∂[|S|])(ω).

Thus, we have [|∂oS|] = ∂[|S|]. The definition of boundary of a current is consis-
tent with the classical definition of oriented boundary. We also observe that the mass
generalizes the area of a submanifold:

M([|S|]) = HM(S).

2.2 Constancy Theorem

Treat LN as the 0-current that gives the value
∫
U
ϕdLN when applied to ϕ ∈ D0(RN).

If ξ is an M -vector field with LN -measurable coefficients, satisfying∫
K

||ξ||dLN <∞

for each compact subsetK ⊆ RN , then there is a corresponding current LN∧ξ ∈ DM(RN)
given by

(LN ∧ ξ)(ψ) =
∫
RN

⟨ψ, ξ⟩dLN for all ψ ∈ DM(RN).

If ϕ ∈ Ek(U), with k ≤M , (LN ∧ ξ)⌊ϕ ∈ DM−k(U) is given by

[(LN ∧ ξ)⌊ϕ](ψ) =
∫
RN

⟨ϕ ∧ ψ, ξ⟩dLN

for ψ ∈ DM−k(RN). We can also write this as (LN ∧ ξ)⌊ϕ = LN ∧ (ξ⌊ϕ), where we define
the interior product ξ⌊ϕ by requiring that ⟨ψ, ξ⌊ϕ⟩ = ⟨ϕ ∧ ψ, ξ⟩.

If ξ has C1 coefficients, then (using the fact that when LN is treated as a current, all
its partial derivatives vanish) we have

Dxj(LN ∧ ξ) = LN ∧ (∂ξ/∂xj)

and

∂(LN ∧ ξ) = −
N∑
j=1

[DxjLN ∧ ξ]⌊dxj = −LN ∧
N∑
j=1

(∂ξ/∂xj)⌊dxj.

In case M = 1, in which case ξ is a 1-vector field, we see that

N∑
j=1

(∂ξ/∂xj)⌊dxj = div ξ. (2.3)

Letting (2.3) define the divergence of an M -vector field for all 1 ≤M ≤ N , we have

∂(LN ∧ ξ) = −LN ∧ div ξ.
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Let ξ be an M -vector field on U . We define the differential form DMξ by setting

DMξ = ξ⌋(dx1 ∧ · · · ∧ dxN).

The differential form DMξ has degree N −M . Also, with each differential form ϕ of
degree M on U we associate the (N −M)-vector field

DMϕ = (e1 ∧ · · · ∧ eN)⌊ϕ.

If ϕ ∈ DN−M and ψ ∈ DM , then we see that∫
(LN ∧DN−Mϕ)(ψ) =

∫
⟨ψ,DN−Mϕ⟩dLN

=

∫
⟨ϕ ∧ ψ, e1 ∧ · · · ∧ eN⟩dLN .

Define EN ∈ DN(RN) by
EN = LN ∧ e1 ∧ · · · ∧ eN

so, if ϕ ∈ DN(RN), then

EN(ϕ) =

∫
⟨ϕ(x), e1 ∧ e2 ∧ · · · ∧ eN⟩dLN(x).

We see that
DxjE

N = 0 for each j = 1, . . . , N and ∂EN = 0.

We also see that for any Lebesgue measurable set A ⊆ RN ,

EN⌊A = [|A|].

If T ∈ DN(U) and j ∈ {1, . . . , N}, then, using the formula

∂T = −
N∑
l=1

(DxlT )⌊dxl

and the fact that
∧N+1 RN = 0, we can calculate that

(∂T ) ∧ ej = (−1)NDxjT. (2.4)

Thus the vanishing of the boundary of an N -dimensional current is equivalent to the
vanishing of its partial derivatives. Accordingly, we expect that anN -dimensional current
with vanishing boundary should be given by integration. That intuition is confirmed by
the next proposition.

Theorem 2.2.1 (Constancy Theorem). If T ∈ DN(U) with ∂T = 0 and if U is a
connected open set, then there is a real number c such that

T = c(EN⌊U) = c[|U |].

In order to prove the constancy theorem, we will need to introduce the notion of
smoothing currents. In what follows, we will use mollifiers in a standard manner.
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Definition 2.2.1. Let T ∈ D′(RN), we define a new current Tσ ∈ D′(RN) by

Tσ(ω) = T (φσ ∗ ω).

Here the convolution of φσ with ω is defined by convolution of φσ with the coefficient
functions of ω, The process of forming Tσ from T is called smoothing.

Lemma 2.2.1. The smoothing has the following properties:

1. Tσ weakly converges to T as σ ↓ 0.

2. DxjTσ = (DxjT )σ for j = 1, 2, ..., N .

3. If M = N , then for each σ > 0, there exists a real-valued function Fσ such that

Tσ(ω) =

∫
RN

Fσ⟨ω, e1 ∧ · · · ∧ eN⟩dLN ∀ω ∈ DN(RN).

Proof.
1. For ω ∈ DM(RN), φσ ∗ ω converges to ω in the topology of DM(RN), so Tσ ⇀ T .
2. Fix j ∈ {1, ..., N} and ω ∈ DM(RN). We have

φσ ∗ (∂ω/∂xj) = ∂(φσ ∗ ω)/∂xj.

Then we can compute

(DxjTσ)(ω) = −Tσ(∂ω/∂xj) = −T [φσ ∗ (∂ω/∂xj)]
= −T [∂(φσ ∗ ω)/∂xj] = DxjT (φσ ∗ ω) = (DxjT )σ(ω).

3. Define the function Fσ(z) = T [φσ(x− z)dx1 ∧ · · · dxN ].
Let ω = g(x)dx1 ∧ · · · dxN , then

Tσ(ω) = T [

∫
RN

g(z)φσ(x− z)dLNdx1 ∧ · · · dxN ].

Denote I =
∫
RN g(z)φσ(x− z)dLN . Since the support of g is compact, there exists a

family of open balls {Ak}pk=1 with the same radius rp such that supp g ⊂
⋃p
k=1Ak. Let

zk be the center of Ak and denote

Sp =

p∑
k=1

g(z)φσ(x− zk)dLN(Ak).

Then we have lim
rp→0

Sp = I. By linearity, we also have

T (Spdx1 ∧ · · · dxN) =
p∑

k=1

T [φσ(x− zk)dx1 ∧ · · · dxN ]g(zk)LN(Ak)

= Fσ(zk)g(zk)LN(Ak)

=

p∑
k=1

Fσ(zk)⟨ω(zk), e1 ∧ · · · ∧ eN⟩LN(Ak).
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Passing to the limit, the result follows.

Proof of the constancy theorem. Without loss of generality, assume U = RN . We need
to show that

T (ω) = c

∫
RN

⟨ω, e1 ∧ · · · ∧ eN⟩dLN ∀ω ∈ DN(RN).

From (2.4) we see DxjT = 0. By Lemma 2.2.1, we have that for each σ > 0, there
exists a function Fσ such that

Tσ(ω) =

∫
RN

Fσ⟨ω, e1 ∧ · · · ∧ eN⟩dLN ∀ω ∈ DN(RN).

and
[DxjT ]σ = 0 = DxjTσ.

Let ω = ∂Fσ

∂xj
dx1 ∧ · · · dxN , then

0 = DxiTσ(ω) = −
∫
RN

(
∂Fσ
∂xj

)2

dLN ,

thus Fσ must be a constant. Selecting a subsequence σi ↓ 0+, we complete the proof.

We also have two following generalization of the constancy theorem

Proposition 2.2.1. Let U ⊂ RN be a bounded open set and T ∈ NM(U). Then there
exists a function f ∈ BV (U) such that T = [|U |]⌊f .

Proof. By Lemma 2.2.1, the smoothing Tσ of T can be written as

Tσ = [|U |]⌊fσ.

By the definition of smoothing, we have that for all σ,

||fσ||L1(U) ≤M(Tσ) ≤M(T ) < +∞

and ∫
U

|Dfσ| ≤M(∂Tσ) ≤M(∂T ) < +∞.

So, fσ ∈ BV (U) and then by Theorem 1.1.4, there exists a subsequence σi and a
function f ∈ BV (U) such that fσi → f in L1(U) as σi ↓ 0, thus Tσi → T = [|U |]⌊f .

Proposition 2.2.2. If V is anM-dimensional plane, T ∈ DM(RN), ∂T = 0 and sptT ⊆
V , then there is a real number c, such that

T = c[|V |],

i.e. T (ω) = c
∫
V
⟨ω, V⃗ ⟩dHM , where V⃗ = v1 ∧ ... ∧ vM is an orthonormal vector parallel

to V .

Proof. Without loss of generality, let

V = {(x1, ..., xN) : xM+1 = xM+2 = ... = xN = 0}
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and choose an index 1 ≤ i1 < i2 < ... < iM ≤ N .
1) Assume iM > M , let ϕ be an arbitrary smooth function with compact support,
ω = (−1)M−1ϕ(x)xiMdxi1 ∧ ... ∧ dxiM−1

, then

dω = ϕ(x)dxi1 ∧ ... ∧ xM +
∑

j /∈{i1,...,iM}

∂ϕ

∂xj
xiMdxj ∧ dxi1 ∧ ... ∧ dxM−1.

Since sptT ⊆ V , so

T (dω) = T (ϕ(x)dxi1 ∧ ... ∧ dxiM ) = ∂T (ω) = 0

and thus
T ⌊dxi1 ∧ ... ∧ dxiM = 0

for every iM > M .
2) By the identity:

T =
∑

J∈
∧
(N,M)

[T ⌊dxJ ] ∧ eJ

and from 1), we know that the only nonzero term is

T = (T ⌊dx1 ∧ ... ∧ dxM) ∧ e1 ∧ ... ∧ eM .

We let T̃ = (T ⌊dx1 ∧ ... ∧ dxM) ∧ e1 ∧ ... ∧ eN ∈ DN(RN), and we use the constancy

theorem to finish the proof: we have to check that ∂T̃ = 0.
Let ωj = (−1)j−1ϕdx1 ∧ ... ∧ dxj−1 ∧ dxj+1 ∧ ... ∧ dxN .
If j ≤M , then

∂T̃ (ωj) = T̃ (
∂ϕ

∂xj
dx1 ∧ ... ∧ dxN) = T (

∂ϕ

∂xj
dx1 ∧ ... ∧ dxM)

= ∂T [(−1)j−1ϕdx1 ∧ ... ∧ dxj−1 ∧ dxj+1 ∧ ... ∧ dxM ] = 0.

If j > M , then

∂T̃ (ωj) = T̃ (
∂ϕ

∂xj
dx1 ∧ ... ∧ dxN) = T (

∂ϕ

∂xj
dx1 ∧ ... ∧ dxM)

= ∂T [(

∫ x1

−∞

∂ϕ(t, x2, ..., xN)

∂xj
dt)dx2 ∧ ... ∧ dxM ]

= 0.

Finally, by the Constancy Theorem 2.2.2, we have T = c[|V |].

2.3 Further Constructions

2.3.1 Product of Currents

Definition 2.3.1. Suppose U1 ⊆ RN1 , T1 ∈ DM1(U1), and U2 ⊆ RN2 , T2 ∈ DM2(U2). We
define T1 × T2 ∈ DM1+M2(U1 × U2) as follows:

(1) We denote the basis covectors in RN1 by dxα and the basis covectors in RN2 by
dyβ.
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(2) If 1 ≤ α1 < α2 < · · · < αM1 ≤ N1, 1 ≤ β1 < β2 < · · · < βM2 ≤ N2, and
g ∈ D(U1 × U2,R), then set

[T1 × T2](g dxα1 ∧ · · · ∧ dxαM1
∧ dyβ1 ∧ · · · ∧ dyβM2

)

= T1(T2[g(x, y)dyβ1 ∧ · · · ∧ dyβM2
]dxα1 ∧ · · · ∧ dxαM1

)).

(3) If ω ∈ DM ′
1(U1), ω2 ∈ DM ′

2(U2) with M1 +M2 = M ′
1 +M ′

2 but M ′
1 ̸= M1 and

M ′
2 ̸=M2, then [T1 × T2](ω1 ∧ ω2) = 0.
(4) Extend T1 × T2 to DM1+M2(U1 × U2) by linearity.

Now it is immediate that

∂(T1 × T2) = (∂T1)× T2 + (−1)M1T1 × ∂T2.

In case either M1 = 0 or M2 = 0 then the last formula is still valid, provided the
corresponding terms are interpreted to be zero.

In the special case that T ∈ DM(U) with U ⊆ RN and [|(0, 1)|] is the 1-current in
R1, then the equation above becomes

∂([|(0, 1)|]× T ) = (δ1 − δ0)× T − [|(0, 1)|]× ∂T

= δ1 × T − δ0 × T − [|(0, 1)|]× ∂T,

where δp denotes the 0-current that is given by a point mass at p.

2.3.2 The Pushforward

Definition 2.3.2. Let U ⊆ RN1 be open sets and V ⊂ RN2 , f : U → V be a smooth map
such that f |sptT is proper. Let ω ∈ DM(U), and f ∗ω be its pull-back. The pushforward
f#T of T ∈ DM(U) is defined by

f#T (ω) = T (ζ · f ∗ω),

where ζ ∈ C∞
c (U) and equals to 1 in a neighborhood of sptT ∩ supp f ∗ω. The definition

is independent of ζ.

Here, we require f |sptT to be proper, so that supp f#T is compact. Observe that

∂f#T (ω) = f#T (dω) = T (ζ · f ∗dω) = T (ζ · df ∗ω) = f#∂T (ω),

so we have ∂f#T = f#∂T .

Definition 2.3.3. Let U and V be open sets as above. For a linear mapping L : RN1 →
RN2 , the linear map ∧

M
L :
∧

M
(RN1) →

∧
M
(RN2)

is defined by ∧
M
L(ei1 ∧ · · · ∧ eiM ) = Lei1 ∧ · · · ∧ LeiM

for every (i1, . . . , iM) ∈
∧
(N1,M).

If f : U → V is smooth, v is an M -covector, we see that

⟨f ∗ω(x), v⟩ = ⟨ω(f(x)),
∧

M
dfx(v)⟩,
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so the pushforward can be identified as

f#T (ω) =

∫
U

⟨ω(f(x)),
∧

M
dfxT⃗ (x)⟩dµT .

The next result is about vanishing of currents on sets that project to measure 0 in
all coordinate directions.

Lemma 2.3.1. Let α = (i1, ..., iM) ∈
∧
(N,M) be a multi index, and let pα be the

orthogonal projection:
pα : RN → RM

such that pα(x1, ..., xN) = (xi1 , ..., xiM ). Assume U ⊆ RN open, and let E ⊂ U be closed
and such that LM(pαE) = 0. Then for each T ∈ DM(U) with MW (T ) +MW (∂T ) <
+∞,∀W ⊂⊂ U , we have

T ⌊E = 0.

Proof. Let ω ∈ DM(U). Write

ω =
∑

α∈
∧
N(N,M)

ωαdxα

with ωα ∈ C∞
c (U). Thus

T (ω) =
∑
α

T (ωαdxα) =
∑
α

(T ⌊ωα)dxα =
∑
α

(T ⌊ωα)p∗
αdy.

Here dy = dy1 ∧ · · · ∧ dyM in the standard coordinates on RM . So we have

T (ω) =
∑
α

pα#(Tωα)(dy). (2.5)

Since sptTωα ⊆ supp ωα is compact in U , so (2.5) makes sense.
Next we will show M(∂pα#T ⌊ωα) < ∞, It is enough to show M(∂T ⌊ωα) < ∞. For

any τ ∈ DN−1(U), we have

∂(T ⌊ωα)(τ) = (T ⌊ωα)(dτ)
= T (ωαdτ)

= T (d(ωατ))− T (dωα ∧ τ)
= ∂T (ωατ)− T (dωα ∧ τ),

thus
MW (∂(T ⌊ωα)) ≤MW (∂T ) · sup |ωα|+MW (T ) · sup |dωα| < +∞.

By Proposition 2.2.1, there exists θα ∈ BV (pα(U)) such that

pα#(T ⌊ωα) = [pα(U)]⌊θα.

It follows that pα#(T ⌊ωα)⌊pα(E) = 0 since LM(pα(E)) = 0. Assuming without loss of
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generality that E is closed, we now see that

M(pα(T ⌊ωα)) ≤M(pα#(T ⌊ωα)⌊(RN \ pα(E))) (2.6)

=M(pα#(T ⌊ωα)⌊(RN \ p−1
α pα(E))) (2.7)

≤M((T ⌊ωα)⌊(RN \ p−1
α pαE)) (2.8)

≤MW (T ⌊(RN \ p−1
α E) · |ωα| (2.9)

≤MW (T ⌊(RN \ E)) · |ωα|, (2.10)

for any open set W such that suppω ⊆ W ⊆ U. Now we combine (2.5) and (2.10) to
obtain

MW (T ) ≤ cMW (T ⌊(RN \ E)).

Also, we have
MW (T ⌊E) ≤ cMW (T ⌊(RN \ E)). (2.11)

If K is any compact subset of E, then we can choose sets {Wq} such that

Wq ⊂⊂ U, Wq+1 ⊆ Wq,
∞⋂
q=1

Wq = K.

By (2.11), with W = Wq, we conclude that M(T ⌊K) = 0. Since K was arbitrary, we see
that M(T ⌊E) = 0.

2.3.3 The Homotopy Formula

Next we introduce the homotopy formula for currents, Let U ⊆ RN1 , V ⊆ RN2 and
f, g : U → V be smooth mappings, and let h be a smooth homotopy from g to h, i.e.
h : [0, 1]× U → V , s.t. h(0, x) = f(x) and h(1, x) = g(x). For T ∈ DM(U), if h|[0,1]×sptT

is proper then h#([|(0, 1)|]× T ) is well-defined and we have

∂h#([|(0, 1)|]× T ) = h#∂([|(0, 1)|]× T )

= h#(δ1 × T − δ0 × T − h#([|(0, 1)|]× ∂T ))

= g#T − f#T − h#([|(0, 1)|]× ∂T ).

Then, the Homotopy Formula is the following:

g#T − f#T = ∂h#([|(0, 1)|]× T ) + h#([|(0, 1)|]× ∂T ) (2.12)

Remark 2.3.1. If we consider the linear homotopy

h(t, x) = tg(x) + (1− t)f(x)
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then, for ω ∈ DM(V ) we have:

h#([|(0, 1)|]× T )(ω) =

∫ 1

0

∫
U

⟨h#(ω), e1 ∧ T⃗ ⟩dµTdL1

=

∫ 1

0

∫
U

⟨ω(h(t, x)),
∧

M+1
dht,x(e1 ∧ T⃗ )⟩dµTdL1

=

∫ 1

0

∫
U

⟨ω(h(t, x)),
∧

M+1
[g(x)− f(x) ∧ (tdg + (1− t)df)](e1 ∧ T⃗ )⟩dµTdL1

≤ sup
sptT

|f − g| sup
sptT

(||Df ||+ ||Dg||)MM(T ).

So, we have

M [h#([|(0, 1)|]× T )] ≤ sup
sptT

|f − g| sup
sptT

(||Df ||+ ||Dg||)MM(T ). (2.13)

Applications of the Homotopy Formula

The next lemma shows that the homotopy formula can be used to define f#T in case
f is only Lipschitz, provided that f | sptT is proper and bothMW (T ),MW (∂T ) are finite
for all W ⊂⊂ U .

Lemma 2.3.2. Let T ∈ DM(U) be such that ∀W ⊂⊂ U MW (T ) +MW (∂T ) < +∞,
let f : U → V Lipschitz and assume f |sptT is proper. Then for each ω ∈ DM(U), the
following limit exists:

f#T (ω) := lim
σ→0+

fσ#T (ω).

Proof. Let σ, τ > 0 and h be the affine homotopy from fτ to fσ. Then by the homotopy
formula and (2.13), for each ω ∈ DM(U) we have

|fσ#T (ω)− fτ#T (ω)| = |h#([|(0, 1)|]× T )(dω) + h#([|(0, 1)|]× ∂T )(ω)|
≤ ||dω|| sup

sptT
|fσ − fτ | sup

sptT
(||Dfσ||+ ||Dfτ ||)MM(T )

+ ||ω|| sup
sptT

|fσ − fτ | sup
sptT

(||Dfσ||+ ||Dfτ ||)MM(∂T )

→ 0

as |σ − τ | → 0. Then the result follows.

We also have
spt f#T ⊆ f(sptT )

and
M(f#T ) ≤ (ess sup |Df |MMf−1(W )(T ))

for all W ⊂⊂ U .
Now we need the notion of a cone over a current T ∈ DM(U). We first start from

the special case that T = [|S|], where S is a submanifold of the sphere SN−1 ⊂ RN . In
this case, the cone over T is [|CS|], where

CS = {λx : x ∈ S, 0 ≤ λ ≤ 1}.
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Then, let

• U be star-shaped with respect to the point 0 (i.e., tx ∈ U , for each x ∈ U and each
0 ≤ t ≤ 1);

• sptT be compact;

• h : R× RN → RN be defined by h(t, x) = tx.

The cone over T , denoted by δ0××T is given by

δ0××T = h#([|(0, 1)|]× T ).

It follows that δ0××T ∈ DM+1(U) and by the homotopy formula,

∂(δ0××T ) = T − δ0×× ∂T.

Also, if sptT ⊆ {x : |x| = r} holds, then by

h#([[(0, 1)]]× T )(ω) =

∫ 1

0

∫
⟨ω(h(t, x)),

∧
M+1

dht,x(e1 ∧ T⃗ )⟩dµT (x)dL1(t)

=

∫ 1

0

∫
tM⟨ω(tx), x ∧ T⃗ (x)⟩dµT (x)dL1(t)

we have
M(δ0××T ) ≤ r

M + 1
M(T ).

We can also define the cone over T with vertex p, which we denote by δp××T . In this
case, we have

∂(δp××T ) = T − δp×× ∂T (2.14)

and, if sptT ⊆ {x : |x− p| = r} holds,

M(δp××T ) ≤ r

M + 1
M(T ).
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Chapter 3

Plateau’s Problem for Integral
Currents

3.1 Integral Currents

As already observed, general currents of finite mass have very little in common with
oriented submanifolds. In this section, we will introduce a subclass of currents which
are much closer to submanifolds called Integral Currents. Before that, we need some
preliminary tools.

Lipschitz Functions and Rectifiable Sets

Definition 3.1.1. Let X and Y be metric spaces with metrics distX and distY , respec-
tively. A function f : X → Y is said to be Lipschitz of order 1, or simply Lipschitz, if
there exists M <∞ such that

distY [f(x1), f(x2)] ≤M distX [x1, x2]

holds, for all x1, x2 ∈ X. The least choice of M that makes the above inequality true is
called the Lipschitz constant for f and is denoted by Lip(f).

Definition 3.1.2. Let M be an integer with 1 ≤ M ≤ N . A set S ⊆ RN is said to be
countably M-rectifiable if

S ⊆ S0 ∪
∞⋃
j=1

Fj(RM),

where HM(S0) = 0 and Fj : RM → RN are Lipschitz functions.

Tangent Spaces and Approximate Tangent Spaces

Definition 3.1.3. An M -dimensional C1 submanifold of RN is a set S ⊂ RN for which
each point has an open neighborhood V ⊂ RN such that there exists a one-to-one C1

map ϕ : U → RN where U ⊂ RM is open, such that

1. Dϕ is of rank M at all points of U ,

2. ϕ(U) = V ∩ S.
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Definition 3.1.4 (Tangent Spaces). Suppose that S is an M -dimensional C1 subman-
ifold of RN . Let x be a point of S and let ϕ be as above. Then the range of Dϕ(u),
u ∈ U , is called the tangent space to S at x = ϕ(u) and is denoted by TxS.

Definition 3.1.5. Let S ⊂ RN be HM -measurable with HM(S ∩ K) < ∞ for every
compact K. We say that anM -dimensional linear subspaceW of RN is the approximate
tangent space to S at x ∈ RN if

lim
λ→0+

1

λM

∫
y∈λ−1(S−x)

f(y)dHM(y) =

∫
W

f(y)dHM(y)

for all f ∈ Cc(RN). Here,

y ∈ λ−1(S − x) ⇐⇒ y = λ−1(z − x) for some z ∈ S.

When the approximate tangent space to S at x exists, we will also denote it by TxS.
Here the dimension M should always be understood to be the Hausdorff dimension of S.

If S is anM -dimensional C1 submanifold of RN , then the approximate tangent space
coincides with the usual tangent space.

Theorem 3.1.1. If S is HM -measurable and countablyM-rectifiable and if HM(S∩K) <
∞ holds for every compact K ⊂ RN , then TxS exists for HM -almost every x ∈ S.

One can find the proof in Theorem 5.4.6 of [1].

Area and Co-area Formula

Definition 3.1.6. Let S ⊂ RN be HM -measurable and countably M -rectifiable with
HM(S ∩K) <∞ for every compact K and f : RN → R be a Lipschitz function.

(1) The approximate tangential gradient of f is defined by

∇Sf(x) =
M∑
j=1

∂vjf(x)vj, HM -a.e. x ∈ S

where (v1, . . . , vM) is an orthonormal basis of TxS and ∂vjf(x) denotes the directional
derivative of f in the direction vj. Note that we can also write

S = S0 ∪
∞⋃
j=1

Sj,

where HM(S0) = 0 and Sj ⊂ Sj, with Sj an M -dimensional C1-submanifold of RN .
Then ∇Sf(x) = ∇Sjf(x) whenever x ∈ Sj and f |Sj

is differentiable at x (which holds
HM -a.e. in Sj by Rademacher’s theorem).

(2) Having defined ∇Sf(x), we can define the linear map dSfx : T
S
x S → R by

dSfx(v) = ⟨v,∇Sf(x)⟩,

at all points where TxS and ∇Sf(x) exist. Above ⟨·, ·⟩ is the standard inner product in
RN .

30



(3) If f = (f1, ..., fK) : RN → RK is Lipschitz, we define the linear map dSfx : TxS →
RK by

dSfx(v) =
K∑
j=1

⟨v,∇Sfj(x)⟩ej,

where e1, ..., eK is the standard basis of RK

(4) If K ≥M , we define the approximate Jacobian of f , denoted by JSf(x) for HM

a.e. x ∈ S by
JSMf(x) =

√
det[(dSfx)t(dSfx)].

5) If K < M , we can define

JSKf(x) =
√
det[(dSfx)(dSfx)t].

Theorem 3.1.2 (Area Formula). If K ≥M , f , S as above, then∫
A

JSMf(x)dHM(x) =

∫
RK

H0(A ∩ f−1(y))dHM(y),

for every HM -measurable set A ⊂ S.

Theorem 3.1.3 (Co-area Formula). If K < M , f , S as above, then∫
A

JSKf(x)dHM(x) =

∫
RK

HM−K(A ∩ f−1(y))dHK(y),

for every HM -measurable set A ⊂ S.

Theorem 3.1.4. If K < M and f , S as above, then JSKf exists HM -almost everywhere
in S and ∫

S

gJSKfdHM =

∫
RK

∫
S∩f−1(y)

gdHM−KdHν(y),

holds for every HM -measurable function g.

One can find more details in [2], [8] and [5].

3.1.1 Integer-Multiplicity Currents

We first introduce the Integer-Multiplicity currents. Integral currents are just the
Normal currents which have Integer-Multiplicity.

Definition 3.1.7 (Integer-Multiplicity current). Let M be an integer, 1 ≤ M ≤ N ,
T ∈ DM(U) for U ⊆ RN open. T is an Integer-Multiplicity (rectifiable) M -current if
∃S, θ, ξ such that

T (ω) =

∫
S

⟨ω(x), ξ(x)⟩θ(x)dHM(x)

∀ω ∈ DM(U), where

1. S is aHM -measurable andM -rectifiable subset of U withHM(S∩K) < +∞,∀K ⊆
U compact;

2. θ is a locally HM -integrable, nonnegative, integer-valued function;
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3. ξ : S →
∧
M RN is a HM -measurable function such that for HM -almost every point

x ∈ S, ξ(x) is a simple unit M -vector in TxS. (ξ(x) is simple if ξ(x) = τ1∧ ...∧ τM ;
we may choose {τi} to be an orthonormal basis of TxS.)

The function θ is called the multiplicity of T and ξ is the orientation of T , we can
write T as T = τ(S, θ, ξ).

For M = 0, we have the following definition:

Definition 3.1.8. T ∈ D0(U) is an Integer-multiplicity 0-current if ∃S ⊆ U, θ : S → Z,
such that for every K ⊆ U compact, S ∩K is finite, and

T (ω) =
∑

x∈S∩suppω

θ(x)ω(x) ∀ω ∈ D0(U).

In this case, we write T = τ(S, θ, sign(θ)).

We also introduce the notation

IM(U) := {T ∈ DM(U) : T is Integer-multiplicity}

and

IM(U) := IM(U) ∩NM(U).

Elements of IM(U) are called Integral M -currents.

Proposition 3.1.1. For Integer-multiplicity currents have the following properties:

1. If T1, T2 ∈ IM(U) and p1, p2 ∈ N, then p1T1 + p2T2 ∈ IM(U).

2. If T1 = τ(V1, θ1, ξ1) ∈ IM(U) and T2 = τ(V2, θ2, ξ2) ∈ IK(V ), then

T1 × T2 = (V1 × V2, θ1θ2, ξ1 ∧ ξ2) ∈ IM+K(U × V ).

3. If f : U → V is Lipschitz, T = (S, θ, ξ) ∈ IM(U), and f |sptT is proper, and
f#T ∈ DM(V ) is defined by

f#T (ω) =

∫
S

⟨ω(f(x)),
∧

M
dxfξ(x)⟩θ(x)dHM(x), ∀ω ∈ DM(V ),

then we have f#T ∈ IM(V ).

Proof. 1. and 2. are easy, now we prove 3. Note that∣∣∣∧
M
dxfξ(x)

∣∣∣ = JSMf(x).

We get from the area formula that

f#T (ω) =

∫
fS

⟨ω(y),
∑

x∈f−1(y)∩S+

θ(x)

∧
M dxfξ(x)

|
∧
M dxfξ(x)|

⟩dHM(y), (3.1)

32



where S+ = {x ∈ S : JSMf(x) > 0}. Notice that fS is M -rectifiable, and therefore the
approximate tangent space TyfS exists at HM -a.e. y ∈ fS. Hence at points y ∈ fS
where TyfS exists and for which TxS and dxf exist for all x ∈ f−1(y) ∩ S+, we have∧

M dxfξ(x)

|
∧
M dxfξ(x)|

= ±τ1 ∧ · · · ∧ τm,

where τ1, . . . , τm is an orthonormal basis of TyfS. Hence we obtain from (3.1)

f#T (ω) =

∫
fS

⟨ω(y), η(y)⟩N(y)dHM(y),

where η(y) is an orientation of TyfS and N(y) is a positive integer satisfying∑
x∈f−1(y)∩S+

θ(x)

∧
M dxfξ(x)

|
∧
M dxfξ(x)|

= N(y)η(y).

So f#T ∈ IM(V ).

3.1.2 The Slicing

Our goal in this section is to define the concept of the “slice” of an Integer-Multiplicity
current. Roughly speaking, we slice a current by intersecting it with the level set of a
Lipschitz function. Let’s start from the following lemma, which is a special case of
Theorem 3.1.4 and the Co-area Formula.

Lemma 3.1.1. Let S ⊂ RN be M-rectifiable and f : RN → R Lipschitz. Then for
L1-a.e. t ∈ R:

1. St := f−1(t) ∩ S is (M − 1)-rectifiable and

2. for HM−1-a.e. x ∈ St, the tangent spaces TxSt and TxS exist, TxSt ⊂ TxS, and
TxS = {y + λ∇Sf(x) : y ∈ TxSt, λ ∈ R}.

3. For every nonnegative HM -measurable function g : S → R, we have (co-area for-
mula) ∫ ∞

−∞

∫
St

g dHM−1dt =

∫
S

|∇Sf |g dHM .

Replacing g by g · χ{x:f(x)≤t}. Then 3 becomes∫
S∩{x:f(x)<t}

|∇Sf |dHM =

∫ t

−∞

∫
Su

dHM−1dL1(u).

Hence the left-hand side is an absolutely continuous function of t and we have

d

dt

∫
S∩{x:f(x)<t}

|∇Sf |dHM =

∫
St

dHM−1 for a.e. t ∈ R.
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Let T = τ(S, θ, ξ) be an Integer-Multiplicity current in U , with U an open set in
RM+K . Let f be a Lipschitz function on U and let

θ+(x) =

{
0 if ∇Sf(x) = 0,

θ(x) if ∇Sf(x) ̸= 0.

For L1-almost every t ∈ R with T ⌊St, Tx⌊St existing for HM−1-almost every x ∈ St,
and such that 3. of Lemma 3.1.1 holds, we define ξt(x) by

ξt(x) = ξ(x)⌊
(

∇Sf(x)

|∇Sf(x)|

)
, (3.2)

where ∇Sf(x)
|∇Sf(x)| is regarded as a 1-form. We observe that ξt(x) has the following properties:

• ξt(x) is simple;

• ξt(x) lies in
∧
M−1(Tx⌊St) ⊆

∧
M−1(Tx⌊S);

• ξt(x) has unit length for HM−1-almost every x ∈ St.

Now, we can define the slice of a current as follows.

Definition 3.1.9. Assume that S ⊂ RN be M -rectifiable, let T = τ(S, θ, ξ) ∈ IM(U)
and f : RN → R be Lipschitz. For L1-almost every t ∈ R, we know that TxS, TxSt
exist and 3 of Lemma 3.1.1 holds for HM−1-almost every x ∈ St. Then we can define
the Integer-Multiplicity current ⟨T, f, t⟩ ∈ IM−1(St) by

⟨T, f, t⟩ = τ(St, θt, ξt),

where ξt(x) is as in (3.2) and
θt = θ+

∣∣
St
.

We call ⟨T, f, t⟩ the slice of the current T by the function f at t.

Lemma 3.1.2. Let S ⊂ RN be an M-rectifiable set, T = τ(S, θ, ξ) ∈ IM(U) and
f : RN → R is Lipschitz. Then the slices have the following properties:

1. For each open set W ⊆ U ,∫
R
MW (⟨T, f, t⟩)dL1(t) =

∫
S∩W

|∇Sf |θdHM

≤
(
ess sup
S∩W

|∇Sf |
)
MW (T ).

2. If MW (∂T ) <∞ for all W ⊂⊂ U , then for L1-a.e. t ∈ R, we have

⟨T, f, t⟩ = ∂(T ⌊{x : f(x) < t})− (∂T )⌊{x : f(x) < t}.
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3. If MW (T ) +MW (∂T ) <∞ for all W ⊂⊂ U , then for L1-a.e. t ∈ R, we have

MW ⟨T, f, t⟩ ≤ ess sup
S∩W

|Df | lim inf
h→0+

1

h
MW (T ⌊{x : t < f(x) < t+ h}) (3.3)

MW ⟨T, f, t⟩ ≤ ess sup
S∩W

|Df | lim inf
h→0+

1

h
MW (T ⌊{x : t− h < f(x) < t}) (3.4)

and ∫ b

a

MW (⟨T, f, t⟩)dt ≤ ess sup
S∩W

|Df |MW (T ⌊{x : a < f(x) < b}) (3.5)

4. If ∂T is of Integer-Multiplicity in DM−1(U), then for L1-a.e. t ∈ R, we have

⟨∂T, f, t⟩ = −∂⟨T, f, t⟩.

Proof. 1. Follows from 3 of Lemma 3.1.1.
2. Since S ⊂ RN is M -rectifiable, so we can write

S =
∞⋃
j=0

Sj,

with Si ∩ Sj = ∅ when i ̸= j, HM(S0) = 0 and each Sj ⊆ Vj with Vj embedded C1

submanifold of RM+K . For h : RM+K → R Lipschitz map, let hσ be its mollification.
Then as σ → 0, we have

v · ∇Shσ converges to v · ∇Sh (3.6)

for any fixed, bounded HM -measurable function v : RM+K → RM+K ; that is, ∇Shσ
converges to ∇Sh weakly in L2(µT ). To check 2., one need only check that (3.6) holds
with the C1 submanifolds Vj replacing Sj and with v vanishing on RM+K \ Sj; one
approximates v by a smooth function and uses the fact that the hσ converge uniformly
to h.

Now let ε > 0 and let γ be the unique piecewise linear, continuous function satisfying

γ(s) =

{
1 if s < t− ε

0 if s > t.

Then γ is Lipschitz and let h = γ ◦ f. For ω ∈ DM(U), we have

∂T (hσω) = T (d(hσω))

= T (dhσ ∧ ω) + T (hσdω).
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Now, applying the integral representation of ∂T , we see that

(∂T ⌊h)(ω) =
∫
U

⟨hω, ∂⃗T ⟩dµ∂T

= lim
σ→0+

∫
U

⟨hσω, ∂⃗T ⟩dµ∂T

= lim
σ→0+

∂T (hσω)

= lim
σ→0+

T (dhσ ∧ ω) + (T ⌊h)(dω).

Since ξ(x) orients TxS, let λ
T be the orthogonal projection of

∧q(RM+K) onto
∧q(TxS).

we have

⟨dhσ ∧ ω, ξ(x)⟩ = ⟨(dhσ(x))T ∧ ωT , ξ(x)⟩
= ⟨(dhσ(x))T ∧ ω, ξ(x)⟩.

Then

T (dhσ ∧ ω) =
∫
S

⟨(dhσ(x))T ∧ ω, ξ(x)⟩θdHM

=

∫
S

⟨ω, ξ(x)⌊∇Shσ(x)⟩θdHM .

Thus letting σ → 0+ and using (3.6), we have

lim
σ→0+

T (dhσ ∧ ω) =
∫
S

⟨ω, ξ(x)⌊∇Sh(x)⟩θdHM . (3.7)

By the definition of ∇Sh and the chain rule for Lipschitz functions, we have

∇Sh = γ′(f)∇Sf for HM -almost every point of S. (3.8)

Here we assume γ′(f) = 0 when f = t or f = t − ε for which γ is not differentiable.
Notice also that

∇Sh(x) = ∇Sf(x) = 0

for HM -almost every point in {x ∈ S : f(x) = c}, c is a constant. Now we have

(∂T ⌊h)(ω) =
∫
S

⟨ω, ξ(x)⌊∇Sh(x)⟩θdHM + (T ⌊h)(dω)

=
1

ε

∫
S∩{t−ε<f<t}

⟨ω, ξ⌊∇Sf⟩θdHM + (T ⌊h)(dω)

= A+B
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Let ε→ 0, consider A, and choose g = ⟨ω, ξ⌊ ∇Sf
|∇Sf |⟩|∇

Sf |θ. Then

lim
ε→0

A = lim
ε→0

1

ε

∫
S∩{t−ε<f<t}

⟨ω, ξ⌊ ∇Sf

|∇Sf |
⟩|∇Sf |θdHM

= lim
ε→0

1

ε
(

∫
S∩{f<t}

g|∇Sf |dHM −
∫
S∩{f<t−ε}

g|∇Sf |dHM)

=
d

dt

∫
S∩{f<t}

g|∇Sf |dHM

=

∫
St

gdHM−1

= ⟨T, f, t⟩(ω)

Consider B:

lim
ε→0

B = lim
ε→0

∂(T ⌊h)(ω) = ∂(T ⌊{x : f(x) < t}),

and
lim
ε→0

(∂T ⌊h)(ω) = (∂T )⌊{x : f(x) < t}.

Since DM(U) is separable, then by considering a countable dense set of ω ∈ DM(U), we
see that the previous computation is applicable with this choice of g except on a set F
of points having measure 0, with F independent of ω. That completes the proof of 2.

3. For (3.3), we approximate the characteristic function χ{x:f(x)>t} by a sequence of
C∞ functions {gh} such that gh(x) = 0 if f(x) < t, gh(x) = 1 if f(x) > t+ h,

Dgh ≤
λDf

h
,

where λ > 1 but close to 1. Using 2 and Proposition 2.1.1, we have

MW ((∂T )⌊gh − ∂(T ⌊gh)) =MW (T ⌊Dgh)

≤ ess sup
S∩W

|Df | · 1
h
·MW (T ⌊{x : t < f(x) < t+ h}).

Letting h→ 0+, we get (3.3). The proof of (3.4) is similar.
For (3.5), we just need to integrate (3.3).
4. Since ∂2 = 0, so

⟨∂T, f, t⟩ = ∂[∂T ⌊{x : f < t}]
= ∂[∂[T ⌊{x : f < t}]− ⟨T, f, t⟩]
= −∂⟨T, f, t⟩

then 4 follows.

Remark 3.1.1. The right-hand side of the equation in part 2 of Lemma 3.1.2 makes
sense when T and ∂T are representable by integration, without the necessity of assuming
that T is an Integer-Multiplicity current. Thus we may consider slicing for an arbitrary
current T ∈ DM(U) that together with its boundary has locally finite mass in U . So
suppose that MW (T ) +MW (∂T ) <∞ for all W ⊂⊂ U . Initially, we define two types of
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slices by
⟨T, f, t−⟩ := ∂[T ⌊{x : f(x) < t}]− (∂T )⌊{x : f(x) < t}

and
⟨T, f, t+⟩ := −∂[T ⌊{x : f(x) > t}] + (∂T )⌊{x : f(x) > t}.

Claim. Let f : RN → R be a Lipschitz function. We have the following result
(1) For only countably many values of t does it holds that

M [T ⌊{x : f(x) = t}] +M [(∂T )⌊{x : f(x) = t}] > 0. (3.9)

Thus, for all other values of t, we have

⟨T, f, t−⟩ − ⟨T, f, t+⟩ = ∂[T ⌊{x : f(x) ̸= t}]− (∂T )⌊{x : f(x) ̸= t} = 0.

Then we could denote the common value of ⟨T, f, t+⟩ and ⟨T, f, t−⟩ by ⟨T, f, t⟩.
(2) Moreover, we have

spt⟨T, f, t⟩ ⊂ sptT ∩ {x : f(x) = t⟩. (3.10)

(3) 3 of Lemma 3.1.2 is also valid for ⟨T, f, t⟩.

Proof of the Claim.

(1) Let {Wi}∞i=1 ⊂⊂ U such that U =
∞⋃
i=1

Wi, and let

AWi
:= {t ∈ R :MW [T ⌊{x : f(x) = t} > 0};

Ak
Wi

:= {t ∈ R :MW [T ⌊{x : f(x) = t} > 1

k
}.

Then we have AWi
=

∞⋃
k=i

Ak
Wi
. Since {x : f(x) = t1}∩ {x : f(x) = t2} = ∅ for t1 ̸= t2, we

get

∞ > MWi
(T ) > MWi

(T ⌊{x : f(x) = t, t ∈ Ak
Wi
})

=
∑
t∈Ak

Wi

(T ⌊{x : f(x) = t})

≥ H0(Ak
Wi
) · 1
k
;

thus Ak
Wi

is a finite set, and the result follows.
(2) First consider the case that f is C1 and let γ be any smooth, increasing function

from R to R+. We have

∂(T ⌊γ ◦ f)(ω)− ((∂T )⌊γ ◦ f)(ω) = (T ⌊γ ◦ f)(dω)− ((∂T )⌊γ ◦ f)(ω)
= T (γ ◦ f dω)− T (d(γ ◦ fω))
= −T (γ′(f)df ∧ ω).
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Now let ε > 0 be arbitrary and select γ piece-wise linear such that

γ(t) =

{
0 for t < a,

1 for t > b.

We also suppose that 0 ≤ γ′(t) ≤ [1 + ε]/[b− a] for a < t < b. Then

{∂(T ⌊γ ◦ f)− ((∂T )⌊γ ◦ f)}⇀ ⟨T, f, a+⟩ as b ↓ a.

Hence (3.10) follows because supp γ′ ⊂ [a, b]. For a general Lipschitz function f , we just
approximate f by fσ, where fσ is a mollifier, and let σ ↓ 0 to obtain the conclusion.

(3) Using similar argument as in the proof of Lemma 3.1.2, the result follows.

We conclude this section with a discussion about slicing a current by a general Lips-
chitz function.

Definition 3.1.10. Let T ∈ IM(RM+K), F : RM+K → RL be a Lipschitz function where
2 ≤ L ≤M . Then the slice of T by F at (t1, . . . , tL) is defined by

⟨T, F, (t1, . . . , tL)⟩ = ⟨⟨. . . ⟨⟨T, F1, t1⟩, F2, t2⟩, . . . ⟩, FL, tL⟩

where F1, F2, . . . , FL are the components of F .

Next we will see the slicing of an Integer-Multiplicity current by the orthogonal
projection onto a coordinate M -plane.

Let

p : RM+K → RM

(x1, . . . , xM+K) 7→ (x1, . . . , xM).

be the orthogonal projection and T = τ(S, θ, ξ) ∈ IM(RM+K) be an Integer-Multiplicity
current. Proceeding in a manner similar to Lemma 3.1.1, we define S+ to be the set
of x ∈ S for which TxS and DSp(x) exist and for which rank DSp(x) = M . Then for
LM -almost every t = (t1, . . . , tM) we have

⟨T,p, t⟩ =
∑

x∈p−1(t)∩S+

σ(x)θ(x)δx, (3.11)

where σ(x) = sgn(a) when
∧
M dxp ξ(x) = a dx1 ∧ · · · ∧ dxM .

The next proposition is an application of (3.11).

Proposition 3.1.2. Let T ∈ IM be an Integer-Multiplicity current and p : RM+K → RM

be the projection as above.
(1) If h : RM → RK, A ⊆ RM is LM -measurable, and H : RM → RM+K is given by

H(t) = (t, h(t)), then
⟨H#[|A|],p, t⟩ = δH(t).

(2) For continuous ϕ : RM+K → R and ψ : RM → R and if at least one of the two
functions is compactly supported, then∫

ψ(t)⟨T,p, t⟩(ϕ) dLM(t) = [T ⌊(ψ ◦ p) dx1 ∧ · · · ∧ dxM ](ϕ).
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3.2 The Deformation Theorem

The deformation theorem is one of the fundamental results of the theory of currents
and provides a useful approximation of a normal current T by a polyhedral chain P
lying on a certain M -skeleton such that the error is of the form T − P = ∂R + S. The
main error term is ∂R, where R is the (M + 1)-dimensional surface through which T is
deformed to P . The other error term S arises in moving ∂T into the skeleton.

There are both scaled and unscaled versions of this result. The scaled version of
the theorem is obtained by applying homotheties to the unscaled version, so we will
concentrate on the unscaled version.

Some Notation

First we need some notation that will be particular to this treatment:

• For 1 ≤M , K ∈ Z, we will consider currents in NM(RM+K);

• C = [0, 1]× [0, 1]× · · · × [0, 1] is the standard unit cube in RM+K ;

• ZM+K = {(z1, z2, . . . , zM+K) : zj ∈ Z} is the integer lattice in RM+K ;

• For j = 0, 1, . . . ,M + K, we will use Lj to denote the collection of all the j-
dimensional faces in the cubes.

• Let tz : RM+K → RM+K denote the translation by z ∈ RM+K , so that

tz(x) = x+ z.

Then the translation of the cube tz(C) is

tz(C) = [z1, z1 + 1]× [z2, z2 + 1]× · · · × [zM+K , zM+K + 1],

where z = (z1, z2, . . . , zM+K) ∈ ZM+K ranges over the integer lattice.

EachM -dimensional face F ∈ LM corresponds (once we make a choice of orientation)
to an Integer-Multiplicity current [|F |]. The precise statement of the theorem is as
follows.

Unscaled Deformation Theorem

Theorem 3.2.1 (Unscaled Deformation Theorem). Suppose that T ∈ NM(RM+K) is an
M-dimensional normal current. Then we have

T − P = ∂R + S,

where P ∈ DM(RM+K), R ∈ DM+1(RM+K), and S ∈ DM(RM+K) are such that

P =
∑
F∈LM

pF [|F |], where pF ∈ R for F ∈ LM , (3.12)

M(P ) ≤ cM(T ), M(∂P ) ≤ cM(∂T ), (3.13)
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M(R) ≤ cM(T ), M(S) ≤ cM(∂T ). (3.14)

The constant c depends on M and K. Further,

sptP ∪ sptR ⊂
{
x : dist(x, sptT ) < 2

√
M +K

}
,

spt ∂P ∪ sptS ⊂
{
x : dist(x, spt ∂T ) < 2

√
M +K

}
.

Moreover, if T is an integral current, then P and R can be chosen to be integral currents.
Also, in this case, the numbers pF in (3.12) are integers. If in addition ∂T is an integral
current, then S can be chosen to be an Integral current.

Proof: Unscaled Version

The proof of the unscaled deformation theorem is based on a retraction to deform
the current T onto the M -skeleton LM . The first step is to construct the retraction. For
this construction, we introduce additional notation.

• For j = 0, 1, . . . ,M +K, set

Lj =
⋃
F∈Lj

F.

Thus Lj is the j-skeleton of the cubical decomposition⋃
z∈ZM+K

(z + C)

of RM+K ;

• for j = 0, 1, . . . ,M +K, set

L̃j =

(
1

2
,
1

2
, . . . ,

1

2

)
+ Lj.

Clearly we have

RM+K = LM+K ⊇ LM+K−1 ⊇ LM+K−2 ⊇ · · · ⊇ L0,

and similar results hold for the L̃j.
Observe that

L̃0 ∩ LM+K−1 = ∅, L̃1 ∩ LM+K−2 = ∅, · · · , L̃K−1 ∩ LM = ∅;

these identities hold because

• a point in LM+K−j−1 must have j + 1 integral coordinate values,

• a point in L̃j must have M +K − j coordinate values that are multiples of 1/2.

Similarly we see that, for any face F ∈ LM+K−j, the center of F is the point of

intersection of F and L̃j. Thus the nearest-point-retraction

ξj : LM+K−j \ LM+K−j−1 → L̃j

41



is well-defined. We define the retraction

ψj : LM+K−j \ L̃j → LM+K−j−1

by requiring that

• ψj(x) = x, if x ∈ LM+K−j−1;

• the line segment connecting ψj(x) and ξj(x) contains x if x ∈ LM+K−j \ [L̃j ∪
LM+K−j−1].

In fact, ψj radially projects the points in F ∈ LM+K−j from the center of F onto the
relative boundary of F , so of course ψj cannot be defined at the center of F and still be
continuous.

We also define the retraction

ψ : RM+K \ L̃K−1 → LM

by
ψ = ψK−1 ◦ ψK−2 ◦ · · · ◦ ψ0.

Let A0 = {x = (x1, ..., xM+K) : 0 < x1 < ... < xM+K < 1
2
} and x ∈ A0, and consider

ψ0|A0 . The line segment that connect x and (1
2
, ..., 1

2
) is denoted by lx and

lx =

{
y : y = (1− t)(

1

2
, ...,

1

2
) + t(x1, ..., xM+K), t ∈ R

}
.

By definition, ψ0(x) ∈ F ∩ lx for F ∈ LM+K−1, so ψ0(x) has a coordinate xi that equals
to 0. We find ψ0(x) by finding tmin such that

tmin = min

{
t : (1− t)

1

2
+ txi = 0, 1 ≤ i ≤M +K

}
.

Then tmin = 1
2x1−1

and

ψ0(x) =
1

2x1 − 1
(0, x2 − x1, ..., xM+K − x1) ∀x ∈ A0.

Similarly,

ψ1 ◦ ψ0(x) =
1

1− 2(x2 − x1)

1

1− 2x1
(0, 0, x3 − x2, ..., xM+K − x2),

and proceeding in this way, for x0 = 0 we get

ψ(x) =
K−1∏
j=0

1

1− 2(xj+1 − xj)
(0, ..., 0, xK+1 − xK , ..., xM+K − xK) ∈ LM . (3.15)

Example 3.2.1. For M = 1 and K = 2, consider a curve in the unit cube, then ψ0 maps
it onto the faces of the cube by radially projecting from the center of the cube, then ψ1

maps that projected curve onto the edges of the cube by radially projecting from the
centers of the faces.
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Next, we want to estimate the norm of Dψ, which is a crucial pint to prove the
theorem. We need the following lemma.

Lemma 3.2.1. If 0 ≤ a0 ≤ a1 ≤ · · · ≤ aj+1 < 1/2, then

j∏
i=0

(1 + 2ai − 2ai+1)
−1 ≤ 1

1− 2aj+1

.

Proof. We prove the lemma by induction. For j = 0 and j = 1, the results are obvious.
Assume that the inequality holds for j = k, we check the result for j = k + 1, by using
the result for j = 1, we have

k+1∏
i=0

(1 + 2ai − 2ai+1)
−1 ≤ (1− 2ak+1)

−1(1 + 2ak+1 − 2ak+2)
−1

≤ 1

1− 2ak+2

,

then we finish the proof.

Lemma 3.2.2. There is a constant C = C(M,K) such that

1 ≤ |Dψ(x)| ≤ C

ρ

holds for LM+K − a.e. x ∈ RM+K\L̃K−1, where ρ = dist(x, L̃K−1).

Proof. If θ is the composition of reflections through the planes {x : ej · x = k
2
}, k ∈ Z,

translation tz, z ∈ ZM+K , and permutations of coordinates, then |Dθ| = 1 and θ◦ψ ◦θ =
ψ, so it is sufficient to consider the case that x ∈ A0. Let

ψ(x) = (ψ1(x), ..., ψM+K(x))

and using Lemma 3.2.1 to compute the absolute value of the partial derivative of ψi(x) =

(xi − xK)
K−1∏
j=0

1
1−2(xj+1−xj) , we get

∣∣∣∣∂ψi∂xj

∣∣∣∣ = K−1∏
j=0

1

1− 2(xj+1 − xj)
(xi − xK)

−4(xj+1 + xj−1)

(1− 2(xj − xj−1))(1− 2(xj+1 − xj))

≤ 2

1− 2xM+K

for i ≥ K + 1, j ̸= i, k, and∣∣∣∣∂ψi∂xi
(x)

∣∣∣∣ ≤ 4

1− 2xM+K

,

∣∣∣∣ ∂ψi∂xK
(x)

∣∣∣∣ ≤ 4

1− 2xM+K

The nearest point of L̃K−1 t0 x is (x1, ..., xK−1, 1/2, ..., 1/2), so

ρ =
1

2

(
M+K∑
j=K

(1− 2xj)
2

)1/2

≥ 1

2
xM+K ,
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thus |Dψ| ≤ C
ρ
, and for each ψi, we have

∣∣∣∂ψi

∂xi

∣∣∣ ≥ 1, so

1 ≤ |Dψ| ≤ C

ρ

Remark: Here the norm of Dψ is the Hilbert-Schmidt norm.

Proof of the unscaled deformation theorem. We divide the proof into four steps.
Step 1. We claim that ∫

C̃

|Dψ(x)|M dLM+K(x) <∞,

where C̃ = [−1
2
, 1
2
]× [−1

2
, 1
2
]× · · · × [−1

2
, 1
2
].

Using the estimate in Lemma 3.2.2, we see that∫
C̃

|Dψ(x)|M dLM+K(x) ≤
∫
C̃

ρ−M dLM+K =

∫
C̃

ρ̃−M dLM+K ,

where ρ̃(x) is the distance from a point in RM+K to the union of the (K−1)-dimensional
coordinate planes. Since ρ̃(x) is the minimum of the distances from x to each of the
individual (K − 1)-dimensional coordinate planes, if we write x = (x′, x′′) ∈ RM+K ,
where x′ ∈ RM+1 and x′′ ∈ RK−1, then ρ̃(x) ≤ ρ̃(x′, 0) = |x′|, so it will suffice to estimate∫
C̃
|x′|−M dLM+K(x). Let

B1 = {x′ ∈ RM+1 : |x′| ≤ 1

2

√
M + 1}, B2 = {x′′ ∈ RK−1 : |x′′| ≤ 1

2

√
K − 1}.

We have C̃ ⊂ B1 ×B2, and then∫
C̃

|x′|−M dLM+K(x) ≤
∫
B1

∫
B2

|x′|−M dLM+1(x′) dLK−1(x′′)

= LK−1(B2) ·
∫ 1

2

√
M+1

0

∫
RM+1∩{ξ:|ξ|=r}

r−M dHM(ξ) dr

= LK−1(B2) · HM(RM+1 ∩ {ξ : |ξ| = 1})1
2

√
M + 1 <∞.

Step 2. There exists a point a ∈ C̃ such that∫
|Dψ(x)|Md||ta#T ||(x) ≤ cM(T ),∫

|Dψ(x)|Md||ta#∂T ||(x) < cM(∂T ).

Above, c = c(M,K) is a constant and ||ta#T || denotes the total variation measure µta#T
of the current ta#T .

Set

c = 4

∫
C̃

|Dψ(x)|MdLM+K(x).
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By the symmetry in the construction of ψ we have, ∀x ∈ RM+K ,∫
C̃

|Dψ(x+ a)|MdLM+K(a) =

∫
C̃

|Dψ(a)|MdLM+K(a) = c/4.

By Fubini theorem, we have

c

4
M(T ) =

∫ ∫
C̃

|Dψ(x+ a)|MdLM+K(a)d||T ||(x)

=

∫
C̃

∫
|Dψ(x+ a)|Md||T ||(x)dLM+K(a).

Set

G1 =

{
a ∈ C̃ :

∫
C̃

|Dψ(x+ a)|Md||T ||(x) ≤ cM(T )

}
,

H1 = C̃ \G1 =

{
a ∈ C̃ :

∫
C̃

|Dψ(x+ a)|Md||T ||(x) > cM(T )

}
.

We have∫
C̃

∫
|Dψ(x+ a)|Md||T ||(x)dLM+K(a)

≥
∫
H1

∫
|Dψ(x+ a)|Md||T ||(x)dLM+K(a)

≥ cM(T )LM+K(H1),

so if LM+K(H1) ≥ 1/3 held, then we would have (c/4)M(T ) ≥ (c/3)M(T ). That is a
contradiction. So we have LM+K(H1) < 1/3 and LM+K(G1) ≥ 2/3.

Also set

G2 =

{
a ∈ C̃ :

∫
C̃

|Dψ(x+ a)|Md||∂T ||(x) ≤ cM(∂T )

}
.

Similarly, we have LM+K(G2) ≥ 2/3. So LM+K(G1 ∩ C2) > 0, and there exists a ∈
G1 ∩ C2. Finally, again by the symmetry in the construction of ψ, we observe that∫

|Dψ(x)|Md||ta#T ||(x) =
∫

|Dψ(x+ a)|Md||T ||(x)

and ∫
|Dψ(x)|Md||ta#∂T ||(x) =

∫
C̃

|Dψ(x+ a)|Md||∂T ||(x).

Then the result follows.
Step 3. Now we fix an a ∈ C̃ as in Step 2 above and write T̃ = ta#T. Applying the

homotopy formula (2.12) we have

T = T̃ + ∂h#([|(0, 1)|]× T ) + h#([|(0, 1)|]× ∂T ), (3.16)
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where h is the affine homotopy

h(t, x) = tx+ (1− t)ψ(x)

between the identity map and ta. Then by (2.13) we have the following estimates

M [h#([|(0, 1)|]× T )] ≤ |a|M(T ),

M [h#([|(0, 1)|]× ∂T )] ≤ |a|M(∂T ).

Let k(t, x) = tx+ (1− t)ψ(x) be another homotopy, again by the homotopy formula, we
have

T̃ = ψ#T̃ + ∂k#([|(0, 1)|]× T̃ ) + k#([|(0, 1)|]× ∂T̃ ). (3.17)

Since |Dψ(x)− x| < 1/2
√
M +K, we also have the following estimates.

M [k#([|(0, 1)|]× T̃ )] ≤ 1/2
√
M +K

∫
|Dψ(x)|Md||T̃ ||(x)

≤ 1/2
√
M +K · cM(T );

M [k#([|(0, 1)|]× ∂T̃ )] ≤ 1/2
√
M +K

∫
|Dψ(x)|M−1d||∂T̃ ||(x)

≤ 1/2
√
M +K

∫
|Dψ(x)|Md||∂T̃ ||(x)

≤ 1/2
√
M +K · cM(∂T );

M(ψ#T̃ ) ≤
∫

|Dψ(x)|Md||T̃ ||(x) ≤ cM(T );

M(ψ#∂T̃ ) ≤
∫

|Dψ(x)|M−1d||∂T̃ ||(x)

≤
∫

|Dψ(x)|Md||∂T̃ ||(x) ≤ cM(∂T ).

Combining (3.16) and (3.17), we have

T − ψ#T̃ = ∂
[
h# ([|(0, 1)|]× T ) + k#

(
[|(0, 1)|]× T̃

)]
+ h# ([|(0, 1)|]× ∂T ) + k#

(
[|(0, 1)|]× ∂T̃

)
.

We set

R = h# ([|(0, 1)|]× T ) + k#

(
[|(0, 1)|]× T̃

)
and

S1 = h# ([|(0, 1)|]× ∂T ) + k#

(
[|(0, 1)|]× ∂T̃

)
.

Note that R is of Integer-Multiplicity if T is, and S1 is of Integer-Multiplicity if ∂T
is. Also we have

sptR ⊂
{
x : dist(x, sptT ) < 2

√
M +K

}
, sptS1 ⊂

{
x : dist(x, spt ∂T ) < 2

√
M +K

}
.
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Step 4. Let Q = ψ#T̃ , then sptQ ⊂ LM and T −Q = ∂R − S1. We will show that
Q can be used to construct

P =
∑
F∈LM

pF [|F |].

as in (3.12). Let F ∈ LM and F̊ be the interior of F . Suppose that F ⊂ RM ×
{0} ⊂ RM+K and let p be orthogonal projection onto RM × {0}, then p ◦ ψ = ψ in a
neighborhood of any point y ∈ F̊ . Thus we have

p#(Q⌊F ) = Q⌊F̊ .

Identifying RM × {0} with RM and applying Proposition 2.2.1, we get that there
exists θF ∈ BV (RM) such that

M(Q⌊F̊ ) =
∫
F̊

|θF |dLM(x) (3.18)

and

M((∂Q)⌊F̊ ) =
∫
F̊

|DθF | (3.19)

holds, and such that

(Q⌊F̊ )(ω) =
∫
F̊

⟨ω(x), e1 ∧ e2 ∧ · · · ∧ eM⟩ θF (x) dLM(x) (3.20)

holds for all ω ∈ DM(RM).
In addition, by (3.20), we have

(Q⌊F̊ − β[|F |])(ω) =
∫
F̊

(θF − β)⟨ω(x), e1 ∧ · · · ∧ eM⟩ dLM(x), (3.21)

for some constant β. Thus we have

M(Q⌊F̊ − β[|F |]) =
∫
F̊

|θF − β| dLM(x), (3.22)

M(∂(Q⌊F̊ − β[|F |])) =
∫
RM

|D(χF̊ (θF − β))|. (3.23)

Now, since LM(F ) = 1, we can take β = βF such that

min
{
LM{x ∈ F̊ : θF (x) ≥ β},LM{x ∈ F̊ : θF (x) ≤ β}

}
≥ 1

2
.

Also we may take βF ∈ Z whenever θF is integer-valued.
Then by Theorem 1.1.7, Theorem 1.1.8, (3.18), (3.19), (3.22), and (3.23), we have

M(Q⌊F̊ − β[|F |]) ≤ c

∫
F̊

|DθF | = cM(∂Q⌊F̊ ), (3.24)

M(∂(Q⌊F̊ − β[|F |])) ≤ c

∫
F̊

|DθF | = cM(∂Q⌊F̊ ), (3.25)
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for some constant c. Also we have Q⌊∂F̊ = 0, so

M

(
Q−Q⌊

⋃
F∈LM

F̊

)
= 0. (3.26)

Now, summing over F ∈ LM and using (3.24), (3.25), and (3.26), with

P :=
∑
F∈LM

βF [|F |],

we see that

M(Q− P ) ≤ cM(∂Q), (3.27)

M(∂Q− ∂P ) ≤ cM(∂Q). (3.28)

Our choice of βF also tells us that

2

∫
F̊

|βF |dLM ≥ 2

∫
{x∈F̊ :θF (x)≥β}

|βF |dLM ≥ |βF |. (3.29)

Thus, again using (3.22), and since M(P ) =
∑

F∈LM

|βF |, we see that

M(P ) ≤ cM(Q). (3.30)

We also know, from (3.28) above (and the triangle inequality), that

M(∂P ) ≤ cM(∂Q).

Finally, by setting S := S1 + (Q− P ) and pF := βF , we obtain

T − P = ∂R + S, (3.31)

and the deformation theorem follows.

Scaled Deformation Theorem

Let the map ηt be defined by

ηt : RM+K −→ RM+K

x 7−→ tx ∀t ∈ R.

The scaled deformation theorem is the following.

Theorem 3.2.2 (Scaled Deformation Theorem). Fix ρ > 0. Let T ∈ NM(RM+K) be an
M-dimensional normal current, then we have

T − P = ∂R + S,
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where P ∈ DM(RM+K), R ∈ DM+1(RM+K), and S ∈ DM(RM+K) are such that

P =
∑
F∈LM

pFηρ#[|F |], (3.32)

with pF ∈ R for F ∈ LM , and

M(P ) ≤ cM(T ), M(∂P ) ≤ cM(∂T ), (3.33)

M(R) ≤ c ρM(T ), M(S) ≤ c ρM(∂T ). (3.34)

The constant c depends only on M and K. Further,

sptP ∪ sptR ⊂ {x : dist(x, sptT ) < 2
√
M +Kρ},

spt ∂P ∪ sptS ⊂ {x : dist(x, spt ∂T ) < 2
√
M +Kρ}.

Moreover, if T is an integral current, then so are P and R, pF ∈ Z. If ∂T is an integral
current, then so is S.

Proof. Applying the Unscaled Deformation Theorem 3.2.1 to η1/ρ#T and then applying
ηρ# to P,R and S, the result follows.

Some Applications

Theorem 3.2.3 (Isoperimetric Inequality). LetM ≤ 2. Suppose that T ∈ IM−1(RM+K),
sptT is compact and ∂T = 0. Then there is a compactly supported T ∈ IM(RR+K) such
that ∂R = T and

[M(R)]M−1/M ≤ cM(T ),

where c = c(M,K) is a constant.

Example 3.2.2. Let T ∈ D1(R2) be a current given by integration on a simple, closed
curve γ in R2. Then M(T ) is the length of γ. Let the current R ∈ D2(R2) be the region
in the plane whose boundary is T . The conclusion of the theorem is that the square
root of the area of R is bounded by a constant times the mass of T : this is the classical
isoperimetric inequality.

Proof. For T = 0, the result is trivial. We consider the case that T ̸= 0. Let P, S ∈
IM−1(RM+K) and R ∈ IM(RM+K), also for each ρ > 0 let ηρ(x) = ρx. Then by Theorem
3.2.2 we have

T − P = ∂R + S.

But ∂T = ∂∂R = 0, so M(S) = 0, and

M(ηρ#[|F |]) = HM−1(ρF ) = ρM−1.

So, M(P ) = N(ρ)ρM−1 for some N(ρ) ∈ N. Now, choose ρ = [2cM(T )]1/(M−1), then

M(P ) = N(ρ)ρM−1 = 2N(ρ)cM(T ) ≤ cM(T );

thus 2N(ρ) ≤ 1, so N(ρ) = 0 and P = 0. Then T = ∂R for some R ∈ IM(RM+K) and

M(R) ≤ cρM(T ) = 21/(M−1)c(M/(M−1)[M(T )]M/(M−1).
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Theorem 3.2.4 (Weak Polyhedral Approximation). Let T ∈ IM(U) be am Integer-
Multiplicity current with MW (∂T ) <∞ for all W ⊂⊂ U . Then there is a sequence {Pl}
of currents of the form

Pl =
∑
F∈LM

p
(l)
F ηρl#[|F |], p

(l)
F ∈ Z, (3.35)

such that Pl and ∂Pl converge weakly to T and ∂T , respectively, in U as ρl ↓ 0.

Proof. First consider the case U = RM+K and T ∈ IM(RM+K). For any sequence ρl → 0,
by Theorem 3.2.2 we have

T − Pl = ∂Rl + Sl

for some Rl, Sl such that

M(Rl) ≤ c ρlM(T ) → 0, M(Sl) ≤ c ρlM(∂T ) → 0,

and

M(Pl) ≤ cM(T ), M(∂Pl) ≤ cM(∂T ).

Thus we have Pl(ω) → T (ω) for all ω ∈ DM(RM+K), also ∂Pl = 0 if ∂T = 0.
For the general case, let ϕ be a Lipschitz function on RM+K such that ϕ > 0 in

U and ϕ = 0 on RM+K \ U . Also assume that {x : ϕ(x) > λ} ⊂⊂ U for all λ > 0.
Letting Tλ = T ⌊{x : ϕ(x) > λ}, then for L1-almost every λ > 0, Lemma 3.1.2 implies
that Tλ is such that M(∂Tλ) < ∞. Since sptTλ ⊂⊂ U , we can use the above argument
to approximate Tλ for any such λ. Then, for a suitable sequence λj → 0, the required
approximation is an immediate consequence.

3.3 The Compactness Theorem

In this section, we will prove the compactness theorem for Integer-Multiplicity currents
with finite local mass and finite boundary local mass. The compactness theorem for
integral currents will be a simple corollary.

Theorem 3.3.1 (Compactness Theorem for Integer-Multiplicity Currents). Let U ⊂
RM+K be an open set. Let {Tj} ⊂ DM(U) be a sequence of Integer-Multiplicity currents
such that

sup
j≥1

[MW (Tj) +MW (∂Tj)] <∞ ∀W ⊂⊂ U.

Then there is an Integer-Multiplicity current T ∈ DM(U) and a subsequence {Tj′} such
that Tj → T weakly in U .

The proof of this theorem is complicate, but the idea is to use induction, We first
start from integer multiplicity 0-currents.

3.3.1 Integer-Multiplicity 0-Currents

We first fix some notation.
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1. Let R0(RM+K) denote the space of finite-mass Integer-Multiplicity 0-currents in
RM+K , notice that R0(RM+K) = I0(RM+K).

2. A nonzero current T in R0(RM+K) can be written

T =
α∑
j=1

cjδpj , (3.36)

where α is a positive integer, pj ∈ RM+K for each 1 ≤ j ≤ α, pi ̸= pj for 1 ≤ i ̸=
j ≤ α, δpj is the Dirac mass at pj, and cj ∈ Z \ {0} for each 1 ≤ j ≤ α.

Next, we prove the compactness theorem for R0(RM+K).

Proof. Suppose that Tj ∈ R0(RM+K), j = 1, 2, . . . , and that

L = sup
j≥1

M(Tj) <∞, L ∈ Z+.

By the Banach-Alaoglu theorem there is a T ∈ D0(RM+k) such that a subsequence
of the Tj converges weakly to T , still denoting the subsequence by Tj. What we must
prove is that T ∈ R0(RM+K).

Let B(x, r) denote the standard open ball in RM+k centered in x with radius r. Choose
0 < m < ∞ large enough such that T ⌊B(0,m) ̸= 0. We can write each Tj⌊B(0,m) ∈
R0(RM+K) as

Tj⌊B(0,m) =
L∑
i=1

c
(j)
i δ

p
(j)
i
,

where
c
(j)
i ∈ Z, −L ≤ c

(j)
i ≤ L, p

(j)
i ∈ B(0,m).

We now allow c
(j)
i = 0 because it is possible that M [Tj⌊B(0,m)] < L holds.

By the Bolzano-Weierstrass theorem, we can pass to a subsequence (without changing
the notation) so that for j = 1, 2, . . . , L,

p
(j)
i → pi ∈ B(0,m) as j → ∞

and
c
(j)
i → ci ∈ Z.

If ϕ ∈ D0(RM+K) with supp ϕ ⊆ B(0,m) then we have

Tj(ϕ) = Tj⌊B(0,m)(ϕ) →
L∑
i=1

ciϕ(pi)

and we have Tj(ϕ) → T (ϕ) because Tj converges weakly to T . Thus we can write

T ⌊B(0,m) =
α∑
i=1

ciδpi ,

where α ≤ L is a positive integer, pi ∈ B(0,m) each 1 ≤ i ≤ α, pj ̸= ph for 1 ≤ j ̸= h ≤ α,
and ci ∈ Z\{0}, for each 1 ≤ i ≤ α. Since M(T ) <∞, then for m large enough, we can
write T ⌊B(0,m) = T , so T ∈ R0(RM+K).
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Definition 3.3.1. We have the following definitions:

1. Form (3.36), we see that if T ∈ R0(RM+K) and ϕ ∈ D0(RM+K) then

T (ϕ) =
α∑
i=1

ciϕ(pi).

Now we also define T (ϕ) in the same way for ϕ ∈ C(RM+K) is only continuous.

2. Endow R0(RM+K) with the metric d0 defined by

d0(T1, T2) = sup{(T1 − T2)(ϕ) : ϕ is Lipschitz, ||ϕ||∞ ≤ 1, ||ϕ′||∞ ≤ 1}.

3. We let FM+K denote the space of nonempty finite subsets of RM+K metrized by
the Hausdorff distance. The Hausdorff distance between A and B, denoted by
HD(A,B), is defined by

HD(A,B) = max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(A, b)

}
for A,B ∈ FM+K .

4. Define
ϱ : R0(RM+K) → R

by
ϱ(T ) = inf{|p− q| : p, q ∈ sptT, p ̸= q}.

Note that if either T = 0 or H0(sptT ) = 1, then ϱ(T ) = +∞.

Lemma 3.3.1. If Tj ∈ R0(RM+K) and Tj → T ∈ R0(RM+K) weakly as j → ∞, then

H0(sptT ) ≤ lim inf
j→∞

H0(sptTj).

If additionally
H0(sptT ) = H0(sptTj), j = 1, 2, . . . ,

then
ϱ(T ) = lim

j→∞
ϱ(Tj).

Proof. For each p ∈ sptT we can find ϕp ∈ D0(RM+K) for which ϕp(p) = 1, ϕp(x) < 1
for x ̸= p, and ϕp(q) = 0 for q ∈ sptT with q ̸= p. The existence of such a function
ϕp implies that p is a limit point of any set of the form

⋃
i≥I sptTji , and the result

follows.

Lemma 3.3.2. If T, T̃ ∈ R0(RM+K) satisfy 0 < M(T ) =M(T̃ ), then it holds that

min

{
1,

1

3
ϱ(T ),HD(sptT, spt T̃ )

}
≤ d0(T, T̃ ).

Proof. Write T =
∑α

j=1 cjδpj and T̃ =
∑

q∈spt T̃ γqδq. Set

r = min

{
1,

1

3
ϱ(T )

}
.
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and assume that d0(T, T̃ ) < r.

Because M(T ) =M(T̃ ) holds, we have

α∑
j=1

|cj| =
∑

q∈spt T̃

|γq|. (3.37)

For j = 1, 2, . . . , α, define ϕj by setting

ϕj(x) =

{
sgn(cj) · [r − |x− pj|] if |x− pj| < r,

0 if |x− pj| ≥ r.

Since |ϕj| ≤ r ≤ 1 and |ϕ′
j| ≤ 1 hold, we have (T − T̃ )(ϕj) ≤ d0(T, T̃ ).

If there were 1 ≤ j ≤ α for which spt T̃ ∩ B(pj, r) = ∅ held, then we would have

d0(T, T̃ ) ≥ (T − T̃ )(ϕj) = T (ϕj) = r|cj| ≥ r,

contradicting the assumption that d0(T, T̃ ) < r. We conclude that

spt T̃ ∩ B(pj, r) ̸= ∅, for j = 1, 2, . . . , α. (3.38)

Now define ϕ =
∑α

j=1 ϕj. Since the ϕj have disjoint support, we see that |ϕ| ≤ r ≤ 1
and |ϕ′| ≤ 1 hold. Setting

Aj = spt T̃ ∩ B(pj, r), B = spt T̃ \
α⋃
j=1

Aj,

and using (3.37), we have

d0(T, T̃ ) ≥ (T − T̃ )(ϕ) = T (ϕ)− T̃ (ϕ) (3.39)

= r
α∑
j=1

|cj| −
α∑
j=1

∑
q∈Aj

sgn(cj)[r − |q − pj|]γq (3.40)

= r
∑

q∈spt(T̃ )

|γq| −
α∑
j=1

∑
q∈Aj

sgn(cj)[r − |q − pj|]γq (3.41)

=
∑
q∈B

r|γq|+
α∑
j=1

∑
q∈Aj

(r|γq| − sgn(cj)[r − |q − pj|]γq) . (3.42)

Note that each (r|γq| − sgn(cj)[r − |q − pj|]γq) is nonnegative.
If there existed q ∈ B, then we would have

d0(T, T̃ ) ≥ r|γq| ≥ r,

contradicting the assumption that d0(T, T̃ ) < r. We conclude that

spt(T̃ ) ⊆
α⋃
j=1

B(pj, r). (3.43)
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Now we consider q∗ ∈ spt(T̃ ) and 1 ≤ j∗ ≤ α such that q∗ ∈ Aj∗ . Looking only at
the summand in (3.42) that corresponds to j∗ and q∗, we see that

d0(T, T̃ ) ≥ r|γq∗| − sgn(cj∗)[r − |q∗ − pj∗ |]|γq∗| (3.44)

holds.
In assessing the significance of (3.44) there are two cases to be considered according

to the sign of cj∗γq∗ .
Case 1. In case sgn(cj∗γq∗) = −1 holds, we have

sgn(cj∗)γq∗ = sgn(cj∗)sgn(γq∗)|γq∗| = sgn(cj∗γq∗)|γq∗| = −|γq∗|.

The fact that sgn(cj∗)γq∗ = −|γq∗| holds implies

d0(T, T̃ ) ≥ r|γq| − sgn(cj)[r − |q − pj|]|γq|
= (r + r − |q∗ − pj∗|)|γq∗| ≥ r,

and this last inequality contradicts the assumption that d0(T, T̃ ) < r.
Case 2. We see that sgn(cj∗γq∗) = +1, thus sgn(cj∗)γq∗ = |γq∗|, then

d0(T, T̃ ) ≥ (r − r + |q − pj∗|)|γq∗| ≥ |q∗ − pj∗|.

By (3.43), for q∗ ∈ spt(T̃ ), there exists j∗ such that q∗ ∈ Aj∗ . Similarly, by (3.38),

for 1 ≤ j∗ ≤ α, there exists q∗ ∈ spt(T̃ ) such that q∗ ∈ Aj∗ . Thus we conclude that

d0(T, T̃ ) ≥ HD[sptT, spt T̃ ].

Theorem 3.3.2.

1. If A ⊆ RM and f : A→ FM+K is a Lipschitz function, then⋃
x∈A

f(x) (3.45)

is a countably M-rectifiable subset of RM+K.

2. If A ⊆ RM and g : A→ R0(RM+K) is a Lipschitz function, then⋃
x∈A

spt[g(x)] (3.46)

is a countably M-rectifiable subset of RM+K.

Proof.
1. Let Lip(f) = m be a Lipschitz bound for f , then Lip(f(x)/m) = 1. Thus, without

loss of generality, we may suppose that Lip(f) = 1.
In this proof, we will need to consider open balls in both RM and in RM+K . Accord-

ingly, we will use the notation BM(x, r) for the open ball in RM and BM+K(x, r) for the
open ball in RM+K .

For ℓ = 1, 2, . . ., set Aℓ = {x ∈ A : H0[f(x)] = ℓ}. Note that
⋃
x∈A1

f(x) is the image
of the Lipschitz function u : A1 → RM+K defined by requiring f(x) = {u(x)}.
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Now consider ℓ ≥ 2 and x ∈ Aℓ. Write f(x) = {p1, p2, . . . , pℓ} and set r(x) =
mini ̸=j |pi − pj|.

If z ∈ Aℓ ∩ BM(x, r(x)
4
), then for each i = 1, 2, . . . , ℓ there is a unique q ∈ f(z) ∩

BM+K(pi,
r(x)
4
) and we define ui(z) = q.

The functions u1, u2, . . . , uℓ are Lipschitz because, for

z1, z2 ∈ Aℓ ∩ BM
(
x,
r(x)

4

)
,

we have
HD[f(z1), f(z2)] = max{|ui(z1)− ui(z2)| : i = 1, 2, . . . , ℓ}.

Since ⋃
z∈Aℓ∩BM (x,

r(x)
4

)

f(z) =
ℓ⋃
i=1

{ui(z) : z ∈ Aℓ ∩ BM(x,
r(x)

4
)},

we see that
⋃
z∈Aℓ∩BM (x,

r(x)
4

)
f(z) is a countably M -rectifiable subset of RM+K .

As a subspace of a second countable space, Aℓ is second countable, so it has the
Lindelöf property; that is, every open cover has a countable subcover. Thus there is a
countable cover of Aℓ by sets of the form Aℓ ∩ BM(x, r(x)

4
), x ∈ Aℓ. We conclude that⋃

z∈Aℓ
f(z) is a countably M -rectifiable subset of RM+K and hence

⋃∞
ℓ=1

⋃
z∈Aℓ

f(z) is
also countably M -rectifiable.

2. Without loss of generality, also suppose that Lip(g) = 1. For i and j positive
integers, set

Ai,j = {x ∈ A :M [g(x)] = j and 2−i < rg(x)},

where

rg(x) = min

{
1,

1

3
ϱ[g(x)]

}
.

Fix x ∈ Ai,j. For z1, z2 ∈ Ai,j ∩ B(x, 2−i−1), we have

M [g(z1)] =M [g(z2)] = j and d0[g(z1), g(z2)] < 2−i < rg(z1).

So, by Lemma 3.3.2, HD[spt(g(z1)), spt(g(z2))] ≤ d0[g(z1), g(z2)] holds. Thus

f : Ai,j ∩ B(x, 2−i−1) → FM+K

defined by f(z) = spt[g(z)] is Lipschitz. By part 1. we conclude that⋃
z∈Ai,j∩B(x,2−i−1)

spt[g(z)]

is a countably M -rectifiable subset of RM+K . As in the proof of 1., we observe that Ai,j
has the Lindelöf property, and so the result follows.

Rectifiability Criterion

The next theorem provides a criterion for guaranteeing that a current is an Integer-
Multiplicity rectifiable current. Later we shall use this criterion to complete the proof of
the compactness theorem.
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Before stating this theorem, we first need some tools.

Definition 3.3.2. Let µ be a measure on RN . Fix a point p ∈ RN and fix 0 ≤ m <∞.

1. The m-dimensional upper density of µ at p is denoted by Θ∗m(µ, p) and is defined
by setting

Θ∗m(µ, p) = lim sup
r↓0

µ[B(p, r)]
Ωmrm

.

2. The m-dimensional lower density of µ at p is denoted by Θm
∗ (µ, p) and is defined

by setting

Θm
∗ (µ, p) = lim inf

r↓0

µ[B(p, r)]
Ωmrm

.

3. If Θm
∗ (µ, p) = Θ∗m(µ, p), we call their common value the m-dimensional density of

µ at p and denote it by Θm(µ, p).

Here Ωm is the the m-dimensional volume of the unit ball in Euclidean m-space.

Theorem 3.3.3. Fix t > 0. If µ is a Borel regular measure on RN and A ⊆ C ⊆ RN ,
then

t ≤ Θ∗M(µ⌊C, x), for all x ∈ A, implies t · SM(A) ≤ µ(C).

Here SM is the M-dimensional spherical measure.

For the proof, see Theorem 4.3.7 in [1].

Theorem 3.3.4 (Rectifiability Criterion). If T ∈ DM(RM+K) satisfies the following
conditions:

1. M(T ) +M(∂T ) <∞,

2. ∥T∥ = HM⌊θ, where θ is integer valued and nonnegative,

3. {x : θ(x) > 0} is a countably M-rectifiable set,

then T is an Integer-Multiplicity rectifiable current.

Proof. Set S = {x : θ(x) > 0}. We need to show that for HM -almost every point in S,

T⃗ (x) = v1 ∧ · · · ∧ vM , where v1, . . . , vM is an orthonormal system parallel to TxS.
Of course, HM -almost every point x of S is a Lebesgue point of θ and is a point

where T⃗ (x) and TxS both exist. By Theorem 3.3.3, we see that Θ∗M(∥∂T∥, x) < ∞
holds for HM -almost every x ∈ S. Hence ΘM−1(∥∂T∥, x) = 0 also holds for HM -almost
every x ∈ S.

Without loss of generality, suppose that x = 0. Let ηr : RM+K → RM+K given by
ηr(z) = r−1z be a rescaling. Consider a sequence ri ↓ 0, passing to a subsequence but
without changing notation, we have that

ηri#T ⇀ R and ηri#∂T ⇀ ∂R, as ri ↓ 0
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for some R ∈ DM(RM+K), that is

lim
i→+∞

ηri#T (ω) = lim
i→+∞

∫
S

⟨
∧

M
dxηriT⃗ (ηri(x)), ω(ηri(x))⟩θ(x)dHM(x)

=

∫
T0S

⟨T⃗ (0), ω(y)⟩θ(0)dHM(y)

= R(ω) =

∫
T0S

⟨R⃗, ω⟩dµR

for all ω ∈ DM(RM+K), and

ηri#∂T (ω
′) =

∫
RM+K

⟨
∧

M−1
dxηri ∂⃗T , ω

′(ηri(x))⟩d||∂T ||

≤ 1

rM−1
· ||∂T ||[B(0, ri · r′)] → 0 as i→ +∞

for all ω′ ∈ DM−1(B(0, r′)). Then we have R⃗(0) = T⃗ (0), ∂R = 0, and sptR ⊆ T0S.

By Proposition 2.2.2, we have R⃗(x) = v1 ∧ · · · ∧ vM = T⃗ (0), where v1, . . . , vM is an
orthonormal system parallel to T0S.

3.3.2 MBV Functions

In this subsection, we introduce a class of metric-space-valued functions of bounded
variation.

Definition 3.3.3.

1. A function u : RM → R0(RM+K) can be written as

u(y) =
∞∑
i=1

ci(y)δpi(y) (3.47)

where for any y ∈ RM , pi(y) ∈ RM+K and only finitely many ci(y) are nonzero.

2. If u is as in (3.47) and ϕ : RM+K → R, then we define u♢ϕ : RM → R by setting

(u♢ϕ)(y) =
∞∑
i=1

ci(y)ϕ[pi(y)] (3.48)

for y ∈ RM ; thus the value of (u♢ϕ)(y) is the result of applying the 0-current u(y)
to the function ϕ.

3. A Borel function u : RM → R0(RM+K) is a metric space valued function of bounded
variation (MBV) if for every bounded Lipschitz function ϕ : RM+K → R, the
function u♢ϕ is locally BV in the traditional sense (see for instance Section 3.6 in
[10]).
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4. If u : RM → R0(RM+K) is MBV, then we denote the total variation measure of u
by Vu and define it by

(Vu)(A) = sup

{∫
A

|D(u♢ϕ)| : ϕ : RM+K → R, |ϕ| ≤ 1, |dϕ| ≤ 1

}
= sup

{∫
A

(u♢ϕ) div g dLM : supp g ⊆ A, |g| ≤ 1, |ϕ| ≤ 1, |dϕ| ≤ 1

}
,

for A ⊆ RM open.

For us the most important example of an MBV function will be provided by slicing
a current. That is the content of the next proposition.

Proposition 3.3.1. Let p : RM+K = RM × RK → RM be the projection onto the first
factor. If T ∈ IM(RM+K) is an integral current, then u : RM → R0(RM+K) defined by

u(x) = ⟨T,p, x⟩, x ∈ RM ,

is MBV and
Vu(A) ≤M [∥∂T∥(A) + ∥T∥(A)]

holds for each open set A ⊆ RM .

Proof. Fix an open set A ⊆ RM . Let g = (gq, · · · , gM) ∈ C1(RM ,RM) satisfy |g| ≤ 1
and supp g ⊆ A. Let ϕ : RM+K → R be such that |ϕ| ≤ 1 and |dϕ| ≤ 1. Pick i with
1 ≤ i ≤M and set

dx̂i = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxM .

Using (2) of Proposition 3.1.2 and

(u♢ϕ)∂xigi = Dxigi⟨T,p, x⟩(ϕ)

we have∣∣∣∣∫ Dxigi⟨T,p, x⟩(ϕ)dLM(x)

∣∣∣∣ = |(T ⌊[(Dxigi) ◦ p] dx1 ∧ · · · ∧ dxM) (ϕ)|

= |T (ϕ [(Dxigi) ◦ p] dx1 ∧ · · · ∧ dxM)|
= |T [ϕd(gi ◦ p) ∧ dx̂i]|
= |(∂T )[ϕ(gi ◦ p)dx̂i]− T [(gi ◦ p)dϕ ∧ dx̂i]|
≤ ∥∂T∥(A) + ∥T∥(A),

so ∣∣∣∣∫
A

(u♢ϕ) div g dLM
∣∣∣∣ = ∣∣∣∣∫ ⟨T,p, x⟩ϕ div(g)dLn(x)

∣∣∣∣ ≤M [∥∂T∥(A) + ∥T∥(A)] .

Then the result follows.

Theorem 3.3.5. Let p : RM+K = RM × RK → RM be the projection onto the first
factor and fix 0 < L < ∞. If for ℓ = 1, 2, . . ., we have that Tℓ ∈ IM(RM+K) is an
integral current with M(Tℓ) +M(∂Tℓ) ≤ L and if Tℓ ⇀ T weakly, then for LM -almost
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every x ∈ RM , it holds that ⟨T,p, x⟩ is an Integer-Multiplicity current. Furthermore, the
function u : RM → R0(RM+K) defined by

u(x) = ⟨T,p, x⟩

is MBV, and
Vu(A) ≤ML

holds for each open set A ⊆ RM .

Proof. Since Tℓ → T weakly, so ⟨Tℓ,p, x⟩ → ⟨T,p, x⟩ weakly for LM -almost every x ∈
RM , then by the same argument as in the previous proof, and passing to the limit, the
result follows.

Definition 3.3.4. For a measure µ on RM , we define the maximal function for µ, denoted
by Mµ, by

Mµ(x) = sup
r>0

1

ΩMrM
µ
[
B(x, r)

]
.

Lemma 3.3.3. If v is a real-valued BV function and 0 is a Lebesgue point for f , then
we have

1

ΩMrM

∫
B(0,r)

|v(x)− v(0)|
|x|

dLM(x)

≤
∫ 1

0

1

ΩM(τr)M

∫
B(0,τr)

|Dv(x)|dLM(x)dL1(τ) ≤ M|Dv|(0).

Proof. For a function v ∈ C∞(RM), we have

|v(x)− v(0)| =
∣∣∣∣∫ 1

0

d

dτ
v(τx)dL1(τ)

∣∣∣∣
=

∣∣∣∣∫ 1

0

⟨Dv(τx), x⟩dL1(τ)

∣∣∣∣ ≤ |x|
∫ 1

0

|Dv(τx)|dL1(τ).

So

1

ΩMrM

∫
B(0,r)

|v(x)− v(0)|
|x|

dLM(x)

≤
∫
B(0,r)

∫ 1

0

1

ΩMrM
|Dv(τx)|dL1(τ)dLM(x)

=

∫ 1

0

∫
B(0,r)

1

ΩMrM
|Dv(τx)|dLM(x)dL1(τ)

=

∫ 1

0

1

ΩM(τr)M

∫
B(0,τr)

|Dv(x)|dLM(x)dL1(τ),

then by a smoothing argument in Theorem 1.1.5, the result follows.

Theorem 3.3.6. If v : RM → R is a BV function and y and z are Lebesgue points for
v, then

|v(y)− v(z)| ≤
[
M|Dv|(y) +M|Dv|(z)

]
|y − z|.
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Proof. Suppose that y ̸= z. Let p be the mid point of the segment connecting y and z
and set r = |y−z|

2
. For x ∈ B(p, r) we have

|v(y)− v(z)|
|y − z|

≤|v(y)− v(x)|
|y − z|

+
|v(x)− v(z)|

|y − z|
,

|x− y| ≤ |y − z|,
|x− z| ≤ |y − z|,

so

|v(y)− v(z)|
|y − z|

≤ |v(y)− v(x)|
|y − z|

+
|v(x)− v(z)|

|y − z|

≤ |v(y)− v(x)|
|y − x|

+
|v(x)− v(z)|

|x− z|
.

As a result,

|v(y)− v(z)|
|y − z|

=
1

ΩMrM

∫
B(p,r)

|v(y)− v(z)|
|y − z|

dx

≤ 1

ΩMrM

∫
B(p,r)

|v(y)− v(x)|
|y − x|

dx+
1

ΩMrM

∫
B(p,r)

|v(x)− v(z)|
|x− z|

dx

≤ M|Dv|(y) +M|Dv|(z).

Lemma 3.3.4. If u : RM → R0(RM+K) is an MBV function, then there is a set E with
LM(E) = 0 such that, for y, z ∈ RM \ E, it holds that

d0[u(y), u(z)] ≤ [MVu(y) +MVu(z)] |y − z|.

Proof. Let ϕi, i = 1, 2, . . ., be a dense set in D0(RM) and let Ei be the set of non-Lebesgue
points for u⋄ϕi. Then we set E =

⋃∞
i=1Ei and the result follows from Theorem 3.3.6.

Lemma 3.3.5. For each λ > 0, it holds that

LM{x : Mµ(x) > λ} ≤ BM

λ
µ(RM),

where BM is the constant for RM from the Besicovitch covering theorem which is stated
as follows.

Theorem 3.3.7 (Besicovitch’s Covering Theorem).
Let RM be the M-dimensional Euclidean space, then there exists a constant BM ,

depending only on the dimension M , with the following property:
If F is any collection of nondegenerate closed balls in RM with

sup{diam(B) : B ∈ F} <∞

and if A is the set of centers of balls in F , then there exist BM countable collections
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G1, . . . ,GBM
of disjoint balls in F such that

A ⊆
BM⋃
i=1

⋃
B∈Gi

B.

The proof of this theorem is in section 1.5.2 of [8].

Proof of Lemma 3.3.5. Set
L = {x : Mµ(x) > λ}.

For each x ∈ L, choose a ball B(x, rx) such that

1

ΩMrM
µ[B(x, rx)] > λ.

Since L ⊆
⋃
x∈L

B(x, rx), we can apply Theorem 3.3.7 to find families G1, . . . ,GBM
of

pairwise-disjoint balls B(x, rx), x ∈ L, such that L ⊆
⋃BM

i=1

⋃
B∈Gi

B. Then we have

LM(L) ≤ LM
(
BM⋃
i=1

⋃
B∈Gi

B

)
≤

BM∑
i=1

∑
B∈Gi

ΩM(
diam(B)

2
)M

<
1

λ

BM∑
i=1

∑
B∈Gi

µ(B) ≤ BM

λ
µ(RM).

We also aobserve that if we apply Lemma 3.3.5 to the measure Vu for some MBV
function u, since Vu is finite, then MVu(y) < +∞ for LM -a.e. y.

Theorem 3.3.8. If u : RM → R0(RM+K) is an MBV function, then there is a set E1

with LM(E1) = 0 such that

M =
⋃

y∈RM\E1

spt[u(y)]

is a countably M-rectifiable subset of RM+K.

The idea of the proof is to consider points lying over the set {MVu <
1
i
} for each i.

Proof. Let Ai = {y ∈ RM : MVu(y) <
1
i
}, we apply Lemma 3.3.5 to write RM as the

union of sets Ai. By Lemma 3.3.4, there is a set Ei ⊆ Ai of measure zero such that u
is Lipschitz on Ai \ Ei. So we can apply Theorem 3.3.2 to see that

⋃
y∈Ai\Ei

spt[u(y)] is
countably M -rectifiable.

Lemma 3.3.6 (Slicing Lemma). Let U ⊆ RM+K be an open set and {Ti} ⊂ IM(U)
Suppose that f : U → R is Lipschitz. If Ti converges weakly to T ∈ DM(U) and

sup (MW (Ti) +MW (∂Ti)) <∞

for every open set W ⊂⊂ U , then, for L1-almost every r, there is a subsequence ij such
that

⟨Tij , f, r⟩ converges weakly to ⟨T, f, r⟩ (3.49)
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and
sup

(
MW [⟨Tij , f, r⟩] +MW [∂⟨Tij , f, r⟩]

)
<∞

holds for W ⊂⊂ U .
If additionally W0 ⊂⊂ U is such that

lim
i→∞

(MW0(Ti) +MW0(∂Ti)) = 0,

then the subsequence can be chosen so that

lim
i→∞

(
MW0 [⟨Tij , f, r⟩] +MW0 [∂⟨Tij , f, r⟩]

)
= 0.

Proof. Passing to a subsequence for which ∥Tij∥ + ∥∂Tij∥ converges weakly to a Radon
measure µ, we see that (3.49) holds, except possibly for the at most countably many r
for which µ{x : f(x) = r} has positive measure.

The remaining conclusions follow by passing to additional subsequences and using
(3.5) in Lemma 3.1.2 and the fact that ∂⟨Ti, f, r⟩ = −⟨∂Ti, f, r⟩.

Lemma 3.3.7 (Density Lemma). Suppose that T ∈ DM(U). For B(x, r) ⊆ U , set

λ(x, r) = inf{M(S) : ∂S = ∂[T ⌊B(x, r)], S ∈ DM(U)}.

(1) If MW (T ) +MW (∂T ) <∞ holds for every W ⊂⊂ U , then

lim
r↓0

λ(x, r)

∥T∥(B(x, r))
= 1 (3.50)

holds for ∥T∥-almost every x ∈ U .
(2) If

1. ∂T = 0,

2. ∂[T ⌊B(x, r)] is Integer-Multiplicity for every x ∈ U and almost every r > 0,

3. MW (T ) +MW (∂T ) <∞ holds for every W ⊂⊂ U ,

then there exists δ > 0 such that

ΘM
∗ (∥T∥, x) > δ

holds for ∥T∥-almost every x ∈ U .

Proof.
(1) We argue by contradiction. Since λ(x, r) ≤ ∥T∥(B(x, r)) is true by definition, we

suppose that there is an ε > 0 and E ⊆ U with ∥T∥(E) > 0 such that for each x ∈ E
there exist arbitrarily small r > 0 such that

λ(x, r) < (1− ε)∥T∥(B(x, r)).

We may assume that E ⊆ W for an open W ⊂⊂ U .
Consider ρ > 0. Cover ∥T∥-almost all of E by disjoint balls Bi = B(xi, ri), where

xi ∈ E and ri < ρ. For each i, let Si ∈ DM(U) satisfy

∂Si = ∂[T ⌊B(xi, ri)], M(Si) < (1− ε)M [T ⌊B(xi, ri)].
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Set
Tρ = T −

∑
i

T ⌊Bi +
∑
i

Si.

For any ω ∈ DM(U), using (2.14) we get

(T − Tρ)(ω) =
∑
i

(T ⌊Bi − Si)(ω)

=
∑
i

[∂(δxi××(T ⌊Bi − Si)) + δxi×× ∂(T ⌊Bi − Si)](ω)

=
∑
i

(δxi××(T ⌊Bi − Si))(dω) + 0

≤
∑
i

M(δxi××(T ⌊Bi − Si)) · sup |dω|

≤ ρ
∑
i

M(T ⌊Bi − Si) · sup |dω|

≤ 2ρ
∑
i

M(T ⌊Bi) · sup |dω|

≤ 2ρM(T ) · sup |dω|.

Thus we see that Tρ converges weakly to T as ρ decreases to zero. By the lower semi-
continuity of mass, we have

MW (T ) ≤ lim inf
ρ↓0

MW (Tρ).

On the other hand, we have

MW (Tρ) ≤MW

(
T −

∑
i

T ⌊Bi

)
+
∑
i

MW (Si)

≤MW

(
T −

∑
i

T ⌊Bi

)
+ (1− ε)

∑
i

MW (T ⌊Bi)

≤MW (T )− ε
∑
i

MW (T ⌊Bi)

≤MW (T )− ε∥T∥(E),

a contradiction. (2) Let x be a point at which (3.50) holds. Set f(r) = M(T ⌊B(x, r)).
For sufficiently small r we have

f(r) < 2λ(x, r). (3.51)

To be specific, we suppose that (3.51) holds for 0 < r < R.
Let g(y) = |y − x| then B(x, r) = {y : g(y) < r}, thus we have

⟨T, g, r⟩ = ∂[T ⌊{y : g(y) < r}]− (∂T )⌊{y : g(y) < r}
= ∂[T ⌊{y : g(y) < r}]− 0,

and by (3.3) we have

M(⟨T, g, r⟩) =M [∂(T ⌊B(x, r))] ≤ f ′(r).
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holds for L1-almost every r. Applying the isoperimetric inequality, we have

λ(x, r)(M−1)/M ≤ c0f
′(r),

where c0 is a constant depending only on the dimensions M and K. So, by (3.51), we
have

[f(r)](M−1)/M ≤ c1f
′(r) (0 < r < R),

where c1 is another constant. Thus we have

d

dr
[f(r)]1/M = (1/M)f ′(r)[f(r)](1−M)/M ≥ 1/c1.

Since f is a nondecreasing function, we have

[f(ρ)]1/M ≥
∫ ρ

0

d

dr
[f(r)]1/MdL1(r) ≥

∫ ρ

0

1/c1dL1(r) = ρ/c1.

We conclude that f(r) ≥ (r/c1)
M holds for 0 < r < R.

3.3.3 The Proof of The Compactness Theorem

Now, we can start to prove the Compactness Theorem 3.3.1.

Theorem. Let U ⊂ RM+K be an open set. Let {Tj} ⊂ IM(U) be a sequence of Integer-
Multiplicity currents such that

sup
j≥1

[MW (Tj) +MW (∂Tj)] <∞ ∀W ⊂⊂ U.

Then there is an Integer-Multiplicity current T ∈ DM(U) and a subsequence {Tj′}
such that Tj → T weakly in U .

Proof. Assume {Tj} ⊂ DM(U) is a sequence of Integer-Multiplicity currents such that

sup
j≥1

[MW (Tj) +MW (∂Tj)] <∞ ∀W ⊂⊂ U.

Then by Banach-Alaoglu Theorem 1.1.3 and passing to a subsequence if necessary,
but without changing notation, there exists T ∈ DM(U) such that Tj ⇀ T and ∂Tj ⇀ ∂T
in U . Next, we need to show that T is an Integer-Multiplicity current.

First we show that it is enough to consider the case U = RM+K . Assume the Com-
pactness Theorem is valid for U = RM+K and sptTj ⊂ K for some fixed compact set K.
Then there exists a point a ∈ suppTj for all j.

Consider the function f(x) = |x− a|, by Lemma 3.3.6, there exists a subsequence of
Tj, still denoted by Tj such that for L1 − a.e. r, ⟨Tj, f, r⟩ → ⟨T, f, r⟩ weakly in K, that
is

[∂(Tj⌊B(a, r))− (∂Tj)⌊B(a, r)]⇀ [∂(T ⌊B(a, r))− (∂T )⌊B(a, r)]

and MW [∂(Tj⌊B(a, r))− (∂Tj)⌊B(a, r)] <∞.
Then MW [Tj⌊B(a, r)] +MW [∂(Tj⌊B(a, r))] <∞, so we have

Tj⌊B(a, r)⇀ T ⌊B(a, r).
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Then the Compactness Theorem is valid for arbitrary open set U ⊂ RM+N .
Without loss of generality, assume U = RM+N , we use the induction to complete the

proof.
1) For M = 0, the Compactness Theorem is already shown in Section 3.3.1.
2) Assume that for DM−1(RM+K), the Compactness Theorem is valid.
3) For Tj ∈ IM(RM+K), then by Weak Polyhedral Approximation Theorem 3.2.4,

there exists a sequence {P l
j} of currents of the form

P l
j =

∑
F∈LM

p
(l)
F ηρl#[|F |], p

(l)
F ∈ Z, (3.52)

such that P l
j and ∂P l

j converge weakly to Tj and ∂Tj, respectively, in U as ρl ↓ 0.
Since ∂P l

j ∈ IM−1(RM+K), by assumption in 2) we have that ∂Tj ∈ IM−1(RM+K),
then ∂T ∈ IM−1(RM+K). This result is called the boundary rectifiability theorem. By
Proposition 3.1.1, δ0×× ∂Tj and δ0×× ∂T are also Integer-Multiplicity currents.

Next we show that without loss of generality, we can assume that ∂Tj = 0. If ∂Tj ̸= 0,

letting T̃j = Tj − δ0×× ∂Tj, we have

∂T̃ = ∂Tj − ∂(δ0×× ∂Tj)

= ∂Tj − ∂Tj − δ0×× ∂2Tj

= 0.

So, if T̃j is an Integer-Multiplicity current, Tj is also an Integer-Multiplicity current.
Then it is enough to consider the case that ∂Tj = 0 and obviously ∂T = 0.

We also observe that ∂[Tj⌊B(x, r)] is an Integer-Multiplicity current, by assumption
in 2), ∂[T ⌊B(x, r)] is also an Integer-Multiplicity current. This allows us to use the
Density Lemma 3.3.7: there exists δ > 0 such that

ΘM
∗ (∥T∥, x) = lim inf

r↓0

||T ||[B(x, r)]
ωMrM

> δ

holds for ∥T∥-almost every x ∈ RM+K . By Lemma 2.3.1, we see that ||T || is absolutely
continuous with respect to HM on RM+K . By Radon-Nikodym Theorem, we conclude
that there exists a real-valued function θ > δ such that ||T || = HM⌊θ. (One can find
more details in Remark 2.37, Theorem 3.24 and Theorem 8.1 in [3].)

Next let A = {x ∈ RM+K : θ(x) > 0}. Since||T ||(A) < ∞, we have HM(A) < ∞.
Consider α a multi-index with

1 ≤ α1 < · · · < αM ≤M +K. (3.53)

Let

pα : RM+K −→ RM

(x1, ..., xM+K) = x 7−→ (xα1 , ..., xαM
).

be the orthogonal projection. By Theorem 3.3.5, we see that u(y) = ⟨T,pα, y⟩ is an
MBV function. By Theorem 3.3.8, we see that there is a set Eα ⊆ RM with LM(Eα) = 0
such that
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Sα =
⋃

y∈RM\Eα

spt[u(y)]

is a countably M -rectifiable subset of RM+K . Also set

Bα = A ∩ p−1
α (Eα).

We have A ⊆ Sα ∪Bα.
Letting I denote the set of all the multi-indices as in (3.53), we see that

A ⊆
⋂
α∈I

[Sα ∪Bα] ⊆ S ∪B,

where
S =

⋃
α∈I

Sα, B =
⋂
α∈I

Bα.

By Lemma 2.3.1, T ⌊B = 0, so T = T ⌊S.
We may suppose that A ⊆ S. By Theorem 3.3.5 we know that, for each α ∈ I and for

LM -almost every x ∈ RM , ⟨T,pα, x⟩ is an Integer-Multiplicity 0-current. So we conclude
that θ is integer-valued.

Finally, Theorem 3.3.4 tells us that T is an Integer-Multiplicity current.

3.4 Minimizing Mass and Plateau’s Problem

Thanks to the Compactness Theorem, we can now easily reach our final goal: prove
the existence of solutions to the Plateau’s problem for Integral currents. Using the
argument in Section 2.1.2, by compactness, any minimizing sequence of Integral currents
with a fixed boundary admits a weakly convergent subsequence. Combined with the
weak lower semicontinuity of mass and the continuity of the boundary operator, the
limit current inherits both the prescribed boundary and minimality. This framework
bridges geometric intuition with the abstract measure-theoretic tools.

The next definition of mass-minimizing formalizes the goal in Plateau’s problem,
where solutions represent surfaces of “least area” constrained by fixed boundaries.

Definition 3.4.1. Suppose that U ⊆ RN is open and T ∈ IM(RN) is an Integer-
Multiplicity current. For a subset B ⊆ U , we say that T is mass-minimizing in B
if

MW [T ] ≤MW [S] (3.54)

holds whenever S ∈ IM(RN) and

W ⊂⊂ U, ∂S = ∂T,

spt[S − T ] is a compact subset of B ∩W.

Remark 3.4.1. In case B = RN , we say simply that T is mass-minimizing. If, addi-
tionally, T has compact support, then Definition 3.4.1 reduces to the requirement that

M [T ] ≤M [S]

hold whenever ∂S = ∂T .
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If R is a nontrivial (M−1)-dimensional current that is the boundary of some Integer-
Multiplicity current, then it makes sense to ask whether there exists a mass-minimizing
Integer-Multiplicity current with R as its boundary. The next theorem tells us that
indeed, such a mass-minimizing current does exist.

Theorem 3.4.1 (Plateau’s Problem). Suppose that 1 ≤M ≤ N . If R ∈ DM−1(RN) has
compact support and if there exists an Integral current Q ∈ IM(RN) with R = ∂Q, then
there exists a mass-minimizing Integral current T ∈ IM(RN) such that ∂T = R.

Proof. Let {Ti}∞i=1 ∈ IM(RN) be a sequence of Integral currents with ∂Ti = R, for
i = 1, 2, ..., and with

lim
i→∞

M [Ti] = inf{M [S] : ∂S = R, S ∈ IM(RN)}.

Set m = dist(sptR, 0) and let f : RN → B(0,m) be the nearest-point retraction:

f(x) =

{
x if x ∈ B(0,m)

y if x /∈ B(0,m)

where y ∈ B(0,m) is the unique point such that dist(x, y) = dist(x,B(0,m)). Because
the boundary operator and the pushforward operator commute, we have

∂(f#Ti) = f#(∂Ti) = f#R = R

for i = 1, 2, . . .. Noting that Lip(f) = 1, we conclude that

M [f#Ti] ≤M [Ti] <∞

holds, for i = 1, 2, . . .. Thus, by replacing Ti with f#Ti if need be, we may suppose that
sptTi ⊆ B(0,m) holds for i = 1, 2, . . ..

Now we consider the sequence of Integral currents {Si}∞i=1 defined by setting Si =
Ti − Q, for each i = 1, 2, . . .. Noting that ∂Si = 0 for each i, we see that the sequence
{Si}∞i=1 satisfies the conditions of the Compactness Theorem 3.3.1. We conclude that
there exists a subsequence {Sik}∞k=1 of {Si}∞i=1 and an Integral current S∗ such that
Sik → S∗ as k → ∞. We conclude also that ∂S∗ = 0.

Setting T = S∗ + Q, we see that Tik = Sik + Q → S∗ + Q = T as k → ∞ and that
∂T = ∂(S∗ + Q) = ∂S∗ + ∂Q = ∂Q = R. By the lower semicontinuity of the mass, we
have

M [T ] = inf{M [S] : ∂S = R, S ∈ IM(RN)}.

Then, T ∈ IM(RN) is the desired mass-minimizing.
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[16] T. Radó, The problem of least area and the problem of Plateau. Math. Z. 32(1930),
763–796.

68



[17] E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of
varying topological type. Acta Math. 104 (1960), 1–92.

[18] H. Federer, The singular sets of area minimizing rectifiable currents with codimen-
sion one and of area minimizing flat chains modulo two with arbitrary codimension.
Bull. Amer. Math. Soc. 76 (1970), 767–771.

[19] F. J. Almgren, Q-valued functions minimizing Dirichlet’s integral and the regularity
of area minimizing rectifiable currents up to codimension two. Bull. Amer. Math.
Soc. (N.S.) 8 (1983), no. 2, 327–328.

[20] Wendell H. Fleming, On the oriented Plateau problem. Rend. Circ. Mat. Palermo
(2) 11 (1962), 69–90.

[21] F. J. Almgren, Some interior regularity theorems for minimal surfaces and an ex-
tension of Bernstein’s Theorem. Ann. of Math. (2), Vol. 84 (1966), 277–292.

[22] F. Morgan, Geometric Measure Theory. A Beginner’s Guide. 4th edition, Academic
Press, Inc., San Diego, CA, 2009. 264pp.

[23] Fefferman, C., Ionescu, A. D., Phong, D. H., and Wainger, S. Advances in Analysis:
The Legacy of Elias M. Stein. Princeton University Press, 2014. Chapter 8.

[24] De Lellis, C., Spadaro, E. (2016). Regularity of area minimizing currents II: center
manifold. Annals of Mathematics, 183(2), 499–575.

[25] De Lellis, C., Spadaro, E. (2016). Regularity of area minimizing currents III: blow-
up. Annals of Mathematics, 183(2), 577–617.

[26] Lytchak, Alexander, Wenger, Stefan. (2017). Area Minimizing Discs in Metric
Spaces. Archive for Rational Mechanics and Analysis. Vol. 223, 1123–1182.

[27] Almgren, F., Browder, W., Caldini, G., De Lellis, C. (2024). Optimal smooth ap-
proximation of integral cycles. arXiv:2411.17678v1 [math.DG].

69


