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Abstract

We introduce a sequent calculus B for a new logic, named basic logic. The aim of

basic logic is to find a structure in the space of logics. Classical, intuitionistic, quantum

and non-modal linear logics, are all obtained as extensions in a uniform way and in a

single framework.

We isolate three properties, which characterize B positively: reflection, symmetry

and visibility.

A logical constant obeys to the principle of reflection if it is characterized semanti-

cally by an equation binding it with a metalinguistic link between assertions, and if its

syntactic inference rules are obtained by solving that equation. All connectives of basic

logic satisfy reflection.

To the control of weakening and contraction of linear logic, basic logic adds a strict

control of contexts, by requiring that all active formulae in all rules are isolated, that is

visible. From visibility, cut-elimination follows. The full, geometric symmetry of basic

logic induces known symmetries of its extensions, and adds a symmetry among them,

producing the structure of a cube.
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1 Introduction

Up to the beginning of the century, there was only one logic, Aristotle’s classical logic,
which was conceived as a metaphysical absolute. Starting with Brouwer’s revolution, which
introduced intuitionistic logic, a number of different new logics have been developed. Each
of them aimed to capture some of the distinctions which can be observed in a specific field
of interpretation, but which are ignored by classical logic. Excluding intensional logics (in
which modalities are considered), all such logics can be grouped under three main headings:
intuitionistic logic (absence of the principle of double negation), quantum logic (absence of
distributivity between conjunction and disjunction), and relevance and linear1 logic (finer
control of structural rules).

Although all of these logics are derived from classical logic, they have been considered as
mutually incompatible. Basic logic was developed in order to provide a common foundation

1To simplify terminology in this paper by linear logic we mean the system sometimes called MALL, that
is Girard’s linear logic [20] deprived of the modalities ! and ? he calls exponentials.
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and to show that they share a common structure. This was achieved in the first version of
basic logic [5], which is a common denominator, but only in terms of provable formulae. The
present version of basic logic is completely new and can be characterized more positively as
the logic which obeys three general principles: reflection, symmetry and visibility. These
principles are introduced below and will be demonstrated in pratice in later sections.2

The common explanation of the truth of a compound proposition like A&B is that A&B is
true if and only if A is true and B is true. In our terms, a connective ◦ between propositions,
like & above, reflects at the level of object language a link between assertions in the meta-
language, like and above. The semantical equivalence

A ◦B true if and only if A true link B true

which we call definitional equation for ◦, gives all we need to know about it. A ◦ B is
semantically defined as that proposition which, when asserted true, behaves exactly as the
compound assertion A true link B true. The inference rules for ◦ are easily obtained by
solving the definitional equation, and they provide an explicit definition. We then say that
◦ is introduced according to the principle of reflection.

All logical constants of basic logic are introduced according to the principle of reflection.
We show that all inference rules are justified by solving suitable definitional equations, in
which A ◦ B is allowed to appear also as an assumption. Moreover, we show that only two
types of link among assertions are sufficient.

In this way we bring the interplay between language and metalanguage into explicit
consideration. The construction of basic logic is thus seen as a product of the dynamics
between meta-language and its formalization at the level of objects3. No external notion of
truth is invoked, not even in the form of an a priori choice of connectives.

A symmetry among logical constants of classical logic was pointed out by Gentzen [19]
in his calculus of sequents LK. Later, J-Y. Girard has reached with classical linear logic a
deeper symmetry, which allows the definition of negation for all formulae starting from
negation on atoms. On the other hand, intuitionistic logic is commonly considered as
intrinsically asymmetric. Basic logic is again fully symmetric in a strong sense, but still
it admits both intuitionistic and linear logic as natural extensions.

To transform symmetry into a conceptual tool, one has to abandon the traditional scheme
which says that the rule introducing a connective is always the rule operating on the right
and that the rule on the left is always the elimination rule. On the contrary, all logical
constants are divided into “left” and “right” constants. A “left” connective has a formation
rule which operates on the left, on assumptions, and a second rule, called reflection, which
operates on the right, on conclusions. Any left connective is accompanied by its symmetric
right connective, governed by the rules obtained by interchanging antecedent with succedent.

The symmetry of basic logic is not internal, but rather a simple geometric symmetry
which is evident at the meta-level: whatever action is taken on the right side can be sym-
metrically performed on the left side of sequents. So basic logic is simultaneously a logic of
derivations as well as a logic of refutations, and one is not definable from the other. Any
proof has a symmetric proof with identical structure, apart from the swap left-right. This
fact is essential to prove cut-elimination also when negation is added, in the style of Girard,
on top of structural rules to obtain quantum-like logics (see [17] and [15]).

One of the main principles of proof theory, put forward by Gentzen and clarified mainly
by D. Prawitz, is that the meaning of a connective is determined by rules dealing exclu-
sively with it. This discovery is manifested technically in the theorems on normalization of
derivations. One of the principles of contemporary proof theory, promoted by Girard, is that
a careful control of structural rules of weakening and contraction permits a finer analysis

2We plan to write a more conceptual discussion [28], in particular of the principle of reflection.
3A forceful though brief and general description of the dynamics between formal language and metalan-

guage in the development of mathematics is given by N. G. de Bruijn [12].
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of the structure of derivations. Basic logic pushes both such principles to their ultimate
consequences.

One of the main discoveries of basic logic is that the meaning of a connective is deter-
mined also by contexts in its rules, which can bring in latent information on the behaviour
of the connective, possibly in combination with other connectives.

We thus say that a rule satisfies visibility if it operates on a formula (or two formulae)
only if it is (they are) the only formula(e), either in the antecedent or in the succedent of a
sequent. Formally, visibility is the property that all active formulae (secondary or principal
formulae, in Gentzen’s terminology) are isolated, or visible, all passive contexts (not on the
same side of any active formula) are free.

The main technical novelty of basic logic is that all its rules satisfy visibility. In other
terms, basic logic keeps under control not only the rules of weakening and contraction, but
also the presence of contexts on the same side of active formulae. This is done in a very
drastic way, namely by suppressing them systematically.

When the principle of reflection is met, visibility is characterized more intrinsically by
the presence of only one parameter for contexts in definitional equations, rather than two
as it happens for other usual logics.

As with control of weakening and contraction a new class of connectives – multiplicatives
in Girard’s terminology – comes to the surface, so with strict control of contexts the only
reasonable way to allow movement from one side of a sequent to the other is to treat impli-
cation (and its symmetric) as primitive. This is what gives to basic logic its intuitionistic
flavour, even in the presence of symmetry.

Summing up in superficial terms, the sequent calculus for basic logic looks like a (two-
sided) calculus for linear logic, except for the absence of all contexts at the side of active
formulae and for the presence of two symmetric connectives of movement.

Once basic logic is introduced, it is straightforward to realize that linear logic is regained
by relaxing visibility on both sides, that is by adding contexts at the side of all active
formulae. Relaxing visibility only on the left gives an intuitionistic linear logic with “par”
(treated in detail in [1]); adding also weakening and contraction gives the usual intuitionistic
logic, but with an extra primitive connective called exclusion, and symmetric of implication.
Symmetrically, liberalizing contexts only on the right gives symmetric copies of intuitionistic
linear logic and of intuitionistic logic with exclusion (similar to the “dual-intuitionistic” logic
of [23]). The simultaneous control of contexts on both sides, namely visibility, allows us to
block the derivation of all distributive laws and to obtain logics in which the deduction
theorem fails. This allows us to bring the field of quantum and, more generally, non-
distributive logics under the realm of proof theory (cf. [16], [15], [6], and, for a survey,
[3]).

The structure of extensions of basic logic becomes quite easy to grasp if it is pictured as
a cube in which each vertex corresponds to the sequent calculus obtained by performing a
combination of the three actions called L, for liberalize contexts on the Left, R, for liberalize
contexts on the Right, and S, for add the Structural rules of weakening and contraction (see
the figure in section 3).

It is an ambition of basic logic to offer a new perspective and new tools to the search
for unity in logic. Differently from [22], our plan is to look for the basic principles and
structures common to many different logics.

So one aim is to obtain each specific logic by the addition of rules concerning exclusively
the structure (i.e. structural rules dealing only with assertions), while keeping the logic of
propositions (i.e. operational rules dealing with logical constants) absolutely fixed. Note
that the extensions described above are not pure in this sense; but this aim has been obtained
for some “symmetric” logics, including linear and classical logic (cf. [?], [17]), while it seems
within reach for “asymmetric” logics, including intuitionistic logic (cf. [2] and [8]). A second
aim is to embed each logic in basic logic, once it is provided with some additional kinds
of assertion, or modalities; some cases have been obtained (cf. [6]) and other cases are
expected.

More generally, it is our belief that only some of the potentialities of basic logic and its

3



principles are discussed in the present paper, and certainly not in an exhaustive way. We
do not even touch here themes like possible applications, inside and outside logic itself, or
the new perspective and new problems offered to philosophical investigations. We postpone
also a more detailed discussion of the connections with the literature, mainly with linear
logic of Jean-Yves Girard [20], display logic of Nuel Belnap [9] and with the work of Kosta
Došen (see for instance his recent [?]).

The picture is not complete, yet we hope that what we present here makes it possible to
see that the name we have chosen, basic logic, is justified.

Several people have played an important role in the authors’ discovery and development
of basic logic (in chronological order): John L. Bell, for raising our interest in the non-
distributive side4, Silvio Valentini, for helpful conversations and suggestions at the early
stage, Jean-Yves Girard, for the creation of linear logic and all the ideas coming with it,
Marisa Dalla Chiara, for inviting us to Florence three times to speak about basic logic,
Per Martin-Löf, for his semantical justification of the logical laws and for suggesting to
define negation by means of implication, Grigori Mints, for calling to our attention that two
different forms of cut could be helpful, Rajeev Goré, for conversations on display logic. We
are grateful to all of them. We are also very grateful to Morgan E. Kernow for her effort to
correct and enrich our use of English and to Silvia Gebellato for her help with the drawing.

2 Basic logic and the principle of reflection

The best way to justify the very choice of logical constants and the determination of their
rules of inference in basic logic is to see them as the result of a very general principle, which
we have called the principle of reflection. Suppose we want to create a new connective ◦
by laying down the truth equation it must satisfy. This equation is called the definitional
equation for ◦. For example, assume we wish the equation

A ◦B ` ∆ if and only if A, B ` ∆

to hold for any ∆. A direction of this equation is the rule

A, B ` ∆

A ◦B ` ∆

It says which conditions are sufficient to assert A◦B. The other direction, however, describes
only what we should be allowed to deduce from A ◦ B ` ∆, when we have already A ◦ B.
So it contains information on ◦, but only in implicit form, or backwards. To define ◦ with
no vicious circle, we must find an equivalent rule in which A ◦B appears in the conclusion,
rather than in the premiss. To do that, we first trivialize the assumption A ◦ B ` ∆ by
considering ∆ to be A ◦B itself. Then we obtain the axiom A, B ` A ◦B, with the benefit
that A ◦ B is now on the right side. So, assuming that Γ ` A and Γ′ ` B hold, from the
axiom we obtain Γ, Γ′ ` A ◦B by cut. Hence the rule

Γ ` A Γ′ ` B

Γ, Γ′ ` A ◦B

is derivable from the direction of the equation: A ◦B ` ∆ only if A, B ` ∆. To see that it
is actually equivalent to it, we trivialize the premises by considering Γ and Γ′ to be A and
B respectively. Then the axiom A, B ` A ◦ B is derived, which in turn gives the claim by
cut. The two inference rules say under which premises, involving A and B but not A ◦ B,
the compound proposition A ◦ B can be asserted. Taken together, they are equivalent to
the definitional equation. We then say that ◦ is introduced according to the principle of
reflection.

4By observing in [24] and in later conversations that the representation of complete Boolean algebras of
[27], which we obtained as a special case of representation of quantales through pretopologies [4], [7], is a
special case also of that of ortholattices through Birkhoff’s polarities; trying to find a general representation
theory including both was the catalyst for basic logic.
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In basic logic all logical constants are introduced via the principle of reflection. Moreover,
the solution of definitional equations is always found by following a single simple pattern.
To solve equations in a non-circular way, the means to be used must be fixed beforehand. So
the first task is to declare explicitly which meta-level properties are assumed to be known.
Thus here it is the meta-level which comes first, and based only on it the formal system is
built up. To make the pattern of solution clear, and thus save many details, we also need
to introduce some new terminology.

Assume from now on that A, B, C . . . denote propositions. A proposition A must be
distinct from the assertion on it. At this basic level, rather than A is true (as in [?] and
[?]), we prefer to adopt for assertions a more neutral notation like A is (to recall the common
form of A is true, A is available, A is measured, etc.), which shares with A is true only the
fact it is an assertion, rather than a proposition. This is to recall that no specific meaning
is at the moment attached to the assertion of A.

We need to consider also more complex metalinguistic statements, which are built up
from atomic assertions of the form A is by means of some metalinguistic links and which
we call compound assertions. The first discovery here is that the compound assertions used
in any sequent calculus (lists Γ, sequents Γ ` ∆, rules, derivations) can be seen as obtained
from atomic assertions by means of only two metalinguistic links, namely and and yields5.

A conjunction of atomic assertions C1 is and . . . and Cn is is abbreviated by C1, . . . , Cn,
where comma takes the place both of and and of is. Like Gentzen, we write Γ for any con-
junction of atomic assertions, either empty or C1, . . . , Cn. Similarly, for ∆ and D1, . . . , Dm

and for other capital Greek letters.
The meaning of a sequent Γ ` ∆ is that ∆ is a consequence of Γ, that is Γ yields ∆

or (C1 is and . . . and Cn is ) yields (D1 is and . . . and Dm is ). Thus the usual sign ` is a
shorthand for yields in such a compound assertion. The meaning of a rule of inference

Γ ` ∆
Γ′ ` ∆′

is also clear: it says that we can move from the assertion Γ ` ∆ to the assertion Γ′ ` ∆′, that
is, that (Γ yields ∆) yields (Γ′ yields ∆′). So Gentzen’s horizontal bar is also a shorthand of
yields , but in a different form of assertion.

Inference rules sometimes have more than one premiss, which are all put above the
horizontal bar and separated by a blank space. Thus the blank space is a notation for and
in this case, and so for instance

Γ ` ∆ Γ′ ` ∆′

Γ′′ ` ∆′′

is just a shorthand for ((Γ yields ∆) and (Γ′ yields ∆′)) yields (Γ′′ yields ∆′′). Finally, also
the usual notation for derivations is clearly just a convenient shorthand for even more
complex combination of and and yields .

The metalinguistic links and and yields are therefore sufficient to produce all compound
assertions used in a sequent calculus for a propositional logic. The absence of a formal
definition of compound assertion is too important to explain it simply by silence. In fact, a
formal definition would turn assertions into objects, and thus ipso facto the aim of making
the meta-language explicit would vanish6.

The way the links and and yields are meant to behave is made explicit by laying down
a few rules. When and is the outermost link, its behaviour is what one would expect, that
is, for instance, the assertion Γ ` ∆ and Γ′ ` ∆′ is just the same thing as the assertion
Γ ` ∆ together with the assertion Γ′ ` ∆′. In formal terms, in this case and behaves at the
meta-level like the usual conjunction of propositions at object level.

This immediately loses any meaning when and is inside the scope of yields , that is,
comma under turnstile; for instance, by no way is (A is and B is ) ` ∆ equivalent to A is ` ∆
and B is ` ∆. In basic logic nothing is assumed about and in this case, except that it

5After reading a first draft of the present paper, Kosta Došen has suggested that actually and and yields

could be more deeply characterized as absence of a link or presence of a link, respectively.
6This attitude, developed in [26] and divergent from the common one, in the very end originates with

Brouwer (see [10]).
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behaves well with respect to composition of derivations, as explained below. The same
applies for and inside the scope of turnstile, at the right, and this is why no link interpreted
as disjunction is needed.

When yields is the principal link, its behaviour is also nothing more than what one
expects. So for instance to know that Γ ` ∆ yields Γ′ ` ∆′ is the same thing as to know
that from Γ ` ∆ we can get to know that Γ′ ` ∆′. By the same reason, A ` ∆ means
that from A is we can get to know that ∆. Written in symbols, this looks like a cut, or
composition:

` A A ` ∆
` ∆

We actually assume that it holds in a generalized form, both in the sense that A is can be
a consequence of some Γ in the first premiss and that in the second premiss it can appear
in conjunction with other assertions, say in Γ′ ` ∆. Note that this is the only assumption
about and when occurring inside yields .

Symmetrically, we also assume that when A is appears as a conjunct at the right of
turnstile it can be replaced by any of its consequences. And finally we assume of course
that A is is a consequence of A is itself, that is A ` A.

So, summing up, the rules involving turnstile are simply:

identity A ` A

composition

on the left
Γ ` A Γ′ ` ∆

Γ′(Γ/A) ` ∆
on the right

Γ ` ∆′ A ` ∆

Γ ` ∆′(∆/A)

We here write Γ′(Γ/A) for the replacement of (one occurrence of) A by Γ in Γ′.
This setting is not yet sufficient for our purpose. Actually, it is not sufficient also for

any sequent calculus, because a third form of assertion besides and and yields is necessary
in order to understand the meaning of an inference rule, say Γ ` A/Γ ` A ∨ B. Even if it
does not appear explicitly, one must realize that Γ, A, B are parameters, that is, that the
symbols Γ and A, B can be replaced with any specific conjunction of atomic assertions and
with any atomic assertions, respectively. So to understand the above rule means to know
that forall Γ forall A forall B((Γ yields A is ) yields (Γ yields A ∨ B is )) where of course
one must be careful to keep the meta-level particle forall well distinct from an object-level
universal quantification. Any definitional equation must include some parameters; those
considered here, moreover, have forall only as the outermost links7.

We are finally ready to put all the previous remarks at work and show that each of the
six connectives of basic logic is obtained via the reflection principle from one of the only two
links and and yields , but in different environments. The arguments to solve the definitional
equations are all extremely elementary, and actually many of them have already variously
appeared in the literature (an early reference is [25], a recent one is [18]). Here they are
explained as elements of one conceptual structure, connecting language with metalanguage.
It allows to conjecture that no other definitional equations are solvable.

We adopt the general principle of denoting a connective always by the same sign, in all
extensions of basic logic. The motivation of such choice overlaps with the motivation of
basic logic itself, which is the search for a conceptual unity of different logics. Moreover,
we choose signs in such a way that the resulting connective in the case of the extension
corresponding to linear logic will be exactly the sign adopted by Girard [20]. The only
exception is implication, for which we prefer the standard sign → rather than −−◦, which is
kept for implication as defined in terms of other connectives.

The first connective we consider is the same given as unknown in the example at the
beginning of this section, that is multiplicative conjunction ⊗, read “times”. We analyse
it in detail, both to introduce terminology and to check that we use only the properties of
metalanguage as specified above. The definitional equation is properly written as

forall ∆, A⊗B ` ∆ if and only if A, B ` ∆

7It can be shown that also the usual quantifiers ∀ and ∃ can be defined according to the principle of
reflection, but then ∀ must appear also inside the definitional equation, at the right of ` for ∀ and at the
left for ∃, see [28].
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where the symbols are now read as shorthands as explained above (and of course the link
if and only if is a shorthand for yields in both directions). Its two directions are called
⊗-formation and implicit ⊗-reflection, respectively:

⊗-formation
A, B ` ∆

A⊗B ` ∆

implicit ⊗-reflection
A⊗B ` ∆

A, B ` ∆

The choice of names should be clear. Formation says when the compound proposition A⊗B
can be formed and asserted; here it specifies that the compound assertion pushed down from
the meta-level to object-level has a link and at the left position. Reflection says that the
assertion of A⊗B can be reflected back to the meta-level situation from which it was born.
While ⊗-formation as it stands is a perfectly good formal rule, implicit ⊗-reflection is still
the statement of a desideratum, which contributes to specifying the meaning of ⊗ only in an
implicit way. To characterize the meaning of ⊗ without vicious circles, we must find rules,
called rules of explicit ⊗-reflection, which are equivalent to implicit ⊗-reflection, but which
do not assume A ⊗ B to be already known, that is in the premises. By so doing, we solve
the definitional equation.

First, by making its premiss trivial, i.e. taking ∆ to be A⊗ B is , implicit ⊗-reflection
is transformed into an equivalent axiom:

axiom of ⊗-reflection A, B ` A⊗B

To recover implicit ⊗-reflection, one application of composition is sufficient:

A, B ` A⊗B A⊗B ` ∆

A, B ` ∆

In this way the proposition A⊗B now appears on the opposite side of that in which it was
born. The solution is then reached by transforming the ⊗-axiom again into an equivalent
rule, but now one which acts on A and B separately; this is obtained by replacing A and B
with arbitrary lists. Indeed, assuming that A and B are produced from Γ and Γ′ respectively,
i.e. Γ ` A and Γ′ ` B, we apply composition on A and B separately, that is

Γ′ ` B

Γ ` A A, B ` A⊗B

Γ, B ` A⊗B

Γ, Γ′ ` A⊗B

and so from the ⊗-axiom we obtain

explicit ⊗ -reflection
Γ ` A Γ′ ` B

Γ, Γ′ ` A⊗B

The converse is immediate, since ⊗-axiom is just the trivial instance of implicit ⊗-reflection
with Γ, Γ′ equal to A, B respectively.

The definitional equation for ⊗ is thus completely solved, and the connective ⊗ is char-
acterized by the rules of ⊗-formation and explicit ⊗-reflection. We say that ⊗ reflects and
at the left of turnstile.

Incidentally, it might be interesting to note also that the rule

combined ⊗-reflection
Γ ` A Γ′ ` B A⊗B ` ∆

Γ, Γ′ ` ∆

combines both the previous two rules and the axiom of ⊗-reflection. In fact, it is im-
mediately derivable by applying explicit ⊗-reflection to the first two premisses, and then
composition with the third premiss. Conversely, implicit ⊗-reflection is obtained as a special
case by trivializing two premisses with Γ ≡ A and Γ′ ≡ B, explicit ⊗-reflection by similarly
trivializing the premisses A⊗B ` ∆, and finally ⊗-axiom by trivializing all premisses.
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The rules for ⊗ in linear logic are

Γ, A, B ` ∆

Γ, A⊗B ` ∆

Γ ` A, ∆ Γ′ ` B, ∆′

Γ, Γ′ ` A⊗B, ∆, ∆′

that are equal to the above rule for ⊗ except for the presence of contexts. By modifying the
arguments above and by using unrestricted composition, or full cut (as formulated on page
14), it is easy to check that Girard’s ⊗ is the connective obeying the definitional equation

forall Γ forall ∆, Γ, A⊗B ` ∆ if and only if Γ, A, B ` ∆

This shows why the corresponding connective in basic logic is conceptually simpler: it is
defined by a simpler equation, with only one free parameter ∆. In more detail, the difference
between the rules for ⊗ in basic logic and in linear logic is that in the former the active
formulae A, B and A⊗B always appear on one side of ` with no extra context; we say that
they are visible.

Now the symmetry of the framework (that is the fact that we have not assumed anything
on the left side of ` which makes it different from the right side) allows us to say that the
equation symmetric to that defining ⊗ will also define a connective. Such a connective is
the so-called multiplicative disjunction

&

, read “par”. The definitional equation is:

forall Γ, Γ ` A

&

B if and only if Γ ` A, B

Its solution is exactly as that for ⊗, but “on the other side”, and it leads to the rules

&

-formation
Γ ` B, A

Γ ` B

&

A

&

R

explicit

&

-reflection
B ` ∆′ A ` ∆

B

&

A ` ∆′, ∆

&

L

Summing up, ⊗ reflects and at the left of turnstile and

&

reflects and at the right8;
in both cases, the principal sign is `, and and is under its scope. What happens if and is
outside `? That is, can we push down and into a connective when it occurs in a situation
like Γ ` A and ∆ ` B? It is easy to see that any definitional equation with such a situation
at the right side would make little sense, that is, it would not be solvable. It is indeed
solvable when Γ = ∆, and what we obtain is the additive conjunction &. The definitional
equation is:

forall Γ, Γ ` B&A if and only if Γ ` B and Γ ` A

Its solution follows the same pattern as that for ⊗ and

&

, except that we now take into
consideration also the obvious properties of and since it is the outermost link. As before,
one direction is (Γ ` B and Γ ` A) yields Γ ` B&A which, when written as usual with and
replaced by empty space and with yields replaced by the horizontal bar, gives:

&-formation
Γ ` B Γ ` A

Γ ` B&A
&R

The other direction is Γ ` B&A yields Γ ` B and Γ ` A which, written as usual as the
conjunction of two rules, gives:

implicit &-reflection
Γ ` B&A

Γ ` B

Γ ` B&A

Γ ` A

We can trivialize it by taking Γ = B&A and obtain

axiom of &-reflection B&A ` B B&A ` A

8This shows that the meaning of

&

is that of a multiplicative disjunction only if full contexts are available,
as in linear logic. In basic logic, nothing but compositions is assumed on and inside `, and that is why its
reflection produces multiplicative connectives.
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from which implicit &-reflection follows immediately by composition. Now, from the &-
axiom by using only pure composition we immediately have

explicit &-reflection
B ` ∆

B&A ` ∆

A ` ∆

B&A ` ∆
&L

which in turn gives the axiom back when the premiss is trivialized. We have thereby reached
the usual rules for conjunction, additive conjunction “with” in Girard’s terminology. Here
too, as for all other connectives, a combined form of &-reflection is immediately found by
joining the premisses of implicit and of explicit &-reflection.

The same idea leading from ⊗ to

&

now leads from & to additive disjunction ⊕. Its
definitional equation is:

forall ∆, A⊕B ` ∆ if and only if A ` ∆ and B ` ∆

The solution is exactly the same, symmetry apart, as that for &, and it leads to the rules

⊕-formation
A ` ∆ B ` ∆

A⊕B ` ∆
⊕ L

explicit ⊕ -reflection
Γ ` A

Γ ` A⊕B

Γ ` B

Γ ` A⊕B
⊕R

So here too no disjunctive link on assertions is necessary to characterize the connective ⊕ of
additive disjunction, and ⊕ is just the symmetric of &, obtained from & by interchanging
the roles of assumptions and conclusions. Such symmetry was noticed by Gentzen, but
only at the formal level of inference rules; what we add here is the symmetry at the level
of semantics, that is symmetry of definitional equations. This is why it is just natural
to conceive of ⊕ as formed (or introduced) at the left, on assumptions, and reflected (or
eliminated) at the right9.

So, summing up, the four connectives so far introduced all reflect a link and ; two of
them, i.e. ⊗ and ⊕, reflect and at the left, and two of them, i.e.

&

and &, at the right.
Moreover, the distinction between multiplicatives ⊗,

&
and additives ⊕, & acquires a new

motivation in terms of the reflection principle: additives reflect a link and which is principal,
i.e. not under the scope of yields , or “outside” a sequent, while multiplicatives reflect a link
and which is under the scope of yields , or “inside” a sequent.

The principle of reflection leads to the same four propositional constants as in linear
logic. The first two constants, namely 1 and ⊥, reflect the empty assertion at the left and
right of `, respectively. So the definitional equation for 1 is

forall ∆, 1 ` ∆ if and only if ` ∆

The formation rule is thus

1-formation
` ∆

1 ` ∆
1L

while the reflection rule is

1-reflection
1 ` ∆

` ∆

from which we derive, for ∆ = 1, the axiom

1-axiom ` 1 1R

which immediately gives 1-reflection, by composition. Since 1 has no components, there
can be no composition producing 1, and thus explicit 1-reflection is the same as 1-axiom.
Symmetrically, the constant ⊥ reflects the empty assertion at the right

forall Γ, Γ `⊥ if and only if Γ `

9This explains also why we have preferred to adopt the new terminology formation-reflection, since forcing
the old one introduction-elimination to the new conceptual understanding would have been quite confusing.
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and its rules will be

⊥ -formation
Γ `

Γ ` ⊥
⊥ R

⊥ -axiom ⊥` ⊥ L

The constants 1 and ⊥ are similar but not identical to those of linear logic; for instance,
they are not neuter elements for ⊗ and

&

respectively, because A ⊗ 1 ` A and A ` A

&

⊥

have no cut-free derivation. To obtain this property, one must conceive 1 as the solution
of a definitional equation with two parameters, that is: forall Γ, forall ∆, Γ, 1 ` ∆ if
and only if Γ ` ∆. It produces as a solution the rules for 1 of linear logic (that is, the rules
as above, except that 1L has a context Γ at the left).

In basic logic, rather than neuter elements for ⊗, one can describe 1 as the least derivable
proposition: 1 is derivable, i.e. ` 1 by 1-axiom, and if A is derivable, i.e. ` A, then 1 ` A by
1-formation. Similarly, we say that A is refutable if A ` and then ⊥ is the greatest refutable
proposition.

The rules for the constants 0 and > arise from the definitional equations

forall ∆, A ` ∆ and 0 ` ∆ if and only if A ` ∆

forall Γ, Γ ` B and Γ ` > if and only if Γ ` B

which say that 0 ` ∆ and Γ ` > are the trivial assertions with respect to a link and in
outermost position. From such equations we have the following formation rules:

0-formation 0 ` ∆ 0L

>-formation Γ ` > >R

From them, it is easy to prove that also in basic logic 0 and > are neuter elements for ⊕
and & respectively, that is A⊕ 0 = A and A&> = A for any A. The reflection rules, in the
case of 0 and >, do not exist, since they correspond to the “only if” directions of the above
equivalences, which are trivial.

We now show how the reflection principle leads also to the definition of a primitive
implication → (and its symmetric ←). The peculiarity of implication is that it reflects
a link yields , that is the turnstile sign ` itself, and this is what makes it different from
other connectives10. So to see that implication follows the same conceptual pattern as all
other connectives, a richer metalanguage is needed, in which the link yields to be reflected
appears inside the scope of another link yields . In terms of the shorthand notation, also
nested occurrences of ` must be considered. Then the definitional equation for → is
simply

forall Γ, Γ ` A→B if and only if Γ ` (A ` B)

It can be solved following the same pattern as other connectives, but it needs two new
forms of composition, that is composition of formulae inside two occurrences of `. Then
one reaches the rules

Γ ` (A ` B)

Γ ` A→B
Γ ` A B ` ∆

A→B ` (Γ ` ∆)

which however cannot be expressed in the traditional shape of sequent calculus, where nested
occurrences of ` are not considered. For more on this, we refer to [8].

10Such peculiarity is witnessed by traditional terminology, in which two different words are used for yields

and →, for instance “deduction” and “implication”, while there is no specific word for and (and here it
is called just “conjunction”, as &). This is one of the reasons why some resistance has to be forced upon
ourselves to accept the idea that ⊕ reflects and . In fact, following common terminology it would be read as
“disjunction reflects conjunction” which of course is rightly felt as nonsense. Our and and yields correspond
to what in display logic is denoted with punctuation signs like , ; * etc. and called “structural connectives”.
However now it should also be clear that adopting such terminology, rather than “metalinguistic links” as
we did, would jeopardize all the effort to clarify the role of metalanguage.
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Here we prefer to follow a more traditional course, and look for the rules on → which
can be expressed in a usual calculus of sequents. The →-formation rule we adopt in basic
logic is thus obtained from the above by taking Γ to be empty:

→-formation
A ` B

` A→B
→R

and similarly for reflection

explicit→-reflection
` A B ` ∆

A→B ` ∆
→L

Although a rigorous derivation of such rules from the definitional equation remains accessible
only with nested `, we can give at least the flavour of it by applying the reflection principle
for → in case of contexts liberalized on the left (that is, in the logic BL as defined in the
next section). The definitional equation therefore becomes

forall Γ, Γ ` A→B if and only if Γ, A ` B

The rule of reflection in this case is

implicit →-reflection
Γ ` A→B

Γ, A ` B

For Γ = A→B, it gives

axiom of →-reflection A→B, A ` B

and conversely by composition. By composing the →-axiom with Γ ` A and B ` ∆, we
obtain

explicit →-reflection
Γ′ ` A B ` ∆

A→B, Γ′ ` ∆

and conversely by trivializing both premisses.
The combined rule

combined →-reflection
Γ ` A→B Γ′ ` A B ` ∆

Γ, Γ′ ` ∆

is immediately derivable from explicit →-reflection by composition, and conversely it gives
back the above rules and axiom as special cases, by trivializing some of the premisses as
was true for other connectives. Note that all such equivalences (given also in [5]) are proved
assuming only composition on the left, that is over basic logic, even if none of the above rules
hold in it, by an argument based on cut-elimination. In other terms, the usual deduction
theorem Γ, A ` B if and only if Γ ` A→ B does not hold in B.

In the case of implication, combined reflection has a further source of interest, since by
specializing it to the case in which ∆ = B, gives

Γ ` A→B Γ′ ` A

Γ, Γ′ ` B

which is the traditional Modus Ponens, or →-elimination in natural deduction. When
Γ′ = A, Modus Ponens gives →-reflection as a special case, and hence it is also equivalent
to all other rules.

When a system with nested ` is available, all the above conditions remain equivalent
when comma at the left is replaced by ` (see [8]). Thus the two rules we have chosen for →
in basic logic are justified; they are not enough, however, since for instance the derivation

A ` B C ` D
B→C ` (A ` D)

B→C ` A→D
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produces a sequent B→C ` A→D (with just one `) which is valid if the sequents A ` B
and C ` D are valid. Thus we must also add the rule

→-unified
A ` B C ` D

B→C ` A→D
→U

which has also the side-effect of allowing replacement of equivalent formulae.
The correctness of the choice of rules for → is also witnessed by the cut-elimination

theorem, to be proved in section 4; from it, we can immediately see that

for any A and B, ` A→B if and only if A ` B

holds, which is all that can be expressed of the original definitional equation for→ when no
nested ` are available.

To keep the symmetry of the resulting calculus, we add a second connective moving
formulae from one side to the other of `, and denote it by ← (to be read “exclusion”). Its
definitional equation is just the symmetric of that for →, that is:

forall ∆, A←B ` ∆ if and only if (A ` B) ` ∆

and, as for all previous pairs of symmetric connectives, it leads to rules which are symmetric
to those for →, that is

←-formation
B ` A

B←A `
←L

explicit ←-reflection
Γ ` B A `

Γ ` B←A
←R

←-unified
D ` C B ` A

D←A ` C←B
←U

The meaning of exclusion ← is the dual of that of implication →, just like the rules for ←
are symmetric to those for →. The intuitive interpretation of →R is that to make A→B
true, i.e. to prove ` A→B, we need to know how to pass from the truth of A to the truth
of B, i.e. A ` B. Now suppose that not only do we read A ` B as A true yields B true,
but also as B false yields A false (cf. [2]). Then →L says that to make A→B false, i.e.
A→B `, we need to know that A is true and B is false, i.e. ` A and B `. Symmetrically,
the intuitive interpretation of ←L is that to make B←A false, i.e. to prove B←A `, we
need to know how to pass from the falsity of A to the falsity of B, i.e. B ` A. And ←R
says that to make B←A true, i.e. ` B←A, we need to know that B is true and A is false,
i.e. ` B and A `. Apart from a justification of its meaning, the introduction of ← is fully
justified simply because it allows arguments “by symmetry”, and this is an essential feature
of basic logic.

We have now justified all the rules of basic logic except one, that is the single structural
rule we are going to assume, namely exchange. Note that all arguments up to this point
have not used it and hence non-commutative basic logic is quite possible11. Still, we add
exchange somewhat artificially, to concentrate our mind on the novelties of basic logic, which
should thus become a bit more transparent.

We can finally formally say that basic logic is the propositional logic with connectives ⊗,&

, &, ⊕, →, ← and constants 1, ⊥, 0, >, and characterized by the sequent calculus B with
inference rules given in the table on page 13, where as usual A, B, C, D, . . . are formulae and
Γ, Γ′, . . . , ∆, ∆′, . . . are finite lists of formulae.

To complete the justification of basic logic, we have to show the validity of the rules we
have used, namely identity and composition. Identity is imported into the formal system

11The main difference, as for non-commutative linear logic, would be the presence, at least in extensions
of basic logic, of two implications →1 and →2 in place of→, and then by symmetry also two exclusions ←1

and ←2 in place of ←.
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Table 1: Basic sequent calculus B

Axioms

A ` A

Structural rules

Γ, Σ, Π, Γ′ ` ∆

Γ, Π, Σ, Γ′ ` ∆
exchL exchR

Γ ` ∆, Π, Σ, ∆′

Γ ` ∆, Σ, Π, ∆′

Operational rules

Multiplicatives

formation
B, A ` ∆

B ⊗A ` ∆
⊗ L

&

R
Γ ` A, B

Γ ` A

&

B

reflection
B ` ∆1 A ` ∆2

B

&

A ` ∆1, ∆2

&

L ⊗R
Γ2 ` A Γ1 ` B

Γ2, Γ1 ` A⊗B

formation
` ∆

1 ` ∆
1L ⊥ R

Γ `

Γ `⊥

reflection ⊥` ⊥ L 1R ` 1

Additives

formation
B ` ∆ A ` ∆

B ⊕A ` ∆
⊕ L &R

Γ ` A Γ ` B

Γ ` A&B

reflection
B ` ∆

B&A ` ∆

A ` ∆

B&A ` ∆
&L ⊕R

Γ ` A

Γ ` A⊕B

Γ ` B

Γ ` A⊕B

formation 0 ` ∆ 0L >R Γ ` >

Implications

formation
B ` A

B←A `
←L →R

A ` B

` A→B

reflection
` B A ` ∆

B→A ` ∆
→L ←R

Γ ` A B `

Γ ` A←B

order
D ` C B ` A

D←A ` C←B
←U →U

A ` B C ` D

B→C ` A→D
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as it stands. Composition is just what is usually called cut. To show that it is valid in the
calculus B, we have to show that its conclusion is derivable in B when so are its premises.
Exactly this is expressed by the theorem of elimination of cuts, which we prove in section 4.

Why not importing into the formal system also cut as uch? If we had added cut as
a formal rule, we would not have accomplished our task, which was to characterize each
connective by its definitional equation, that is exclusively by the rules directly concerning it.
In fact, as we alrady noticed, composition contains implicit information on all connectives,
since it says that all derivations can be composed. Using composition up to now, has been
a sort of desideratum. Almost all the arguments used to solve definitional equations involve
composition, and they would have little value if composition were not valid. In this sense,
cut elimination is not an option.

It is a remarkable fact that a common formulation of cut, i.e the rule which we call full
cut

Γ ` ∆ Γ′ ` ∆′

Γ′(Γ/A) ` ∆′(∆/A)
full cut

is not valid in B, and in fact we have not used it. The proof rests on the following property,
exploiting visibility:

Proposition 2.1 If Γ ` ∆ is provable in B without cuts, then either Γ or ∆ contains at
most one formula.

Proof. Immediate induction on cut-free derivations: axioms enjoy the property, and by
visibility all rules preserve it. �

Assuming full cut, a derivation like the following would be possible:

B ` B E ` E
B

&

E ` B, E

&

L
B ` B D ` D
B, D ` B ⊗D

⊗R

B

&

E, D ` E, B ⊗D
full cut

The sequent B

&

E, D ` E, B ⊗ D however has no cut-free derivation in B, by the above
proposition, since it has two formulae on both sides. Since B does admit elimination of cutL
and cutR, this tells that full cut would really bring out of provable sequents, and thus it is
by no means valid.

It is quite easy to check that all the connectives behave as expected with respect to the
usual ordering on formulae given by `. In fact, assume that A ` B and C ` D are provable;
by applying the (explicit) reflection rule followed by the formation rule, we obtain

A ` B C ` D
A ◦B ` C ◦D

in case ◦ is any of the connectives ⊗,

&

, ⊕, &, which shows that all of them are monotonic
in both arguments, both at the left and at the right.

The same pattern would hold also for the two connectives ← and → in the system
with nested `; the same task, i.e. reflection followed by formation, is played in B by the
rules ←U and →U , which say that both implications are monotonic in one argument and
antimonotonic in the other. Actually, it is easy to see that the rule →U is equivalent to the
two separate rules

A ` B
C→A ` C→B

A ` B
B→C ` A→C

and similarly for ←.
Denoting by A = B the equivalence with respect to provability, i.e. A ` B and B ` A,

as an immediate consequence we have:

Proposition 2.2 a. For any formulae A, A′, B, B′ and any connective ◦, if A = B and
A′ = B′, then A ◦B = A′ ◦B′, and hence the property of replacement of equivalents holds;
b. for any formula A, the sequent A ` A is provable assuming only axioms of the form p ` p
for some propositional variable p.
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We conclude the section with some remarks on negation. A unary connective of negation
is definable in basic logic by putting, as usual in intuitionistic logic,

¬A ≡ A→⊥

Actually, the approach via the reflection principle allows us to see why this is a convenient
way to treat negation. The intuitive idea is that the assertion of the negation of A must
be equivalent to the assertion of A on the other side of `; that is, we would like ¬ to be
introduced by the definitional equation

` ¬A if and only if A `

Such an equation, however, can not be solved as it stands, as happened with →; actually,
we can see it as a special case (for Γ empty) of the equation

forall Γ, Γ ` ¬A if and only if Γ ` (A `)

which in turn can be seen as a special case of the definitional equation for→, since A ` if and
only if A ` ⊥. But then one can see that the adoption of the usual definition ¬A ≡ A→⊥
is a more convenient and equivalent choice. In fact, since A ` is equivalent to A ` ⊥ by
reflection for ⊥, and A ` ⊥ is equivalent to ` A→⊥ by reflection of →, the usual definition
gives a solution of the first equation, as desired.

We can then show that the rules

¬-formation
A `

` ¬A
¬-reflection

` A

¬A `

are derivable by applying ⊥ and →-formation, and ⊥ and →-reflection, respectively. This
shows how the usual intuitionistic definition of negation falls under a deep general scheme.

The symmetry of basic logic tells that also a symmetric negation ∼ is definable, as the
solution of

∼A ` if and only if ` A

or equivalently as the symmetric of A→⊥; we thus put ∼A ≡ 1←A and obtain the rules

∼-formation
` A

∼A `
∼-reflection

A `

`∼ A

in a symmetric way to those for ¬. Finally note that antimonotonicity of both negations

A ` B
∼B ` ∼A

A ` B
¬B ` ¬A

is immediately derivable by →U and ←U respectively.

3 Symmetry and the cube of extensions

The main peculiarity of the rules of the calculus B, apart from the symmetry of the whole
table, is that each active formula in any rule is visible, that is, the context at its side is
empty. An easy way to obtain extensions of B is to relax such condition, that is to also allow
contexts at the side of active formulae. So for any rule of B we introduce also its full form,
that is the version with liberalized contexts on both sides. To include also intuitionistic-like
logics, we consider also the form of a rule which has full context on the left only; and then,
for the sake of symmetry, we consider also the form which is full on the right. We use fl,
fr and f as exponent on the name of a rule to denote its full at the left, full at the right
and full form, respectively.

Sometimes one of the two liberalizations has no effect. For instance we have:
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Γ ` B, A

Γ ` B

&

A

&

R

↙ ↘

&

Rfl =

&

R
Γ ` B, A, ∆

Γ ` B

&

A, ∆

&

Rfr

↘ ↙

&

Rf =

&

Rfr

In general, the full-on-the-left form of a rule on the right for additives or multiplicatives is
just the same as the rule itself, since the context on the left is already free. So the full form
is just one, and is denoted by the exponent f . By symmetry, this is also the case for the
rules at the left. For convenience, we spell out the full form of rules for multiplicative and
additive connectives:

Γ, A, B ` ∆

Γ, A⊗B ` ∆
⊗Lf

Γ ` B, A, ∆

Γ ` B

&

A, ∆

&

Rf

Γ, A ` ∆ Γ′, B ` ∆′

Γ, Γ′, A

&

B ` ∆, ∆′

&

Lf
Γ′ ` B, ∆′ Γ ` A, ∆

Γ, Γ′ ` B ⊗A, ∆, ∆′ ⊗Rf

Γ ` ∆
Γ, 1 ` ∆ 1Lf Γ ` ∆

Γ `⊥, ∆ ⊥ Rf

Γ, A ` ∆ Γ, B ` ∆

Γ, A⊕B ` ∆
⊕Lf

Γ ` B, ∆ Γ ` A, ∆

Γ ` B&A, ∆ &Rf

Γ, A ` ∆

Γ, A&B ` ∆

Γ, B ` ∆

Γ, A&B ` ∆ &Lf
Γ ` B, ∆

Γ ` A⊕B, ∆

Γ ` A, ∆

Γ ` A⊕B, ∆
⊕Rf

Γ, 0 ` ∆ 0Lf Γ ` >, ∆ >Rf

Since the rules of movement, for → and ←, are bound to have empty context on both
sides, they will have different full forms on the left and on the right. For instance, for →L
we have:

` A B ` ∆
A→B ` ∆

→L

↙ ↘

Γ ` A Γ′, B ` ∆

Γ, Γ′, A→B ` ∆
→Lfl

` A, ∆′ B ` ∆

A→B ` ∆′, ∆
→Lfr

↘ ↙

Γ ` A, ∆′ Γ′, B ` ∆

Γ, Γ′, A→B ` ∆′, ∆
→Lf

Quite similarly it happens for →R and →U , and symmetrically for ←. Just to make sure
that no misunderstanding is possible, we spell out also the other six rules obtained by
liberalising contexts on →R and →U (and leave at least the remaining nine, for ←, to
symmetry):

Γ, B ` A

Γ ` B→A
→Rfl

B ` A, ∆

` B→A, ∆
→Rfr

Γ, B ` A, ∆

Γ ` B→A, ∆
→Rf

Γ, A ` B Γ
′, C ` D

Γ, Γ′, B→C ` A→D
→Ufl

A ` B, ∆ C ` D, ∆′

B→C ` A→D, ∆, ∆′ →Ufr
Γ, A ` B, ∆ Γ

′, C ` D, ∆′

Γ, Γ′, B→C ` A→D, ∆, ∆′ →Uf

It is now easy to define extensions for B. For any sequent calculus X, we call XL the
version of X liberalized at the left, i.e. the sequent calculus obtained by taking the full at
the left form of the operational rules of X. More explicitely, for instance, BL has the same
axioms and structural rules of B, and the rules:
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Lf

&

Lf 1Lf ⊕Lf &Lf 0Lf

&

R ⊗R ⊥ R &R ⊕R >R
→Lfl ←Lfl →Ufl ←Ufl

←R →R

Note that the liberalized rules are 13, compared with 11 which remain equal to those of
B, since the rules →U and ←U are self-symmetric; also note that 1R and ⊥ L remain
untouched, since they are reflection axioms, and thus have no context.

For any calculus X, we define XR symmetrically, liberalising on the right. Since liber-
alising on the left rules which are already full on the right just gives full rules, the calculus
BLR (which is the same as BRL) is obtained, so to say, by exponentiating to f all oper-
ational rules. Note that by liberalising cutR on the left one obtains cut in its full form, or
full cut, while liberalising cutL on the left gives no effect. Symmetrically for cutL.

The logics B, BL, BR, BLR are all linear-like, in the sense that they all lack the
traditional structural rules of weakening and contraction:

weakening
Γ, Γ′ ` ∆

Γ, Σ, Γ′ ` ∆
wL

Γ ` ∆′, ∆

Γ ` ∆′, Σ, ∆
wR

contraction
Γ, Σ, Σ, Γ′ ` ∆

Γ, Σ, Γ′ ` ∆
cL

Γ ` ∆′, Σ, Σ, ∆

Γ ` ∆′, Σ, ∆
cR

We write XW for the calculus obtained from the calculus X by adding both the weakening
rules, and similarly XC for contraction. To keep the number of combinations under easier
control, we also write XS for the calculus XWC (which is just the same as XCW). So,
since the order in which the extensions by L, R and S are considered is irrelevant (and since
repeating them has trivially no effect), we obtain a cube of sequent calculi extending B.

BLS

BLRS
classical

BS
quantum~

BRS

BR

BLR
linear

intuitionistic

basic
B

intuitionistic linear
BL

We anticipate that many of them are equivalent formulations of well known logics, as we
have shown in the picture. We will return to it in the last section, when we can look at it
also with the tools of symmetry and cut-elimination.

The symmetry of basic logic rests on the symmetry between the left side (assumptions,
or inputs) and the right side (conclusions, or outputs) of a sequent. Whatever action is
taken on the right can also be performed on the left, and vice versa. Accordingly, when
applying the principle of reflection to justify the rules of basic logic, if a definitional equation
was solved for a metalinguistic link appearing on the right, then its symmetric form was
also solved with the same link appearing on the left. This is why all connectives and rules of
basic logic come in symmetric pairs. This evident symmetry can now be turned into some
formal statements, showing how aesthetics is turned into a useful tool to prove new results.

In basic logic, the symmetry between the left and the right side in a sequent does not
mean that inputs and outputs are identified, as in linear logic. By keeping symmetry as a
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meta-property, inputs and outputs here remain clearly distinct and not interdefinable. In
this way it is possible to extend symmetry in a natural way from formulae to derivations
and logics themselves (for example, see the two symmetric ways of strengthening basic logic
which in the previous section we have denoted by L and R).

For any formula A, its symmetric formula As is defined by the clauses:

i) ps ≡ p for any propositional variable p

ii) 1s ≡⊥, ⊥s≡ 1; 0s ≡ >, >s ≡ 0

iii) (A ◦B)s ≡ Bs ◦s As, where the symmetric ◦s of any connective ◦ is defined as in the
table:

⊗s ≡

& &s
≡ ⊗

⊕s ≡ & &s ≡ ⊕

←s ≡ → →s ≡←

We can extend the above definition to include negation by putting ¬s ≡ ∼ and ∼s ≡ ¬,
which of course is justified by (A→⊥)s ≡ 1←As and (1←A)s ≡ As→⊥.

By the definition (including negations, if wished), it is immediately evident that:

Proposition 3.1 For any formula A, Ass coincides with A.

Note that the equality of Ass with A is just identity of formulae, qua strings of symbols.
The symmetric of a list of formulae is defined by putting Γs ≡ Cs

n, . . . , Cs
1 if Γ = C1, . . . , Cn,

and similarly for ∆. Then we say that the sequent ∆s ` Γs is symmetric to the sequent
Γ ` ∆ and proposition 3.1 is immediately extended to sequents.

Now also the symmetric of a rule J can be formally defined as the rule J s which leads
exactly from the symmetric of the premises of J to the symmetric of the conclusion of J .
For example, the symmetric of →L is ←R, since by definition it is (A→B)s ≡ Bs←As.
Informally speaking, Js does the same job as J , but on the other side of the sequent.
Obviously, Jss is exactly the same as J .

This definition can be applied to any rule in the language of basic logic. So we can extend
symmetry to logics and say that a sequent calculus L has a symmetric calculus Ls, which
by definition is formed by all sequents ∆s ` Γs which are the symmetric of some axiom
Γ ` ∆ of L (note that in particular the symmetric of A ` A is As ` As, which is again an
instance of identity), and by all the rules Js which are the symmetric of some rule J of L.
As expected, Lss is exactly the same as L. According to such definition, the calculus BR is
obviously the symmetric of BL, and BRS the symmetric of BLS. On the other hand, B,
BS, BLR and BLRS coincide with their symmetric, and thus are called (self-)symmetric.
This shows how symmetry is present also in the cube of extensions of B.

Now the notion of symmetric for a sequent calculus also allows us to figure the notion of
symmetric derivation, and put such a notion into formal terms. Every proof Π in a sequent
calculus L has a symmetric proof Πs in the symmetric sequent calculus Ls, obtained from
Π by replacing every assumption of an axiom with an assumption of its symmetric axiom
and every application of a rule J with an application of its symmetric rule J s. The formal
definition of Πs is obtained by induction on the generation of Π. If Π is obtained in L from
Π1 (and Π2) by applying rule J , then Πs is defined to be obtained in Ls from (Π2

s and)
Π1

s by applying rule Js. Such an inductive definition is precisely sufficient to prove the
following theorem:

Theorem 3.2 For any two lists of formulae Γ, ∆, any sequent calculus L in the language
of basic logic and any derivation Π in it,

Π is a proof of Γ ` ∆ in L if and only if Πs is a proof of ∆s ` Γs in Ls.

This theorem is the raison d’etre of symmetry. A visual image can help to make the
intuitions concrete: we can think of Πs as obtained from Π by rotating it by 180◦ through
a vertical axis placed on the sign ` of the conclusion, as a hand from palm to back, and by
simultaneously swapping any application of J with one of J s, and by turning any sequent
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Γ ` ∆ into ∆s ` Γs (that is, everything is rotated, or dualized, except the sign `). Based
on such an image, the rotation applied twice is obviously the same as identity, and hence
the interchange of Π and Πs is called a swap of derivations. In the case of derivations which
belong to symmetric systems, by definition, the swap produces derivations which still belong
to the same system. The technique of substituting a derivation with its symmetric has been
applied in [16], [15], [17] in order to obtain cut-elimination proofs.

As is evident in the image of the cube, the self-symmetry of logics B and BS is deeper
than that of linear classical logic BLR and of classical logic BLRS respectively: it is
obtained by looking also underneath (linear) intuitionistic logic, by considering the common
structure of BL and BR, (or of BLS and BLRS, respectively) rather than their union,
and thus recovering the symmetry which was lost in the step from classical to intuitionistic
logic. This also allows us to treat in a symmetric way implication, i.e. the only connective
which keeps communication between inputs and outputs (and which is essentially lost in
linear logic without exponentials).

4 Visibility and elimination of cuts

Visibility is strictly linked with cut-elimination. As we recalled in the introduction, one of
the first motivations leading to the development of basic logic was the wish to find a common
denominator of the various refinements of classical logic, among which is orthologic, one of
the main quantum logics. This logic is non-distributive, and such a property is obtained in
a sequent calculus by imposing restrictions on the context of those rules which are needed
to prove it, that is ⊕ on the left (and hence also & on the right by symmetry), negation
and implication. Such restrictions, which had to be inherited by basic logic, make the
proof of cut-elimination for orthologic extremely difficult12. In fact, consider the following
derivation, where the left premiss of cut is obtained by a restricted introduction of ⊕ and
in the right premiss the last rule applied is the usual & introduction at the left:

A ` C&D B ` C&D
A⊕B ` C&D

⊕L
Γ, C ` ∆

Γ, C&D ` ∆

Γ, A⊕B ` ∆
cutL

Since the cut-formula is principal in the right premiss, Gentzen’s procedure should lift the
cut along the left branch, to reduce the left rank:

A ` C&D Γ, C&D ` ∆

Γ, A ` ∆

B ` C&D Γ, C&D ` ∆

Γ, B ` ∆
− ?

Now, unless Γ is empty (the ⊕L rule must have empty context on the left), it is not allowed
to apply ⊕L to obtain the conclusion.

The strategy leading to the cut-free calculus has been a change in perspective. Rather
than thinking of a system of rules where some of the rules make life difficult, because of their
restrictions, we reverse the point of view. We have a system in which some rules are more
attractive: active formulae stand up as pure, well visible. And we make this into a general
property of the calculus, namely visibility. The result is a uniform procedure to give the
rules of basic logic, in which the rules ⊕L and for → are no longer exceptions, but rather
part of a global picture. What was previously the constraint of some rules, now becomes the
strength of the system (cf.[14]). We show below how visibility is immediately transformed
into elimination of cuts.

4.1 Cut elimination in basic logic B and structured basic logic BS

Visibility deeply determines the form and structure of derivations (as expressed by the two
lemmas of substitution and history, see below) and the procedure of cut-elimination itself.

12As witnessed by the intricacies of the literature, as briefly exposed in [15].
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Connected with visibility is also the presence of two forms of cut (which as we have already
seen is not an ad hoc choice), a fact which will have a remarkable relevance.

So suppose that we are given an application of cutL (cutR is treated in a symmetric
way) and that we want to lift it up until it operates on axioms or on principal formulae. As
we shall shortly see, what happens is that we are forced to persistently lift the left premiss
of the cut in the right branch until the cut-formula becomes principal in the right premiss,
and only then lift the cut in the left premiss. Indeed, the last rule applied to obtain Σ ` C
in the left premiss must be a ◦L rule, except when the cut formula is principal in the left
premiss Σ ` C, because otherwise a ◦R rule would introduce a formula occurrence on the
right-hand side of the sequent, which would be the cut formula itself.

Now, if we wanted to lift the cut in the left branch keeping Γ, C ` ∆ as the right premiss,
the context Γ would remain on the left after the cut, which would block the application of
the rule ◦L needed in order to obtain the conclusion Σ, Γ ` ∆.

On the other hand, the rules applied above the right premiss of the cut, but under
the rule introducing the cut-formula, must all be ◦R rules, which have free context on the
left-hand side of the sequents. When we arrive at an application of a ◦L rule, by visibility
such rule must be the rule introducing the cut formula and we can be sure that no context
appears at its side. Now the difficulty mentioned above has disappeared and lifting the cut
in the left branch presents no problem.

After pointing out the delicate aspects of cut-elimination, the content and purpose of
the lemmas we are going to show should be clear.

We assume knowledge of standard terminology, as in [29] or [21]. To deal properly with
substitutions, however, the notion of linked occurrences is useful. Two occurrences of the
same formula in two consecutive sequents are said to be linked when they are in the same
place in lists of formulae which in the description of the rules are denoted by the same
letter in premisses and conclusion (e.g. Γ1 in the conclusion and Γ1 in the premisses). We
explicitly note that as a consequence: i. a formula occurrence which is introduced by a rule
or by an axiom, is not linked to any formula occurrence above it; ii. in additive rules with
two premisses the formula occurrences in Γ in the conclusion are linked to those in the same
place in Γ of both premisses; iii. contraction identifies two occurrences of A into one, which
is linked to both occurrences from which it comes.

All rules are insensitive to the content of the passive context: by this we mean that
any application of a rule remains an application of the same rule and with the same active
formulae if two linked occurrences of a formula C are replaced by any list of formulae Σ.
Insensitivity of rules to substitutions of course extends immediately to proof-tree trunks.
We write Γ[Σ/C] for the result of replacing C with Σ in Γ, Π[Σ/C] for the result of replacing
Σ for all linked occurrences of C in the proof-tree trunk Π. Also, from now on, we say ‘at
the left’ as an abbreviation of ‘at the left-side of all the sequents in the proof-tree trunk
under consideration’. Then we have:

Lemma 4.1 (Substitution of a formula occurrence) Let Π be a proof-tree trunk in
which the only rules applied are either rules with passive context on the left side, or struc-
tural rules13 or cuts. Let C be any formula occurrence at the left. Then, for any list of
formulae Σ, the result of the substitution Σ/C in Π is again a proof-tree trunk. If Π has
conclusion Γ ` ∆ (hence it must be C ∈ Γ), then Π[Σ/C] has conclusion Γ[Σ/C] ` ∆.

A dual statement holds when C is at the right.

The history of a formula occurrence C in a derivation Π is the least proof-tree trunk
ΠC which contains all the linked occurrences of C. Intuitively, considering the history ΠC

amounts to climbing up Π until C is introduced. Then the following lemma prepares the
ground for the substitution of C.

Lemma 4.2 (History of a formula occurrence) If Π is a derivation in B or BS and
if C is a formula occurrence at the left in the conclusion then:

13Note that one of the reasons for choosing a form of weakening and contraction in which lists (rather than
formulae as usual) are considered, is to be able to keep the statement of this lemma as simple as possible.
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(I) the history ΠC of C in Π consists only of operational rules with no restrictions on the
left context, cuts and structural rules (only exchange in B, also weakening and contraction
in BS);

(II) any occurrence of C in the leaves of ΠC is:
(a) visible: C ` ∆′ for some ∆′, or
(b) part of the passive context of >R: Γ′ ` > for some Γ′ containing C, or
(c) (only in BS) introduced by wL: Γ′, Σ ` ∆′ with C in Σ.

A dual statement holds at the right.

Proof. (I) Since C is present at the left, by visibility it is not possible to apply any rule
with active formulae on the left (unless on C itself, but then that application has C as the
principal formula and is not in the history of C).
(II) When C is introduced by a rule, it has no context since it is an active formula. If C is
introduced by an axiom, >R is the only axiom with context at the left. �

It is now convenient to extend the definition of principal formula to include both formula
occurrences in an axiom A ` A, the formulae 1 and ⊥ introduced by 1R and ⊥L and the
formulae > and 0 introduced by >R and 0L (while the formulae introduced in a passive
context in Γ ` > or 0 ` ∆ are not principal). From now on, we include in case (a) of the
above lemma only those sequents not falling under cases (b) or (c); so (a) consists of those
cases in which C occurs as the principal formula.

The theorem of cut-elimination for B is obtained in the usual way from the following,
which is proved by induction on the degree only:

Proposition 4.3 A derivation Π in B with an application of cut as the last inference, and
no other applications of cut, can be transformed into a derivation with the same conclusion
and with no cuts.

Such a derivation Π in B is of the form:
.... Π1

Σ ` C

.... Π2

Γ, C ` ∆

Γ, Σ ` ∆
cutL

or

.... Π1

Σ ` C, Λ

.... Π2

C ` ∆

Σ ` ∆, Λ
cutR

The cut-elimination procedure in B consists of the application of the following two steps.
First the derivation is transformed, as described in (i) below, into one (with the same
conclusion) in which cuts are always on principal formulae, and thus of the form:

Σ′ ` C C ` ∆′

Σ′ ` ∆′
cut

Then, cuts are reduced to cuts of lower degree, according to (ii). Now the proposition is
proved by the inductive hypothesis.

(i) We describe the case of cutL; by symmetry, this describes also the way to treat cutR.
The idea is to lift (in one step) the cut up to where C is principal. This is obtained easily,
by exploiting the history of the cut formula and the lemma of substitution.

A derivation with conclusion Γ, Σ ` ∆ and in which the cut rule is applied only on
principal formulae is obtained by operating on Π2 as follows. Consider the history Π2

C of C
in Π2, and suppose that C ` ∆1, . . . C ` ∆m are all the leaves in which C is principal. Let Φj

be the sub-derivation of Π2 with conclusion C ` ∆j . Similarly, suppose Σ1 ` C, . . . Σn ` C

are all the leaves of Π1
C where C is principal, and let Ψi, i ≤ m be their derivations.

Replacing Σ for C in Π2
C gives Γ, Σ ` ∆ as conclusion, as required, and Σ ` ∆1, . . . , Σ ` ∆n

as new leaves (by lemma 4.2, the other leaves in which C occurred were of the form Γ′ ` >

and they remain axioms after the substitution; about the leaves where C does not occur at
all, we need not worry). Each Σ ` ∆j , j ≤ n is obtained as the conclusion of Π1

C [∆/C] ,
which becomes a derivation when its leaves Σi ` ∆j are obtained as the conclusion of a cut

.... Ψi

Σi ` C

.... Φj

C ` ∆j

Σi ` ∆j
cut
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where C is principal on both sides.
(ii) In (1) we show that if any one of the premisses of cut is an axiom, then we eliminate
that application of cut; in (2) we show that if both premisses of the cut are the result of
an introduction rule, then the derivation is transformed into one of lower degree (with the
same conclusion).

(1) The axiom is the left premiss. Since the rank is 2, the cut formula C has rank 1 also in
the right premiss of cut, and hence it is either a principal formula or an axiom. (Notice that
the case in which the cut formula belongs to the passive context of >R or 0L has already
been treated.)

(a) C ` C:

C ` C

....
C, Γ ` ∆

C, Γ ` ∆
cutL

;

....
C, Γ ` ∆

(b) ` 1: 1 can be introduced in the right premiss only by 1 ` 1 (and then it is symmetric
to (a)), or 1L:

` 1

....
` ∆

1 ` ∆
1L

` ∆
cutL

;

....
` ∆.

(c) Γ ` > : > can be introduced in the right premiss only by > ` > (symmetric to (a)).

If the axiom is the right premiss of cut, the argument is absolutely symmetric.

(2) The derivation has the form

...
Γ ` C

◦R

...
C ` ∆

◦L

Γ ` ∆
cut

where C is principal in both premisses of cut; we lower the degree by the following reductions.

connective ⊗:

Γ ` A Γ′ ` B
Γ, Γ′ ` A⊗B

⊗R
A, B ` ∆

A⊗B ` ∆
⊗L

Γ, Γ′ ` ∆
cut

;

Γ′ ` B

Γ ` A A, B ` ∆

Γ, B ` ∆
cutL

Γ, Γ′ ` ∆
cutL

connective

&

: symmetric of ⊗

connective &:

Γ ` A Γ ` B
Γ ` A&B

&R
A ` ∆

A&B ` ∆
&L

Γ ` ∆
cut

;

Γ ` A A ` ∆
Γ ` ∆

cut

connective ⊕: symmetric of &

connective →: four cases are possible:

(→Uni-→Uni)

A ` B C ` D
B→C ` A→D

→U
E ` A D ` F
A→D ` E→F

→U

B→C ` E→F
cut

;

E ` A A ` B
E ` B

cut
C ` D D ` F

C ` F
cut

B→C ` E→F
→U
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(→Uni-→L)

A ` B C ` D
B→C ` A→D

→U
` A D ` ∆
A→D ` ∆

→L

B→C ` ∆
cut

;

` A A ` B
` B

cut
C ` D D ` ∆

C ` ∆
cut

B→C ` ∆
→L

(→R-→Uni)

B ` C
` B→C

→R
A ` B C ` D
B→C ` A→D

→U

` A→D
cut

;

A ` B B ` C
A ` C

cut
C ` D

A ` D
cut

` A→D
→R

(→R-→L)

A ` B
` A→B

→R
` A B ` ∆
A→B ` ∆

→L

` ∆
cut

;

` A A ` B
` B

cut
B ` ∆

` ∆
cut

connective ←: symmetric of →

The above procedure can be easily modified to prove cut-elimination for structured basic
logic BS. Indeed, by lemma 4.2, only case (c) for the leaves of the history of C remains
to be considered. Of course, we must substitute an application of weakening introducing C
with one introducing Σ. Now, also the case of weakening and contraction is (automatically)
considered. In fact, let us note that the substitution Σ/C in Π, now means that a weakening
introducing C becomes a weakening introducing Σ and the same applies for contraction.

4.2 Cut-elimination in the extensions of basic logic

We now show how the above procedure of cut-elimination can be adjusted to obtain cut-
elimination also for the extensions of B. We do not consider BLR and BLRS since they
are exactly the usual two-sided formulation of linear and classical logic, respectively, and
thus also with the usual procedure of cut-elimination. Of the remaining four extensions, it is
enough by symmetry to treat only the extensions of B obtained by liberalizing the contexts
on the left, that is BL and BLS.

Before proceeding, we need the definition of rank, which will be the second parameter in
the proof of cut-elimination. The rank of a formula occurrence C in a sequent of a derivation
is the height of the history of C. The right rank R-ρ (resp. left rank L-ρ ) of a cut is, as
usual, the rank of the cut-formula in the right (resp. left) premise of the cut. The rank ρ of
a cut is the sum of its right and left rank.

We are now ready for cut-elimination in BL and BLS. At the right, visibility is preserved
in both logics. So at the right the structure of axioms and rules, and hence derivations,
remains the same as that in B and BS; in particular, the lemma of history of a formula
occurrence at the right continues to hold, exactly as for B and BS. Also the lemma of
substitution holds; even better, it can be strengthened by extending substitution to include
a context at the left, as follows. By writing Σ-Λ/C we mean the substitution which replaces
the formula occurrence C with Λ and adds Σ at the left of the sequent: Γ ` ∆[C] becomes
Γ, Σ ` ∆[Λ].

Lemma 4.4 (Substitution of a formula occurrence in BL and BLS) Let Π be a proof-
tree trunk in which the only rules applied are either rules for connectives which do not operate
on the right or structural rules or cuts. Let C be any formula occurrence at the right. Then,
for any list of formulae Λ and Σ, the result of the substitution Σ-Λ/C in Π is again a proof-
tree trunk. If Π has conclusion Γ ` ∆, then Π[Σ-Λ/C]) has conclusion Γ, Σ ` ∆[Λ/C]).

Now we can see that BL and BLS admit elimination of full cut. Just as in B and BS
the task of eliminating cuts was reduced to the elimination of cuts without contexts, now
in the extensions at the left BL and BLS the key step is to reduce the problem to the
elimination of cuts with context at the left, i.e. cutL. Indeed, by history and substitution
of a formula occurrence at the right, we have:
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Lemma 4.5 (Reduction of left rank of cut to 1 in BL and BLS) A derivation Π in
BL and BLS with cut as last rule, and with no other cuts, can be immediately transformed
into a derivation with the same conclusion, but in which the application of cut has the form

Γ′ ` C Σ, C ` Λ

Γ′, Σ ` Λ
cutL

where C of the left premiss is principal.

The next proposition now follows easily:

Proposition 4.6 A derivation in BL and BLS with cut as last rule, and with no other
cuts, can be transformed into a derivation with the same conclusion and without cuts.

Proof (Sketch). The proof is by induction on the degree and (right) rank. If ρ is the
rank, we distinguish the two cases:
(ρ = 2) If one of the premisses of cut is an axiom, the cut is eliminated; if both premisses
of cut are the result of a rule for connectives, by reducing the degree, cut is eliminated by
induction.
(ρ > 2) First, if the left rank is L-ρ > 1, the derivation is transformed into one with the
same conclusion and L-ρ = 1, by the reduction just seen in the preceding lemma. Now
cuts to be eliminated are only cutL, with L-ρ = 1. Assuming that cut-elimination holds
for derivations with the same degree but lower rank, the derivation is transformed into one
with the same conclusion but with lower right rank. We proceed in the usual way (Gentzen
style), by lifting Γ′ ` C, the left premiss of cut, along the right branch: cut is lifted, and the
rule is applied afterwards. This is always possible, since lifting cutL up to the premisses of
the rule leaves the right side unaltered, and the effect is a substitution Γ′/C acting only at
the left, where the rules have liberalized context. �

5 Equations depending on the control of contexts

Using the knowledge of basic logic accumulated so far, we can now more analitically address
to the question of which of the most common properties fail in basic logic because of the
control of contexts and in which way they appear again in its extensions. The general idea
is that basic logic has a richer structure and is therefore able of finer distinctions than its
extensions. By going upwards towards classical logic, the resolving power is lessened, that
is the structure is simplified, in the sense that more equations hold and some connectives
are identified or become definable.

To keep the picture as simple as possible, for each inference rule of basic logic, and
particularly in the case of formation rules, one would like to find an equation which is
equivalent to the presence of contexts. This can be achieved in some favourable cases, as we
show in the next two propositions. In such results, we need to consider rules where contexts
consist of only one formula; for convenience, we call them 1-full.

Proposition 5.1 In any extension of B, the inequalities saying that 1 is neuter for ⊗, that
⊗ distributes over ⊕ and that 0 nullifies ⊗ are equivalent to the corresponding 1-full rules
as shown in the table:

Inequalities with ⊗ Equivalent 1-full rule

C ⊗ 1 ` C
C ` ∆

C, 1 ` ∆

C ⊗ (A⊕B) ` (C ⊗A)⊕ (C ⊗B)
C, A ` ∆ C, B ` ∆

C, A⊕B ` ∆

C ⊗ 0 ` 0 C, 0 ` ∆
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Proof. Let us suppose that the 1-full rules hold. Then

C ` C A ` A
C, A ` C ⊗A

C, A ` (C ⊗A)⊕ (C ⊗B)

C ` C B ` B
C, B ` C ⊗B

C, B ` (C ⊗A)⊕ (C ⊗B)

C, A⊕B ` (C ⊗A)⊕ (C ⊗B)

C ⊗ (A⊕B) ` (C ⊗A)⊕ (C ⊗B)

is a derivation of distributivity, and

C, 0 ` 0

C ⊗ 0 ` 0

C ` C
C, 1 ` C

C ⊗ 1 ` C

are derivations of the other two inequalities.
Conversely, let us assume that the above inequalities are provable in some extension of

B. Then the 1-full rule for ⊕L can be derived as follows: from the premisses C, A ` ∆ and
C, B ` ∆ one obtains C⊗A ` ∆ and C⊗B ` ∆ by ⊗L, from which (C⊗A)⊕ (C⊗B) ` ∆
by ⊕L, from which, assuming distributivity, one has C ⊗ (A ⊕ B) ` ∆ by cut and then
C, A ⊕ B ` ∆ by reflection. Similarly, the 1-full rule for 1L is derivable as follows: from
C ` ∆, one has C ⊗ 1 ` ∆ by cut and then C, 1 ` ∆ by reflection. Finally, the 1-full
axiom C, 0 ` ∆ is derivable by reflection from C ⊗ 0 ` ∆, which is obtained by cut from the
inequality and from the axiom 0 ` ∆. �

As it is easy to check, the converse of the above inequalities, that is the sequents C ` C⊗
1, (C ⊗A)⊕ (C ⊗B) ` C ⊗ (A⊕B), and 0 ` C ⊗ 0, are derivable in B. So the above three
1-full rules are equivalent to the equations C ⊗ 1 ` C, C ⊗ (A ⊕ B) ` (C ⊗ A) ⊕ (C ⊗ B)
and C ⊗ 0 ` 0, respectively.

Clearly, a full rule is at least as strong as its 1-full form. In the case of the rule ⊗Lf ,
one can prove more, namely that it is equivalent to associativity of ⊗ and moreover to a
strong form of ⊗-reflection. This fact allows to conclude, in presence of associativity, the
equivalence of every full rule with its 1-full form. To any list of formulae Γ, we associate a
formula ⊗Γ, obtained by replacing comma with ⊗; the specific order in which ⊗ is applied
to define ⊗Γ is irrelevant, as long as it is fixed. Whatever the choice is, the sequent Γ ` ⊗Γ
will be derivable in B by applying ⊗R in the suitable order, and this is all we need.

Lemma 5.2 The following are equivalent over B:

i) Associativity of ⊗ : C ⊗ (A⊗B) ` (C ⊗A)⊗B

ii) Strong reflection for ⊗:
for any Γ, Γ′, ∆, Γ′,⊗Γ ` ∆ if and only if Γ′, Γ ` ∆

iii) The full rule ⊗Lf .

iv) The 1-full form of ⊗L:
C, A, B ` ∆

C, A⊗B ` ∆

Moreover, when one of the above equivalents hold, any rule full at the left is equivalent to
its 1-full form.

Proof. Assume associativity. Let us see first that, for every ∆, one has

⊗Γ ` ∆ if and only if Γ ` ∆

In fact, if ⊗Γ ` ∆ then, since Γ ` ⊗Γ, also Γ ` ∆ by cut. Conversely, when Γ ` ∆ is
derivable, also ⊗Γ ` ∆ is derivable by suitably applying ⊗L, as can be seen by induction on
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the derivation. The only non trivial case is that of a derivation which ends with ⊗R, which
is transformed as follows:

.... Π1

Γ1 ` A

.... Π2

Γ2 ` B

Γ1, Γ2 ` A⊗B
⊗R

becomes

.... Π⊗

1

⊗Γ1 ` A

.... Π⊗

2

⊗Γ2 ` B

⊗Γ1,⊗Γ2 ` A⊗B
⊗R

⊗Γ1 ⊗⊗Γ2 ` A⊗B
⊗L

where Π⊗

1
and Π⊗

2
are the proofs given by the inductive hypothesis and where ⊗Γ1 ⊗⊗Γ2

is equal to ⊗(Γ1, Γ2) by associativity.
We can now prove ii). Let us assume Γ′,⊗Γ ` ∆; then Γ′, Γ ` ∆ follows by cut since

Γ ` ⊗Γ. Conversely, from Γ′, Γ ` ∆ it follows (by the above equivalence) that ⊗(Γ′, Γ) ` ∆,
hence by associativity ⊗Γ′ ⊗⊗Γ ` ∆, from which ⊗Γ′,⊗Γ ` ∆ by reflection and finally, by
cut with Γ′ ` ⊗Γ′, also Γ′,⊗Γ ` ∆.

Let us assume strong reflection for ⊗; then we have in particular

Γ, A⊗B ` ∆ if and only if Γ, A, B ` ∆

one direction of which is the full rule ⊗Lf . Obviously, the full rule implies its 1-full form.
Finally, associativity is derivable by means of the 1-full rule for ⊗L, as follows:

C ` C A ` A
C, A ` C ⊗A B ` B

C, A, B ` (C ⊗A)⊗B

C, A⊗B ` (C ⊗A)⊗B

C ⊗ (A⊗B) ` (C ⊗A)⊗B

Moreover, note that strong reflection for ⊗ makes it equivalent to consider a single formula
rather than a list of formulae as left context of any rule. �

The four inequalities considered in the above two propositions are obviously derivable
in BL, since the 1-full rules which are equivalent to them are valid in BL. Analysing the
derivations we have given, it is easy to realize that the 1-full rules are necessary, in the sense
that a cut-free proof is otherwise impossible. So the same inequalities fail both in B and in
BR.

As a consequence, the formation rules ⊗Lf , 1Lf , ⊕Lf , 0Lf are not derivable in B and
in BR; that is, contexts on the side of active formulae cannot be added and the basic form
of such four rules is strictly weaker than their full form.

A similar argument shows that the same remark applies also to the two remaining rules
with active formulae on the left, namely←L and→R. In fact, the inequalities C⊗ (A←C⊗
A) ` and C ` A→(C ⊗A) are derivable in BL as follows:

C ` C A ` A
C, A ` C ⊗A

C, A←C ⊗A `

C ⊗ (A←C ⊗A) `

←Lfl C ` C A ` A
C, A ` C ⊗A

C ` A→C ⊗A →Rfl

but analysing such derivations, it is immediate to see that their conclusion is underivable
(by a cut-free proof) both in B and in BR. (As a digression, notice that also the sequents
A ⊗ B→C ` A→(B→C) and A→(B→C) ` A ⊗ B→C are underivable in B and BR.)
Therefore all formation rules of B and BR with active formulae on the left are strictly
weaker than their full form at the left.

All the arguments given so far in this section can be repeated as such for the symmetric
cases. This brings to:

Proposition 5.3 The inequalities

associativity of

&

: A

&

(B

&

D) ` (A

&

B)

&

D
⊥ is neuter for

&

: D ` D

&

⊥

distributivity of

&

over &: (D

&

A)&(D

&

B) ` (A&B)

&

D
> maximizes &: (D

&

A)&(D

&

B) ` (A&B)

&

D
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are equivalent over B to the 1-full form of the rules

&

R, ⊥ R, &R and >R respectively.
Moreover, also strong reflection for

&

:

Γ ` ∆,

&

∆′ if and only if Γ ` ∆′, ∆

is equivalent to associativity of

&

.

The above inequalities are provable in BR but they fail in B and in BL, so that also the
rules

&

Rf , ⊥ Rf , &Rf and >Rf are underivable in B and in BL. Still by symmetry, also
→Rfr and ←Lfr are underivable in B and in BL.

Summing up, we have proved that:

Proposition 5.4 For all the formation rules of B, the full form either on the left or on the
right is not derivable in B. Similarly, the full at the right form of all the formation rules of
BL is not derivable in BL (and symmetrically for BR).

In a certain sense, the meaning of this proposition is to put into rigorous terms what
has always been evident thus far, namely that the control of contexts makes basic logic
intrinsically different from other usual logics. This applies not only to the structure of
proofs but, by the previous propositions, also to the set of provable formulae.

The behaviour of reflection rules is quite different from that of formation rules. In fact,
they often admit the presence of contexts:

Proposition 5.5 In B and all its extensions, ⊕R is equivalent to ⊕Rf and symmetrically
&L is equivalent to &Lf ; moreover, →L is equivalent to the following rule:

` A Γ, B ` ∆

Γ, A→B ` ∆

and analogously for ←R.
In any of the extensions of B where full cut holds (that is, all extensions except BS),

⊗R is equivalent to ⊗Rf , and symmetrically
&

L is equivalent to
&

Lf ; moreover, →Lfl is
equivalent to →Lf and finally →Lfr is equivalent to the following rule:

` A, ∆ Γ, B ` ∆′

Γ, A→B ` ∆, ∆′

and analogously for ←R.

Proof. A derivation of →Lf from →Lfl is

Γ ` A, ∆
A ` A B ` B
A, A→B ` B →Lfl

Γ, A→B ` B, ∆ cutf Γ′, B ` ∆′

Γ′, Γ, A→B ` ∆, ∆′ cutf

All the other cases are obtained in a similar way, that is by applying the apparently weaker
rule, followed by cuts. �

Notice that a context cannot be added freely in the left premiss of →L, that is the rule

Γ ` A B ` ∆
Γ, A→B ` ∆

is not derivable in B and BR. In fact, as seen in section 2, it is equivalent to the reflection
axiom A, A→B ` B which does not admit a cut-free proof in B and BR. The reflection
axiom is equivalent also to the rule of implicit reflection

Γ ` A→B
Γ, A ` B
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which hence does not hold in B and BR. Together with proposition 5.4, this says that no
direction of what is usually called deduction theorem, that is

Γ, A ` B if and only if Γ ` A→B

holds in BR and in B. On the contrary, the deduction theorem for ←, that is

A←B ` ∆ if and only if A ` B, ∆

does hold in BR. In fact, one direction is just the rule ←Lfr, while the other is equivalent
to ←Rfr.

By symmetry, in BL the deduction theorem for ← fails, and that for → holds. So in
B no form of the deduction theorem holds. Observe that such strict control of movement
between the left and the right side of a sequent cannot be separated from control of contexts
in general: loosening the former would also destroy the latter. In fact, it is well-known for
instance that allowing the deduction theorem for →, distributivity of ⊗ over ⊕ is derivable
as follows: after reaching C, A ` (C ⊗ A) ⊕ (C ⊗ B) (see the derivation in the proof of
proposition 5.1), move C to the right, obtaining A ` C→(C ⊗ A) ⊕ (C ⊗ B), do the same
with B, then apply ⊕L and finally move C back to its original place.

The diversity of primitive connectives present in basic logic is lost as much as the control
of contexts loosens. In a certain sense, however, the identification of some connectives is
present already in B itself, but only at the meta-level and in absence of contexts.

In the sequel, we use the signs −−◦ and ◦−− for the “classical” definitions of implications,
namely we put

A−−◦B ≡ ∼A

&

B and B◦−−A ≡ B ⊗ ¬A

Note that symmetry extends to such defined connectives, that is (A−−◦B)s = Bs◦−−As.

Proposition 5.6 The following equivalences hold:

i) In B,
` A&B is provable if and only if ` A⊗B is provable;

symmetrically B ⊕A ` is provable if and only if B

&

A ` is provable.

ii) In B,
` ¬A is provable if and only if `∼ A is provable;

symmetrically ∼A ` is provable if and only if ¬A ` is provable.

iii) In BR,
` A→B is provable if and only if ` A−−◦B is provable;

symmetrically, in BL B←A ` is provable if and only if B◦−−A ` is provable.

Proof. The proofs of the three items follow essentially a uniform schema, that consists of
finding an assertion which is equivalent to the sequent at the left by the reflection prin-
ciple, and is equivalent to the sequent at the right by a reflection rule and because of
cut-elimination. Here are the details.

i) By the reflection principle, ` A&B is derivable if and only if ` A and ` B is derivable.
Then ` A⊗B is derivable from ` A and ` B by the reflection rule ⊗R, and conversely any
cut-free proof of ` A⊗B requires the assertion ` A and ` B.

ii) By the reflection principle for ¬, ` ¬A is provable if and only if A ` is provable; now
from A ` one derives ` ∼A by 1R and the reflection rule ←R and, conversely, if ` ∼A is
provable, then also A ` because of cut-elimination.

iii) By the reflection principle, ` A→B is derivable if and only if A ` B is derivable.
Then, from ` 1 and A ` B one derives ` ∼A, B by the reflection rule ←Rfr, from which
` A−−◦B; conversely, assuming that ` A−−◦B is derivable, then also ` ∼A, B is derivable,
but then, by cut-elimination, A ` B is derivable. �

The above equivalences are converted into equalities derivable inside the formal calculus
when the control of contexts is loosened, either by adding weakening and contraction or by
liberalizing contexts.
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Proposition 5.7 In B added with weakening at the left, the sequent A ⊗ B ` A&B is
derivable; symmetrically for weakening at the right and A ⊕ B ` A

&

B. In B added with
contraction at the left, A&B ` A⊗B is derivable, and symmetrically for contraction at the
right and A

&

B ` A⊕B. So in BS it is A&B = A⊗B and A⊕B = A

&

B.
In BL, the sequents A−−◦B ` A→B and B◦−−A ` B←A are derivable; symmetrically,

in BR one has A→B ` A−−◦B and B←A ` B◦−−A. So in BLR it is A→B = A−−◦B and
B←A = B◦−−A.

Finally, in BL and in BR, both ∼A ` ¬A and ¬A ` ∼A are derivable, that is ¬A = ∼A.

Proof. The following are the derivations in B of A ⊗ B ` A&B and of A&B ` A ⊗ B by
means of weakening and contraction at the left, respectively:

A ` A
A, B ` A

B ` B
A, B ` B

A, B ` A&B

A⊗B ` A&B

A ` A
A&B ` A

B ` B
A&B ` B

A&B, A&B ` A⊗B

A&B ` A⊗B

The following are the derivations of ∼A

&

B ` A→B and B ⊗ ¬A ` B←A by means of
full at the left rules:

A ` A
A, 1 ` A

A,∼A ` B ` B

A,∼A

&

B ` B

∼A

&

B ` A→B

B ` B
A ` A ⊥`

¬A, A `

B,¬A ` B←A

B ⊗ ¬A ` B←A

Finally, observe that ¬A ` ∼A follows in BL from B ⊗ ¬A ` B←A when B = 1, but
symmetrically also in BR from A→B ` ∼A

&

B when B =⊥. In BL, from A ` A one
derives A, 1 ` A, hence A,∼A ` by ←Lfl and then ∼A ` ¬A by ⊥ R and →Rfl. In BR,
the symmetric derivation proves the same ∼A ` ¬A, since such sequent is self-symmetric.
�

Indeed, loosening the control of contexts is necessary in order to derive the above equal-
ities, in the sense explained below. Assuming A ⊗B ` A&B and A&B ` A⊗ B, it is easy
to derive, respectively,

A ` ∆
A, B ` ∆

rwL
A, A ` ∆

A ` ∆
rcL

which are two weak forms of weakening and contraction, restricted to one formula. The
usual form of weakening and contraction can be obtained assuming A⊗B = A&B, that is
the two above assumptions together; we leave the proof.

We have seen above that liberalizing contexts at the right allows to prove that B←A ` B◦−−A.
Here the converse holds in the weak sense that such an equality is unprovable in any of the
extensions of B where contexts at the right are controlled. This amounts to prove that:

Proposition 5.8 The sequent B←A ` B◦−−A is underivable in BLS.

A proof can be achieved after the following lemma, which extends proposition 5.4 to BS,
BLS and BRS in the case of rules for implications.

Lemma 5.9 The formation rules←Lfl and→Rfl are underivable in BRS. Symmetrically,
→Rfr and ←Lfr are underivable in BLS. Thus the full form, either on the left or on the
right, of the formation rules for implications are underivable in BS.

Proof. The two inequalities C⊗ (A←C⊗A) `, C ` A→C⊗A, which are underivable in B
and BR, as we have seen, are actually underivable in BRS too. In fact, it can be checked
that the rules ←Lfl and →Rfl respectively remain necessary in any cut-free proof even if
weakening and contraction are allowed. �
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Now it is enough to observe that ◦−− satisfies in BL (and hence a fortiori in BLS) the
rule

Γ, B ` A, ∆

Γ, B◦−−A ` ∆

In fact, since in BL the rule→Lf is derivable by proposition 5.5, from the premiss Γ, B ` A, ∆
and from the axiom⊥` one can derive Γ, B,¬A ` ∆, from which the conclusion Γ, B◦−−A ` ∆
by ⊗Lf . Therefore the sequent B←A ` B◦−−A is not derivable, otherwise it would be deriv-
able by cut also the rule ←Lf , contrary to the above lemma. So proposition 5.8 is proved.

This means that in BLS (and BL) ← and ◦−− are different, even if ◦−− obeys the
inference rules for ←. In fact, we have already seen above that ◦−−Lfl is a derivable rule
(actually, also ◦−−Lf ), but moreover also ◦−−Rfl is easily seen to be derivable too. So it
happens that a connective is not uniquely characterized by its rules.

We conclude with some brief descriptions of the single extensions of B which follow from
the results of this section.

The identification of multiplicatives with additives due to weakening and contraction,
which is well-known from linear logic, does not depend on the presence of contexts, and so it
holds in BS. Apart from this, the behaviour of implications in BS seems to be the same as
that in B. This fact has been exploited to obtain quantum logics (in particular, BS written
in a language with two kinds of literals is equivalent to paraconsistent quantum logic of [11];
for more information, see the survey [3]).

Let us now consider BL, which probably has a more familiar aspect than its symmetric
BR. We have seen that → in BL satisfies the deduction theorem, while ← does not;
moreover, inequalities with ⊗ hold while their symmetric with

&

fail. Thus BL is a cut-free
calculus for linear intuitionistic logic, which includes a non-associative and non-distributive
“par” connective

&

, and an additional implication connective ← (see [1]).
The calculus BLS is a formulation of intuitionistic logic which, besides contexts at

the right as in [13], includes an extra connective ←. In fact, since multiplicatives and
additives are identified because of S, both conjunction and disjunction satisfy associativity
and distributivity, since the rules

&

Rf and &Rf are equivalent to the rules ⊕Rf and ⊗Rf ,
which are derivable in BL by proposition 5.5. The results above indicate that ← is not
definable in intuitionistic logic. So, emerging back to the surface of intuitionistic logic
after the exploration of the dark depths of basic logic has left us with the reward of a
new connective, which should be the intuitionistic way to deal with negative notions in a
primitive way.

The calculi BLR and BLRS are just redundant formulations of linear logic (without
exponentials) and of classical logic, respectively.
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