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Abstract. In this paper a simple proof of the completeness theorem of the

intuitionistic predicate calculus with respect to the topological semantics is
shown. From a technical point of view the proof of the completeness theorem

is based on a Rasiowa-Sikirski-like theorem for the countable Heyting alge-

bras which allows to embadd any countable Heyting algebra into a suitable
topology in a such way that a countable quantity of the existing suprema are

respected.

Introduction

The aim of this paper is to show a simple proof of the completeness the-
orem of the intuitionistic predicate calculus with respect to the usual topo-
logical semantics.

In the first section we are going to recall the main definitions of the in-
tuitionistic predicate calculus; moreover an interpretation of the formulas of
the intuitionistic predicate calculus into the open sets of a topological space
is given in such a way that it will be possible to show a validity theorem.

Then, in the second section, after some introductory remarks on the Heyt-
ing algebras, we will prove a Rasiowa-Sikorski-like theorem for the countable
Heyting algebras; it will be usefull to embad a countable Heyting algebra into
a suitable topology in such a way that a countable quantity of the existing
suprema is respected.

Finally, in the third section, the algebric results of the second section will
be used to prove the completeness theorem for the topological semantics: first
one constructs the Lindembaum algebra of the formulas of the intuitionistic
predicate calculus, which turn out to be a countable Heyting algebra with a
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countable quantity of suprema in correspondence with the existential quan-
tifiers, and then one embads it into a suitable topology.

The main definitions

In this section we are going to recall the main definitions on the syntactical
aspects of the intuitionistic predicate calculus and on the interpretation of
its formulas into the open sets of a topological space.

Hence let us suppose to construct the formulas by means of a language
L which contains a countable quantity of variables, a (possibly empty) set
of signs for functions and for constants, starting from the usual inductive
construction of the terms and going on with the construction of the formulas
by using the propositional connetives ⊥,∧,∨,→ and the quantifiers ∀, ∃.

Finally, let us introduce a sequent calculus for the intuitionistic predicate
logic, where by Γ we mean a set of formulas and A, B and C are formulas
[Takeuti 75]:

Γ, A ⊢ A Γ,⊥ ⊢ A
(axioms)

Γ, A, B ⊢ C

Γ, A ∧ B ⊢ C

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(and)

Γ, A ⊢ C Γ, B ⊢ C

Γ, A ∨ B ⊢ C

Γ ⊢ A

Γ ⊢ A ∨ B

Γ ⊢ B

Γ ⊢ A ∨ B
(or)

Γ ⊢ A Γ, B ⊢ C

Γ, A → B ⊢ C

Γ, A ⊢ B

Γ ⊢ A → B
(implication)

Γ, A[x := t] ⊢ C

Γ, ∀x.A ⊢ C

Γ ⊢ A

Γ ⊢ ∀x.A
(univ. quant.)

Γ, A ⊢ C

Γ, ∃x.A ⊢ C

Γ ⊢ A[x := t]

Γ ⊢ ∃x.A
(esist. quant.)

where, as usual, in the universal quantification introduction rule and in the
existential quantification elimination rule we mean that the quantified vari-
able does not appear in the conclusion.

We can now define a valuation V (−) of the formulas of the intuitionistic
predicate calculus into the open sets of a topological space τ in such a way
that if A1, . . . , An ⊢ B then V (A1) ∩ · · · ∩ V (An) ⊆ V (B).

In fact, let us consider any structure suitable for the language L, D ≡
〈D,R,F , C, τ〉 where τ is a topological space which we will use to assign the
truth values when interpreting of the formulas, D is a set on which the terms
of L will be interpreted, R is a set of funtions, each one of a suitable arity
n, from Dn to the open sets of τ on which the atomic predicates of L will be
interpreted, F is a set of functions, each one of the suitable arity n, from Dn

to D on which the signs for functions of L will be interpreted and, finally,
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C is a subset of the set D on which the constants of the language L will be
interpreted.

Then we can define the interpretation V (−) as follows. Let us suppose we
already have given an interpretation for all the terms of L, i.e. V (xi) ∈ D

for any variable xi, V (ci) ∈ C for any constant ci and V (f(t1, . . . , tm)) =
V (f)(V (t1), . . . , V (tm), where V (f) ∈ F , for any sign for function of L, and
let us show how V (−) can be extended to all the formulas, provided that
V (P ) ∈ R.

V (P (t1, . . . , tm)) = V (P )(V (t1), . . . , V (tm))

V (⊥) = ∅

V (A ∧ B) = V (A) ∩ V (B)

V (A ∨ B) = V (A) ∪ V (B)

V (A → B) = ∪{O ∈ τ : V (A) ∩O ⊆ V (B)}

V (∀x.A) = Int(∩d∈DV [x:=d](A))

V (∃x.A) = ∪d∈DV [x:=d](A)

where by V [x:=d] we mean the valuation which coincides with the valuation
V (−) almost everywhere but for the variable x which is interpreted in the
element d ∈ D.

It is immediate to prove, by induction on the complexity of the formula A,
that the valuation of A only depends on the valuation of the variables which
appear in A and that V (A[x := t]) = V [x:=V (t)](A). Moreover we have the
following theorem.

Theorem: Validity. For any valuation V (−) of the formulas of the intu-

itionistic predicate calculus in a structure D, if

A1, . . . , An ⊢ B

then

V (A1) ∩ · · · ∩ V (An) ⊆ V (B)

Proof. The proof is by induction on the derivation of A1, . . . , An ⊢ B. Most
of the cases are trivial, so here we only show the the inductive step for the
universal quantifier rules. Let us suppose that Γ, A[x := t] ⊢ C then, by
inductive hypothesis, V (Γ) ∩ V (A[x := t]) ⊆ V (C) hence V (Γ) ∩ V (∀x.A) ⊆
V (C) since V (∀x.A) = Int(∩d∈DV [x:=d](A)) ⊆ V [x:=V (t)](A) = V (A[x :=
t]). On the other hand if Γ ⊢ A then, by inductive hypothesis, for any
d ∈ D, V [x:=d](Γ) ⊆ V [x:=d](A), but V [x:=d](Γ) = V (Γ), since, by hypothesis,
x does not appear in Γ, and hence V (Γ) ⊆ ∩d∈DV [x:=d](A), so V (Γ) ⊆
Int(∩d∈DV [x:=d](A)) = V (∀x.A) since V (Γ) is an open set.
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It is convenient to observe that in the interpretation of the connective →
it is not necessary to consider all of the open sets of the topology τ but it is
sufficient to consider only those of any of its base Bτ , i.e. we can put

V (A → B) = ∪{b ∈ Bτ : V (A) ∩ b ⊆ V (B)}.

In fact ∪{O ∈ τ : V (A)∩O ⊆ V (B)} = ∪{b ∈ Bτ : V (A)∩ b ⊆ V (B)}: to
prove that ∪{O ∈ τ : V (A) ∩ O ⊆ V (B)} ⊆ ∪{b ∈ Bτ : V (A) ∩ b ⊆ V (B)} it
is sufficient to note that if x ∈ ∪{O ∈ τ : V (A)∩O ⊆ V (B)} then there exists
O ∈ τ such that x ∈ O and V (A) ∩ O ⊆ V (B), but O = ∪{b ∈ Bτ : b ⊆ O}
and hence there is b ∈ Bτ such that x ∈ b and b ⊆ O, so that V (A) ∩ b ⊆
V (A) ∩ O ⊆ V (B), and hence x ∈ ∪{b ∈ Bτ : V (A) ∩ b ⊆ V (B)}; the other
inclusion is straightforword since any element of the base Bτ is an open set.

A similar property holds for the interpretation of the universal quantifier.
In fact let U be any subset of the set X on which the topology τ is defined;
moreover let Bτ be one of the base of τ , then

Int(U) = ∪{O ∈ τ : O ⊆ U}

= ∪{b ∈ Bτ : b ⊆ U}

can be proved as above and hence we can put

V (∀x.A) = ∪{b ∈ Bτ : b ⊆ ∩d∈DV [x:=d](A)}.

A Rasiowa-Sikorski-like theorem for
the countable Heyting Algebras.

In this paragraph we will set up the technical device that we need in
order to prove the completeness theorem. In particular we will show how
any countable Heyting algebra, H ≡ 〈H, 0, 1, +, •,→〉, can be embedded into
a suitable topology in such a way that a countable quantity of suprema are
respected.

Let us begin by recalling some standard definitions and results. A Heyting
algebra H ≡ 〈H, 0, 1, +, •,→〉 is a structure such that 〈H, 0, 1, +, •〉 is a
distributive lattice with 0 and 1 and that for all x, y, z ∈ H, x • y ≤ z iff x ≤
y → z, where the order relation ≤ is defined by putting x ≤ y ≡ x = x • y.

Note that, because of the implication operation, • is distributive over all
the existing suprema; in fact x •∨{t : t ∈ T} ≤ ∨{x • t : t ∈ T} since, for any
t ∈ T , x • t ≤ ∨{x • t : t ∈ T} which gives t ≤ x → ∨{x • t : t ∈ T}, so that
∨{t : t ∈ T} ≤ x → ∨{x • t : t ∈ T} and hence x •∨{t : t ∈ T} ≤ ∨{x • t : t ∈
T}; the other implication is trivial.

A straightforword set-theoretic example of Heyting algebra is obtained by
considering the open sets of a topological space τ over a set X , whose base
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is Bτ . In fact we can put

0τ ≡ ∅

1τ ≡ X

O1 •τ O2 ≡ O1 ∩O2

O1 +τ O2 ≡ O1 ∪O2

O1 →τ O2 ≡ ∪{O ∈ τ : O1 ∩O ⊆ O2} = ∪{b ∈ Bτ : O1 ∩ b ⊆ O2}

Our aim in this work is to show that, at least for the countable Hayting
algebras, topologies are the paradigmatic example of Heyting algebras as well
as families of subsets are the paradigmatic example of Boolean algebras, i.e.
any countable Heyting algebra can be embedded into a suitable topology.

Definition 2.1: Filter. Let H be a Heyting algebra. Then a subset F of
H is called a filter if:

1 ∈ F
x ∈ F x ≤ y

y ∈ F

x ∈ F y ∈ F

x • y ∈ F
.

Definition 2.2: Prime filter. Let H be a Heyting algebra and F one of
its filters. Then F is called a prime filter if whenever x + y ∈ F then x ∈ F

or y ∈ F .

In this work we are interested in a particular class of prime filters, i.e.
those which respect a countable quantity of subsets of H.

Definition 2.3. Let H be a Heyting algebra, F one of its filters and T a
subset of H which has a supremum in H. Then F respects T if whenever
∨T ∈ F there exists b ∈ T such that b ∈ F .

Now we want to show that there exist prime filters which respect a count-
able quantity of subsets T1, . . . , Tn, . . . . To this purpose we can prove the
following theorem which guarantees the existence in any Heyting algebra
of a filter (not necessarily a prime filter) which respects all of the subsets
T1, . . . , Tn, . . . .

Theorem 2.4. Let H be a Heyting algebra, x, y ∈ H such that x 6≤ y and

T1, . . . , Tn, . . . a countable quantity of subsets of H which have a supremum

in H. Then there exists a filter F of H which contains x, does not contain y

and respects all of the subsets T1, . . . , Tn, . . . .

Proof. We can classically construct such a filter in a countable number of
steps, starting from the filter1 F0 =↑ x ≡ {z ∈ H : x ≤ z} and going on by
extending it to a filter which respects all of the subsets T1, . . . , Tn, . . . . Let

1It is easy to check that F0 is indeed a filter of H.
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us first construct a new countable list W1, . . . , Wm, . . . of subsets of H out of
the list T1, . . . , Tn, . . . in such a way that any subset Ti appears a countable
number of times among W1, . . . , Wm, . . . ; one can for instance consider the
list W1 = T1, W2 = T1, W3 = T2, W4 = T1, W5 = T2, W6 = T3, . . . .

Now put c0 = x, and hence F0 =↑ c0, and suppose, by inductive hypothesis
that we have constructed an element cn such that cn 6≤ y and we have defined
Fn =↑ cn, then put

cn+1 =

{

cn if ∨ Wn 6∈ Fn

cn • bn if ∨ Wn ∈ Fn

where bn is an element of Wn such that cn • bn 6≤ y; in fact such an element
exists because in the latter case ∨Wn ∈ Fn =↑ cn, and hence cn ≤ ∨Wn,
then if for all b ∈ Wn, cn • b ≤ y then cn = cn • ∨Wn = ∨b∈Wn

cn • b ≤ y

which is contrary to the inductive hypothesis.
Now we can define the filter Fn+1 =↑ cn+1 and it is immediate to check

that Fn ⊆ Fn+1 and that y 6∈ Fn+1 since cn+1 6≤ y. Finally we put F =
∪i∈ωFi. Then F is a filter since it is the union of a chain of filters which
are contained one into another; moreover x ∈ F since x ∈ F0 ⊆ F while
y 6∈ F = ∪i∈ωFi otherwise there would be an i ∈ ω such that y ∈ Fi which
is contrary to the way we have constructed the filters; moreover F respects
all of the subsets T1, . . . , Tn, . . . since if ∨Tn ∈ F = ∪i∈ωFi then there is
an i ∈ ω such that ∨Tn ∈ Fi and hence, since any Tn appears a countable
number of times in the list W1, . . . , Wm, . . . , for some h ≥ i it happens that
Wh = Tn and hence ∨Wh = ∨Tn ∈ Fi ⊆ Fh and so there exists bh ∈ Tn such
that bh ∈ Fh+1 ⊆ F .

It should be noted that the theorem ensures the existence of a proper filter
which respects a countable quantity of suprema without any condition at all,
since 1 6≤ 0 always holds and 1 is contained in any filter.

The previous theorem can be used to construct a prime filter which re-
spects the countable quantity of suprema of the subsets T1, . . . , Tn, . . . in
case we are dealing with a countable Heyting algebra.

Corollary 2.5. Let H be a countable Heyting algebra, x, y ∈ H such that

x 6≤ y and T1, . . . , Tn, . . . a countable quantity of subsets of H which have a

supremum in H. Then there exists a prime filter which contains x, does not

contain y and respects all of the subsets T1, . . . , Tn, . . . .

Proof. We have only to observe that in this case there is a countable quantity
of binary suprema and hence we can use the previous theorem in order to
obtain a filter which respects the countable quantity of binary suprema and
the countable quantity of subsets T1, . . . , Tn, . . . . It is then obvious that this
filter is prime because it respects all the binary suprema.

The existence of prime filters which respect a given countable quantity
of suprema is the key point to construct a topology in which a countable
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Heyting algebra H can be embedded using a morphism which respects all of
the countable quantity of suprema of the subsets T1, . . . , Tn, . . . . In fact, let
us consider the collection

Pt(H) = {P :P prime filter of H

which respects all of the subsets T1, . . . , Tn, . . .}

and the topology τH on Pt(H) whose base BτH
are the subsets ext(x) =

{P ∈ Pt(H) : x ∈ P} for x ∈ H. It is easy to see that BτH
is a base for a

topology since

ext(0) = {P ∈ Pt(H) : 0 ∈ P} = ∅

ext(1) = {P ∈ Pt(H) : 1 ∈ P} = Pt(H)

ext(x • y) = {P ∈ Pt(H) : x • y ∈ P}

= {P ∈ Pt(H) : x ∈ P} ∩ {P ∈ Pt(H) : y ∈ P} = ext(x) ∩ ext(y)

since x • y is contained in a filter P if and only if x ∈ P and y ∈ P .

In order to extend the map ext(−) to a full morphism of the Heyting
algebra H, it is convinient to show first that

ext(x) ⊆ ext(y) iff x ≤ y.

In fact if x ≤ y then, for any filter P ∈ ext(x), i.e. such that x ∈ P , we have
that y ∈ P , i.e. P ∈ ext(y); on the other hand if x 6≤ y then corollary 2.5
shows that there exists a prime filter P which respects all the suprema we
are considering and such that it contains x and does not contain y, i.e. such
that P ∈ ext(x) but P 6∈ ext(y).

We are now in the position to prove that ext(−) is an embadding of the
Heyting algebra H into the topology τH, in fact

ext(x + y) = {P ∈ Pt(H) : x + y ∈ P}

= {P ∈ Pt(H) : x ∈ P} ∪ {P ∈ Pt(H) : y ∈ P} = ext(x) ∪ ext(y)

since x+ y is contained in a prime filter P if and only if x ∈ P or y ∈ P , and

ext(x → y) = {P ∈ Pt(H) : x → y ∈ P}

= ∪{ext(z) : z ≤ x → y}

= ∪{ext(z) : z • x ≤ y}

= ∪{ext(z) : ext(z • x) ⊆ ext(y)}

= ∪{ext(z) : ext(z) ∩ ext(x) ⊆ ext(y)} = ext(x) →τH
ext(y)
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Moreover, due to our choice in the definition of the points in Pt(H), we can
show that ext(−) also respects all the suprema of the subsets T1, . . . , Tn, . . .

that we are considering.

ext(∨b∈Ti
b) = {P ∈ Pt(H) : ∨b∈Ti

b ∈ P}

= ∪b∈Ti
{P ∈ Pt(H) : b ∈ P} = ∪b∈Ti

ext(b)

since ∨b∈Ti
b is contained in a prime filter P which respects all of the sets

T1, . . . , Tn, . . . if and only if there is an element b ∈ Ti such that b ∈ P .
Finally, not only the suprema of the subsets T1, . . . , Tn, . . . are respected

but also all the existing infima since

ext(∧i∈Ixi) = {P ∈ Pt(H) : ∧i∈Ixi ∈ P}

= ∪{ext(z) : z ≤ ∧i∈Ixi}

= ∪{ext(z) : z ≤ xi, for any i ∈ I}

= ∪{ext(z) : ext(z) ⊆ ext(xi), for any i ∈ I}

= ∪{ext(z) : ext(z) ⊆ ∩i∈Iext(xi)} = Int(∩i∈Iext(xi))

To conclude the proof that ext is an embedding of H into τH we have to
show that it is injective, i.e. that if x 6= y then ext(x) 6= ext(y). But this is
straightforword since if x 6= y then x 6≤ y or y 6≤ x and hence ext(x) 6⊆ ext(y)
or ext(y) 6⊆ ext(x).

The completeness theorem

Now we are going to apply the algebric results of the previous section to
show the completeness theorem for the topological semantics of the intuition-
istic predicate calculus.

First of all one observes that

A ↔ B ≡ (A → B) ∧ (B → A)

is an equivalence relation between the formulas of the intuitionistic predicate
calculus and that the rules we have stated in the first section are exactly what
is needed to prove that ↔ is a congruence with respect to all the propositional
connectives and the quantifiers. Hence by putting

[A] ≡ {B : ⊢ A ↔ B}

we obtain a countable quantity of equivalence classes which we can turn into
a Heyting algebra P by putting:

OP ≡ [⊥]

1P ≡ [⊥ → ⊥]

[A] •P [B] ≡ [A ∧ B]

[A] +P [B] ≡ [A ∨ B]

[A] →P [B] ≡ [A → B]
7



so that there are only a countable quantity of suprema and infima in corre-
spondence with the existential and universal quantifiers

∧t∈Term[A[x := t]] ≡ [∀x.A]

∨t∈Term[A[x := t]] ≡ [∃x.A]

where we mean that Term is the set of all the terms of the language we are
considering.

Since P is a countable Heyting algebra it is possible to embad it into the
topology τP in such a way that the countable quantity of existing suprema,
i.e. those corresponding to the existential quantifiers, are respected.

Hence we can define a valuation V ∗(−) of the formulas of the intuitionis-
tic predicate calculus by using the topology τP . In fact, let us consider the
structure DP = 〈Term,RP ,FP , CP , τP〉, where RP is the set of the func-
tions from Termn to τP , defined in correspondence to the atomic predicate

P
(n)
i

of the language we are considering by putting V ∗(P
(n)
i

)(t1, . . . , tn) =

ext([P
(n)
i

(t1, . . . , tn)]), FP is the set of the functions from Termn to Term,

defined in correspondence with the sign for function f
(n)
i

of the language we

are considering by putting V ∗(f
(n)
i

)(t1, . . . , tn) = f
(n)
i

(t1, . . . , tn) and CP is
the set of the constants c of the language we are considering so that V ∗(c) = c.

Moreover let us suppose that, for any variable xi, we put V ∗(xi) = xi

then, for any term t ∈ Term we obtain that V ∗(t) = t and hence we can
define the valuation V ∗(−) on all the formulas simply by putting

V ∗(A) ≡ ext([A]).

In fact it is easy to show that this position define an interpretation: all
the inductive steps for the propositional connectives are straightforward so
let us here verify only those for the quantifiers (note that V ∗(A[x := t]) =
V ∗[x:=t](A)).

V ∗(∃x.A) = ext([∃x.A])

= ext(∨t∈Term[A[x := t]])

= ∪t∈Termext([A[x := t]])

= ∪t∈TermV ∗(A[x := t]) = ∪t∈TermV ∗[x:=t](A)

V ∗(∀x.A) = ext([∀x.A])

= ext(∧t∈Term[A[x := t]])

= Int(∩t∈Termext([A[x := t]]))

= Int(∩t∈TermV ∗(A[x := t])) = Int(∩t∈TermV ∗[x:=t](A))
8



Now we can conclude the proof of the completeness theorem since

A1, . . . , An ⊢ B iff A1 ∧ · · · ∧ An ⊢ B

iff [A1 ∧ · · · ∧ An] ≤ [B]

iff [A1] • · · · • [An] ≤ [B]

iff ext([A1]) ∩ · · · ∩ ext([An]) ⊆ ext([B])

iff V ∗(A1) ∩ · · · ∩ V ∗(An) ⊆ V ∗(B)

and so we have proved that there is a structure DP , based on the topology
τP , and a valuation V ∗(−) such that V ∗(A1) ∩ · · · ∩ V ∗(An) 6⊆ V ∗(B) if
A1, . . . , An 6⊢ B which is classically equivalent to the completeness theorem.

Theorem 3.3: Completeness. If, for any structure D and for any val-

uation V (−) of the formulas of the intuitionistic predicate calculus into D,

V (A1) ∩ · · · ∩ V (An) ⊆ V (B) holds then A1, . . . , An ⊢ B.
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