
An introduction to
distributed systems

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/30

Distribution requires transparency

 A distributed system is a set of independent
computing nodes capable of appearing as a
single coherent execution platform to
applications running on it
 This requires all coordination communications among

those computing nodes to be completely transparent
to the application

 Transparency is given when you get to see the
intended effects without being exposed to the
mechanics that produce them
 There exist several dimensions of transparency

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/30

What is transparency – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/30

Transparency of To hide what
Access Differences in data encoding or in the way

operations happen on actual data
Location Where computing resources actually reside (e.g.,

physical vs logical naming)
Migration / Relocation Resources may move without the user needing to

know in between uses, or even during use
Replication / Transaction That a resource may exist in multiple coherent

copies, or may result from the aggregation of
multiple parts

Malfunction Individual computing nodes may locally fail without
this affecting the availability of the resource

Persistency How writing succeeds regardless of the distance
between writer and resource

ISO/IEC	10746‐1:1998,	Open	Distributed	Processing	– Reference	model:	Overview

What is transparency – 2

 In 1998 those traits of transparency sounded
visionaries or far-fetched

 In 2021 we take them fully for granted …

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/30

Transparency requires openness

 A crucial prerequisite to portability and
interoperability

 Openness prescribes all external interfaces to
conform to public and stable specifications

 Such specs have to be
 Complete, so that no details are hidden that may

preclude third-party implementations of them
 Neutral, so that they do not impose a single way of

implementation
 Interface definition languages (IDL) help achieve

such properties across language-specific views

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/30

Distribution requires scalability

 Scalability is more easily understood by its
negation
 A system is not scalable when it is unable to

accommodate increasing workload
 The consequences of that may be failure at the client

(exit -1) or at the server (e.g., buffer overflow, DoS, …)

 A useful definition stipulates scalability as
 The ability to handle increased workload by

repeatedly applying a cost-effective strategy for
extending system capacity
 Without intolerable latency or excessive waste

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/30

What is scalability

 Fitness for purpose with respect to
 Availability of resources

 They should never be scarce
 Latency with respect to physical distance

 The user should have perception of locality
 Independence of global view from local issues

 Issues in handling local, concrete implementation should not
determine how a resource is presented to the user

 Where unused resources cost dearly, you want
scalability to be elastic
 Not only expanding but also contracting, with equal

cost-effectiveness

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/30

The scale cube

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/30

https://www.nginx.com/blog/introduction-to-microservices/

Replication requires statelessnessreplication

D
ec

om
po

si
tio

n
re

qu
ire

s
or

ch
es

tr
at

io
n

The opposite of distribution

 Centralization of service
 All users must refer to a single entry point

 As in the HOSTS.TXT file that mapped hostnames to IP
addresses in the ARPANET

 Centralization of resources
 All the data relevant to a service are kept in a single

copy at a single place
 The opposite of how the DNS (ca. 1985) and Blockchain (ca.

2008) work

 Centralization of algorithm
 Requiring to know the system state

 Impossibly burdensome to compute and maintain

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/30

Prerequisites of distribution – 1

 An algorithm is distributed if
 Every part of it acts satisfactorily on the basis of local

knowledge
 The DNS is partitioned
 Blockchain is trustworthily replicated

 Its computation does not require knowledge of global status
 Local responses contribute to global result (DNS)
 Local responses have global effect if confirmed by peers

(Blockchain)
 Local faults do not cause global failure
 Its logic does not require a single source of time
 It allows consistent replication of services, decomposition

of tasks, partitioning of resources

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/30

Prerequisites of distribution – 2

 Synchronous communication obstructs
distribution
 It blocks the communicating parties delaying the

progress of computation and causing coupling
 Asynchronous communication enables

distribution
 It decouples the communicating parties by hiding

network delays, and allows independent progress

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/30

Hardware distribution

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/30

Multi‐processor Multi‐computer

Distributed memory architecture

 Uniform memory access (UMA)
 A single address space

 As in symmetric multiprocessors
 All node access memory in the same way

 Access requests need queuing and arbitration
 Cache coherence is not obvious

 Not-uniform memory access (NUMA)
 Address space is shared but not unified
 Access to memory depends on location
 Cache coherence is unthinkable

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/30

Cache coherence /1

 Now that cores have their own private L1 cache

 … when jobs share data across cores, R/W
operations on the same memory location may see
different copies of it in their respective L1 cache

University of Padova, Master Degree - Runtimes for concurrency and distribution 14 of 552

Cache coherence /2

 Naïve thoughts …
 Renounce caches

 Nay, that would bog performance
 Sharing L1 across cores

 Nay, parallelism would smash locality
 Use write-through caches

 Nay, local reads would lose remote writes

 Req-1: every read must see the effect of every write
 Either every write updates every L1 (write update)
 Or every write invalidates all L1 copies (write invalidate)

 Req-2: all reads must see the same order of writes
 Write requests’ propagation on the bus tells the order (snooping)

University of Padova, Master Degree - Runtimes for concurrency and distribution 15 of 552

Multiprocessors – 1

 All processors have a single common
address space
 Bus-based P-M communication requires

arbitration and becomes a bottleneck
 Switched P-M communication balances load

better but requires far more complex logic
 Crossbars are efficient but costly
 Omega networks have cheaper units but are more

complex to operate

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/30

Multiprocessors – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/30

Crossbar	switch Omega	network

n2 connectors
for n elements

{P, M}

Less connectors but higher latency

Multi-computers

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/30

Grid Hypercube

𝟐𝒏 nodes
𝒏𝟐𝒏 𝟏 links

Every node does local processing and routing

Node position determines
number of neighbours

(position-dependent routing)

Number of neighbours is location independent
(and so is routing)

2

3

3

2

2

3

3

2

3

3

4

4

3

3

4

4

n = 4

Software distribution – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/30

Local OS

Computer A

Local OS

Computer B

Local OS

Computer C

Distributed OS

Distributed applications

Typically intended for homogeneous systems

Network interconnect

Abstraction of shared
memory realized via

message passing

Software distribution – 2

 Programming distributed systems (DS) is harder
than doing so for multiprocessors (MP)
 Optimal task scheduling is a hard problem in MP
 Resource sharing is very costly in DS and may prefer

spin locks to suspend locks in MP
 Communicating by shared memory is simpler

than by message passing
 The former is natural in MP
 The latter scales nicely but suffers from queuing,

synchronization, coordination, and network effects
 Which is why asynchronous comm is preferred in DS

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/30

Software distribution – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/30

Specialized	services
(e.g.,	ssh,	NFS,	FTP)

Local OS

Computer A Computer B Computer C

Network OS

Distributed applications

Typically intended for heterogeneous systems

Local OS Local OS

Network OS Network OS

Network interconnect

Software distribution – 4

 Neither the distributed OS nor the network
OS paradigm conform with the definition of
distributed system
 The former may have good transparency but its

participant nodes are not independent
 The latter may have good openness and

scalability features but it does not yield unitary
coherence

 The new means to software distribution is
called middleware

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/30

Software distribution – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/30

Open,	transparent
and	scalable	services

Local OS

Computer A Computer B Computer C

Network OS

Local OS

Network OS

Local OS

Network OS

Distributed applications

Middleware

A good fit for distributed systems
Network interconnect

Variants of middleware

 Distributed file system
 UNIX-like NFS

 Remote procedure call (RPC)
 Distributed objects (RMI)
 Distributed documents: Web 1.0

 All TCP based
 Distributed everything: Web 2.0 (all over HTTP)

 Resource-centric: REST
 Data-centric: GraphQL
 Collaboration-centric: gRPC
 Stream-oriented: WebRTC

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/30

Styles of distributed interaction – 1

 The request-reply style of interaction was
the killer factor in the Web 1.0 world
 Reissuing requests in the absence of replies is

harmless only for idempotent operations
 Very few operations are so …

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/30

Styles of distributed interaction – 2

 Client-server architectures vary according to
the distribution of either service or data

 Distribution is vertical when service is
decomposed across multiple authorities
 Akin to functional pipelining: specialization
 Overall service needs coordination of parts

 Distribution is horizontal when data is
replicated across multiple identical servers
 Replication is suited for load balancing
 Consistency must be preserved across replicas

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/30

Styles of distributed interaction – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/30

Vertical distribution

Styles of distributed interaction – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/30

Horizontal distribution

Styles of distributed interaction – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 29/30

Subscribe

Reference decoupling

Time decoupling

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Push Push	o Pull

Beyond client-server

Views of a remote call

University of Padova, Master Degree - Runtimes for concurrency and distribution 30/30

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

