
Distributed communications

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/30

A layered view of networked
communication – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/30

TCP/IP

Point‐to‐point	interconnection	among	local	networks

Point‐to‐point	interconnection	between	nodes

Levels	5‐7	in	the	OSI	
reference	model

A layered view of networked
communication – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/30

Payload	(message)

Models of distributed communication

 Remote procedure call (RPC)
 Transparency of all coordination-related message

passing that realizes the caller-callee interaction
at the application level

 Remote (object) method invocation (RMI)
 As above, except leveraging interfaces

 Middleware-mediated message passing
 Language-specific (e.g., event-based, reactive)
 Internet-based (over HTTP, pull or push)

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/30

Analogies …

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/30

Primordial	
programming

Structured	
programming

OOP

Explicit	use	of	sockets

RPC

RMI

More	advanced	paradigms

Sockets are essential
for all communications
to reach to the network

But they are so raw and
basic that their use should
be made transparent to
the application …

The negation of abstraction

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/30

Tanenbaum & Van Steen, Distributed	Systems:	Principles and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Socket-based communication has nearly no prescribed syntax or semantics,
which are left to sender and receiver at the application level

Anatomy of RPC – 1

 RPC allows a caller (process) on one node to
invoke locally a procedure in an address space
owned by a remote callee (process)
 Transparent networking kicks in necessarily
 Caller and callee should not know what happens

under the hood of the call
 As in normal procedure calls, the caller “stays on

the call” until the callee returns
 The caller is suspended throughout
 The in parameters travel from caller to callee
 The call executes at the callee side, and returns
 The out parameters travel back to the caller

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/30

(Know thyself)

 That’s how a local procedure call works …

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/30

Free space

Main’s local variables
and nested calls before 𝑇

Stack Pointer

Main’s local variables
and nested calls before 𝑇

Stack of the caller
(at time 𝑇 before the call)

Stack Pointer nbytes
buf
fd

Return address
Read’s locals

Stack of the caller
(during the call)

Read(fd,buf,nbytes)

The C language places
params on the stack
in reverse order …

Every language has its own
call conventions

(e.g., cdecl)

Modes of call parameters

 By-value
 Copied on the stack of the callee

 By-reference
 Locations in the caller’s address space
 Every write to them should be reflected back

immediately at the caller’s end
 By-value-result
 Only the latest updates propagate back to the

caller, at the return of the call

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/30

Anatomy of RPC – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/30

Tanenbaum & Van Steen, Distributed	Systems:	Principles and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Anatomy of RPC – 3

 At caller’s side, remote calls appear local
 The call is “posted” on caller’s stack according to local

conventions
 The client stub creates the corresponding call

descriptor and forwards it across the network, using a
mechanism called parameter marshalling

 At callee’s side, the arrival of the remote call
activates a local “caller”
 On call arrival, the server stub uses the reverse

mechanism, called parameter unmarshalling
 This transforms the call descriptor into a call on

callee’s local stack, awaits the return and sends it
back across the network

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/30

Anatomy of RPC – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/30

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Anatomy of RPC – 5

 The RPC mechanics involves several important decisions
 On the format of messages between stubs
 On the encoding of the data exchanged by caller and callee
 On the network protocol to use for such messages (TCP, UPD, ..)
 On how the client stub can locate the server stub

 The latter problem is difficult to address transparently
 Server side must register itself (IP address : port) as a

“provider” of target procedure
 Registering what? The “procedure” is strictly a server-side concept ….

 Client side must retrieve that registry entry and establish a (TCP)
connection to it

 Server side should listen at all times for incoming calls and
permanently seize the target port
 Not very nice …

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/30

Anatomy of RPC – 6

 The RPC is intrinsically synchronous
 Asynchronous only for calls without return parameters

 Caller might proceed as soon as call has been issued
 Without knowing whether the call actually succeeded …

 The eventuality of network errors requires
adding optional capabilities to either stubs
1. Client side may retry requests on missing returns
2. In that case, server side should be able to detect and

filter out call duplicates (sliding window protocol?)
3. Server side should also retransmit results (without

recomputing!) if client side did not ack them

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/30

Anatomy of RPC – 7

 Such provisions yield diverse request-reply
protocol semantics
 Best effort, no safeguard mechanism in place

 No guarantee on call execution and effects
 At least once, just request-retry at client side

 Retry until success, without knowing how many
executions took place at server side

 At most once, all mechanisms in use
 Failure only if server is unreachable

 Exactly once, all guarantees are in place
 Including hot-redundant server

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/30

Cloud-fit retry management strategies

 Exponential back-off
 https://dzone.com/articles/understanding-retry-pattern-with-

exponential-back
 https://aws.amazon.com/blogs/architecture/exponential-backoff-

and-jitter/
 Circuit breaker

 https://martinfowler.com/bliki/CircuitBreaker.html
 Backpressure

 https://www.tedinski.com/2019/03/05/backpressure.html
 Throttling

 https://docs.microsoft.com/en-
us/azure/architecture/patterns/throttling

 https://aws.amazon.com/premiumsupport/knowledge-
center/dynamodb-table-throttled/

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/30

Language-neutral RPC

 All “historic” RPC support based on TCP
 Seriously limiting: HTTP was not understood as a

programming interface
 And was language-specific

 Short-sighted: the immediate need was for individual
languages to support distributed programming

 Then came interoperability
 CORBA: Common Object Request Broker

Architecture, better in concept than in practice …
 https://corba.org/faq.htm

 Finally, RPC was lifted to HTTP/2.0
 gRPC: check it out at https://grpc.io/

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/30

Differential anatomy of RMI – 1

 The LSP* separation between (service) interface and object
(implementation) fits distribution very well
 The interface is a lightweight entity that can be exposed remotely

in a most natural way
 Objects live (long) in the heap: their scope is global
 These traits earn RMI more transparency than RPC

 So much so that RMI interaction can be enabled at run time by wrapping
“object-lookalike” over non-object resources (CORBA)

 Server side becomes the skeleton
 Compile-time provision, derived from remote interface

 Client stub becomes the proxy
 Loaded dynamically (as an implementation artefact) when client

binds with target server side explicitly
 No transparency in that act

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/30

�������	
���������	������������

Differential anatomy of RMI – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/30

Differential anatomy of RMI – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/30

The call parameters (A to C) are by-value:
• Copying L1, which refers to a local

object, yields a deep copy of O1
• Copying R1, which is a remote reference,

yields a shallow copy of O2

Middleware-based message-passing – 1

 Applications can communicate by placing messages in
Middleware-supported queues

 Very easy to realize
 Distinct queues at either side (or along the way), depending on

the desired support for persistency
 With blocking events contingent on synchronization behaviour

 Send maps to non-blocking Put
 Blocking if MW wants to prevent overwrites on full queue
 Handler of send queue acts as proxy

 Receive maps to blocking (guarded) Get
 A callback mechanism should be provided to decouple receiver

from receive queue
 Handler of receive queue acts as skeleton

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/30

Middleware-based message-passing – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/30

Each	queue	appears	as	local	
to	sender	and	receiver

The	Middleware	must	make	
sure	that	the	network	layer	
“sees”	such	queues	to	deposit
in	and	fetch	from	them

Middleware-based message-passing – 3

 When Middleware overlays its own network over underlying
internet (lowercase ‘I’)
 With its own static or dynamic topology and routing

 A broker acts at all points in which the overlay network traffic
needs to become internet traffic
 Similar in nature to the gateway nodes of classic Internet

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/30

Middleware-based message-passing – 4

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/30

Middleware

How does it render
communication
transient or persistent?

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Middleware-based message-passing – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 25/30

Distributed message passing incurs persistency and synchronization problems
in the transit from sender to receiver

Middleware-based message-passing – 6

University of Padova, Master Degree - Runtimes for concurrency and distribution 26/30

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Async send (@MW), sync receive Sync send (@MW), async receive

Middleware-based message-passing – 7

University of Padova, Master Degree - Runtimes for concurrency and distribution 27/30

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Async send, sync receive Partially sync send, async receive

Middleware-based message-passing – 8

University of Padova, Master Degree - Runtimes for concurrency and distribution 28/30

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Partially sync send, deferred receive Sync send, deferred receive

What is happening to the Internet?

 With HTTP/1.1 (textual), when client browser loads a page, it can
request one resource at a time per TCP connection to server
 Original Web assumed few heavy-weight connections, all pull based
 Today’s Web features zillions of light-weight connections, also in push mode

 WebSocket allows full-duplex communication, making “HTTP/1.1 layer”
a two-way road

 HTTP/2 (binary) multiplexes multiple requests over a single connection
to same server, to allow receiving multiple responses at once
 But TCP does not know about it, which causes needless retransmissions …

 HTTP/2 also allows server to push contents into client without it
requesting so (aka Server-Sent Events)

 QUIC (https://www.chromium.org/quic) replaces TCP with
 Default authentication and encryption, plus faster handshake
 Direct support for multiplexed transport streams delivered independently (resend

on packet loss becomes specific)
 Use of UDP in user space for far less execution overhead

 HTTP/3 is HTTP/2 adapted to QUIC

University of Padova, Master Degree - Runtimes for concurrency and distribution 29/30

Variants of middleware (repeat)

 Distributed file system
 UNIX-like NFS

 Remote procedure call (RPC)
 Distributed objects (RMI)
 Distributed documents: Web 1.0

 All TCP based
 Distributed everything: Web 2.0 (all over HTTP)

 Resource-centric: REST
 Check out WSO2 Rest API Design Guidelines

 Data-centric: GraphQL
 Collaboration-centric: gRPC
 Stream-oriented: WebRTC

University of Padova, Master Degree - Runtimes for concurrency and distribution 30/30

Past
Present & Future

