
Distributed concurrency

Runtimes for concurrency and distribution
Tullio Vardanega, tullio.vardanega@unipd.it
Academic year 2021/2022

University of Padova, Master Degree - Runtimes for concurrency and distribution 1/24

Appreciating the cost of abstractions – 1

 Processor context
 The processor registers

 A few tens (16, 32, 48) in the general case
 Thread context

 The processor context
 The stack, their share of heap, the thread descriptor
 Creating and switching threads begins to be costly

 Process context
 The context of all threads
 The virtual-memory page frames assigned to the

process, the corresponding descriptors
 Creating and switching processes is very costly

University of Padova, Master Degree - Runtimes for concurrency and distribution 2/24

Appreciating the cost of abstractions – 2

 Thread-level context switch may be fairly nimble as long as it
does not involve the OS
 The OS gets involved on blocking IO calls or when external events

(interrupts, signals, …) have to be delivered to a thread
 When that happens, the whole process may be blocked

 Threads need not be OS entities
 Several user-space to kernel-space mappings are possible

 Many:1 (old GNU)
multiple user threads to one kernel thread no thread-level parallelism

 1:1 (old Win, old Linux)
one user thread to one kernel thread the OS does all the scheduling

 Many:Many (Win NT, Solaris Unix)
multiple user threads dynamically to multiple lightweight processes
(LWP), which can be statically allocated LWPs may run in parallel

University of Padova, Master Degree - Runtimes for concurrency and distribution 3/24

Appreciating the cost of abstractions – 3

University of Padova, Master Degree - Runtimes for concurrency and distribution 4/24

C.G. Ritson, A.T. Sampson, F.R.M. Barnes, Multicore scheduling for lightweight
communicating processes, Science of Computer Programming 77(6), June 2012,
DOI: 10.1016/j.scico.2011.04.006

(LWP appears as
virtual CPU to a thread)

(thread to LWP mapping
is requested by the user, as
part of thread scheduling)

Appreciating the cost of abstractions – 4

 Server realized as kernel process may
underestimate the cost and the limits of dynamic
thread creation

 Example: the Apache Web Server used to deploy
one thread per connection
 The service capacity of a WS process is upper bounded by

the maximum number of threads that it can embed …
 The cost-benefit ratio of a 1:1 thread-to-connection

mapping depends on the data volume being transported
 Used to be large data volumes for few connections in Web 1.0
 Became tiny data volumes for very many connections in Web 2.0

 Using threads for IO-bound computations is wasteful
 Node.js understands this notion very well …

University of Padova, Master Degree - Runtimes for concurrency and distribution 5/24

Appreciating the cost of abstractions – 5

University of Padova, Master Degree - Runtimes for concurrency and distribution 6/24

http://abdelraoof.com/blog/2015/10/28/understanding-nodejs-event-loop

Client-side concurrency

 Helps mitigate network delays
 Very evidently needed in web browsers

 Starting a TCP connection is a blocking and slow operation
 Requesting data and rendering them are pipelined

 AJAX (Asynchronous JavaScript And XML) came to
be precisely to enable asynchronous page updates

 Google Chrome was the first browser to go
multithreaded (2008), Firefox since v54 (2017)
 Recent Chrome used one kernel process per tab
 Recent Firefox used one kernel process for the first

few (4) tabs, then one thread for any further tab

University of Padova, Master Degree - Runtimes for concurrency and distribution 7/24

Chrome vs Firefox

University of Padova, Master Degree - Runtimes for concurrency and distribution 8/24

www.extremetech.com/internet/250930-firefox-54-finally-supports-multithreading-claims-higher-ram-efficiency-chrome

Server-side concurrency – 1

 For higher throughput and better modularity
 The obvious base architecture is two-level

University of Padova, Master Degree - Runtimes for concurrency and distribution 9/24

Dispatcher

Worker 𝟏

Worker𝑵

Server

Server-side concurrency – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 10/24

Tanenbaum & Van Steen, Distributed	Systems:	
Principles	and	Paradigms, 2e, (c) 2007
Prentice-Hall, Inc.

TCP hand-off relieves
1st level receiver

Client-side features – 1

University of Padova, Master Degree - Runtimes for concurrency and distribution 11/24

Fat (Thick)-client architectureThin-client architecture

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Client-side features – 2

 Thin clients are fed by application-neutral
communications
 Server side decides all; client side is unable to

mitigate server lapses
 The choice of X11 (X Window System, xorg)

 Fat clients are fed by application-specific
communications
 The client side may have things to do without the

server dictating them
 More responsive for the user, lighter for the server

 How can we classify single-page web apps?

University of Padova, Master Degree - Runtimes for concurrency and distribution 12/24

Server-side organization – 1

 Vertical distribution
 Service provision is split in synchronous stages
 New inbound requests are held until completion of current service
 Full server replication required to improve throughput

University of Padova, Master Degree - Runtimes for concurrency and distribution 13/24

Server-side organization – 2

 Horizontal distribution
 Very fit for idempotent services …

University of Padova, Master Degree - Runtimes for concurrency and distribution 14/24

Server-side organization: microservices

University of Padova, Master Degree - Runtimes for concurrency and distribution 15/24

Microservices in practice

 Key architectural concepts of a Microservice
architecture (WSO2)
 https://wso2.com/whitepapers/microservices-in-

practice-key-architectural-concepts-of-an-msa/
 A reference architecture at WSO2
 https://github.com/wso2/reference-

architecture/blob/master/api-driven-microservice-
architecture.md

 An interesting toy example
 https://github.com/FudanSELab/train-ticket

University of Padova, Master Degree - Runtimes for concurrency and distribution 16/24

Server localization – 1

 Server identified by endpoint at its host node
 IP address : port, object reference}
 A dedicated process must listen on the corresponding

port and then dispatch the call to the associated
server object

 Per-node port assignment is a challenge
 The IANA (Internet Assigned Numbers Authority)

statically assigns some to base common servers
 All others have to resort to dynamic assignment

 A daemon listens on an assigned port and assigns them
dynamically as needed to the servers it handles

 A super-server (e.g, inetd in Linux) listens on a set of “server
ports” and then dynamically hands off to newly-created server

University of Padova, Master Degree - Runtimes for concurrency and distribution 17/24

Server localization – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 18/24

Tanenbaum & Van Steen, Distributed	Systems:	Principles	and	Paradigms, 2e, (c) 2007 Prentice-Hall, Inc.

Daemon‐based	solution Super‐server	solution

Server state – 1

 Stateful servers warrant state consistency to clients
 All clients sense the same write history

 Transactional DBs are the most prominent exemplar
of that paradigm
 𝒃𝒆𝒈𝒊𝒏 𝑂𝑝 ,𝑂𝑝 , … ,𝑂𝑝 𝒄𝒐𝒎𝒎𝒊𝒕
 Atomicity: state change is all-or-nothing
 Consistency: the server state is always the product of

ordered transactions 𝑂𝑝 ,𝑂𝑝 , … ,𝑂𝑝
 Isolation: concurrent transactions do not overlap
 Durability: the effect of successful transactions persists

 Transactions centralize: they cannot scale

University of Padova, Master Degree - Runtimes for concurrency and distribution 19/24

Server state – 2

 Stateless servers do not inform clients of any
server-side state change

 They also do not retain client-side service state
across connections
 This is what caused cookies to come to use

 NFS was the most prominent exemplar of it
 Client operates locally on virtual inode with write-through

local cache (not coherent across clients)
 Server handles each individual request without memory of

client-side state
 Server-side state may change outside of clients’ knowledge

 Statelessness is crucial to elastic scalability!

University of Padova, Master Degree - Runtimes for concurrency and distribution 20/24

RMI: object servant – 1

 Remote object (server) lives in a scope managed by an
“object servant” that has authority over it
 Servant holds server state and supports a range of activation

policies for it at run time, which determine server’s life cycle
 Create / destroy object (server) reference part of server’s endpoint
 Provide / revoke computational resources for the server

 The activation policies of multiple servants on the same
host node can be factored in an object adapter (OA)
 OA pattern uses interface delegation
 Single per-node receiver of inbound RMI calls to multiple resident

remote objects
 Single per-node registry of object servants
 Single MW-specific interface on one end, multiple object-specific

interface on the other

University of Padova, Master Degree - Runtimes for concurrency and distribution 21/24

RMI: object servant – 2

University of Padova, Master Degree - Runtimes for concurrency and distribution 22/24

Skeleton

Object Adapter 1

Skeleton

Remote
Object C

Remote
Object A

Remote
Object B

Interface

Skeleton

Object Adapter 2

RMI call daemon dispatcherHost node

Object servant

MW-specific interface

Skeleton-specific interface

Network

Interface Interface

RMI: object servant – 3

 The OA must expose a standard interface to
the part of the program’s middleware that
listens to the service endpoint
 Totally independent of the target RMI interface

 The skeleton must expose a standard
interface to the OA that has to deliver
incoming calls to it
 Generic, not specific to the target RMI interface

University of Padova, Master Degree - Runtimes for concurrency and distribution 23/24

CORBA’s Portable Object Adapter

University of Padova, Master Degree - Runtimes for concurrency and distribution 24/24

Pyarali & Schmidt, An Overview of the CORBA Portable Object Adapter

