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Abstract

We consider a reduced-form credit risk model where default intensities and interest rate are func-
tions of a not fully observable Markovian factor process, thereby introducing an information-driven
default contagion effect among defaults of different issuers. We determine arbitrage-free prices of
OTC products coherently with information from the financial market, in particular yields and credit
spreads and this can be accomplished via a filtering approach coupled with an EM-algorithm for
parameter estimation.

1 Introduction

In recent years intensity-based models have become quite popular for the modeling of credit risk.
In these models one specifies the default intensities that affect the default probabilities and the prices of
credit derivatives. A critical point in this context is the modeling of the correlation among the default
events of different issuers.

To this effect, we propose a model in an incomplete information framework, that is, we assume
that both the default intensities and the interest rate are given as functions with a special structure of
a multivariate, not fully observable stochastic factor process. These functions are in fact linear in the
exponentials of the factors and with positive coefficients. Besides leading to positive rates and intensities,
this special structure will turn out to be convenient for the filtering procedure to be developed below. The
factors themselves may be very general: some may have an economic interpretation (macroeconomic,
sectorial, idiosyncratic, etc.), other may not. Above all, they are not necessarily directly observable,
namely they may be latent factors. Besides enhancing the model flexibility, latent factors can indeed
have a meaningful economic interpretation as documented e.g. in Das et al. (2007), Duffie et al. (2009)
and Bhar & Handzic (2008) where, on the basis of empirical evidence, it is shown that unobservable
stochastic factor processes driving the default intensities are needed on top of observable covariates in
order to explain clustering of defaults in historical data and large comovements of credit spreads. In
addition, the formulation of a model under incomplete information has the advantage of avoiding a
possibly inadequate specification of the factor model. This modeling approach generalizes the frailty-
based approach proposed e.g. by Schönbucher (2003B), Duffie et al. (2009) and Azizpour & Giesecke
(2008) in the sense that the factors can be seen as dynamic frailty variables which, especially when
not fully observable, allow one to introduce an information-driven default contagion effect among the
defaults of several issuers.
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However, in this setting we have to face at least two important problems. The first one lies in the
valuation of Over the Counter (OTC) products, the values of which can be expressed as functionals of the
stochastic factors, but now some of them may not be observable/known. The second one is represented by
the estimation of the parameters which characterize the model. Indeed, a standard calibration procedure,
which is based on solving an inverse problem, could be quite difficult to implement under incomplete
information; moreover, it may lead to unstable parameter values in the sense that it is strongly data-
dependent.

The main contribution of our study is to propose a coherent and unifying methodology to solve the
three problems: filtering the unobserved factors, estimating the parameters, pricing OTC products. The
main tool is stochastic filtering that allows to effectively deal with these problems and leads to a more
statistical type of parameter estimation as opposed to calibration.

More precisely, we propose a filtering approach to dynamically update the information on the unob-
served factors, based on observations of market data. As market data we shall take, in addition to the
default history, the short rate of interest and yields and credit spreads computed on default-free as well as
defaultable bonds, which can be considered as meaningful representatives of more general market data.
Indeed, we shall show that a large part of the market quotes for credit risky products can be expressed
by means of these basic elements. Notice that the default indicator process is implicitly contained in
the information coming from the credit spreads. An approach that is based exclusively on the informa-
tion coming from the default indicator process can be found in Frey et al. (2006) (see also Schönbucher
(2003B) in a related context). Since our observations are thus market quotes for credit risky products,
on the other hand we are mainly interested in computing prices of OTC financial products, we shall
formulate our filtering problem under a martingale/pricing measure and determine the prices of OTC
products as conditional expected values of functions of the unobserved factors (thereby setting possibly
observed factors equal to their observed values). Such prices will thus be coherent with the observed
term structures, since the latter are the “input” of the filtering system. They can furthermore be shown to
be arbitrage-free prices.

We shall deal in particular with the problem of parameter estimation and show how, by means of the
Expectation Maximization (EM) algorithm, this problem is naturally linked to filtering. The estimates
then evolve according to the filter solution and this allows the model to continuously adapt to the actual
market situation. This fact is one of the major advantages of our methodology over the existing litera-
ture that deals with partially observed state-observation models where parameter estimation is typically
done by maximizing the likelihood of the innovations obtained from the Extended Kalman Filter (EKF).
Relevant contributions in this latter sense include Baadsgaard et al. (2000), Chen & Scott (2003), Duan
& Simonato (1999), Geyer & Pichler (1999), Lund (1997) in the context of term structure models and,
more recently, Bhar & Handzic (2008), Jacobs & Li (2008), Feldhütter & Lando (2008) in the context
of credit risk. In addition, our results extend those of Elliott & Krishnamurthy (1999) and Elliott &
Hyndman (2006) to models driven by a multivariate stochastic factor process with nonlinear dynamics.

In Section 2 we describe our model setup that we shall then cast in the context of incomplete in-
formation in Section 3, where we present also the filtering approach. Parameter estimation via the EM
algorithm, which is related to the filtering approach, is then dealt with in Section 4, where we also de-
scribe an iterative algorithm for the actual estimation of the parameters. In Section 5 we then present
some simulation results to show the performance of the algorithm. Finally, an Appendix contains two
technical results (the proof of a Lemma and an additional Remark).
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2 Complete information

2.1 Model setup

We consider a market with a certain number m of firms, each of which may default. Let
τj > 0 (j = 1, . . . ,m) be the random time denoting the default of firm j and let Hj

t := 1{τj≤t} be
the corresponding default indicator process that jumps from zero to one at t = τj . The current de-
fault state of the firms is then described by Ht := (H1

t , . . . ,H
m
t ) and the default history up to time

t is described by the filtration (Ht)0≤t≤T ∗ where T ∗ is a given horizon and Ht := σ{Hs, s ≤ t}.
We consider an underlying probability space (Ω,G, P ), equipped with a filtration (Gt)0≤t≤T ∗ such that
G = GT ∗ and where, since here we consider mainly pricing of OTC products, the measure P will be
supposed to be a martingale (pricing) measure for a numeraire given by the money market account
B(t) = B(0) exp

[∫ t
0 rsds

]
with rt the short rate of interest. The filtration (Gt)0≤t≤T ∗ is defined

by Gt = Ft ∨ Ht, where (Ft)0≤t≤T ∗ is a given background filtration and (Gt)0≤t≤T ∗ represents the
full information filtration to which all processes will be adapted. We also recall the definition of the
(Gt)−martingale intensity λjt of the (Gt)−stopping time τj (see McNeil et al. (2005), Definition 9.16)
according to which λjt has to be such that

M j
t := Hj

t −
∫ t∧τj

0
λjsds (1)

is a (Gt)−martingale.
We shall assume that the random default times τj are conditionally independent, doubly stochastic

random times with respect to the background filtration (Ft)0≤t≤T ∗ (see e.g. McNeil et al. (2005), sec-
tions 9.2 and 9.6). Under these assumptions the (Gt)-martingale intensity λjt of τj is given by what is
called its (Ft)-conditional hazard rate process (in Bielecki et al. (2004) it is called (Ft)-intensity of τj).
To define such a process, and thus the (Gt)-intensities, assume given a certain number n of stochastic
factors. In many studies dealing with term structure modeling n is taken as n = 3 (see Baadsgaard et al.
(2000), Chen & Scott (2003)) while more recent empirical studies from the credit risk literature suggest
n = 3 (Bhar & Handzic (2008)), n = 4 (Jacobs & Li (2008)), or n = 6 (Feldhütter & Lando (2008)).
The values of the factors are described by an n-dimensional process Ψt that is (Ft)-adapted and that we
assume satisfies the following dynamics

dΨt = diag
(
e−Ψt

) [
AeΨt + b− 1

2
1
]
dt+ diag(e−

1
2

Ψt)dwt (2)

where wt is an n-dimensional (Ft, P )-Wiener process, diag (V ) denotes, for a given column vector
V , a diagonal matrix with the elements of V on the diagonal, eΨt is the column vector with elements
eΨit , i = 1, . . . , n, A ∈ Rn×n, b ∈ Rn and 1 is a column vector with entries equal to 1. The vector Ψt

will later on be extended to include components that represent observation noises. Before specifying the
assumptions on A and b, we make the following Remark.

Remark 1. Define
Φt := exp (Ψt) (3)

with the meaning that Φi
t = exp

(
Ψi
t

)
for i = 1, . . . , n ; 0 ≤ t ≤ T ∗ and Φt :=

(
Φ1
t , . . . ,Φ

n
t

)′. Then by
Itô’s formula we obtain:

dΦt = (AΦt + b) dt+ diag
(√

Φt

)
dwt (4)

namely Φt satisfies a multivariate CIR model in canonical form in the sense of Dai & Singleton (2000).
The reason why we do not consider Φt itself as factors but rather Ψt = log (Φt) will become apparent
below, in particular from the expressions of the filter at a time of default (see Proposition 8) and the fact
that we then do not have to impose nonnegativity constraints in the filter distribution for the factors.
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In line with the so-called admissibility conditions (see Dai & Singleton (2000)), the Feller test for
explosions (see Karatzas & Shreve (1991)) and condition A in Duffie & Kan (1996) we make now the
following Assumption.

Assumption 2. With A = (aij)i,j=1,...,n, b = (bi)i=1,...,n we require aij ≥ 0 for j 6= i and bi > 1
2 , for

i = 1, . . . , n.

Remark 3 (On the existence and uniqueness of a strong solution to the SDE (2)). Notice first that the
drift and the diffusion terms in (2), being convex functions on Rn, are also locally Lipschitz. It follows
that if a (weak or strong) solution to (2) exists then it is also unique (in the sense of pathwise uniqueness,
see e.g. Karatzas & Shreve (1991), Theorem 5.2.5). Therefore, since existence of a weak solution and
pathwise uniqueness already imply existence and uniqueness of a strong solution, it is enough to show
only the existence of a weak solution of (2). To this effect we assume that our probability space is rich
enough to support an unique strong and strictly positive solution to (4). These requirements are satisfied
by imposing the parameter restrictions specified in Assumption 2 (see Duffie & Kan (1996) and Dai &
Singleton (2000)). Under these conditions, a (weak) solution to (2) can be obtained by applying Itô’s
formula to the logarithm of Φt.

We now specify the short rate of interest rt and the default intensities λjt as affine functions of the
exponentials of the factors Ψt with coefficients that are positive so as to guarantee strict positivity of
rates and intensities. More precisely{

rt = a+ beΨt = a+ bΦt

λjt = cj + djeΨt = cj + djΦt ; j = 1, . . . ,m
(5)

with a, cj positive constants and b, dj n-dimensional row vectors of positive constants. This setup allows
for correlation between interest rate and default intensities, which (see Schönbucher (2003A)) is a desir-
able property for a stochastic credit risk model. It allows also for direct correlation among the intensities
themselves; to this effect see e.g. Yu (2005) that points at the importance of having several common
factors driving the intensities.

2.2 Prices of credit risky products

With the model of the previous subsection we are in the context of affine credit risk models (see
e.g. Lando (1998), Duffie & Singleton (1999), Frey et al. (2006)), more precisely it is affine in eΨt ,
equivalently in Φt, and so we can obtain explicit formulae for the arbitrage-free prices of 0-coupon
default-free bonds and 0-coupon 0-recovery defaultable bonds in a full information setting, that is, with
full access to the information contained in the filtration (Gt)0≤t≤T ∗ . In particular, for t ≤ T , the price at
time t of a default-free 0-coupon T -bond with unitary face value that is given by (E denotes expectation
with respect to the measure P that we had assumed to be a martingale measure)

ΠDF (t, T ) = E
[
e−

∫ T
t rsds

∣∣Gt] , (6)

can be expressed as (see Duffie & Kan (1996))

ΠDF (t, T ) = exp
[
A(t, T )−B(t, T ) eΨt

]
(7)

where the scalar A(·, T ) and vector B(·, T ) satisfy each a well-known first order ordinary differential
equation that for B(·, T ) turns out to be of the Riccati type (the coefficients in these equations depend on
the parameters in (2) and (5)). Analogously, the price of a generic 0-coupon defaultable bond with zero
recovery, maturity T and unitary face value, which is given by (see McNeil et al. (2005), Theorem 9.23)

Π(t, T ) = E
[
e−

∫ T
t rsds1{τ>T}

∣∣Gt] = 1{τ>t}E
[
e−

∫ T
t (rs+λs)ds

∣∣Ft] (8)
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with λt the default intensity of the issuer of the bond, can be expressed as

Π(t, T ) = 1{τ>t} exp
[
Ã(t, T )− B̃(t, T ) eΨt

]
(9)

where, again, Ã(·, T ), B̃(·, T ) satisfy each one a well-known first order ordinary differential equation that
for B̃(·, T ) is of the Riccati type and the coefficients in these equations depend again on the parameters in
(2) and (5). Notice that the 0-coupon default free bonds and the 0-coupon 0-recovery defaultable bonds
can be considered as “building blocks” for more complex instruments/products as will be shown below.
By (7) we have that the yield (for t < T ) of a 0-coupon default-free bond is given by

Y L(t, T ) := − 1
T − t

log ΠDF (t, T ) = −A(t, T )
T − t

+
B(t, T )
T − t

eΨt (10)

and results in an affine function of eΨt . Furthermore, by (7) and (9), the credit spread of a 0-coupon
0-recovery defaultable bond, computed with respect to a default free bond with the same face value and
maturity T , is given (up to τ ) by

CS(t, T ) := − 1
T−t log

[
Π(t,T )

ΠDF (t,T )

]
= − 1

T−t

(
Ã(t, T )−A(t, T )

)
+ 1

T−t

(
B̃(t, T )−B(t, T )

)
eΨt ; t < τ ∧ T

(11)

again an affine function of eΨt .
We conclude this subsection by showing that more general credit risky products, in particular corpo-

rate bonds and spreads of Credit Default Swaps (CDS), can be expressed in terms of the prices Π(t, T )
of 0-coupon 0-recovery defaultable bonds. In fact, for corporate bonds and CDS the link between their
values and the default event of a given firm is much clearer than for other products. As a preliminary to
this purpose we show how the value of the recovery payment of a corporate bond or of a CDS can be
expressed in terms of Π(t, T ). We first recall that a recovery payment consists of a non-negative (Ft)-
adapted process Zt which represents the payoff given to the holder of the contract in case of default of
the issuer (for a corporate bond) or of the reference entity (for a CDS) at the time τ of default, if τ occurs
prior to the maturity T of the contract. Its arbitrage-free value at time t < T is given by

Rt = E
[
1{τ>t}e

−
∫ τ
t ruduZτ1{τ≤T}

∣∣Gt] (12)

Expected values of the type (12) can be evaluated by using the next Lemma, of which the proof can be
found in the Appendix. In the following we denote by P T the forward measure associated to the maturity
T , defined by dPT

dP = 1
B(T )ΠDF (0,T ) , and we write P Tt (A) := P T (A|Gt) for any A ∈ GT .

Lemma 4. Assuming (Recovery of Par scheme) that the recovery payment Zτ at the default time τ is
given by a fraction δ ∈ (0, 1) of the (unitary) nominal value, we have

E
[
1{τ>t}e

−
∫ τ
t ruduδ1{τ≤T}

∣∣Gt] = δ

(
1{τ>t} −Π (t, T )−

∫ T

t
Π (t, s)

(
f̃ (t, s)− h̃ (t, s)

)
ds

)
(13)

where f̃(t, T ) denotes the defaultable instantaneous forward rate, defined on the set {τ > t} for any
T > t as f̃(t, T ) := − ∂

∂T log Π(t, T ) and h̃(t, T ) is the forward hazard rate conditioned on survival,

formally defined as h̃(t, T ) := lim
∆↘0

PTt (T<τ≤T+∆|τ>T )
∆ .

Furthermore, if rt and λt follow independent stochastic processes, (13) simplifies to:

E
[
1{τ>t}e

−
∫ τ
t ruduδ1{τ≤T}

∣∣Gt] = δ

(
1{τ>t} −Π (t, T )−

∫ T

t
Π (t, s) f (t, s) ds

)
(14)

where f(t, T ), for T > t, denotes the default-free instantaneous forward rate.
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Remark 5. Notice that also T -forward survival probabilities can be expressed in terms of bond prices.
In fact, for any T > t:

P Tt (τ > T ) := P T (τ > T |Gt) = 1{τ>t}
P T (τ > T |Ft)
P T (τ > t|Ft)

= 1{τ>t}E
PT
[
e−

∫ T
t λudu

∣∣Ft]
= 1{τ>t}

EP
[
e−

∫ T
t (ru+λu)du

∣∣Ft]
EP

[
e−

∫ T
t rudu

∣∣Ft] =
Π (t, T )

ΠDF (t, T )

(15)

where the first two equalities follow from McNeil et al. (2005) (see Corollary 9.10 in Section 9.2.) and
the last one from (6) and (8).

Considering now a corporate bond with a Recovery of Par scheme as above and with periodic
coupon payments up to default of a fixed fraction c of the (unitary) face value at n time points ti with
t ≤ t0 < t1 < · · · < tn ≤ T , one has that its value is given by

Πδ,c (t, T ) =
n∑
i=1

c (ti − ti−1) Π (t, ti) + Π (t, T ) +

+ δ

(
1{τ>t} −Π (t, T )−

∫ T

t
Π (t, s)

(
f̃ (t, s)− h̃ (t, s)

)
ds

) (16)

This expression simplifies in the case of independence of rt and λt, as pointed out in Lemma 4. Moreover,
an analogous simpler formula can be derived for the Recovery of Treasury scheme (see Fontana (2007)).

Concerning the CDS spreads consider first the value of the premium payment leg (for a premium S
paid in arrears), for which one has immediately

VP =
n∑
k=1

S (tk − tk−1) Π (t, tk) (17)

On the other hand, the value of the default protection leg (fraction (1− δ) of the unitary face value) is by
Lemma 4

VD = E
[
1{τ>t}e−

∫ τ
t rsds (1− δ) 1{τ≤T}

∣∣Gt]
= (1− δ)

(
1{τ>t} −Π (t, T )−

∫ T
t Π (t, s)

(
f̃ (t, s)− h̃ (t, s)

)
ds
) (18)

For the (fair) CDS spread it then follows (on {τ > t})

S =
(1− δ)

(
1−Π (t, T )−

∫ T
t Π (t, s)

(
f̃ (t, s)− h̃ (t, s)

)
ds
)

∑n
k=1 (tk − tk−1) Π (t, tk)

(19)

Notice that the accrued payment between the last premium payment date prior to default and the time of
default may be neglected if the payment dates are close to one another (see details in Fontana (2007)).
Finally, as with the corporate bond prices, also here an analogous simpler formula exists for the Recovery
of Treasury scheme (see again Fontana (2007)) as well as when rt and λt follow independent processes.

On one hand the representations (16) and (19) allow to reconstruct 0-coupon 0-recovery bond prices
from corporate bond prices and CDS spreads and use these reconstructed values to determine, via the
relation CS(t, T ) = − 1

T−t log
[

Π(t,T )
ΠDF (t,T )

]
, observed values for CS(t, T ) that, within our modeling

framework are considered as affine functions of eΨt (see (11)). Since later on we shall consider the
observed values of CS(t, T ) mostly as reconstructed from corporate bond prices and CDS spreads, we
shall consider these latter values as noisy perturbations of their true values.

On the other hand, since from (9) one can express Π(t, T ) as (nonlinear) function of the factors Ψt,
(16) and (19) show that also corporate bond prices and CDS spreads can in our model be expressed as
(nonlinear) functions of Ψt.
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3 Incomplete information and filtering setup

3.1 Incomplete information

As already mentioned in the Introduction, some of the factors with an economic interpretation may
be directly observable, others may not. Also the factors without economic interpretation are in general
non observable. Without loss of generality we shall then assume in what follows that all the factors are
latent factors that are not directly observable. On one hand this setup allows to consider what is called
information induced contagion by letting the unobserved factors correspond to dynamic frailty variables
(see Schönbucher (2003B), Duffie et al. (2009), Azizpour & Giesecke (2008)). On the other hand this
implies that we cannot directly use formulas (7) and (9), and thus neither (16) nor (19) to compute prices
of illiquid OTC bonds and related products.

Let now the flow of information, which is actually available to agents on the market, be charac-
terized by a filtration (Yt)0≤t≤T ∗ with Ht ⊂ Yt ⊂ Gt. While all the intensities λjt will be con-
sidered as not directly observable, we shall however assume that rt is observable (via a proxy), i.e.
it is (Yt)-adapted and this implies by (5) that one can observe a linear combination of the exponen-
tials of the factors. We suppose furthermore that at any time t ≤ T ∗ agents can observe a number p
of yields Y L(t, Ti), (i = 1, . . . , p) corresponding to 0-coupon default-free bonds for p different ma-
turities Ti, (Ti > t, i = 1, . . . , p), and a number q of credit spreads CS(t, Tj), (j = 1, . . . , q) cor-
responding to 0-coupon 0-recovery defaultable bonds issued by a given firm for a set of q maturities
Tj , (Tj > t, j = 1, . . . , q) (more generally, we could also consider several issuing firms, see the Ex-
ample in Section 4.2). Notice that these latter observations take place only up to the (observed) default
of the issuer and therefore contain also the information of the default history. In our context, we assume
that a given firm defaults simultaneously on all the bonds it has issued and this affects furthermore all
CDS for which it represents the reference entity.

Observe next that, by (10) and (11), in addition to rt also yields and spreads are affine functions of
eΨt . If then one has more observations than factors, namely if 1 + p + q ≥ n, then the factors can be
reconstructed exactly from the observations. On the other hand, yields and spreads are in general not ex-
actly observable. In fact, as mentioned at the end of subsection 2.2, they have mostly to be reconstructed
from corporate bond prices and CDS spreads and, even if they could be observed directly, they are af-
fected by bid-ask spreads, liquidity and tax effects, as well as other imprecisions. Following an approach
proposed in Gombani et al. (2005), we introduce a number ` of further unobserved factors, on which rt
and λjt do not depend, but which represent additive noise terms that affect the observations of Y L(t, Ti)
and CS(t, Tj). There is a good deal of flexibility in specifying these ` factors, apart from ensuring that
the filtering problem defined below is non degenerate, namely that n + ` > p + q + 1; it means that
there are truly non observable factors. The noise factors may also be correlated among themselves, or
with Ψt. Unless specified otherwise, for sake of simplicity in what follows we shall assume that they are
simply independent (Ft, P )-Wiener processes. Moreover, not all of the observations have to be affected
by noise (rt was in fact assumed to be exactly observable), we can also assume a specific noise term
for each maturity/issuer. We define then by Ψ̄t the vector of dimension ` given by the additional ` noise
factors.

Summing up, the observations (interest rate, yields and credit spreads) are given by:
rt = a+ beΨt

Y L (t, Ti) = αit + βite
Ψt + β̄itΨ̄t i = 1, . . . , p

CS (t, Tj) = γjt + δjt e
Ψt + δ̄jt Ψ̄t j = 1, . . . , q

(20)

where αit, γ
j
t are deterministic functions of time, βit, δ

j
t are n-dimensional and β̄it, δ̄

j
t are

`−dimensional row vectors composed of deterministic functions of time that depend on the parame-
ters in (2) and (5) to be “calibrated” to the market and Ψ̄t is an `−vector of standard Wiener processes.
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We can also write more specifically

Yt := FYt ∨Ht for 0 ≤ t ≤ T ∗

where FYt := σ{rs, Y L(s, Ti), CS(s, Tj) : s ≤ t, i = 1, . . . , p ; j = 1, . . . , q} and notice that q is
reduced every time there is a default. With the reduction of q also the number of noise factors may be
correspondingly reduced depending on the specification of the latter.

3.2 The filtering problem

One of our purposes is to compute arbitrage-free prices of OTC financial products in the context
of our incomplete information market model with information represented by the filtration (Yt)0≤t≤T ∗ .
Since, as described in subsection 2.2, default-free and defaultable bond prices are building blocks of more
general credit risk sensitive products and the former are, under full information concerning Ψt, given (see
(7), (9)) as (exponentially) affine functions of eΨt , let us denote by Π(t, T ; Ψt) the generic expression that
represents arbitrage-free prices of OTC credit risky products in the full-information filtration (Gt)0≤t≤T ∗ .

Lemma 6. Under the assumption that rt is directly observable (rt ∈ Yt), the arbitrage-free price
corresponding to Π(t, T ; Ψt) in the investor filtration (Yt)0≤t≤T ∗ is given by

Π̂(t, T ) = E [Π(t, T ; Ψt) | Yt] for 0 ≤ t ≤ T (21)

Proof. It suffices to show that B−1(t)Π̂(t, T ) is a (P,Yt)−martingale. Since B−1(t)Π(t, T ; Ψt) is a
(P,Gt)−martingale we have, for t1 < t2 ≤ T ,

B−1(t1)Π̂(t1, T ) = E
[
B−1(t1)Π(t1, T ; Ψt1) | Yt1

]
= E

[
E
[
B−1(t2)Π(t2, T ; Ψt2) | Gt1

]
| Yt1

]
= E

[
B−1(t2)Π(t2, T ; Ψt2) | Yt1

]
= E

[
B−1(t2)E [Π(t2, T ; Ψt2) | Yt2 ] | Yt1

]
= E

[
B−1(t2)Π̂(t2, T ) | Yt1

]
(22)

Notice that, besides being arbitrage-free, the prices Π̂(t, T ) in (21) are also coherent with market
data. In fact, they are functionals of the market data in Yt and, if Π(t, T ; Ψt) represents a yield or a
spread, Π̂(t, T ) coincides with Π(t, T ; Ψt) except for the observation noise (that may e.g. represent
bid-ask spread).

In order to compute the expression in the right hand side in (21) we need the conditional distribution
of Ψt, given Yt, which is what is called the filter distribution at time t and which will be discussed next.

Before coming to the filter distribution itself, notice that, by (5), the default intensities of the various
firms are known up to the knowledge of Ψt. The filter distribution for Ψt will thus induce a continuously
updated distribution for the various λjt and one may consider as “filtered default intensity” the mean of
this distribution (see also Remark 9.ii) below).

Coming now to the filter distribution itself, notice first that the observations in (20) are linear with
respect to the the vector pair (eΨt , Ψ̄t) determined by the unobserved factors and some of them may not
be affected by any of the factors in Ψ̄t that represent a noise term (or may be affected by identical noise
terms). A direct formulation of the state-observation filtering system, that is, letting

[
Ψ′, Ψ̄′

]′ be the
unobserved state, would cause the filtering problem to degenerate since then the values of the factors can
be backed out from the observations. Such an approach was actually followed in the existing literature
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(see e.g. Chen & Scott (1993), Pearson & Sun (1994), Duffie & Singleton (1997)) whereby the number
of observables was postulated to exactly match the number of unobservable factors. In this paper we
would like to consider a more general situation that admits observations of the type (20) and leads to
a nondegenerate filter distribution. We point out that this then includes also models from the literature
where all observations are supposed to be affected by noise (see Lund (1997), Duan & Simonato (1999),
Geyer & Pichler (1999), Baadsgaard et al. (2000), Chen & Scott (2003)).

Our purpose can now be achieved due to the fact that it is possible to reduce the extended factor
vector

[
Ψ′, Ψ̄′

]′ to an auxiliary unobserved state process Xt of dimension (n+ `) − (p+ q + 1) and
obtain a corresponding non-degenerate filtering problem that is as informative as the original problem
with state Ψt. To this effect we follow Frey & Runggaldier (2009), section 3.2 (see also Fontana (2007)),
letting Yt :=

[
rt, Y

1
t , . . . , Y

p+q
t

]
where Y i

t := Y L (t, Ti) for i = 1, . . . , p and Y p+j
t := CS (t, Tj) for

j = 1, . . . , q. With the so defined process Yt, and recalling (3) whereby for the original factors Ψt we
have Ψi

t = log
(
Φi
t

)
, i = 1, . . . , n, one can rewrite system (20) as

Yt = µt +MtΦ∗t with Φ∗t :=
(

Φ′t, Ψ̄
1
t , . . . , Ψ̄

`
t

)′
(23)

for an appropriate (p+ q + 1)-dimensional time varying vector µt and a time varying
(p+ q + 1, n+ `)-matrixMt which, recalling that n+` > p+q+1 and considering only nonredundant
observations in (20), can be assumed to be of full rank. We can now prove the following

Proposition 7. One can choose a time-varying (n+ `− 1− p− q, n+ `)-matrixLt such that the (n+ `)-

square matrix
(
Lt
Mt

)
is invertible and this choice is not necessarily unique. Assume furthermore that

LtΦ∗t is P -a.s. strictly positive for all t. Defining then a process Xt =
(
X1
t , . . . , X

(n+`)−(p+q+1)
t

)
by

eX
i
t := Li,·t Φ∗t i = 1, . . . , (n+ `)− (p+ q + 1) (24)

we have that, for appropriate matrices Γ̂t, ∆̂t

Φ∗t = Γ̂teXt + ∆̂t (Yt − µt) (25)

and
Φt = ΓteXt + ∆t (Yt − µt) (26)

where Γt,∆t are the submatrices of Γ̂t, ∆̂t formed by their first n rows (that correspond to Φ as subvector
of Φ∗). Furthermore, the pair (Xt, Yt) satisfies a system of the form

dXi
t =

G1,i
t (Xt, Yt)

G2,i
t (Xt, Yt)

+
1
2

G3,i
t (Xt, Yt)(

G2,i
t (Xt, Yt)

)2

 dt+
n∑
k=1

Li,kt

√
Γk,·t eXt + ∆k,·

t (Yt − µt)

G2,i
t (Xt, Yt)

dwkt +

+
∑̀
j=1

Li,n+j
t

G2,i
t (Xt, Yt)

dΨ̄j
t i = 1, . . . , n+ `− (p+ q + 1)

dYt =
(
Rt + Cte

Xt +KtYt
)
dt+

n∑
k=1

M ·,kt

√
Γk,·t eXt + ∆k,·

t (Yt − µt)dwkt +
∑̀
j=1

M ·,n+j
t dΨ̄j

t

(27)
where Γt,∆t are as in (26), Gk,it (Xt, Yt), k = 1, 2, 3, are expressions of the form

Gk,it (Xt, Yt) = Rk,it + Ck,it eXt +Kk,i
t Yt

with Rk,it , Ck,it ,Kk,i
t (as well as Rt, Ct,Kt) appropriate constants and vectors (or matrices) and where,

we recall, Ψ̄i
t, i = 1, . . . , `, are standard (Ft, P )-Wiener processes.
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Proof. For an arbitrary matrix A, let us denote by Ai,· and A·,j the i-th row and the j-th column respec-
tively. Similarly,A·,[1:n] denotes the first n columns andAi,[1:n] the first n elements of the i-th row. Since

Mt is full rank, a matrix Lt can always be found such that
(
Lt
Mt

)
is invertible. Having chosen Lt, by

(23) and (24) we have for appropriate matrices Γ̂t, ∆̂t

Φ∗t =
(
Lt
Mt

)−1(
eXt

Yt − µt

)
=: Γ̂teXt + ∆̂t (Yt − µt) (28)

which proves (25) and (26). The system (27) follows by a direct application of Itô’s formula to (23) and
(24), whereby

dXi
t =

1

Li,·t Φ∗t

 d

dt
Li,·t Φ∗tdt+ L

i,[1:n]
t (AΦt + b) dt+

n∑
k=1

Li,kt

√
Φk
t dw

k
t +

∑̀
j=1

Li,n+j
t dΨ̄j

t

+

− 1

2
(
Li,·t Φ∗t

)2

 n∑
k=1

(
Li,kt

)2
Φk
t +

∑̀
j=1

(
Li,n+j
t

)2

 dt , for i = 1, . . . , (n+ `)− (p+ q + 1)

dYt =
(
d

dt
µt +

d

dt
MtΦ∗t

)
dt+M

·,[1:n]
t (AΦt + b) dt+

n∑
k=1

M ·,kt

√
Φk
t dw

k
t +

∑̀
j=1

M ·,n+j
t dΨ̄j

t

(29)
which both are of the type (27), due to (25) and (26).

System (27) is a nondegenerate nonlinear filter system to which we shall apply the well-known
Extended Kalman Filter (EKF), leading to a Gaussian filter distribution for the factors. At this point one
can notice that one of the advantages of having chosen as factors Ψt rather than Φt is that Ψt does not
have to be restricted to take only positive values as is done in most of the existing related literature. As
mentioned in the Introduction, the Gaussianity of the filter is the tool that allows us to treat in a unifying
manner our three basic problems: filtering, parameter estimation via the EM method (that is rather
intimately related to filtering) and pricing as we shall see shortly. We shall now prove that our choice
of model for the factor dynamics allows us to have Gaussianity also of the outgoing filter at a default
time provided the incoming filter is Gaussian with the latter property guaranteed by using the EKF. No
filter approximation will thus be needed at a default time. The EKF leads to the only approximation in
the paper but on one hand it is known that it is reliable (in fact, it has been extensively adopted in the
literature), on the other hand the goodness of the approximation will also be verified by our numerical
results below.

Define the filtration (Ỹt)0≤t≤T ∗ by Ỹt := FYt ∨ σ
{
τ j : τ j < t; j = 1, . . . ,m

}
for 0 ≤ t ≤ T ∗.

While between default times we have pXt|Ỹt = pXt|Yt , at a default time the conditional distribution of
the unobserved state Xt has to be updated on the basis of the information of the default event itself and
of the identity of the defaulted firm. Notice first that, from (5) and (26), the default intensity of firm j
can be written as

λjt (Xt, Yt) = cj + dj
(
ΓteXt + ∆t (Yt − µt)

)
=: cj0 (t) +

ñ∑
i=1

cji (t) eX
i
t (30)

thereby implicitly defining the functions ci (t), i = 0, . . . , ñ := (n+ `)− (p+ q + 1). Suppose now to
be at time t = τj and to observe the default of firm j. The update of the conditional/filter distribution is
then (see Frey & Runggaldier (2009), Theorem 6.4, for a more detailed justification)

pXt|Yt (dx) =
λjt (x, Yt) pXt|Ỹt (dx)∫
λjt (x, Yt) pXt|Ỹt (dx)

for t = τj (31)
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We can now show

Proposition 8. Suppose that at a generic default time t = τ j the incoming distribution is pXt|Ỹt ∼
N (µt,Σt). Then if the defaulted firm is the j-th firm, the outgoing distribution pXt|Yt is a mixture of ñ
Gaussian distributions having a moment generating function given by∫

eu
′xpXt|Yt (dx) =

cj0 (t)

cj0 (t) +
∑ñ

i=1 c
j
i (t) eµ

i
t+

1
2(σit)

2 exp
[
u′µt +

1
2
u′Σtu

]
+

+
ñ∑
i=1

cji (t) exp
[
µit + 1

2

(
σit
)2]

cj0 (t) +
∑ñ

i=1 c
j
i (t) eµ

i
t+

1
2(σit)

2 exp
[
u′ (µt + Σtei) +

1
2
u′Σtu

] (32)

where ei is the i-th unit ñ-vector, µit and σit are the marginal i-th mean and variance corresponding to
N (µt,Σt) and ci (t), i = 0, . . . , ñ, are the functions implicitly defined in (30).

Proof. First notice that the denominator in (31) is given by

EN (µt,Σt)

[
cj0 (t) +

ñ∑
i=1

cji (t) ex
i

]
= cj0 (t) +

ñ∑
i=1

cji (t) exp
[
µit +

1
2
(
σit
)2]

(33)

with obvious meaning for the symbol EN (µt,Σt). We next compute the numerator of
∫
eu
′xpXt|Yt (dx).

Using (30) and (31) we have that it is∫ (
cj0 (t) +

ñ∑
i=1

cji (t) ex
i

)
eu
′xN (dx, µt,Σt) = cj0 (t) exp

[
u′µt +

1
2
u′Σtu

]
+

+
ñ∑
i=1

cji (t) exp
[
(u+ ei)

′ µt +
1
2

(u+ ei)
′Σt (u+ ei)

]
(34)

Multiplying with the denominator as given in (33) we obtain the result.

Remark 9. i) While Gaussianity is now preserved at a default time, the price to be paid for it is that for
each incoming Gaussian distribution the outgoing distribution is a mixture of ñ Gaussian distributions so
that in the period up to the next default ñ parallel filters have to be run, each with an initial distribution
given by one of the Gaussian components of the mixture.

ii) While between default times one has a continuous update of the “filtered default intensities”, these
undergo a jump at a default time (see Figure 1 in Section 5) with the size of the jump depending on the
riskiness of the defaulted firm, as measured e.g. by the parameters cj and dj in (5), and causing what is
termed information induced default contagion.

Once we know the filter distribution of Xt, both between and at default times, we can solve the
pricing problem by computing the expression in (21), more precisely, by computing

Π̂(t, T ) = E
[
Π
(
t, T ; ΓteXt + ∆t(Yt − µt)

)
| Yt
]

=
∫

Π (t, T ; Γtex + ∆t(Yt − µt)) pXt|Yt(dx)

11



4 Parameter estimation via the EM algorithm

4.1 Introductory description

Including parameters in a market model makes it more flexible and allows for its calibration to the
market. In the context of our model the parameters are given by the coefficients in the factor dynamics
(2) and in the affine representation of interest rate and default intensities in (5). Traditionally, parameters
are calibrated by solving an inverse problem resulting from trying to match theoretical model prices with
actually observed ones. The filtering approach to incomplete information allows for a more statistical
type of parameter estimation that can be incorporated into the filtering procedure. Besides the so-called
combined filtering and parameter estimation, an approach in this context is based on the EM-algorithm
(for a general description see e.g. McLachlan & Krishnan (1997)) that we are going to discuss next.
Notice that, even if we assume our parameters to be constant with respect to time t, through their contin-
uous updating via the filter-based EM algorithm below, they acquire a form of time dependence thereby
allowing to track the actual market situation unlike static calibration or maximum likelihood techniques.

Let θ be the vector composed of all the parameters characterizing the model. Denote by P θ the
probability measure induced by the model for a given parameter vector θ. We thus have a family of
probability measures

{
P θ; θ ∈ Θ

}
and we assume them all to be absolutely continuous with respect to a

given reference measure P̄ . The EM algorithm is now based on the iterative maximization with respect
to θ, for fixed θ′ (the previously estimated vector of parameters), of the following expression

Q
(
θ, θ′

)
:= Eθ′

[
log

dP θ

dP θ′

∣∣∣FYt ] (35)

It iterates through the two steps

i) Compute the function Q (θ, θ′) for given θ′ (a conditional expected value)

ii) Maximize Q (θ, θ′) with respect to θ

until a stopping criterion is met. The maximization step leads to a system of equations obtained from
putting ∂Q(θ,θ′)

∂θ = 0.
With the function Q (θ, θ′) as given in (35) it can be shown (see e.g. Chapter 3 in McLachlan &

Krishnan (1997)) that, with every iteration, the values of θ obtained from the EM algorithm generate
non-decreasing values of the (conditional) log-likelihood function

l (θ) = log EP̄

[
dP θ

dP̄

∣∣∣FYt ] (36)

and thus also of the likelihood function L(θ) = exp{l(θ)}. Under appropriate regularity conditions (see
Wu (1983), Theorem 5), which in our case are satisfied, it follows that the sequence of EM-estimates
converges to a stationary point of the likelihood function L(θ) = exp{l(θ)}. To avoid ending up in
a local maximum, one may adapt various techniques that have been proposed to this effect such as
regularization techniques (see e.g. Cont & Tankov (2004)); the most widely used practical rule consists
in starting the algorithm from different initial conditions.

Our filtering problem concerns the state-observation system (27) but a direct application of the EM
algorithm to the estimation of the parameters in (27) leads to the following problems:

i) The diffusion coefficients cannot be estimated via EM since the measures P θ and P θ
′
have to be mutu-

ally absolutely continuous; these coefficients have thus to be estimated for instance by computing
the empirical quadratic variation of Yt and by determining the filtered estimate of the quadratic
variation of Xt (equivalently, by determining the filtered estimate of the quadratic covariation of
(Xt, Yt)) (see e.g. Elliott & Krishnamurthy (1997), Fontana (2007)).
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ii) To compute the function Q(θ, θ′) (see (55) below) one needs to solve also the so-called smooth-
ing problem, for instance computing E[Xs | FYt ] for s < t, and this is computationally more
demanding than just the filtering problem.

iii) A typical difficulty in the application of the EM algorithm, particularly in the maximization step, is
caused by the fact that there may be many parameters to be estimated.

To overcome these difficulties, an alternating iterative algorithm has been proposed in Fontana (2007)
and in the next subsection we are going to illustrate it at hand of an example. Since data are actually ob-
served in discrete time, the starting point of this algorithm is a time discretization of the Euler-Maruyama
type of the state-observation system (27). This leads to a consistent discretization in the sense that, as
is well known, the interpolated solutions of the so discretized system converge weakly to the solution
of the continuous-time system. In the time discretized model the diffusion coefficients can then be es-
timated by the EM algorithm and this allows already to overcome problem i). Also problem ii) can be
overcome since, by using an extension of results from Elliott & Krishnamurthy (1999) to discrete time
linear conditionally Gaussian models, the parameter estimates can be computed directly as functions of
the filter solution. Finally, as described below for the example, we deal with iii) by alternating between
several parallel state-observation systems and estimating only a subset of the components of θ for each
of them. Notice that, in general, the difficulty related to iii) may be reduced by trying to combine tradi-
tional calibration with EM parameter estimation. For instance, certain parameters may be individually
calibrated to prices of call and put options on default free bonds leaving only the remaining parameters
to be estimated via EM.

4.2 Example

The main purpose of this example is to illustrate in a simple context the discrete time alternating
algorithm that we are going to propose for the estimation of the parameters characterizing the model. We
consider the case of a model as described above (Sections 2 and 3) where n = 3, p = 1, q = 2, ` = 2,
that is, we assume to observe (in noise), besides the interest rate and a default-free yield, the spread of
two defaultable bonds issued by two different firms that we shall denote by A and B respectively. The
yield and credit spreads are supposed to correspond to bonds of the same maturity T .

The components Ψi
t (i = 1, 2, 3) of the vector Ψt in (2) are supposed to satisfy

dΨi
t =

[
ai + e−Ψit

(
bi − 1

2

)]
dt+ e−

1
2

Ψitdwit (37)

i.e. we consider the individual Ψi
t to form independent processes. In this specific case the Assumption 2

of admissibility is fulfilled by simply requiring bi > 1
2 (i = 1, 2, 3). The additional ` = 2 components of

the factor vector Ψ̄j
t (j = 1, 2) are

Ψ̄j
t = w̄jt (38)

for independent (Ft, P )−Wiener processes w̄jt (j = 1, 2). Furthermore, we let (5) take the specific form
rt = Φ1

t + Φ2
t

λAt = λA
(
Φ1
t + Φ3

t

)
λBt = λB

(
Φ2
t + Φ3

t

) (39)

with λA, λB > 0. With this representation one obtains a direct dependence between interest rate and
default intensities as well as between the default intensities themselves.
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In order to write down the filtering system (27) for the specific case of the example, we need to
specify a process Xt making explicit its dynamics as well as those of the observations. The observa-
tion dynamics in (27) derive, via (23) and (25), from (20) so that we obtain explicit dynamics for the
observations once we have explicit coefficients in (20). Since in the example we have three indepen-
dent processes for the factors, the explicit expressions for αit, β

i
t, γ

j
t , δ

j
t in (20) can easily be obtained

according to Section 9.5.2. in McNeil et al. (2005) (see also Section 6.2.2 in Lamberton & Lapeyre
(1995)) as functions of the coefficients ai, bi in (37) and of the two default intensity parameters λA, λB

in (39). These expressions are rather lengthy, but well-known, and so in what follows we shall for sim-
plicity keep using the shorthand notations αit, β

i
t, γ

j
t , δ

j
t . Concerning the coefficients (β̄1

t , δ̄
1
t , δ̄

2
t ) of the

additional noise factors, we assume them to be given by the following constant vectors

β̄1
t = [ν, 0] , δ̄1

t = [0, ρA] , δ̄2
t = [0, ρB] (40)

with (ν, ρA, ρB) additional parameters to be estimated.
According to (23) the observations in (27) are given by the tuple (rt, Y L(t, T ), CSA(t, T ), CSB(t, T )).

Notice however that, even though the spread derives from both, the default-free and the defaultable
bonds, for our example and in particular by (39), the observations CSA(t, T ) do not depend on Ψ2

t and
CSB(t, T ) do not depend on Ψ1

t . According to Proposition 7, with the choice of ` = 2, the dimension of
the processXt becomes (n+`)−(p+q+1) = 1 and so we may simply choose asXt any of the compo-
nents of Ψt = [Ψ1

t ,Ψ
2
t ,Ψ

3
t ]
′. Furthermore, due to (26), we can rewrite eΨt in the observation equations

(20) in terms of the chosen Xt = Ψi
t and of the observations themselves, thus yielding a system which

depends on only one single factor.
In addition to the filtering of the unobserved factors, we need also to estimate the eleven parameters,

namely (ai, bi) for i = 1, 2, 3 as well as (λA, λB, ν, ρA, ρB). The simultaneous estimation of eleven
parameters is a rather complex task. On the other hand we have the freedom of choosing as Xt any of
the factors Ψi

t and the individual observation equations do not depend on all the eleven parameters.
This has led us to consider a set of parallel filter systems, in each of which one chooses as Xt

a different factor Ψi
t and only nonredundant observations are considered. Furthermore, each of these

systems depends on only a subset of all the parameters. In subsection 4.2.2 we shall then present an
estimation algorithm that alternates between the individual filter systems.

In what follows we describe now explicitly the various systems that we are going to consider. Firstly
there are the following three that result from choosing as Xt the various Ψi

t (i = 1, 2, 3).

dΨ1
t =

[
a1 + e−Ψ1

t
(
b1 − 1

2

)]
dt+ e−

1
2

Ψ1
t dw1

t

Y L(t, T ) =
(
α1
t + β2

t rt
)

+
(
β1
t − β2

t

)
eΨ1

t + ν w̄1
t

CSA(t, T ) =
[
γ1
t + δ1,3

t

δ2,3
t

(
CSB(t, T )− γ2

t − δ
2,2
t rt

)]
+

[
δ1,1
t + δ1,3

t

δ2,3
t

δ2,2
t

]
eΨ1

t +
(
ρA − δ1,3

t

δ2,3
t

ρB
)
w̄2
t

(41)



dΨ2
t =

[
a2 + e−Ψ2

t
(
b2 − 1

2

)]
dt+ e−

1
2

Ψ2
t dw2

t

Y L(t, T ) =
(
α1
t + β1

t rt
)

+
(
β2
t − β1

t

)
eΨ2

t + ν w̄1
t

CSB(t, T ) =
[
γ2
t + δ2,3

t

δ1,3
t

(
CSA(t, T )− γ1

t − δ
1,1
t rt

)]
+

[
δ2,2
t + δ2,3

t

δ1,3
t

δ1,1
t

]
eΨ2

t +
(
ρB − δ2,3

t

δ1,3
t

ρA
)
w̄2
t

(42)
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dΨ3
t =

[
a3 + e−Ψ3

t
(
b3 − 1

2

)]
dt+ e−

1
2

Ψ3
t dw3

t

CSA(t, T ) = γ1
t + δ1,1

t

β1
t−β2

t

(
Y L(t, T )− α1

t − β2
t rt
)

+ δ1,3
t eΨ3

t

+ ρAw̄2
t −

δ1,1
t

β1
t−β2

t
ν w̄1

t

CSB(t, T ) = γ2
t + δ2,2

t

β2
t−β1

t

(
Y L(t, T )− α1

t − β1
t rt
)

+ δ2,3
t eΨ3

t

+ ρBw̄2
t −

δ2,2
t

β2
t−β1

t
ν w̄1

t

(43)

In addition to these three systems we consider also the following three where the purpose is to focus
specifically on the parameters other than (ai, bi) (i = 1, 2, 3) namely on (λA, λB, ν, ρA, ρB). They are

dΨ1
t =

[
a1 + e−Ψ1

t
(
b1 − 1

2

)]
dt+ e−

1
2

Ψ1
t dw1

t

Y L(t, T ) =
(
α1
t + β2

t rt
)

+
(
β1
t − β2

t

)
eΨ1

t + ν w̄1
t

(44)



dΨ1
t =

[
a1 + e−Ψ1

t
(
b1 − 1

2

)]
dt+ e−

1
2

Ψ1
t dw1

t

dΨ3
t =

[
a3 + e−Ψ3

t
(
b3 − 1

2

)]
dt+ e−

1
2

Ψ3
t dw3

t

CSA(t, T ) = γ1
t + δ1,1

t eΨ1
t + δ1,3

t eΨ3
t + ρAw̄2

t

(45)



dΨ2
t =

[
a2 + e−Ψ2

t
(
b2 − 1

2

)]
dt+ e−

1
2

Ψ2
t dw2

t

dΨ3
t =

[
a3 + e−Ψ3

t
(
b3 − 1

2

)]
dt+ e−

1
2

Ψ3
t dw3

t

CSB(t, T ) = γ2
t + δ2,2

t eΨ2
t + δ2,3

t eΨ3
t + ρBw̄2

t

(46)

Notice that (44) is a subsystem of (41). It is introduced here for the only purpose of estimating the
parameter ν.

We may now solve a filtering problem for each of the above six systems and estimate the parameters
on which they depend. They are nonlinear systems with Gaussian disturbances and so, in line with
Section 3.2, we shall apply the EKF for their solution. For this purpose we have to discretize them in
time and then to linearize the nonlinear coefficients around the most recent available estimate of the
factors. For the time discretization we apply the Euler-Maruyama scheme with constant step ∆ and for
what concerns the linearization we use the Taylor approximation

f(x) ≈ f(x̂) + f ′(x̂)(x− x̂) (47)

for the observation equations and for the drift coefficient in the state equation and

f(x) ≈ f(x̂) (48)

for the diffusion coefficient in the state equation.
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Since the six systems are analogous to one another, we describe in detail the procedure only for the
first one (41) that we rewrite in more compact form as

dΨ1
t =

[
a1 + e−Ψ1

t
(
b1 − 1

2

)]
dt+ e−

1
2

Ψ1
t dw1

t

Y L(t, T ) = (αt + βtrt) + γte
Ψ1
t + ν w̄1

t

CSA(t, T ) =
(
ft + gtrt + htCS

B(t, T )
)

+ kte
Ψ1
t + ρt w̄

2
t

(49)

Following Section 8.2 in Anderson & Moore (1979), for the linearization of the exponentials in the
equation for Ψ1

t we take as the most recent estimate of Ψ1
t its filtered value Ψ̂1

t|t (the mean value of the
filter distribution at time t) so that (47) and (48) become

eΨ1
t ≈ eΨ̂1

t|t + e
Ψ̂1
t|t
(

Ψ1
t − Ψ̂1

t|t

)
and eΨ1

t ≈ eΨ̂1
t|t (50)

In the observation equations the most recent estimate of Ψ1
t is its predicted value Ψ̂1

t|t−∆ (the mean value
of the predictive distribution at time t). This leads to the following discrete time linear filter system

Ψ1
t+∆ =

[
a1 + e

−Ψ̂1
t|t
(

1 + Ψ̂1
t|t

) (
b1 − 1

2

)]
∆

+
[
1− e−Ψ̂1

t|t
(
b1 − 1

2

)
∆
]

Ψ1
t + e

− 1
2

Ψ̂1
t|t
√

∆Z1
t+∆

Y L(t, T ) =
[
αt + βtrt + γte

Ψ̂1
t|t−∆

(
1− Ψ̂1

t|t−∆

)]
+ γte

Ψ̂1
t|t−∆Ψ1

t + ν w̄1
t

CSA(t, T ) =
[
ft + gtrt + htCS

B(t, T ) + kte
Ψ̂1
t|t−∆

(
1− Ψ̂1

t|t−∆

)]
+ kte

Ψ̂1
t|t−∆Ψ1

t + ρt w̄
2
t

(51)

where Z1
t is a sequence of i.i.d. standard Gaussian random variables and equality is to be understood

modulo the Taylor approximation.
For simplicity, in what follows we shall denote by (ylt, csAt , cs

B
t ) the noise perturbed yield and spread

observations corresponding to the linearized model for a fixed maturity T . With some abuse of notation
we then rewrite system (51) in a further compactified notation

Ψ1
t+∆ = āt + b̄tΨ1

t + c̄tZ
1
t+∆

ylt = (ᾱt + βtrt) + γ̄tΨ1
t + ν w̄1

t

csAt = (f̄t + gtrt + htcs
B
t ) + k̄tΨ1

t + ρt w̄
2
t

(52)

and notice that the coefficients depend not only on the parameters and the observations themselves but,
due to the linearization procedure, also on the filtered and predicted estimates Ψ̂1

t|t and Ψ̂1
t|t−∆.

4.2.1 The EM algorithm itself

Each of the individual parallel filter systems (41)-(46) can, via time discretization and linearization,
be reduced to a system of the form (52) that is of the discrete time linear conditionally Gaussian type
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so that the Kalman filter can be applied to determine the filter distribution that is Gaussian and thus
characterized by its (conditional) mean and variance. We are now going to describe schematically the
procedure followed in Fontana (2007) to use the results of Elliott & Krishnamurthy (1999) in order to
obtain the EM parameter estimates as functions just of the filter solution.

System (52), and analogously the other parallel filter systems, may be conveniently rewritten in the
following synthetic form where we now use k ∈ N to index the discrete time points.

Xk+1 = Vk(θ) + Fk(θ)Xk +Dk+1(θ)Zk+1

Yk = Rk(θ) + Ck(θ)Xk + Ek(θ) w̄k
(53)

In (53) the variablesXk denote the unobservable component of the state-observation system (corresponds
to one or more components of Ψk), Yk is a subvector of (yl, csA, csB) and Zk and w̄k denote independent
sequences of independent Gaussian variables/vectors. In the coefficients we have made explicit their
dependence on the parameter vector denoted as θ and notice that these coefficients may depend also on
the observation history Y k := (Y0, . . . , Yk) up to time k.

The fundamental quantity underlying the EM algorithm is Q(θ, θ′) in (35), where we may write

dP θ

dP θ′
=
dP θ

dΛ
· dΛ
dP θ′

(54)

with Λ denoting Lebesgue measure. Suppose then that we are standing at the generic time step k so that
dP θ

dΛ can be seen as the joint density of (Xl, Yl)l=0,...,k for given values of the parameters in θ (analogously

for dP
θ′

dΛ when the parameters are θ′). It can then be easily seen that

Q (θ, θ′) = −
∑k

l=1 log |Dl (θ) | −
∑k

l=0 log |El (θ) |

−1
2Eθ′

[∑k−1
l=0 (Xl+1 − Fl (θ)Xl − Vl(θ))′

(
Dl+1 (θ)D′l+1 (θ)

)−1 (Xl+1 − Fl (θ)Xl − Vl(θ)) | FYk
]

−1
2Eθ′

[∑k
l=0 (Yl − Cl (θ)Xl −Rl(θ))′ (El (θ)E′l (θ))−1 (Yl − Cl (θ)Xl −Rl(θ)) | FYk

]
+Eθ′

[
Jk (θ′) | FYk

]
(55)

where Jk (θ′) includes all the terms that do not depend on θ and thus plays no role in the maximization
of Q (θ, θ′) with respect to θ.

The maximization ofQ (θ, θ′) with respect to θ can be accomplished by differentiatingQ (θ, θ′) with
respect to θ and solving the system that results from putting ∂Q(θ,θ′)

∂θ = 0. From (55) one can now see
that the coefficients in these equations can be determined by computing (this corresponds to step 1 of the
EM algorithm), for a given value of θ′ and a generic value of θ, expressions of the form

Eθ′
[∑k

l=0X
′
lfl(θ) | FYk

]
, Eθ′

[∑k
l=0X

′
l f̄l(θ)Xl | FYk

]
Eθ′
[∑k−1

l=0 X
′
l+1gl(θ)Xl+1 | FYk

]
, Eθ′

[∑k−1
l=0 X

′
l+1ḡl(θ)Xl | FYk

] (56)

Strictly speaking, since the previous expressions require the conditional expectations of, say, Xl given
FYk where l < k, a smoothing procedure would be needed. At this point one can however make use
of the results in Elliott & Krishnamurthy (1999) that allow these quantities to be computed as functions
of the (conditional) mean and variance under P θ

′
of the filter distribution of Xk given FYk . This mean,

denoted at the generic time step by X̂k|k, and variance, denoted by Pk|k, can be computed using the
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Kalman filter applied to the generic system (53) by setting θ = θ′. We show here the expressions for
the first two quantities in (56), for the remaining ones the expressions are analogous and can be found in
Elliott & Hyndman (2006) and Fontana (2007).

For the first quantity we have

Eθ′

[
k∑
l=0

X ′lfl(θ)
∣∣∣FYk

]
= φk + ψ′kX̂k|k

with φk and ψk satisfying the recursions{
φk+1 = φk + ψ′kSk ; φ0 = 0
ψk+1 = Σk+1ψk + fk+1(θ) ; ψ0 = f0(θ)

where, putting
σk := Fk(θ)

[
Dk(θ)D′k(θ)

]−1
F ′k(θ) +

(
Pk−1|k−1

)−1

one has {
Σk := [Dk(θ)D′k(θ)]

−1 F ′k(θ)σ
−1
k

Sk := σ−1
k+1

((
Pk|k

)−1
X̂k|k − Fk(θ) [Dk(θ)D′k(θ)]

−1 Vk(θ)
)

For the second quantity one has instead

Eθ′

[
k∑
l=0

X ′l f̄l(θ)Xl

∣∣∣FYk
]

= φk + ψ′kX̂k|k + tr
(
ΛkPk|k

)
+ X̂ ′k|kΛkX̂k|k

where, with σk,Σk, Sk as before, one has the recursions
φk+1 = φk + ψ′kSk + tr

(
Λkσ−1

k+1

)
+ S′kΛkSk ; φ0 = 0

ψk+1 = Σk+1 (ψk + 2ΛkSk) ; ψ0 = 0
Λk+1 = Σ′k+1ΛkΣk+1 + f̄l(θ) ; Λ0 = f̄0(θ)

4.2.2 The alternating algorithm

While step i) of the EM algorithm, namely computing the conditional expectations, has been dis-
cussed at the end of the previous subsection, in this subsection we deal with step ii), namely the maxi-
mization of Q(θ, θ′) with respect to θ which involves the solution of the system ∂Q(θ,θ′)

∂θ = 0. For the
model in the present Example, which leads to the parallel state-observation systems (41)-(46) (in the form
(52) after discretizing in time and linearizing the dynamics), the parameters included in θ are (ai, bi),
i = 1, 2, 3, and (λA, λB, ν, ρA, ρB). Notice that the latter enter only the coefficients in the observation
equations. For what concerns the maximization with respect to (ai, bi), an advantage of having the three
parallel systems (41)-(43) is that in each of these systems the state dynamics depend on (ai, bi) for just
one of the indices i = 1, 2, 3 and this already reduces the number of parameters to be estimated in each
individual step of the EM iterations.

A direct application of the EM algorithm would now consist in iterating between the two EM steps,
namely the expectation and the maximization steps, globally for all eleven parameters in the six systems
simultaneously until a stopping criterion is met. One can however alternate the iterations between the
individual systems (41)-(46) or subgroups of these systems. To this effect let, with some abuse of no-
tation, θ be given by the subset of the parameters with respect to which one performs the maximization
corresponding to the generic iteration step and θ′ be the subset of the parameters that for this maximiza-
tion step are kept fixed at their previously estimated values. The situation corresponding to the various
systems (41)-(46) is then the following.
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• For system (41): θ = (a1, b1) ; θ′ = (ai, bi, λj , ν, ρj)i=2,3; j=A,B;

• for system (42): θ = (a2, b2) ; θ′ = (ai, bi, λj , ν, ρj)i=1,3; j=A,B;

• for system (43): θ = (a3, b3) ; θ′ = (ai, bi, λj , ν, ρj)i=1,2; j=A,B;

• for system (44): θ = ν ; θ′ = (ai, bi, λj , ρj)i=1,2,3; j=A,B;

• for system (45): θ = (λA, ρA) ; θ′ = (ai, bi, λB, ν, ρB)i=1,2,3;

• for system (46): θ = (λB, ρB) ; θ′ = (ai, bi, λA, ν, ρA)i=1,2,3.

From our numerical simulations it turned out that the most efficient alternating iterative procedure
consists in alternating the EM iterations between the group formed by (41),(46), that formed by (42),(45)
and that formed by (43),(44). More precisely, considering that the global vector of parameters is given
by θ = (a1, b1, . . . , a3, b3, λA, λB, ν, ρA, ρB), we have the following iterative algorithm, where by θj we
denote the vector of estimates of θ at the j−th step of the iterations.

Algorithm 10.

0. Initialize the algorithm with a guess θ̂ for the entire vector θ and, setting j = 0, put θj = θ̂;

1. Apply in parallel on each of the systems (41),(46) the EM algorithm to estimate (a1, b1) and (λB, ρB)
while keeping the other parameters fixed at their previously estimated values (a2

j , b
2
j , a

3
j , b

3
j , λ

A
j , νj , ρ

A
j ).

The algorithm iterates through the two EM steps (expectation and maximization) until a stopping crite-
rion is met, thereby producing estimates (a1

j+1, b
1
j+1, λ

B
j+1, ρ

B
j+1);

2. Apply in parallel on each of the systems (42),(45) the EM algorithm to estimate (a2, b2) and (λA, ρA)
while keeping the other parameters fixed at their previously estimated values (a1

j+1, b
1
j+1, a

3
j , b

3
j , λ

B
j+1, νj ,

ρBj+1). The algorithm iterates through the two EM steps until a stopping criterion is met, thereby pro-
ducing estimates (a2

j+1, b
2
j+1, λ

A
j+1, ρ

A
j+1);

3. Apply in parallel on each of the systems (43),(44) the EM algorithm to estimate (a3, b3, ν) keeping all
others parameters fixed at their previously estimated values. The algorithm iterates through the two EM
steps until a stopping criterion is met, thereby producing estimates (a3

j+1, b
3
j+1, νj+1);

4. Put θj+1 = (a1
j+1, b

1
j+1, . . . , a

3
j+1, b

3
j+1, λ

A
j+1, λ

B
j+1, νj+1, ρ

A
j+1, ρ

B
j+1) and, setting j = j + 1, return

to step 1. Terminate the entire algorithm as soon as a global stopping criterion is met.

For the initial guess θ̂ of the parameter vector θ one may follow some guidelines as for instance: for
the diffusion coefficients in the observations one may use the bid-ask spread observed on the market; for
the parameters λj (j = A,B) one may consider the approximation for the intensity, frequently used in

practice, whereby one puts λjt ≈
Sjt

LGDj
with Sjt a CDS spread corresponding to firm j and LGDj the

loss given default for that same firm.
Besides the already mentioned facts, one additional advantage of the proposed procedure is that

the EM algorithm is applied in a simple context, namely when the systems are of the discrete time
linear conditionally Gaussian type with uncorrelated noises in the state and the observations. Thus, no
smoothing procedure is needed.
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5 Simulation results

This section is meant to illustrate with some numerical simulations the main features of the model
and the performance of the just described estimation algorithm. The model considered for the numerical
simulations below is formulated according to the Example of Section 4.2, with the parameters in (37),
(39) and (40) chosen as shown in Table 1.

Parameter Value Parameter Value
a1 -0.15 b1 0.60
a2 -0.20 b2 0.70
a3 -0.25 b3 0.80
λA 0.10 λB 0.30
ρA 0.01 ρB 0.02
ν 0.005

Table 1: Parameter values for simulation study

For these parameter values, we first generate a sequence of tuples (Ψ1
k,Ψ

2
k,Ψ

3
k) on the basis of the

dynamics (37). Then, given the realizations of the unobserved factors and the values of the intensity
parameters λA and λB , we randomly draw the two default times τA and τB , following the procedure
described in McNeil et al. (2005), Algorithm 9.34. Finally, a sequence of corresponding observations
(given, as in Section 4.2, by the interest rate, one yield and two credit spreads) is generated according
to (20), with the credit spreads of firm j being observed only up to τ j (for j = A,B). Furthermore, we
assume that yield and credit spreads are relative to the same maturity T , chosen as T = 10, and we adopt
a constant step size in the Euler-Maruyama time discretization equal to ∆ = 0.02, that is, we assume
to have access to (approximately) weekly observations of (rk, ylk, csAk , cs

B
k ), starting from k = 0 and

up to k = T/∆ (up to k = τ j/∆ if τ j < T for csj , j = A,B). This results in a total number of 500
observations for the interest rate (rk) and the yield (ylk) and in a maximum of 500 observations for the
two credit spreads (csAk and csBk ).

As mentioned in Section 3.2, the only approximation introduced in our study consists in the solution
of the filtering problem via the Extended Kalman Filter. For this reason, we have performed a Monte
Carlo analysis in order to asses the magnitude of the approximation error. We simulated the whole
series of observations (rk, ylk, csAk , cs

B
k )k=0,...,T/∆ and then, using systems (41)-(43) in the form (52) we

computed the filtered estimate of the unobserved state process by applying to each system the EKF. The
filtering recursions (see Anderson & Moore (1979), Section 8.2) were initialized at the (unconditional)
mean and variance of the stationary distribution of Ψi

t, which can be explicitly computed since it is known
that, due to the dynamics (37), eΨit = Φi

t follows a (non-central) chi-square distribution. We repeated
this procedure for 1000 independent samples and in Table 2 we summarize the results by showing the
mean and the root mean square error (RMSE) of Ψi

t − Ψ̂i
t|t, i = 1, 2, 3.

The same analysis was performed with systems (44)-(46) and the results are comparable to those
reported in Table 2, thus showing that the EKF does not introduce a severe bias in the filtered estimates of
the unobserved factors. This is consistent with most of the literature dealing with state-space estimation
of partially observed term structures models (see e.g. Chen & Scott (2003)).

Having shown that the EKF leads to satisfactory results, we now test the performance of the estima-
tion algorithm described in Section 4.2.2 in order to show the convergence of the estimated parameter
values. Since for our simulation purposes there is no reason to prefer certain parameter values to others,
the starting vector θ̂ for the parameter values was randomly generated within a suitable interval around
the “true” values given in Table 1. However, notice that in real applications one can make a reasonable
guess for θ̂ on the basis of the available financial/historical information, as mentioned at the end of the
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System (41)
Mean of Ψ1

t − Ψ̂1
t|t RMSE of Ψ1

t − Ψ̂1
t|t

−8.7891× 10−5 0.00215
System (42)

Mean of Ψ2
t − Ψ̂2

t|t RMSE of Ψ2
t − Ψ̂2

t|t
−8.9599× 10−5 0.00214

System (43)
Mean of Ψ3

t − Ψ̂3
t|t RMSE of Ψ3

t − Ψ̂3
t|t

−0.00039 0.01776

Table 2: Results of the EKF algorithm over 1000 independent samples

last subsection. The alternating algorithm was applied stopping the individual EM iterations as soon as
two successive values of all the parameters differed by less than 10−5 up to a maximum of 500 itera-
tions. While the convergence can sometimes be slow in the individual EM iterations (those within steps
1., 2. and 3. of Algorithm 10), from our numerical tests we found that the number of “alternations” (i.e.
iterations between the steps 1., 2. and 3.) does not need to be large (in most cases up to 10 “alternations”
suffice to reach convergence).

In Table 3 we report, along with the “true” values of the parameters, the means of the estimated values
of the individual parameters and their associated standard deviations, computed from 50 independent
runs of the entire estimation procedure, where each run comprises at most 10 “alternations”. From these
simulation results one can see that most of the parameters, including the crucial intensity parameters,
namely λA and λB , are estimated with satisfactory accuracy.

Parameter True value Estimate Std. dev.
a1 -0.15 -0.15092 0.02980
b1 0.60 0.60141 0.05163
a2 -0.20 -0.19960 0.02529
b2 0.70 0.69943 0.04205
a3 -0.25 -0.24826 0.06377
b3 0.80 0.80812 0.09398
λA 0.10 0.09981 0.02204
λB 0.30 0.30996 0.02533
ν 0.005 0.00509 0.00053
ρA 0.01 0.01001 0.00055
ρB 0.02 0.01978 0.00106

Table 3: Mean and standard deviation of the estimated parameter values (from a sample of 50 indepen-
dent runs of the alternating algorithm).

A recurrent observation arising from our simulations is that the estimates of the noise coefficients
ν, ρA, ρB converge to their true values very quickly, in most cases after the first few iterations, while
the parameters ai, bi (i = 1, 2, 3) which determine the mean of the factors Ψi need more iterations to
converge steadily to their true values. This corresponds to the well-known fact that it is generally more
difficult to obtain reliable estimates of parameters determining the mean in comparison to parameters for
the volatility or the noise (see Duffee & Stanton (2004)).

Having shown the performance of both the EKF and our alternating algorithm, we now show how
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even with the simple formulation of the model considered in Section 4.2 we can capture the phenomenon
of the information-driven default contagion. More precisely, we simulate the trajectories of the unob-
served factors Ψi

t (i = 1, 2, 3) and the default times τA, τB and then we run the EKF up to the first default
time τ∗ := τA ∧ τB . At the first default time we update, according to Proposition 8, the incoming filter
distribution for the factors provided by the EKF and then we compute the conditional distribution (given
the observations up to the first default time) of the default intensity of the surviving firm. We can then
compare the latter distribution with the distribution of the intensity prior to the default time, as shown in
Figure 1.
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after τ*

Figure 1: Effect of the update of the filter distribution of the default intensity of the surviving firm at the
first default time

From Figure 1 we can see clearly that, as pointed out in Remark 9.ii), at a default time the mean of
the filter distribution of the intensity of the surviving firm (i.e. the “filtered default intensity”) exhibits a
jump, thus providing evidence of the phenomenon of information induced default contagion.

6 Conclusions and further developments

We have proposed a general affine intensity-based credit risk model in which the interest rate and
the default intensities depend on several (partially) unobservable stochastic factors, which represent both
common and idiosyncratic risk factors. In this way we can capture, besides default clustering, also
the significant phenomenon of information driven default contagion. Within this framework we have
developed a filter-based pricing model. More precisely, we have shown how via a filtering approach
we can solve both the problem of pricing OTC products and the problem of estimating the parameters
characterizing the model. Moreover, we have shown how within our framework these problems are
intimately linked to one another, since the dynamic updating of the filter solution allows both prices and
parameter estimates to be tuned to the actual market situation.

Possible extensions that we have not been dealing with in the present paper consist in considering
the model under the physical/historical probability measure, specifying as further unobserved stochastic
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processes the risk premia, which characterize the change of measure (in this context see e.g. Runggaldier
(2004)). One can then consider also information coming from sources outside the financial market, such
as the rating score. From the risk management perspective, an interesting application in this latter context
would then be the estimation of default probabilities, on the basis of the information deriving from both
the financial market and the rating score.

7 Appendix

Proof of Lemma 4

Proof. We start by introducing the T-forward survival measure P̃ T (also named restricted survival mea-
sure in Bielecki & Rutkowski (2002)), defined by its density process

(
Z̃Tt

)
0≤t≤T

wrt. P :

Z̃Tt :=
dP̃ T

dP

∣∣∣
Ft

= e−
∫ t
0 (ru+λu)du

EP
[
e−

∫ T
t (ru+λu)du

∣∣Ft]
EP

[
e−

∫ T
0 (ru+λu)du

] = e−
∫ t
0 λudu

EP
T
[
e−

∫ T
t λudu

∣∣Ft]
EPT

[
e−

∫ T
0 λudu

] dP T

dP

∣∣∣
Ft

(57)
Then, for any integrable and FT -measurable random variable X we have:

EP
[
e−

∫ T
t ruduX1{τ>T}

∣∣Gt] = 1{τ>t}E
P
[
e−

∫ T
t (ru+λu)duX

∣∣Ft]
= 1{τ>t}E

P
[
e−

∫ T
t (ru+λu)du

∣∣Ft]EP̃T [X|Ft] = Π (t, T )EP̃
T

[X|Ft]
(58)

where the last equality follows from (8). Moreover, on the set {τ > t}, using (57) and Corollary 9.10 of
McNeil et al. (2005) we have:

EP̃
T

[X|Ft] =
EP

[
e−

∫ T
t (ru+λu)duX

∣∣Ft]
EP

[
e−

∫ T
t (ru+λu)du

∣∣Ft] =
EP

T
[
e−

∫ T
t λuduX

∣∣Ft]
EPT

[
e−

∫ T
t λudu

∣∣Ft] =
EP

T [
X1{τ>T}|Ft

]
EPT

[
1{τ>T}|Ft

]
=
EP

T [
X1{τ>T}|Gt

]
EPT

[
1{τ>T}|Gt

]
(59)

Recall, furthermore, that (see McNeil et al. (2005), Theorem 9.23):

EP
[
1{τ>t}e

−
∫ τ
t rudu1{τ≤T}

∣∣Gt] = 1{τ>t}

∫ T

t
EP

[
λse
−
∫ s
t (ru+λu)du

∣∣Ft] ds (60)

The integrand in (60) can now be written as follows. We first use differentiation inside the expectation
of the expression for Π(t, T ) in (8), which can be justified here via Dominated Convergence that is
applicable thanks to the fact that rt and λt take positive values. Combining this with (58) then leads to

1{τ>t}E
P
[
λse
−
∫ s
t (ru+λu)du

∣∣Ft] = − ∂

∂s
Π (t, s)− 1{τ>t}E

P
[
rse
−
∫ s
t (ru+λu)du

∣∣Ft]
= − ∂

∂s
Π (t, s)−Π (t, s)EP̃

s
[rs|Ft]

(61)

Straightforward computations, using again differentiation inside the expectation of the expression for
Π(t, T ) as well as the definition of the density process Z̃Tt for the measure P̃ T , allow to show that
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f̃(t, T ) = EP̃T [rT + λT |Ft] on the set {τ > t} and for any T > t. Therefore, using (59):

EP̃
T

[rT |Ft] = EP̃
T

[rT + λT |Ft]− EP̃
T

[λT |Ft] = f̃ (t, T )− EP̃T [λT |Ft]

= f̃ (t, T )−
EP

T [
λT1{τ>T}|Ft

]
EPT

[
1{τ>T}|Ft

] = f̃ (t, T )− lim
∆↘0

P Tt (T < τ ≤ T + ∆| τ > T )
∆

=: f̃ (t, T )− h̃ (t, T )
(62)

Putting together (60), (61) and (62) we immediately obtain (13). To prove (14) notice that if rt and λt
follow independent stochastic processes (conditionally on Ft), by (59):

EP̃
T

[rT |Ft] =
EP

T [
rT1{τ>T}|Ft

]
EPT

[
1{τ>T}|Ft

] = EP
T

[rT |Ft] = f (t, T ) for any T > t (63)

which, together with (60) and (61) shows (14).

Remark 11. We point out that when rt and λt are not independent, then f̃(t, T )− h̃(t, T ) 6= f(t, T ) in
general. However, due to (15) and after some simple (but rather lengthy) computations we can evaluate
the error introduced by eventually approximating f̃(t, T )− h̃(t, T ) with f(t, T ) as:

|f (t, T )− f̃ (t, T ) + h̃ (t, T ) | = 1
P Tt (τ > T )

lim
∆↘0

∣∣CovTt (1{τ>T+∆}, e
−
∫ T+∆
T rudu

)∣∣
∆

(64)
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