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CONSISTENT PRICE SYSTEMS FOR SUBFILTRATIONS ∗, ∗∗

Andrea Gombani1, Stefan Jaschke2 and Wolfgang Runggaldier3

Abstract. Asymmetric or partial information in financial markets may be represented by different
filtrations. We consider the case of a larger filtration F – the natural filtration of the “model world” –

and a subfiltration F̂ that represents the information available to an agent in the “real world”. Given
a price system on the larger filtration that is represented by a martingale measure Q and an associated

numeraire S, we show that there is a canonical and nontrivial numeraire Ŝ such that the price system

generated by (Ŝ, Q, F̂) is consistent, in a sense to be made precise, with the price system generated by
(S, Q,F).

Résumé. L’information asymetrique ou partielle dans les marchés financiers peut être représentée par
des filtrations différentes. Nous considerons le cas d’une filtration plus grande F – la filtration naturelle

du “monde au niveau de modèle” – et une sous-filtration F̂ qui représent l’information disponible à
un agent dans le “monde réel”. Etant donné un système de prix dans la filtration plus grande qui est
représenté par une mesure martingale Q et un numéraire associé S, nous démontrons qu’il existe un

numéraire canonique et nontrivial Ŝ tel que le système de prix engendré par (Ŝ, Q, F̂) est consistent,
dans un sens à préciser, avec le sytème de prix engendré par (S, Q,F).
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1. Introduction

We consider here a general setting with partial or noisy information, where the larger filtration F denotes
the natural filtration of the “model world” and the sub-filtration F̂ represents the information available to
an agent in the “real world”. An example is the bond market, where in some models one assumes that the
uncountably many bonds of all maturities are observed and traded, whereas in practice only a finite number of
them is accessible in the market (partial information). In some other models one assumes that all bond prices or
swap rates can be explained by a low-dimensional latent process. Since the whole set of observed prices cannot
be fitted by the parsimonious model without error, the difference between model and real prices needs to be
interpreted as unobserved noise (noisy information).
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Given a “model world” filtration F and a “real world” sub-filtration F̂ , we consider models that are arbitrage-
free in the “model filtration” F , i.e., they admit different martingale measures Q and corresponding F−adapted
numeraires S (the concept of numeraire and its properties have been studied in detail by [6]; see also the
exposition of the subject by [3]). It is easy to see that, if the numeraire S of Q is F̂−adapted, then Q is a
martingale measure also in F̂ for the same numeraire S. If Q0 and Q1 are two martingale measures in F with
numeraires S0 and S1, respectively, that lead to the same pricing system, then it is also rather straightforward to
see that, if S0 and S1 are both adapted to the smaller filtration F̂ , the two measures Q0 and Q1 are martingale
measures also in F̂ and the triples (S0, Q0, F̂) and (S1, Q1, F̂) lead to the same pricing system as well. What is
not obvious, though, is what happens if the natural numeraire in the model world is not traded nor observed.
The answer constitutes the main result of the paper and is stated in Proposition 3.1, where we show that any
given numeraire S for the larger filtration F will generate a canonical and nontrivial numeraire Ŝ for the smaller
filtration F̂ , such that the price system generated by (Ŝ, Q, F̂) is consistent with the price system generated by
(S, Q,F).

This main result has been applied to the case of bond markets in [7]. This application also leads to interesting
representations of the arbitrage-free bond prices in the smaller filtration, i.e., the arbitrage-free prices of bonds
of any maturity, traded or not, that are consistent with the information corresponding to the smaller filtration.
In [7] it is furthermore shown how, for exponentially affine term structure models, these prices can be explicitly
computed with the use of the Kalman filter.

2. Consistent Price Systems

Let Lt denote the set of traded time-t claims (0 < t ≤ T ). In what follows we shall restrict ourselves to
frictionless markets so that Lt will be a linear space for 0 < t ≤ T .

Definition 2.1. A linear price system {Πt,T , LT }t≤T is a family of linear mappings Πt,T : LT → Lt with the
properties

(1) Πt1,t2 ◦Πt2,t3 = Πt1,t3 for all t1 ≤ t2 ≤ t3 and
(2) Πt,t = id.

Think of a price system as the collection of all offers that a market maker makes or all contracts that are
liquidly traded on a specific exchange. Πt,T (X) is the price at which the time-T claim can be bought and sold
at time t. Note that this assumes uninterrupted pricing: if a time-T claim is priced at all, it is priced at all
prior times t ≤ T .

Given a triplet (S, Q,F) of a probability measure Q, a filtration F and a positive, F-adapted process S,
which is bounded away from zero and which for later use we shall assume to be right continuous, the present
value equation

Πt,T (X) := StE
Q[X/ST |Ft], X ∈ LT = L∞(FT ) (1)

obviously defines a linear price system. To avoid technicalities, in Definition 2.1 we do not require the mappings
Πt,T to have additional (e.g., continuity) properties, which would allow to show that every “arbitrage-free”
price system can be represented in the form (1). Several pairs of topological conditions and notions of no-
arbitrage/no-free-lunch exist [5] but they are not needed here.

If the domains Lt of a price system {Πt,T } are defined by a filtration F = {Ft} as Lt = L∞(Ft), then we
will call {Πt,T } “a price system for the filtration F”. Note that this implies a form of completeness of this price
system. Every time-T claim that is “observed” in FT is priced by Πt,T for all prior times t ≤ T . Specifically,
all default-free zero-bonds are priced by Πt,T (1).

Definition 2.2. Call two price systems {Π1
t,T , L1

T } and {Π2
t,T , L2

T } consistent, if they agree on the common
subspaces: Π1

t,T (X) = Π2
t,T (X) for all X ∈ L1

T ∩ L2
T .

In the above interpretation, consistency between two market makers (exchanges) means that an outsider
cannot arbitrage between the market makers (exchanges). Another interpretation of consistency is the following.
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Given a vector (S1, . . . , Sn) of security prices, the mappings Si
T 7→ Si

t define a price system on the spaces spanned
by the price vectors (LT := span(S1

T , . . . , Sn
T )). Such a price system is obviously consistent with the price system

generated by a triplet (S, Q,F) if and only if Q is a martingale measure for the numeraire S, i.e., the discounted
price processes Si

t/St are (Q,F)-martingales.

Setting. In the rest of this section, we shall consider the situation where we have a “model” price system
{Πt,T , L∞(FT )} for a larger filtration F and a “real world” price system {Π̂t,T , L̂T } with L̂T ⊆ L∞(F̂T ) ⊆
L∞(FT ) for some sub-filtration F̂ of F .

This may arise in the case of
noisy information: Real world prices may not fit to parsimonious, low-dimensional representations (of

forward curves or volatility surfaces), so the existence of unobserved noise may be needed to match
model and reality.

partial information: The power of mathematical analysis is used to build “nice” models for a continuum
of prices, while only finitely many securities (e.g., points on forward curves or volatility surfaces) are
liquidly traded.

incomplete markets: Not all observable time-T claims need to be traded (L̂T 6= L∞(F̂T )).

Proposition 2.3. Consider a price system {Πt,T , L∞(FT )} for the filtration F , a sub-filtration F̂ of F , and a
set of linear spaces L̂T ⊆ L∞(F̂T ). The set {L̂T } can carry a price system that is consistent with {Πt,T , L∞(FT )}
if and only if

X ∈ L̂T =⇒ Πt,T (X) ∈ L̂t, t ≤ T. (2)

Proof. It is clear that the only candidate for a consistent price system on the sub-spaces L̂T is the restriction
of each of the mappings Πt,T to L̂T . Denote this restricted price system1 by {Π̂t,T }. The condition (2) of
definition 2.1 is automatically fulfilled by the restricted price system. What remains to be shown is first that
the restriction Π̂t,T of Πt,T to L̂T maps into L̂t. But this is just a reformulation of condition (2). Second,
condition (1) of definition 2.1 needs to be checked. From Πt1,t2 ◦ Πt2,t3 = Πt1,t3 follows Πt1,t2 ◦ Π̂t2,t3 = Π̂t1,t3

by restricting both sides to L̂t3 . Condition (2) ensures Πt1,t2 ◦ Π̂t2,t3 = Π̂t1,t2 ◦ Π̂t2,t3 .
If condition (2) is not fulfilled, then the image of L̂T under the mapping Πt,T is not contained in L̂t. �

Note that condition (2) implies “uninterrupted pricing” again. Whenever a time-T claim is (in the “real
world”) priced at all, then it is priced for all prior times t ≤ T .

Proposition 2.4. Consider a price system {Πt,T , L∞(FT )} for the filtration F , a sub-filtration F̂ of F , and
a set of linear spaces L̂T ⊆ L∞(F̂T ) that can carry a price system that is consistent with {Πt,T , L∞(FT )}. If
{Πt,T } is generated by the triplet (S, Q,F) as in (1) and S is F̂-adapted, then the “filtered price system”

Π̂t,T (X) := StE
Q[X/ST |F̂t], ∀X ∈ L̂T (3)

equals the unique price system on the sub-spaces L̂T that is consistent with {Πt,T , L∞(FT )}.

Proof. Since S is F̂-adapted,

Π̂t,T (X) = EQ[StX/ST |F̂t] = EQ[Πt,T (X)|F̂t],

which equals Πt,T (X) for all X ∈ L̂T because of condition (2). �

1Note that there might be different triplets (S, Q, F̂) that generate via (1) the same mappings Π̂t,T when restricted to L̂T . The

restricted price system is unique as a family of mappings in the sense of Definition 2.1.
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Remark 2.5. Note that Π̂t,T in (3) can be defined for larger domains than L̂T , but only its restriction to a
family of spaces {L̂T } with property (2) is consistent with the “model” price system and, on those subspaces
L̂T , it is uniquely determined.

Notice, furthermore, that the context of Proposition 2.4 gives an example where the so-called “Hypothesis
H” holds (see [4]; see also the discussion around formula (1) in [1]), namely in the sense that the discounted
prices Π̂t,T , which are martingales in the smaller filtration F̂t, remain martingales also in the larger filtration
Ft.

3. Main result

A consequence of Proposition 2.4 is that the filtering (3) is independent of which pair (S, Q) is used to
represent the “model price system” {Πt,T }. In the pricing of interest rate derivatives it is customary to switch
the representation (S, Q) as is most appropriate [2, 3, 6].

The crucial question is now how to “filter”, if the natural numeraire in the model world is not or only noisily
observed in the real world, i.e., S is not F̂-adapted. Asked differently, does there exist – in the setting of
Proposition 2.4 but without the assumption that S is F̂-adapted – a process Ŝ such that the unique consistent
price system on the sub-spaces is generated by the triplet (Q, Ŝ, F̂)?

Proposition 3.1. Consider a price system {Πt,T } for the filtration F , a sub-filtration F̂ of F , and a set of
linear spaces L̂T ⊆ L∞(F̂T ) that can carry a price system that is consistent with {Πt,T }. If {Πt,T } is generated
by the triplet (S, Q,F) as in (1), then the unique consistent price system on the sub-filtration is given by

Π̂t,T (X) := ŜtE
Q[X/ŜT |F̂t] (4)

Ŝt := 1/EQ[1/St|F̂t], (5)

where, in order to guarantee right continuity of Ŝt in (5) and thus its uniqueness, we take the optional version
of the conditional expectation.

Proof. Fix a contingent claim X ∈ L̂T . Starting from (1), i.e.,

Πt,T (X)
St

= EQ

[
X

ST

∣∣∣∣Ft

]
,

we get on the one hand

EQ

[
Πt,T (X)

St

∣∣∣∣ F̂t

]
= EQ

[
X

ST

∣∣∣∣ F̂t

]
= EQ

{
XEQ

[
1

ST

∣∣∣∣ F̂T

] ∣∣∣∣ F̂t

}
. (6)

On the other hand

EQ

[
Πt,T (X)

St

∣∣∣∣ F̂t

]
= Πt,T (X)EQ

[
1
St

∣∣∣∣ F̂t

]
, (7)

where we have used the fact that the consistency condition (2) implies Πt,T (X) ∈ L̂t. From (6) and (7) we then
have

Πt,T (X) =
EQ

{
XEQ

[
1

ST

∣∣∣ F̂T

] ∣∣∣ F̂t

}
EQ

[
1
St

∣∣∣ F̂t

] .

�

Remark 3.2. The expression for the numeraire Ŝt in (5) becomes more intuitive by recalling that numeraires
appear in the denominator and by rewriting, consequently, relation (5) as 1/Ŝt = EQ{1/St| F̂t}.
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