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Abstract

The purpose of this study is to price interest rate derivatives by assuming
the spot rate a continuous-time Markov chain with a finite state space. Our
model is inspired by the paper Filipovic’ and Zabczyk [5]; we extend their
deterministic discrete time structure by one with random times and consider
also the multifactor case. We are able to price with the same approach various
interest rate derivatives, in particular bonds, caps and swaptions. We also
present some numerical results.
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1 Introduction

In their article [5] Filipovic’ and Zabczyk present an approach to obtain in discrete
time the analog of the affine term structure models in continuous time. They consider
the spot rate r(t) a Markov chain (MC) with a finite state space. Since the short rate
is a MC in discrete time, the number of jumps in a fixed time interval is deterministic.

In real markets the spot rate does not generally change at deterministic times
but it rather “jumps” at random times. This suggests to model the spot rate as a
continuous time Markov chain (CTMC) with a finite state space E = {r1, r2, . . . , rN},
N ∈ N, ri ∈ R, i = 1, . . . , N. Under a martingale measure P̃, equivalent to the
physical measure P, the transition intensity matrix of the chain is supposed to be
given by Q = {qi,j}i,j=1,··· ,N . Such a modeling approach appears also to be more
realistic with respect to the traditional diffusion-type models for the short rate. The
innovation introduced by this model with respect to [5] is represented by the fact that
the number of jumps of the spot rate between an evaluation time t and a maturity
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T (denoted by νt,T ), namely the number of transition of the MC, is random and can
take arbitrarily large values.

Continuous-time term structure models that allow also for jumps have already
been considered in the literature. We limit ourselves to mention here just a couple of
them. For the case of jump diffusions the article by Björk-Kabanov-Runggaldier [1]
illustrates how, by assuming an appropriate affine structure, the bond price can be
expressed in terms of solutions of a system of ODE’s. This approach is theoretically
interesting but does not consider derivative prices and it turns out to be difficult to
implement in practice. For a more general Levy driven model, the article by Eberlein
and Kluge [4] considers also Caps and Swaptions. Here the authors obtain explicit
analytic solution formulae in the scalar case that require however rather sophisticated
mathematical tools; moreover their numerical results do not concern the prices as
such, which is our main goal.

On the other hand, in our setup where the short rate evolves as a continuous
time Markov process, we are able to obtain explicit formulae for bond prices and
derivatives such as caps and swaptions that can actually be implemented to obtain
numerical results. In fact, the pricing of bonds and interest derivatives will be shown
to be particular cases of the pricing of a fictitious financial product, namely the
“Prototype product” that is an analog here of Arrow-Debreu prices and which rep-
resents a unified approach to the pricing of interest rate related products. We obtain
a computable expression of the price of the Prototype product by using a technique
based on a contracting operator and on the distribution of νt,T . Even though by our
approach we face a difficulty represented by the randomness of the jump times of the
spot rate, we are able to give an explicit computable formula for the distribution of
νt,T .

We furthermore generalize the one-factor short rate model discussed above by
considering a multi-factor short rate model in which the spot rate depends on several
correlated CTMCs. Under a particular multi-factor short rate model, bonds, caps
and swaptions can be viewed as particular cases of the Prototype product whose
price admits a computable explicit formula also when the short rate is driven by
more factors. The multi-factor short rate model can also be applied to the pric-
ing of defaultable bonds, where the pricing formula depends on the short rate and
default intensity processes. Finally we derive numerical results to illustrate the per-
formance of our approach: we compare our method with the tree method suggested
in [3] when both are considered for the pricing of a bond in a continuous time affine
term structure model. We point out that, while tree methods work well for scalar
models without jumps, our approach is applicable without substantially additional
difficulties also to the multivariate case and it can be used to approximate prices
in continuous time models involving jumps. We also would like to stress the fact
that our approach is specifically designed for CTMC models for the short rate which
appears to be more realistic than diffusion-type models or discrete time models with
fixed time instants.

In Section 2 we discuss the pricing approach based on the Prototype product
when the short rate is a CTMC; in Section 3 we derive the prices of bonds, caps
and swaptions by using the results obtained for the Prototype product pricing. In
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Section 4, by assuming that the short rate depends on several CTMCs, we discuss
the pricing of both bonds and other interest rate derivatives, including defaultable
bonds, by starting from the pricing of the Prototype product under a particular multi-
factor short rate model. To conclude, in Section 5, numerical results are presented
in support of the theory developed in the previous chapters.

2 Pricing of interest rate derivatives with a Markov

short rate: the Prototype product

In this section we consider a market model under which the spot rate is a single
CTMC: we introduce a fictitious financial product, the “Prototype product”, an
analog of Arrow-Debreu prices, and we show that, by using a technique based on a
contracting operator and on the distribution of νt,T , one obtains an explicit pricing
formula. Furthermore we briefly discuss the Prototype product pricing under a more
general setup when the spot rate is considered as a renewal process.

2.1 Market model

Let a filtered probability space be given by (Ω,F , (F)t∈R,P) where P is the physical
measure.

To introduce the model, consider first the price p(t, T ) at time t of a zero coupon
bond that matures in T > t. In a general setting the bond price has the following
representation

p(t, T ) = EeP[exp(− ∫ T

t

r(u)du
)
|Ft
]

where, in order to avoid arbitrage, P̃ is a martingale measure equivalent to P. If we
assume a Markov short rate, p(t, T ) can be expressed by means of specific quantities
that we are going to introduce next. In particular, we consider the spot rate r(t)
a continuous time Markov chain (CTMC) with a state space E = {r1, r2, . . . , rN},
N ∈ N and ri ∈ R+, i = 1, . . . , N . Denote by

• Q = (qi,j)1≤i,j≤N the transition intensity kernel homogeneous with respect to
the time;

• qi =
∑N

j=1

j 6=i
qi,j, i = 1, . . . , N the intensities associated with the state ri; i =

1, · · · , N

• the transition probabilities from the state ri to rj{
pi,j =

qi,j
qi

if i 6= j

pi,j = 0 if i = j.
(1)

Hence r(t) is a stochastic process with right-continuous piecewise constant trajecto-
ries where the jump times Ti (i = 1, 2, . . .) are random variables and, conditionally
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on a generic value rh (h = 1, . . . , N) of the process at time Ti, the interarrival times
Ti+1 − Ti are exponentially distributed:

(Ti+1 − Ti|r(Ti) = rh) ∼ Exp(qh) (2)

Therefore we may write (using temporarily p̄(t, T ) to denote the bond price at time
t with maturity T )

p̄(t, T ) = EeP[exp(rνt(t− Tνt))exp
(
−

νT−1∑
i=νt

ri(Ti+1 − Ti)− rνT
(T − TνT

)
)
|F r

t

]
(3)

where, for a generic time s, the random variable νs denotes the number of jumps of
the Markov process until s and r(s) = ri for s ∈ [Ti, Ti+1). In what follows, given
two generic times s and s with s < s, we denote by νs,s the number of jumps in the
interval [s, s).

2.1.1 Reduction to a simpler expression for bond prices

Notice first that, since {Ti ≤ s} ∈ F r
s and Ti is an F r-stopping time, we may

consider the family of σ−algebras, indexed by Ti, by putting

F r
Ti

= {A ∈ F r
T |A ∩ {Ti ≤ s} ∈ F r

s ,∀s ≤ T}. (4)

For simplicity we denote by F r
i the σ−algebra F r

Ti
.

Observe next that the factor exp(rνt(t−Tνt) in (3) can be determined on the basis
of the information at time t. This allows us to assume, without loss of generality,
that t = Tνt and, consequently, the bond price in (3) can be written in the simpler
form

p̄(t, T ) = EeP[exp(− νT−1∑
i=νt

ri(Ti+1 − Ti)− rνT
(T − TνT

)
)
|F r

νt

]
(5)

where F r
νt

= F r
t . In order to further simplify the expression in (5) we now show that

in many cases of interest, in particular when the values of the jump intensities are
large with respect to the values ri of the short rate, we may drop the last term in
the exponential in (5) and still obtain a value for bond price that is close to its value
in (5). To this effect let p̄(t, T ) be as in (5) and put

p(t, T ) = EeP[exp(− νT−1∑
i=νt

ri(Ti+1 − Ti)
)
|F r

νt

]
(6)

so that p̄(t, T ) ≤ p(t, T ). Furthermore, let

U := −
∑νT−1

i=νt
ri(Ti+1 − Ti)− rνT

(T − TνT
)

W := −
∑νT−1

i=νt
ri(Ti+1 − Ti)

implying that U ≤ W . We have now
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Proposition 2.1. The difference between p(t, T ) and p̄(t, T ) can be bounded from
above as follows

∆ := p(t, T )− p̄(t, T ) ≤ r̄

q̄

where r̄
q̄

:= maxi≤N
ri
qri

.

Proof Denoting by ξ a random variable taking a.s. values appropriately between
0 and W − U and, using a Taylor expansion up to first order, we have

∆ = EeP {eW − eU | F r
νt

}
= EeP {eU (eW−U − 1

)
| F r

νt

}
= EeP {eU (1 + eξ(W − U)− 1

)
| F r

νt

}
= EeP {eU+ξ (W − U) | F r

νt

}
≤ EeP {eW (W − U) | F r

νt

}
≤ EeP {(W − U) | F r

νt

}
= EeP {rνT

(T − TνT
) | F r

νt

}
≤ EeP {rνT

(TνT +1 − TνT
) | F r

νt

}
= EeP {EeP {rνT

(TνT +1 − TνT
) | F r

νT

}
| F r

νt

}
= EeP { rνT

qrνT

| F r
νt

}
≤ r̄

q̄

Basically this result states that, whenever the jumps are sufficiently frequent,
then one can work equally well with the simpler expression (6) for the bond prices
and this is what we are going to do below defining accordingly also the price of a
Prototype product.

2.2 The Prototype product

The expression (6) for the bond prices leads us to introduce a more general financial
product that we shall call Prototype product and that is related to Arrow-Debreu
prices. We shall show that bond prices as well as interest rate derivatives can be
obtained either as special cases or as linear combinations of Prototype products.

Definition 2.2. A Prototype product is a financial product which guarantees to
deliver a certain payoff ϑ0(rνT

) at maturity T . This payoff depends on the value
taken by the spot rate at the date of maturity T . Its price at time t < T is defined as

Vϑ0,t,T (rνt) = EeP[exp(− νT−1∑
i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT

)|F r
νt

]
(7)

and the Prototype payoff ϑ0(·) is supposed to have the following form

ϑ0(·) =
N∑
i=1

wiI{·=ri}, ri ∈ E, wi ∈ {0} ∪ R+ (8)
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Remark 2.3. Corresponding to the full bond pricing formula for p̄(t, T ) in (5), for
the Prototype product we would have the expression

V̄ϑ0,t,T (rνt) = EeP[exp(− νT−1∑
i=νt

ri(Ti+1 − Ti)− rνT
(T − TνT

)
)
ϑ0(rνT

)|F r
νt

]
(9)

Since ϑ0(·) ∈ [0,maxi≤N wi] and in all our applications below wi ≤ 1, the same
approximation as in Proposition 2.1 for the bond prices holds here too. For this
reason, also for the Prototype product we shall work with the simpler expression in
(7).

In the following we give a general representation of the price of Prototype product
as defined in (7).

Proposition 2.4. The price at time t of the Prototype product with maturity T
admits the following representation

Vϑ0,t,T (rνt) =
+∞∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt) (10)

where νt,T = νT − νt represents the number of jumps occurring in the interval [t, T ]
and

ϑk(rνt) , EeP[exp(− νt+k−1∑
i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνt+k)|F r

νt

]
, k ∈ N. (11)

Proof The price of the Prototype product in (7) can be represented as follows

Vϑ0,t,T (rνt)
(7)
= EeP[exp(− νT−1∑

i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT

)|F r
νt

]

= EeP[EeP[exp(− νt+νt,T−1∑
i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT

)|F r
νt
∨ σ{νt,T}

]
|F r

νt

]

= EeP[EeP[exp(− νt+νt,T−1∑
i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT

)|F r
νt
∨ σ{νt,T}

]
|rνt

]
(11)
= EeP[ϑνt,T

(rνt)|rνt ]; (12)

since νt,T is a discrete random variable, we can write the expectation as the following
sum

Vϑ0,t,T (rνt) =
+∞∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt).

The representation (10) stresses the fact that we need to know both the distribution
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of νt,T and an explicit expression for the functions ϑk, which we shall study later on,
and that to obtain a computable expression for Vϑ0,t,T one has to truncate the infinite
sum. For this purpose we shall show that the functions ϑk defined in (11) admit,
for each k ∈ N, a recursive representation that will also allow in the next subsection
to introduce a contracting operator which gives the possibility to approximate up to
any level of precision the price of the Prototype product by a truncated series.

Lemma 2.5. Let r(t) be a CTMC with state space E and ϑ0(·) the Prototype payoff
as in (8). For fixed k, η ∈ N, the quantity

ϑk(rη) = EeP[exp(− η+k−1∑
i=η

ri(Ti+1 − Ti)
)
ϑ0(rη+k)|F r

η

]
(13)

can be computed recursively by{
ϑh(rη+k−h) = EeP[e−rη+k−h(Tη+k−h+1−Tη+k−h)ϑh−1(rη+k−h+1)

∣∣F r
η+k−h

]
∀h = 1, . . . , k

(14)

The proof of Lemma 2.5 is given in the Appendix.

2.3 A contraction mapping application

Inspired by formula (14) for the functions ϑk, we consider a function space M defined
by

M , {ϑ : E → {0} ∪ R+} (15)

so that ϑ(v) =
∑N

i=1wiI{v=ri} where wi ∈ {0} ∪ R+, ∀i = 1, . . . , N . We introduce
the operator T on M by

T ϑ(v) , EeP
v [e

−vTϑ(u)] with T ∼ Exp(q(v)), ϑ ∈ M (16)

where, by considering a generic i ∈ N, the quantities introduced in the above defini-
tion can be interpreted as follows

• v and u are the spot rate ri at jump time Ti and ri+1 at jump time Ti+1

respectively,

• q(v) is the intensity associated with each v of state space E.

Remark 2.6. By Lemma 2.5, the functions ϑh defined by (11) are elements of M

and they can be obtained by iterating the operator T in (16): ϑh = T ϑh−1 ∈ M.

In the following Propositions we shall show that the contraction property of T allows
to obtain a computable approximation of the actual Prototype product price Vϑ0,t,T

by a finite sum and with arbitrary precision.

Proposition 2.7.
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a) The function space M is closed w.r.t. T , namely T : M → M

b) T is a contracting operator: For ϑ, ϑ′ ∈ M we have

||T ϑ− T ϑ′|| ≤ γ||ϑ− ϑ′|| (17)

with the norm || · || defined by ||f || , supv∈E |f(v)|, E the finite state space and

γ , supv∈E
q(v)
v+q(v)

< 1

c) The fixed point of T is identically equal to zero: T ϑ∗ = ϑ∗ where ϑ∗ ≡ 0.

Proof
a) By considering ϑ(u) =

∑N
m=1 bmI{u=rm} ∈ M, we have that

T ϑ(v)
(16)
= EeP

v [e
−vT · ϑ(u)] = EeP

v

[
e−vT ·

N∑
m=1

bmI{u=rm}

]
=

N∑
n=1

EeP[e−vT N∑
m=1

bmI{u=rm}|v = rn

]
I{v=rn} =

N∑
n=1

b̃nI{v=rn} (18)

with b̃n ,
∑N

m=1 bmEeP[e−vT · I{u=rm}|v = rn] ∈ R, ∀n = 1, . . . , N .

b) By Jensen’s inequality we have

||T ϑ(v)− T ϑ′(v)|| ≤
(

sup
v∈E

Ev[e
−vT]

)
· ||ϑ(u)− ϑ′(u)||

where

sup
v∈E

Ev[e
−vT] = sup

v∈E

∫ +∞

0

e−vsq(v)e−q(v)sds = sup
v∈E

q(v)

v + q(v)
, γ

Moreover γ < 1 because q(v) and v are always positive quantities.

c) By considering ϑ(·) = 0 in definition (16) we obtain T ϑ(v) = Ev[e
−vT · 0] = 0. By

its unicity the fixed point of the operator T is thus equal to zero.

Proposition 2.8. Let the functions ϑk be defined as in Lemma 2.5 for a given ϑ0.
For an arbitrarily small ε, for γ as in b) of Proposition 2.7 and for nε ∈ N such that

nε ≥

⌈
log(ε(1− γ))

log(γ)
− supv∈E |ϑ1(v)− ϑ0(v)|

log(γ)

⌉
, (19)

we have that

V ε
ϑ0,t,T

(rνt) ,
nε∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt) (20)

approximates the actual price of the Prototype product defined as in (10) in the sense
that

|V ε
ϑ0,t,T

(rνt)− Vϑ0,t,T (rνt)| < ε uniformily in (t, T, rνt) (21)
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Proof Follows directly from Proposition 2.7.

2.4 The functions ϑk, explicit formula

In accordance with Remark 2.6, the functions ϑk defined by (11) are elements of the
state space M and consequently they admit the representation

ϑk(·) =
N∑
m=1

wkmI{·=rm}, k ≥ 1 (22)

where, for a fixed natural number k, the coefficients wkm are real values ∀ m =
1, . . . , N .

In the next Lemma we present a simpler representation for ϑk(·) by introducing
vector notation.

Definition 2.9. Let r = [r1, . . . , rN ]′ be the N-dimensional vector with components
the values of state space E and define

• θ0(r) , [w1, . . . , wN ]′ where the components correspond to the Prototype payoff
ϑ0(·) in (8),

• θk(r) = [wk1 , . . . , w
k
N ]′, with wkm corresponding to formula (22).

In other terms, for k ∈ N, {ϑk(ri)}{ri∈E} is the collection of all possible values
assumed by the function ϑk and, for a fixed ri ∈ E, ϑk(ri) is the i-th component of
vector θk(r).

Lemma 2.10. Let r(t) be a CTMC with state space E and transition kernel Q =
(qi,j)1≤i,j≤N . The vectors θk(r) in Definition 2.9 admit, for k ∈ N, the representation

θk(r) = Q̃k · θ0(r), k ∈ N (23)

with Q̃0 , IN the identity matrix and

Q̃ =


0 q1,2

r1+q1

q1,3

r1+q1
· · · q1,N

r1+q1
q2,1

r2+q2
0 q2,3

r2+q2
· · · q2,N

r2+q2
...

...
. . .

...
...

qN−1,1

rN−1+qN−1

qN−1,2

rN−1+qN−1
· · · 0

qN−1,N

rN−1+qN−1
qN,1

rN+qN

qN,2

rN+qN
· · · qN,N−1

rN+qN
0

 . (24)

The proof of Lemma 2.10 is given in the Appendix.
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2.5 Distribution of νt,T

The discrete random variable νt,T represents the number of jumps of the process r(·)
between t and T . We now compute P̃(νt,T = k|rνt = rm), namely the probability of
k jumps occurring in the interval [t, T ] when the process r(·) at time t is equal to
rm, for all k ∈ N and rm ∈ E, m ∈ {1, . . . , N}.

Lemma 2.11. Let r(t) be a CTMC with state space E and transition kernel Q =
(qi,j)1≤i,j≤N then, for every positive k ∈ N and rm ∈ E with m ∈ {1, . . . , N}, we have

P̃(νt,T = k|rνt = rm) =
N∑

i=1
i6=m

qm,i

∫ T

t

e−qm(s−t)P̃(νs,T = k − 1|rνs = ri)ds, with t < T.

(25)

Proof Let us denote the first jump time after t as the random variable τ̂ , that is
τ̂ = inf{u > 0 : νt+u > ν(t+u)−}. By properties of CTMC’s we observe that (τ̂ |rνt =
rm) ∼ Exp(qm). Consider now the random variable τ defined as follows:

τ , τ̂ + t;

since the density function of τ̂ is P̃(τ̂ ∈ ds|rνt = rm) = qme
−qmsds, the density

function of τ is given by

P̃(τ ∈ ds|rνt = rm) = P̃(τ̂ + t ∈ ds|rνt = rm) = qme
−qm(s−t)ds, s > t. (26)

We can now proceed to prove the statement. In fact, by the law of total probability,
we have that

P̃(νt,T = k|rνt = rm) =

∫ T

t

N∑
i=1

P̃(τ ∈ ds, rντ = ri|rνt = rm)P̃(νs,T = k − 1|rνs = ri)

(27)
where ri (i = 1, . . . , N) are all possible states reachable at the jump time τ . By
properties of CTMC’s, the random variables τ and rντ are, conditionally on rνt ,
independent and so

P̃(τ ∈ ds, rντ = ri|rνt = rm) = P̃(τ ∈ ds|rνt = rm)P̃(rντ = ri|rνt = rm)
(26)
= qme

−qm(s−t)pm,ids.

Hence, by (27), we obtain

P̃(νt,T = k|rνt = rm) =

∫ T

t

N∑
i=1

pm,iqme
−qm(s−t)P̃(νs,T = k − 1|rνs = ri)ds

(1)
=

N∑
i=1
i6=m

qm,i

∫ T

t

e−qm(s−t)P̃(νs,T = k − 1|rνs = ri)ds.

We derive now an explicit expression for the probabilities defined in (25):
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Proposition 2.12. Let r(t) be a CTMC with state space E and transition kernel
Q = (qi,j)1≤i,j≤N , then, for every positive k ∈ N and ri0 ∈ E, i0 ∈ {1, . . . , N} one
has that

P̃(νt,T = k|rνt = ri0) =
N∑

i1,...,ik=1

i1 6=i0,i2 6=i1,...,ik 6=ik−1

e−qik (T−t)ϕk(Q) ·Ψk(0, T − t, Q)

P̃(νt,T = 0|rνt = ri0) = e−qi0 (T−t)

(28)

with Ψk the following multiple integral

Ψk(s, s,Q) ,
∫ s

s

e(qi1−qi0 )t1

∫ s

t1

e(qi2−qi1 )t2 · · ·
∫ T

tk−1

e(qik−qik−1
)tkdtk . . . dt2dt1, ∀0 ≤ s < s

(29)
and

ϕk(Q) , qi0,i1 · . . . · qik−1,ik . (30)

The proof of Proposition 2.12 is given in the Appendix.

2.6 The explicit pricing formula

We are now able to give an explicit representation of the approximation of the price
of the Prototype product introduced in Proposition 2.8:

Theorem 2.13. Under the same hypotheses and notations of Proposition 2.8 and
Lemma 2.10 and assuming that at the evaluation time t the spot rate is equal to a
fixed ri ∈ E, the approximated price V ε

ϑ0,t,T
(rνt) of the Prototype product admits the

following explicit representation

V ε
ϑ0,t,T

(rνt)|rνt=ri
=

nε∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|rνt = ri), (31)

where Q̃ is defined in (24), θ0(r) is as in Definition 2.9 and [v]i denotes, for a generic
vector v, its i-th element.

Proof Follows directly from the definition of V ε
ϑ0,t,T

(rνt) in Proposition 2.8 and
formula (23).

Remark 2.14. By (10) and (23) it follows that the actual bond price can be expressed

as Vϑ0,t,T (rνt)|rνt=ri
=
∑+∞

k=0[Q̃
k·θ0(r)]iP̃(νt,T = k|rνt = ri) which is just the expression

in (31) for the sum over k extended up to ∞. This expression can equivalently be
written as

Vϑ0,t,T (rνt)|rνt=ri
= EeP[[Q̃νt,T · θ0(r)]i|rνt = ri]. (32)
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Remark 2.15. Under the assumption that Q̃ defined by (24) is diagonalizable,
V ε
ϑ0,t,T

(rνt) admits also a matrix representation

V ε
ϑ0,t,T

(rνt)|rνt=ri
= e′i · S ·

 EeP
ε [d

νt,T

1 |rνt = ri] 0 0

0
. . . 0

0 0 EeP
ε [d

νt,T

N |rνt = ri]

 · S−1 · θ0(r)

where S is an N × N matrix the columns of which are the eigenvectors of Q̃,
(dj)j=1,...,N are the eigenvalues of Q̃, ei is the ith unit vector, θ0(r) is as in Defi-

nition 2.9 and EeP
ε [d

νt,T |rνt = ri] ,
∑nε

k=0 d
kP̃(νt,T = k|rνt = ri) for a real number d

and nε given by (19).

In the following Remark we hint at the possibility to generalize this framework
by considering the interest rate as a renewal process.

Remark 2.16. The pricing formula for the Prototype Product Vϑ0,t,T (rνt)

=
∑+∞

k=0 ϑk(rνt) · P̃(νt,T = k|rνt) given by (10) holds also when the spot rate r(t) is a
general renewal process which takes values in a finite set E = {r1, . . . , rN}. We have
in fact that

• the functions ϑk(rνt) can be represented recursively, as in Remark 2.6, by using
an operator T defined similarly to the one introduced in (16), namely

T ϑ(v) , EeP
v [e

−vTϑ(u)] with T ∼ F (q(v)), ϑ ∈ M

where T represents the interarrival time with a general distribution F which
depends on the parameter q(v) and M is defined by (15);

• the probabilities P̃(νt,T = k|rνt) can be obtained by a formula similar to (25).
More precisely, while in the proof of Lemma 2.11 the time τ is exponentially
distributed (see formula (26)), in this case τ is distributed according to F .

3 Bond, Cap and Swaption pricing with a Markov

short rate

Once we have presented the Prototype product pricing under the assumption that
the spot rate is a CTMC, we are able to give, for specific contracts (bonds, caps,
swaptions, bond options,etc.), a representation of the price as a linear combination
of Prototype products. We consider as price of the Prototype product the one given
by the simpler formula (7) which (see Remark 2.3) can be considered as a valid alter-
native to the full pricing formula (9) especially when jumps are sufficiently frequent
in the sense that the values of the intensities qi are large with respect to the values
ri of the short rate. Below we shall limit ourselves to bonds, caplets and swaptions
letting the matrix Q̃ be as in (24) and the distribution of the random variable νt,T
conditionally on r(t) as given by (28).

12



3.1 Bond pricing

The bond price p(t, T ) is simply a Prototype product with a particular payoff ϑ0 ≡ 1,
that is ϑ0(·) =

∑N
i=1wiI{·=ri} where wi = 1, i = 1, . . . , N . We shall here denote p(t, T )

by p(t, T ; r(t)) because a T -bond price evaluated at time t depends on the value of
the spot rate at time t. Hence a computable approximation of the bond price can
be obtained from the pricing formula of a Prototype product, namely we have

Proposition 3.1. Let r(t) be a CTMC with state space E and transition kernel
Q = (qi,j)1≤i,j≤N ; let its value, at the initial time t when already νt jumps have
occurred, be r(t) = ri for a fixed i = 1, . . . , N . For an arbitrarily small ε and nε ∈ N
such that

nε ≥

⌈
log(ε(1− γ))

log(γ)
−

supv∈E |
∑N

i=1

(
qi

ri+qi
− 1
)
I{v=ri}|

log(γ)

⌉
, (33)

it follows that, denoting by [v]i the i-th element of a generic vector v and given
θ0(r) = [1, . . . , 1]′ ∈ RN , the quantity

pε(t, T ; r(t)) ,
nε∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|r(t) = ri) (34)

approximates the bond price p(t, T ; r(t)) in the sense that

|pε(t, T ; r(t))− p(t, T ; r(t))| < ε uniformly in (t, T, r(t)). (35)

Proof Follows directly from Theorem 2.13 for the vector θ0(r) = [1, . . . , 1]′ ∈ RN .

It is interesting to observe that, by considering the spot rate r(·) as an homo-
geneous time CTMC, by Proposition 2.12 the distribution of νt,T does not depend
separately on t and T but only on the length T − t and consequently the quantity
pε(t, T ; r(t)) defined in Proposition 3.1 has the same property. For this reason we
shall use the following notation:

Notation 3.2. The approximated price pε(t, T ; r(t)) of a bond evaluated at the time
t with the initial value of the spot rate equal to rm ∈ E admits the following repre-
sentation

pε(t, T ; r(t))|r(t)=rm = pε(rm, T − t) (36)

where pε(rm, T − t) , pε(0, T − t; r(0)|r(0)=rm.

13



3.2 Cap pricing

Following the notations in Brigo-Mercurio [2], let us consider a set of payment dates
Sα,β = {Sα+1, . . . , Sβ}, α < β ∈ N such that, for a fixed date t > 0, t < Sα < Sα+1 <
. . . < Sβ and this implies a set of tenors {si , Si − Si−1; i = α + 1, . . . , β}. For the
cap pricing we limit ourselves to the caplets because the cap is viewed as a sum of
caplets. For a fixed i ∈ {α+1, . . . , β}, the i-th caplet is a call option on the Libor rate

Li(t) , L(t, Si−1, Si) = 1
si

(p(t,Si−1)
p(t,Si)

−1
)
. Assuming a unitary nominal capital, we have

on the given filtered probability space (Ω,F , (F)t∈R, P̃) with P̃ a martingale measure

Cpl(t, Si) = siE
eP[exp(− ∫ Si

t

r(u)du
)
(Li(Si−1)−K)+

∣∣∣Ft] (37)

whereK is the strike price. By double conditioning and using the fact that p(Si−1, Si) =

EeP[e− R Si
Si−1

r(u)du|FSi−1
], we obtain the alternative representation

Cpl(t, Si) = (1 +Ksi)E
eP[e− R Si−1

t r(u)du
( 1

1 +Ksi
− p(Si−1, Si)

)+∣∣∣Ft] (38)

We shall here denote Cpl(t, Si) by Cpl(t, Si; r(t)) because the price of the i-th caplet,
evaluated at time t, depends on the value of the spot rate at time t. Considering
the spot rate as a CTMC, we can particularize formula (38) as we have done for the
bond pricing in (6), namely

Cpl(t, Si; r(t)) = (1 +Ksi)

·EeP[ exp
(
−
∑νSi−1

−1

j=νt
rj(Tj+1 − Tj)

)(
1

1+Ksi
− p(Si−1, Si; r(Si−1))

)+∣∣∣F r
νt

] (39)

We show now that the above pricing formula for the caplet can be viewed as a
linear combination of N different Prototype products, whereby the infinite sum is
approximated by a finite sum (see Theorem 2.13). We have in fact

Proposition 3.3. Let r(t) be a CTMC with state space E and transition kernel
Q = (qi,j)1≤i,j≤N ; let its value, at the initial time t when νt jumps have already
occurred, be r(t) = ri for a fixed i = 1, . . . , N . Let us consider an arbitrarily small ε
and (nmε )m=1,...,N ∈ N such that

nmε ≥

⌈
log(ε(1− γ))

log(γ)
−

supv∈E
∣∣ψm1 (v)− ψm0 (v)

∣∣
log(γ)

⌉
, with

ψm1 (v) ,
N∑

i0,i1=1

i0 6=i1

wi0(m)
qi1,i0

ri1 + qi1
I{v=ri1}, ψ

m
0 (v) ,

N∑
i0=1

wi0(m)I{v=ri0}

wi0(m) =

{
0, i0 6= m
1, i0 = m,

m = 1, . . . , N,

(40)
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then, letting V ε
ψm

0 ,t,Si−1
be as in (31) for ϑ0 = ψm0 , T = Si−1 and pε(rm, si) as in (36),

we have that

Cplε(t, Si; r(t))|r(t)=rl , (1 +Ksi)
N∑
m=1

(
1

1 +Ksi
− pε(rm, si)

)+

V ε
ψm

0 ,t,Si−1
(rl) (41)

is a good approximation of the caplet price Cpl(t, Si; r(t)) in the sense that

Cplε(t, Si; r(t))
ε→0−→ Cpl(t, Si; r(t)) uniformly in (t, Si−1, Si, r(t)). (42)

Proof The price of a caplet can be written as follows

Cpl(t,Si;r(t))
1+Ksi

= EeP
[

exp
(
−
∑νSi−1

−1

j=νt
rj(Tj+1 − Tj)

)(
1

1+Ksi
− p(Si−1, Si; r(Si−1))

)+∣∣∣F r
νt

]

= EeP
[∑N

m=1 exp
(
−
∑νSi−1

−1

j=νt
rj(Tj+1 − Tj)

)(
1

1+Ksi
− p(Si−1, Si; rm)

)+

I{rνSi−1
=rm}

∣∣∣F r
νt

]
(36)
=
∑N

m=1

{(
1

1+Ksi
− p(rm, si)

)+

EeP
[

exp
(
−
∑νSi−1

−1

j=νt
rj(Tj+1 − Tj)

)
I{rνSi−1

=rm}

∣∣∣F r
νt

]}

=
∑N

m=1

{(
1

1+Ksi
− p(rm, si)

)+

EeP
[

exp
(
−
∑νSi−1

−1

j=νt
rj(Tj+1 − Tj)

)
ψm0 (rνSi−1

)
∣∣∣F r

νt

]}
=
∑N

m=1

(
1

1+Ksi
− p(rm, si)

)+

Vψm
0 ,t,Si−1

(rνt)

Hence, by using the result of Propositions 2.8 and 3.1 by which

1. pε(rm, Si − Si−1)
ε→0−→ p(rm, Si − Si−1) uniformly in (Si−1, Si, rm)

2. V ε
ψm

0 ,t,Si−1
(rl)

ε→0−→ Vψm
0 ,t,Si−1

(rl) uniformly in (t, Si−1, rl), ∀m = 1, . . . , N

we obtain the statement.

3.3 Swaption pricing

Using the same notations as in Subsection 3.2, a swaption is the option of entering, at
a specific date Sα, a Payer Forward Swap (PFS), a contract in which the owner pays
the “fixed leg”

∑β
i=α+1Ksip(t, Si) (that is the value at time t of the total amount

to be paid with a fixed interest rate K along the set of payments dates Sα,β) and

receives the “floating leg”
∑β

i=α+1 Li(t)sip(t, Si) (that is the value at time t of the
total amount to be received at the Libor rate Li(t) rate along Sα,β). The swaption
price is given by

Swoptt(Sα, Sα,β) = EeP
[
exp
(
−
∫ Sα

t

r(u)du
)
(PFSβα(Sα, K))+

∣∣∣F r
νt

]
(43)
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where

PFSβα(t,K) , p(t, Sα)− p(t, Sβ)−K

β∑
h=α+1

shp(t, Sh) (44)

is the value at time t of the PFS. When the short rate is given by a CTMC, the
swaption price can be written as follows in accordance with what we had done for
the bond pricing in (6)

Swoptt(Sα, Sα,β; r(t)) = EeP
[

exp
(
−

νSα−1∑
j=νt

rj(Tj+1 − Tj)
)
(PFSβα(Sα, K))+

∣∣∣F r
νt

]
(45)

and, similarly to the caplet price, it can be written as a linear combination of N
Prototype products, whereby the infinite sum is approximated by a finite sum (see
again Theorem 2.13).

Proposition 3.4. Let r(t) be a CTMC with state space E and transition kernel
Q = (qi,j)1≤i,j≤N ; let its value, at the initial time t when νt jumps have already
occurred, be r(t) = ri for a fixed i = 1, . . . , N . Let us consider an arbitrarily small ε
and (nmε )m=1,...,N ∈ N such that

nmε ≥

⌈
log(ε(1− γ))

log(γ)
−

supv∈E
∣∣ψm1 (v)− ψm0 (v)

∣∣
log(γ)

⌉
, with

ψm1 (v) ,
N∑

i0,i1=1

i0 6=i1

wi0(m)
qi1,i0

ri1 + qi1
I{v=ri1}, ψ

m
0 (v) ,

N∑
i0=1

wi0(m)I{v=ri0}

wi0(m) =

{
0, i0 6= m
1, i0 = m,

m = 1, . . . , N,

then, letting V ε
ψm

0 ,t,Sα
be as in (31) for ϑ0 = ψm0 , T = Sα and pε(rm, Sh − Sα) as in

(36), we have that

Swoptεt(Sα, Sα,β; r(t))|r(t)=rl
=
∑N

m=1

(
1− pε(rm, Sβ − Sα)−K

∑β
h=1+α shpε(rm, Sh − Sα)

)+

· V ε
ψm

0 ,t,Sα
(rl)

(46)
is a good approximation of the swaption price Swoptεt(Sα, Sα,β; r(t)) in the sense that

Swoptεt(Sα, Sα,β; r(t))
ε→0−→ Swoptt(Sα, Sα,β; r(t)) uniformly in (t, Sα, Sα,β, r(t)).

(47)

Proof Analogous to the proof of Proposition 3.3 using (44).
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4 Pricing of interest rate derivatives when the

short rate depends on several correlated CTMCs:

a multi-factor approach

Until now we have considered the pricing of interest rate derivatives when the short
rate is given by a single CTMC. However one can suppose that the value of the
short rate depends on several factors (such as e.g. the credit spread, inflation rate,
etc.) to obtain a more flexible model for the evolution of the spot rate. In the
following we shall present a two-factor model in which the short rate is represented
by a linear combination of two correlated CTMC’s and we shall see how the approach
developed in Section 2 can be generalized when more factors are considered. As a
specific application of a two-factor model one can consider defaultable bonds.

4.1 Market model

As a means to introduce correlation we consider two CTMCs X and Y with the re-
spective transition kernels dependent on a discrete random variable Z taking values in
Z = {z1, . . . , zM} with distribution π = {π1, . . . , πM} = {P̃(Z = z1), . . . , P̃(Z =

zM)}, where P̃ is a martingale measure (martingale modeling). We make the follow-
ing assumptions

Assumption 4.1. X(t;Z) denotes a CTMC with state space EX = {x1, . . . , xN} and
transition intensity matrix QX(Z) = (q(Z)Xi,j)1≤i,j≤N in the following sense: given a

fixed value z̄ ∈ Z, the process X(t) , (X(t;Z)|Z = z̄) is a CTMC with state space
EX = {x1, . . . , xN} (N ∈ N and xi ∈ R+ for each i = 1, . . . , N) where

• QX(z̄) = (q(z̄)Xi,j)1≤i,j≤N is the transition kernel homogeneous with respect the
time (with q(z̄)Xi,j ∈ R),

• q(z̄)Xi =
∑N

j=1

j 6=i
q(z̄)Xi,j, i = 1, . . . , N is the intensity associated with the state xi.

Moreover, being TX
i the random time at which the i-th jump of X(t;Z) occurs, we

have that

• given a generic value xh (h = 1, . . . , N) of the process X(t; z̄) at time TX
i , the

interarrival time TX
i+1 − TX

i is exponentially distributed with parameter q(z̄)Xh
under the measure P̃ (namely (TX

i+1 − TX
i |X(Ti) = xh) ∼ Exp(q(z̄)Xh ));

• for a generic time s ≥ 0, ν(z̄)Xs denotes the number of jumps of X(t;Z) until
s;

• The filtration generated by the process X up to the stopping time TXi is defined
as (see (4))

HTX
i

= HX
i = {A ∈ FX

T |A ∩ {TX
i ≤ s} ∈ FX

s ,∀s ≤ T}

and, for s ∈ [TXi , T
X
i+1), we put Xi , X(s, Z) (similarly Xi(z̄) , X(s, z̄) if we

consider a realization z̄ of the r.v. Z);
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• for two generic times s and s such that s < s, the random variable ν(z̄)Xs,s
denotes the number of jumps of X in the interval [s, s).

Assumption 4.2. Y (t;Z) (analogously to the definition of X(t;Z)) denotes a CTMC

with state space EY = {y1, . . . , y eN} (Ñ ∈ N) and transition intensity matrix QY (Z) =
(q(Z)Yi,j)1≤i,j≤ eN . The notations introduced for the stochastic process X are also valid
for Y (t;Z), but now the filtration generated by the process Y up to the stopping time
T Yi is

GTY
i

= GYi = {A ∈ FY
T |A ∩ {TY

i ≤ s} ∈ FY
s ,∀s ≤ T}

and, for s ∈ [T Yi , T
Y
i+1), we put Yi , Y (s, Z) (similarly Yi(z̄) , Y (s, z̄) if we consider

a realization z̄ of the r.v. Z).

Notice that, by the above definitions, the CTMCs X and Y are, conditionally on
Z, mutually independent.

Let us now consider the short rate as given by

r(t) = aX(t;Z) + b Y (t;Z) , a, b ∈ R, t ≥ 0. (48)

For the representation of bond prices in this market model we follow the same
considerations as in Subsection 2.1.1. In particular, we shall assume without loss of
generality, but also with some abuse of notation, that t = TX

νX
t

= T Y
νY

t
(notice that,

although the event TX
νX

t
= T Y

νY
t

has probability zero, we make this formal assumption

in the sense that, analogously to what discussed in subsection 2.1.1, the contribution
to the price at time t coming from the intervals [TX

νX
t
, t] or [T Y

νY
t
, t] can be separately

precalculated on the basis of the information available at time t). Furthermore,

defining on the probability space (Ω,F , (Ft)t∈R, P̃) with Ft , Ht∨Gt = HTX

νX
t

∨GTY

νY
t

and P̃ a martingale measure

p̄(t, T ;XνX
t
, YνY

t
) = EeP

[
exp
(
− a

∑ν(Z)X
T −1

i=νX
t

Xi(T
X
i+1 − TX

i )− b
∑ν(Z)Y

T −1

j=νY
t

Yj(T
Y
j+1 − TY

j )
)

· exp
(
− aXνX

T
(T − TνX

T
)− bYνY

T
(T − TνY

T
)
)
|Ft

]
(49)

and

p(t, T ;XνX
t
, YνY

t
) =

EeP[exp(− a
∑ν(Z)X

T −1

i=νX
t

Xi(T
X
i+1 − TX

i )− b
∑ν(Z)Y

T −1

j=νY
t

Yj(T
Y
j+1 − TY

j )

)
|Ft
]
,

(50)
we obtain the following analog of Proposition 2.1, namely
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Proposition 4.3. We have

∆ := p(t, T ;XνX
t
, YνY

t
)− p̄(t, T ;XνX

t
, YνY

t
) ≤ a

x̄

q̄X
+ b

ȳ

q̄Y

where x̄
q̄X := maxi≤N

xi

qX
i

; ȳ
q̄Y := maxj≤ eN yj

qY
j
.

Proof Putting here

U := −a
∑ν(Z)X

T −1

i=νX
t

Xi(T
X
i+1 − TX

i )− b
∑ν(Z)Y

T −1

j=νY
t

Yj(T
Y
j+1 − TY

j )

− aXνX
T

(T − TνX
T

)− bYνY
T
(T − TνY

T
)

W := −a
∑ν(Z)X

T −1

i=νX
t

Xi(T
X
i+1 − TX

i )− b
∑ν(Z)Y

T −1

j=νY
t

Yj(T
Y
j+1 − TY

j )

and following the same considerations as in the proof of Proposition 2.1, we arrive
at

∆ := p(t, T ;XνX
t
, YνY

t
)− p̄(t, T ;XνX

t
, YνY

t
) ≤ EeP[(W − U) | F r

νt

]
= EeP[aXνX

T
(T − TνX

T
) + bYνY

T
(T − TνY

T
) | F r

νt

]
≤ EeP[EeP[aXνX

T
(TνX

T +1 − TνX
T

) | F r
νT

]
| F r

νt

]
+EeP[EeP[bYνY

T
(TνY

T +1 − TνY
T
) | F r

νT

]
| F r

νt

]
= EeP [a X

νX
T

qX

νX
T

+ b
Y

νY
T

qY

νY
T

| F r
νt

]
≤ a x̄

q̄X + b ȳ
q̄Y

Analogously to the scalar case, also this result here states basically that, whenever
the jumps of X and Y are sufficiently frequent, then one can work equally well with
the simpler expression (50) for the bond prices rather than with the full expression
in (49) and this is what we are going to do below, defining accordingly also the price
of the Prototype product.

4.2 The Prototype product and an explicit representation
for the pricing formula

In order to generalize the Definition 2.2 of the Prototype product to the present
situation, we present a result which will be useful to reduce the problem of the
Prototype Product pricing to one that is simpler to treat:
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Lemma 4.4. Let X(Z)
.
= (X(s, Z),Hs)s∈[t,T ] and Y (Z)

.
= (Y (s, Z),Gs)s∈[t,T ] be two

stochastic processes of which the dynamics depend on a random variable Z taking
values in Z = {z1, . . . , zM} with distribution π = {π1, . . . , πM}. By assuming that,
conditionally on Z, the processes X and Y are independent, it follows that

EeP[f(X(Z))g(Y (Z))|Ht ∨ Gt] =
M∑
h=1

EeP[f(X(zh))|Ht]E
eP[g(Y (zh))|Gt]πh, ∀T > t ≥ 0

(51)
where f, g : R → R are two generic functions.

Proof By the tower property of conditional expectations it follows that

EeP[f(X(Z))g(Y (Z))|Ht ∨ Gt]

= EeP[EeP[f(X(Z))g(Y (Z))|σ{Z} ∨ Ht ∨ Gt]
∣∣∣Ht ∨ Gt

] (52)

and, by using arguments of independence,

(52) = EeP[EeP[f(X(Z))|σ{Z} ∨ Ht ∨ Gt]E
eP[g(Y (Z))|σ{Z} ∨ Ht ∨ Gt]

∣∣∣Ht ∨ Gt
]

=
M∑
h=1

EeP[f(X(zh))|Ht]E
eP[g(Y (zh))|Gt]πh. (53)

We introduce now the Prototype Product when the short rate is given by (48).

Definition 4.5. A Prototype product is a financial product which guarantees to
deliver a certain payoff Θ0 at maturity T . This payoff depends on the value taken by
the spot rate at the date of maturity T . Under the two-factor short-rate model (48)
with the factors X and Y defined as in Assumptions 4.1 and 4.2, the price of the
Prototype product at time t < T is, analogously to Definition 2.2, represented by

VΘ0,t,T (XνX
t
, YνY

t
) = EeP[DF (t, T ; r) ·Θ0(Xν(Z)X

T
, Yν(Z)Y

T
)|Ht ∨ Gt

]
(54)

where

• DF (t, T ; r) , exp

(
− a

ν(Z)X
T −1∑

i=νX
t

Xi(T
X
i+1 − TX

i ) − b

ν(Z)Y
T −1∑

j=νY
t

Yj(T
Y
j+1 − TY

j )

)
is the

discount factor;

• Θ0 is the Prototype payoff supposed to have the following form

Θ0(x, y) =
N∑
i=1

eN∑
j=1

wiw̃jI{x=xi}I{y=yj}, x
i ∈ EX , yj ∈ EY , wi, w̃j ∈ {0} ∪ R+ (55)
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Remark 4.6. Analogously to the full expression of the bond price in (49) one can
write a full expression V̄Θ0,t,T (XνX

t
, YνY

t
) also for the Prototype product and it corre-

sponds to a discount factor DF (t, T ; r) given by

DF (t, T ; r) = DF (t, T ; r) exp
[
−aXνX

T
(T − TνX

T
)− bYνY

T
(T − TνY

T
)
]

Since here too in the applications we have Θ0(·) ∈ [0, 1], the same approximation as in
Proposition 4.3 for the bond prices holds also for the Prototype products. Analogously
to the scalar case (see Remark 2.3) we shall thus work also here with the simpler
expression (54) for the Prototype product.

The price of the Prototype Product defined above in (54) can be represented, by
using the result of Lemma 4.4, by an expression similar to the pricing formula of the
Prototype Product in the one-factor short-rate model (see Theorem 2.13). In the
following we give some notations useful for the next Theorem

• Q̃X(zh) = (q̃(zh)
X
i,j)1≤i,j,≤N ,

{
q(zh)X

i,j

axi+q(zh)X
i
, i 6= j

0, i = j
∀h = 1, . . . ,M ;

• Q̃Y (zh) = (q̃(zh)
Y
i,j)1≤i,j,≤Ñ ,

{
q(zh)Y

i,j

byi+q(zh)Y
i
, i 6= j

0, i = j
∀h = 1, . . . ,M ;

• θ0(X) , [w1, . . . , wN ]′ and θ̃0(Y ) , [w̃1, . . . , w̃Ñ ]′ whose components wi and w̃i
are the coefficients of the function Θ0 defined as in (55).

Theorem 4.7. Let us suppose the dynamics of the short rate to be given by (48)
and the factors X and Y to be defined as in Assumptions 4.1 and 4.2 respectively.
Assuming that XνX

t
= xn and YνY

t
= ym, for an arbitrarily small ε we define the

approximation of the actual price of the Prototype product as

V ε
Θ0,t,T

(XνX
t
, YνY

t
)|X

νX
t

=xn,YνY
t

=ym ,
M∑
h=1

U ε
ϑ0,t,T

(xn, zh)U
εeϑ0,t,T

(ym, zh)πh (56)

where, ∀zh ∈ Z,

U ε
ϑ0,t,T

(xn, zh) =

nX
ε (zh)∑
k=0

[Q̃X(zh)
k
· θ0(X)]nP̃(ν(zh)

X
t,T = k|XνX

t
= xn) (57)

and

U εeϑ0,t,T
(ym, zh) =

nY
ε (zh)∑
k=0

[Q̃Y (zh)
k
· θ̃0(Y )]mP̃(ν(zh)

Y
t,T = k|YνY

t
= ym) (58)

with 
nXε (zh) ≥

⌈
log(ε(1−γ(zh)))

log(γ(zh))
− supi∈{1,...,N} |ϑ1(xi,zh)−ϑ0(xi)|

log(γ(zh))

⌉
,

γ(zh) , sup
i∈{1,...,N}

q(zh)
X
i

axi + q(zh)Xi
,
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and 
nYε (zh) ≥

⌈
log(ε(1−γ(zh)))

log(γ(zh))
−

sup
j∈{1,..., eN} |eϑ1(yj ,zh)−eϑ0(yj)|

log(γ(zh))

⌉
,

γ(zh) , sup
j∈{1,..., eN}

q(zh)
Y
j

byj + q(zh)Yj
.

where, for a given value of zh, the quantities ϑk(xi, zh) and ϑ̃k(yj, zh) are defined
analogously to (11) and satisfy recursions analogous to (14). Moreover, the condi-
tional probabilities in (57) and (58) admit a representation as in Proposition 2.12
where

• qi and qi,j become q(zh)
X
i and q(zh)

X
i,j respectively for the random variable

ν(zh)
X
t,T (∀i, j = 1, . . . , N),

• qi and qi,j become q(zh)
Y
i and q(zh)

Y
i,j respectively for the random variable

ν(zh)
Y
t,T (∀i, j = 1, . . . , Ñ).

Then V ε
Θ0,t,T

(XνX
t
, YνY

t
) is a good approximation of VΘ0,t,T (XνX

t
, YνY

t
) in the sense that

V ε
Θ0,t,T

(XνX
t
, YνY

t
)
ε→0−→ VΘ0,t,T (XνX

t
, YνY

t
) uniformily in (t, T,XνX

t
, YνY

t
). (59)

Proof See Lemma 4.4 and Theorem 2.13.

Remark 4.8. Theorem 4.7 also implies that all the results worked out for the Pro-
totype product pricing under a one-factor short rate model (Section 2), including the
representation in Remark 2.15, carry over to the individual terms U ε

ϑ0,t,T
and U εeϑ0,t,T

.

4.3 Bond, Cap and Swaption pricing under a two-factor
short-rate model

As we have done in Section 3 when we have considered the short rate as a CTMC,
we are now going to show that bonds, caps and swaptions can be represented as
linear combinations of Prototype products also in the present two-factor setting;
additionally, we give a representation for defaultable bonds.

We first obtain the following computable pricing formula for a bond:

Proposition 4.9. Let us consider the same hypotheses and notations of Theorem
4.7. For an arbitrarily small ε, we define the approximation of the price of a T -bond
at the date of evaluation t as

pε(t, T ;XνX
t
, YνY

t
)|X

νX
t

=xn,YνY
t

=ym ,
M∑
h=1

U ε
ϑ0,t,T

(xn, zh)U
εeϑ0,t,T

(ym, zh)πh (60)
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where, ∀zh ∈ Z, U ε
ϑ0,t,T

(xn, zh) and U εeϑ0,t,T
(ym, zh) are given by (57) and (58) with

θ0(X) = [1, . . . , 1]′ ∈ RN and θ̃0(Y ) = [1, . . . , 1]′ ∈ RÑ respectively. The value
pε(t, T ;XνX

t
, YνY

t
) is a good approximation of the actual bond price p(t, T ;XνX

t
, YνY

t
)

in the sense that

pε(t, T ;XνX
t
, YνY

t
)
ε→0−→ p(t, T ;XνX

t
, YνY

t
) uniformily in (t, T,XνX

t
, YνY

t
). (61)

Remark 4.10. Due to the time homogeneity of the CTMCs X(t, Z) and Y (t, Z), by
analogy with Notation 3.2, we shall put pε(si;xn, ym) , pε(0, si;xn, ym).

As regards the caplet and the swaption pricing formulae when the short rate is
given by (48), we obtain the following results

Proposition 4.11. Let us consider the spot rate given by relation (48) and that,
at the date of evaluation t, XνX

t
= xn and YνY

t
= ym for fixed n ∈ {1, . . . , N} and

m ∈ {1, . . . , Ñ}. For an arbitrarily small ε, we define the approximation of the price
of the i-th caplet Cpl(t, Si;XνX

t
, YνY

t
) as

Cplε(t,Si;XνX
t
,Y

νY
t

)|X
νX
t

=xn,Y
νY
t

=ym

1+Ksi

,
∑N

l=1

∑Ñ
j=1

(
1

1+Ksi
− pε(si;xl, yj)

)+

V ε

Ψl,j
0 ,t,Si−1

(xn, ym)

where, for each pair of indexes (l, j), V ε

Ψl,j
0 ,t,Si−1

is defined by (56) with T = Si−1 and
Θ0 = Ψl,j

0 (·, ∗) ,
∑N

i0=1

∑Ñ
i1=1wi0(l)w̃i1(j)I{·=xi0}I{∗=yi1},

wi0(l) =

{
0, i0 6= l
1, i0 = l

, w̃i1(j) =

{
0, i1 6= j
1, i1 = j.

(62)

The value Cplε(t, Si;XνX
t
, YνY

t
) is a good approximation of the actual price

Cpl(t, Si;XνX
t
, YνY

t
) in the sense that

Cplε(t, Si;XνX
t
, YνY

t
)
ε→0−→ Cpl(t, Si;XνX

t
, YνY

t
) uniformly in (t, Si−1, Si, XνX

t
, YνY

t
).

Proposition 4.12. Under the assumptions of the previous Proposition we define, for
an arbitrarily small ε, the approximation of the price of the swaption
Swoptt(Sα, Sα,β;XνX

t
, YνY

t
) as

Swoptεt(Sα, Sα,β;XνX
t
, YνY

t
)|X

νX
t

=xn,YνY
t

=ym

=
∑N

l=1

∑Ñ
j=1(g

ε(Sα, Sα,β;xl, yj))
+V ε

Ψl,j
0 ,t,Si−1

(xn, ym)

where gε(Sα, Sα,β;xl, yj) = 1 − pε(Sβ − Sα;x
l, yj) − K

∑β
h=α+1 shpε(Sh − Sα;xl, yj)

(see Proposition 3.4) and, for each pair of indexes (l, j), V ε

Ψl,j
0 ,t,Sα

is defined by (56)
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with Θ0 = Ψl,j
0 as given in (62) and T = Sα. The value Swoptεt(Sα, Sα,β;XνX

t
, YνY

t
)

is a good approximation of the actual price Swoptt(Sα, Sα,β;XνX
t
, YνY

t
) in the sense

that
Swoptεt(Sα, Sα,β;XνX

t
, YνY

t
)
ε→0−→ Swoptεt(Sα, Sα,β;XνX

t
, YνY

t
) (63)

uniformly in (t, Sα, Sα,β, XνX
t
, YνY

t
).

Furthermore, the Prototype Product pricing approach of Subsection 4.2 can be
used to price defaultable bonds, as mentioned in the following

Remark 4.13. In a general setting of the reduced form approach to credit risk, the
price of a defaultable bond at time of today t and maturity T can be written as

Π(t, T ) = I{τ>t}E
eP[e− R T

t r(s)+λ(s)ds|Ft]
where the processes r and λ represent the spot rate and the default intensity respec-
tively, τ is the time of default and Ft is the filtration generated by the two-dimensional
process (r, λ). If we suppose that r(t) ≡ X(t, Z) as defined in Assumption 4.1 and
the default intensity λ(t) ≡ Y (t, Z) as defined in Assumption 4.2, then the price of
a defaultable bond Π(t, T ) admits a representation as in (50) with a = b = 1 which
is the pricing formula of a default free bond when the spot rate depends on the two
correlated CTMCs X(t, Z) and Y (t, Z).

5 Numerical results when the short rate is a single-

factor CMTC

The aim of this Section is to test numerically the pricing approach that we developed
in the paper and that we call ”Prototype Product Approach”. We limit ourselves
to a single factor CTMC where we compare our results with the exact ones in a case
where explicit formulae are available. Further numerical results concerning a two-
factor short rate model can be found in [9].

For the numerical tests we shall treat only the pricing of zero-coupon bonds
because, as seen in the previous sections, in our approach the prices of caps and
swaptions can be written as functions of prices of bonds and other Prototype Prod-
ucts (this holds also for bond options). We shall test numerically the validity of our
approach by proceeding as follows: consider a continuous time short-rate model for
which the bond price admits an explicit closed formula and compare this exact price
with the one obtained by the Prototype Product Approach after approximating the
short rate by a CTMC.

5.1 A continuous time model and its CTMC approximation
(Kushner approximation)

Let us choose the following continuous-time affine model for the short rate, known
as the Cox-Ingersoll-Ross (CIR) or square-root model{

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dWt

r(0) = r̃
(64)
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whereWt is a Wiener process under an equivalent martingale measure P̃ as introduced
in Section 2 and the long-run mean θ, the rate of mean reversion k, the volatility
σ and the initial spot rate r̃ are positive constants. Moreover, to ensure that the
process remains positive, the following condition has to be satisfied

2kθ > σ2. (65)

We approximate this square-root process by a CTMC using a suitable approximation
that we call ”Kushner approximation” and that we summarize next (for details see
[8], in particular [7]). Denote by rh,n(t) the CTMC obtained by first discretizing with
respect to the space variable (with spatial step length h) the infinitesimal generator
of the diffusion r(t), thus obtaining a denumerable CTMC {rh(t)}, and then stopping
rh(t) at the boundary of the interval I = (0, N) (with N , hn suitably chosen where
n represents the number of subintervals into which I is divided). We have that the
state space of rh,n(t) is given by

Eh,n = {r0, . . . , rN} = {0, h, . . . , h(n− 1), hn} ∈ RN+1 (66)

and the transition intensity kernel is represented by the matrixQh,n = (qh,ni,j ){1≤i,j≤N+1}
with the first and last rows identically equal to zero (absorption at the boundary)
and with the i-th row given by

[0, . . . , 0, qh,n− (ri), q
h,n(ri), q

h,n
+ (ri), 0, . . . , 0], (67)

where qh,n(ri) is in the diagonal and
qh,n− (ri) = (k(θ−ri))−

h
+ σ2ri

2h2

qh,n(ri) = − |k(θ−ri)|
h

− σ2ri
h2

qh,n+ (ri) = (k(θ−ri))+
h

− σ2ri
2h2

(68)

with (·)+ and (·)− denoting the positive and negative parts respectively. Moreover,
the intensity associated with a generic state ri ∈ Eh,n can be represented by

qh,ni =
N+1∑
j=1

j 6=i

qh,ni,j = −qh,n(ri). (69)

The CTMC rh,n(t) converges to r(t) as n → +∞ and h → 0 in the sense of weak
convergence of the induced probability measures.

Once discretized, the short rate becomes a CTMC and so we can compute bond
prices with the Prototype Product Approach.

Remark 5.1. If the spot rate is a CTMC rh,n(t) given by the Kushner approximation,
then

ri
qh,n(ri)

=
h(i− 1)

|k(θ−h(i−1))|
h

+ σ2

h2

i = 1, . . . , N + 1. (70)
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By considering h at most of the order of 10−2 and h(i − 1) at most equal to 0.03
as well as suitable CIR parameters as in the numerical results below, the bound on
the difference between the full and the simplified bond prices in Proposition 2.1 as
well as on the difference between the Prototype products (see Remark 2.3), namely
r̄
q̄

:= maxi≤N
ri
qri

is close to zero. In fact, as can be seen from the numerical results

below, the prices computed by the Prototype Product Approach and based on the
simplified bond pricing formula (6) are very close to their exact values computed
with the explicit closed formula for the original continuous time model.

5.2 Computing and comparing bond prices

We shall price zero-coupon bonds with the Prototype Product Approach both by
computing the explicit formulae, derived in the previous part of the paper, as well as
by a full simulation approach based on Monte Carlo techniques. Moreover, in order
to have a further possibility of comparison, we shall also consider a widely used
approach, namely the lattice method, to compute approximations of the bond price
starting from the continuous-time affine short rate model. We shall thus compute
prices in the following four ways:

a) Explicit Closed formula

b) Lattice Method

c) Prototype Product Approach (after approximating the diffusion by a CTMC
with the Kushner approximation):

c.1) Explicit Formulae

c.2) Monte Carlo simulations

We are now going to describe in more detail each of the just mentioned alternatives.

5.2.1 Explicit Closed formula

Under the CIR affine term structure model, the price at time t of a zero-coupon bond
with maturity T is given by

p(t, T ) = A(t, T )e−B(t,T )r(t) (71)

with 
A(t, T ) =

(
2he

(k+h)(T−t)
2

2h+(k+h)(eh(T−t)−1)

) 2kθ
σ2

B(t, T ) = 2e(e
h(T−t)−1)

2h+(k+h)(eh(T−t)−1)

h =
√
k2 + 2σ2.

(72)

For more details see Brigo-Mercurio [2].
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5.2.2 Lattice Method

The lattice method is widely used in finance and it consists in building a recombining
tree which approximates the evolution of a diffusion process (in this case the short
rate as given by the CIR model).

Here we consider the lattice algorithm suggested in Costabile-Leccadito-Massabó
[3] who propose an approach based on a direct discretization of the process r(t) by
means of a recombining binomial tree with a number of nodes that grows linearly
with the number of steps; then, by an argument based on absence of arbitrage, they
compute the bond price by working backwards along the tree. To solve a frequent
problem in lattice methods, namely that the transition probabilities have to belong
in [0, 1], the authors introduce multiple upward and downward jumps that satisfy an
appropriate matching condition.

5.2.3 Prototype Product Approach

Starting from a CIR affine term structure model as in (64) for the short rate, in
order to apply the Prototype Product Approach to the bond pricing, we have first
to approximate the short rate r(t), which is a diffusion process, by a CTMC and
for this we use the Kushner approximation that we had summarized in section 5.1.
We shall denote h and n by h(K-A) and n(K-A) respectively. Below we refer
to the first alternative of the Prototype Product Approach (see (c.1)) as ”Explicit
Formulae” and the second (see (c.2)) as ”Monte Carlo simulations”.

Prototype Product Approach (Explicit Formulae)

According to Proposition 3.1 an ε-approximation of the bond price is given by the
explicitly computable formula

pε(t, T ; rh,n(t))|rh,n(t)=ri =
nε∑
k=0

[Q̃h,n
k
· θ0(r

h,n)]iP̃(νt,T = k|rh,nνt
= ri) (73)

where the spot rate is rh,n(t) and we have denoted here by Q̃h,n the matrix Q̃ that
was introduced in (24). With respect to its general definition in (24) the matrix

Q̃h,n takes here a simpler form because of the tridiagonal structure of the transition
kernel Qh,n: the first and the last rows are identically equal to zero and the j-th row
is given by [

0, . . . , 0,
qh,n− (rj)

rj − qh,n(rj)
, 0,

qh,n+ (rj)

rj − qh,n(rj)
, 0, . . . , 0

]
where the (j + 1)-th and the (j − 1)-th terms are different from zero.

The most demanding part in the computations according to (73) are the proba-

bilities P̃(νt,T = k|rh,nνt
= ri). This can be avoided by the next alternative based on

Monte Carlo simulations. Details can be found in [9].
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Prototype Product Approach (Monte Carlo simulations)

By (32) we have that

p(t, T ; rh,n(t))|rh,n(t)=ri = EeP[[Q̃h,n
νt,T

· θ0(r
h,n)]i|rh,nνt

= ri]. (74)

An approach to compute the price in the above expression can then also be obtained
by using the MonteCarlo technique, that is based on

1

M

M∑
l=1

[Q̃h,n
νl

t,T · θ0(r
h,n)]i

M→∞−→ p(t, T ; rh,n(t))|rh,n(t)=ri P̃− a.s. (75)

where νlt,T is the l-th simulation outcome of the random variable νt,T .

5.3 The actual numerical results

We present now some tables where the bond prices, for several maturities and several
values of the CIR parameters in (64), are obtained as follows

CF: the exact closed formula;

RBT: the lattice method, namely the recombining binomial tree according to [3],
where we have chosen a number of steps ”stepsRBT” always equal to 500;

PPA(EF)+K-A: the Prototype Product Approach after discretizing the short rate
with the Kushner approximation (K-A) and by using the explicit formulae
(EF) discussed in our study;

PPA(MC)+K-A: the Prototype Product Approach after discretizing the short
rate with the Kushner approximation (K-A) and by using a full simulation
approach based on the Monte Carlo technique (MC). We have chosen the
number of steps for the Monte Carlo simulations ”stepsRBT”, namely M in
formula (75), always equal to 500.

As regards the other parameters, we have considered the date of today as t = 0 years,
three different times of maturity T (namely 0.5, 2 and 5 years) and the parameters
of the CIR model such that the condition (65) is verified. In Table 1 and Table 2 the
numerical results relative to CF, RBT and PPA(MC)+K-A are presented when
the values of the initial spot rate r̃ and the mean-reversion constant θ in formula (64)
are of the order of one hundredth; in Table 3 we present also some results relative to
PPA(EF)+K-A when r̃ and θ are of the order of one tenth.

We have performed the numerical simulations on a single core Intel x86 Linux
machine equipped with 2GB of RAM and we have implemented a C/C++ framework
by using the well-known GNU Scientific Library to handle the data structure.

Table 1: bond prices with CF, RBT and PPA(MC)+K-A (stepsMC=stepsRBT=500)
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T (years) 0.5 2 5 0.5 2 5
r̃ 0.01 0.01 0.01 0.02 0.02 0.02
θ 0.01 0.01 0.01 0.02 0.02 0.02
k 0.8 0.8 0.8 0.5 0.5 0.5
σ 0.1 0.1 0.1 0.05 0.05 0.05

n(K-A) 600 600 700 600 600 700
h(K-A) 0.00005 0.00005 0.00005 0.0001 0.0001 0.0001

CF 0.995014 0.980245 0.951463 0.990051 0.960822 0.905047
RBT 0.995042 0.980302 0.951556 0.99007 0.960898 0.905226

PPA(MC)+K-A 0.995024 0.980276 0.951621 0.990143 0.960734 0.905318

Table 2: bond prices with CF, RBT and PPA(MC)+K-A (stepsMC=stepsRBT=500)

T (years) 0.5 2 5 0.5 2 5
r̃ 0.03 0.03 0.03 0.02 0.02 0.02
θ 0.03 0.03 0.03 0.02 0.02 0.02
k 1.1 1.1 1.1 1.2 1.2 1.2
σ 0.1 0.1 0.1 0.1 0.1 0.1

n(K-A) 600 600 700 600 600 700
h(K-A) 0.00015 0.00015 0.00015 0.0001 0.0001 0.0001

CF 0.985116 0.941861 0.861095 0.990053 0.960849 0.905072
RBT 0.985146 0.941974 0.86135 0.990072 0.960926 0.905251

PPA(MC)+K-A 0.985128 0.941968 0.861319 0.990059 0.95647 0.90193

Table 3: bond prices with CF, RBT, PPA(MC)+K-A and PPA(EF)+K-A
(stepsMC=stepsRBT=500)

T (years) 0.5 0.5 0.5 0.5
r̃ 0.1 0.1 0.2 0.3
θ 0.1 0.1 0.2 0.3
k 0.1 0.4 0.2 0.3
σ 0.1 0.05 0.2 0.3

n(K-A) 300 300 300 300
h(K-A) 0.01 0.01 0.02 0.03

CF 0.951249 0.951234 0.904977 0.86114
RBT 0.951343 0.951329 0.905157 0.861394

PPA(MC)+K-A 0.951022 0.950859 0.905229 0.861104
PPA(EF)+K-A 0.951324 0.951723 0.905012 0.861756

Remark 5.2. Both results with PPA(EF)+K-A and PPA(MC)+K-A are com-
petitive with the RBT method and they generally differ only at the fourth decimal
digit. In fact, in spite of the Kushner approximation which is necessary for the
comparison with the prices of the continuous affine term structure model given in
(71)-(72), our methods based on the Prototype Product pricing work roughly as the
lattice method which does not require previously any approximation to be applied
and consequently does not feel the effect of the error due to K-A. Furthermore,
PPA(EF)+K-A and PPA(MC)+K-A work sometimes better than the lattice
methods (see results in bold). In any case our approach is designed for r given
directly by a CTMC and the Kushner approximation was introduced only for com-
parison purposes.
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Moreover it is known that lattice methods work well under a one-factor short rate
model, but it becomes more difficult to implement them if the short rate depends on
several correlated processes (for an up-to-date description see [6]). On the contrary,
the Prototype Product Approach applies well also to a particular multi-factor short
rate model (see Section 4) and in this case it can be numerically implemented (see
[9]).

5.4 Conclusions

We briefly sum up the results obtained in this chapter: if we consider a one-factor
short rate model, the Prototype Product Approach, by using either the explicit
formulae or the Monte Carlo simulations, is competitive with the lattice method
which is widely used to compute the price of zero-coupon bonds. To allow for such a
comparison we had to start from a continuous time diffusion model which required
a preliminary discretization to obtain a CTMC for which our methods are designed.
Moreover we are able to obtain numerical results for prices of caps, swaptions and
bond options with the same complexity as required for the computation of bond
prices (considered as a particular case of Prototype Product) because all the prices
of these interest rate derivatives can be viewed as linear combinations of Prototype
Product prices (see Subsections 3.2-3.3).

Appendix

Proof of Lemma 2.5.
Recall the definition of F r

Ti
in (4) and that, for simplicity of notation, we have put

F r
i = F r

Ti
. Also put FT

k = σ{Ti; i ≤ k}. Inspired by Filipović-Zabczyk [5], we can
divide the proof into k steps:
1st STEP
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(76)

where the last passage is due to the fact that, for a generic i ∈ N, conditionally on
F r
i ∨FT

i , both the distributions of the interarrival time Ti+1 −Ti and of the visited
state ri+1 depend only on the initial state ri by the properties of the CTMC’s; hence

(76)
(14)
= EeP[exp(− η+k−2∑

i=η

ri(Ti+1 − Ti)
)
ϑ1(rη+k−1)

∣∣∣F r
η

]
. (77)
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2nd STEP
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where the last passage is again justified by the properties of the CTMC’s recalled in
the first step; hence, recursively until the last step, we obtain

kth STEP

EePh
exp

“
−
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i=η

ri(Ti+1 − Ti)
”
ϑ0(rη+k)|Fr
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i
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= ϑk(rη).

Proof of Lemma 2.10.
At first we prove by induction that the coefficients wkm of the function ϑk have, for
m = 1, . . . , N , the following explicit representation

w1
m =

N∑
i0=1

i0 6=m

wi0
qm,i0

rm + qm
, k = 1

wkm =
N∑

i0,...,ik−1=1

i0 6=i1,...,ik−1 6=m

wi0
qm,ik−1

rm + qm

[
k−1∏
h=1

qih,ih−1

rih + qih

]
, k > 1

(79)

We consider w.l.o.g the functions ϑk evaluated in ri, the state of the rate process at
a generic transition time Ti.
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Base Case (k = 1)

ϑ1(ri)
(14)
= EeP[e−ri(Ti+1−Ti)ϑ0(ri+1)

∣∣ri]
(8)
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]
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]
EeP[I{ri+1=ri0}

∣∣ri = ri1

]
(81)

because, conditionally on ri, the interarrival time Ti+1 − Ti and ri+1 (the value of
the process at the transition time Ti+1) are independent by the properties of the
CTMCs. Moreover we have that

• EeP[e−ri(Ti+1−Ti)
∣∣ri = ri1

]
=
∫∞

0
e−ri1uqi1e

−qi1udu =
qi1

ri1+qi1
because Ti+1 − Ti is

exponentially distributed in accordance with (2),

• EeP[I{ri+1=ri0}
∣∣ri = ri1

]
= P̃(ri+1 = ri0|ri = ri1) = pi1,i0 the transition probabil-

ity from state ri1 to ri0 ;

hence
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]
(81)
= pi1,i0

qi1
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(1)
=
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We obtain thus that

ϑ1(ri)
(80)
=

N∑
i0,i1=1

i0 6=i1

wi0
qi1,i0

ri1 + qi1
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where w1
i1

=
∑N

i0=1

i0 6=i1
wi0

qi1,i0

ri1+qi1
defined as in (79).

Inductive step
By Lemma 2.5

ϑk(ri) = EeP[e−ri(Ti+1−Ti)ϑk−1(ri+1)
∣∣ri] = EeP

[
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.(84)
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By the induction hypothesis
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Now, by using the representation in (79), we prove relation (23) by induction.

Base Case k = 0
By the Definition 2.9 we have

θ0(r) = [w1, . . . , wN ]′ = Q̃0 · θ0(r)

Inductive step
Observing that relation (23) is equivalent to

θk(r) = Q̃ · θk−1(r), k > 0 (85)

it is sufficient to prove (85) by using the induction hypothesis θk−1(r) = Q̃k−1 · θ0(r).
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Letting D(ξ) = {i1 6= i2, . . . , ik−2 6= ξ} we have in fact

θk(r) =


wk1
wk2
...
wkN

 (79)
=



N∑
i0,...,ik−1=1

i0 6=i1,...,ik−1 6=1

wi0
q1,ik−1

r1 + q1

k−1∏
h=1

qih,ih−1

rih + qih

N∑
i0,...,ik−1=1

i0 6=i1,...,ik−1 6=2

wi0
q2,ik−1

r2 + q2

k−1∏
h=1

qih,ih−1

rih + qih

...
N∑

i0,...,ik−1=1

i0 6=i1,...,ik−1 6=N

wi0
qN,ik−1

rN + qN

k−1∏
h=1

qih,ih−1

rih + qih



=



N∑
ik−1=1

ik−1 6=1

q1,ik−1

r1 + q1

{
N∑

i0,...,ik−2=1

i0 6=i1,...,ik−2 6=ik−1

wi0
qik−1,ik−2

rik−1
+ qik−1

k−2∏
h=1

qih,ih−1

rih + qih

}
N∑

ik−1=1

ik−1 6=2

q2,ik−1

r2 + q2

{
N∑

i0,...,ik−2=1

i0 6=i1,...,ik−2 6=ik−1

wi0
qik−1,ik−2

rik−1
+ qik−1

k−2∏
h=1

qih,ih−1

rih + qih

}
...

N∑
ik−1=1

ik−1 6=N

qN,ik−1

rN + qN

{
N∑

i0,...,ik−2=1

i0 6=i1,...,ik−2 6=ik−1

wi0
qik−1,ik−2

rik−1
+ qik−1

k−2∏
h=1

qih,ih−1

rih + qih

}



=



q1,2
r1+q1

n NX
i0,...,ik−2=1

D(2)

wi0

q2,ik−2

r2 + q2

k−2Y
h=1

qih,ih−1

rih
+ qih

o
+ · · ·+

q1,N

r1 + q1

n NX
i0,...,ik−2=1

D(N)

wi0

qN,ik−2

rN + qN

k−2Y
h=1

qih,ih−1

rih
+ qih

o

q2,1
r2+q2

n NX
i0,...,ik−2=1

D(1)

wi0

q1,ik−2

r1 + q1

k−2Y
h=1

qih,ih−1

rih
+ qih

o
+ · · ·+

q2,N

r2 + q2

n NX
i0,...,ik−2=1

D(N)

wi0

qN,ik−2

rN + qN

k−2Y
h=1

qih,ih−1

rih
+ qih

o
...

qN,1
rN +qN

n NX
i0,...,ik−2=1

D(1)

wi0

q1,ik−2

r1 + q1

k−2Y
h=1

qih,ih−1

rih
+ qih

o
+ · · ·+

qN−1,N

rN−1 + qN−1

n NX
i0,...,ik−2=1

D(N−1)

wi0

qN−1,ik−2

rN + qN

k−2Y
h=1

qih,ih−1

rih
+ qih

o



= Q̃ ·



N∑
i0,...,ik−2

D(1)

wi0
q1,ik−2

r1 + q1

k−2∏
h=1

qih,ih−1

rih + qih

N∑
i0,...,ik−2

D(2)

wi0
q2,ik−2

r2 + q2

k−2∏
h=1

qih,ih−1

rih + qih

...
N∑

i0,...,ik−2

D(N)

wi0
qN,ik−2

rN + qN

k−2∏
h=1

qih,ih−1

rih + qih



= Q̃ · θk−1(r)
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Proof of Proposition 2.12. The fact that P̃(νt,T = 0|rνt = ri0) = e−qi0 (T−t)

follows directly from properties of CTMCs. Let us suppose that νt = h ∈ N. At first
we prove by induction that

P̃(νt,T = k|rνt = rih) =
N∑

ih+1,...,ih+k=1

ih+1 6=ih,ih+2 6=ih+1,...,ih+k 6=ih+k−1

eqih t−qih+k
Tϕh,k(Q) ·Ψh,k(t, T,Q)

(86)
where 

Ψh,k(t, T,Q) ,
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−qih )th+1
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)th+2 · · ·
· · ·
∫ T
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e(qih+k
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)th+kdth+k . . . dth+2dth+1
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· . . . · qih+k−1,ih+k

.

Base Case (k = 1)
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T )
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Inductive step:

P̃(νt,T = k|rνt = rih)
(25)
=

N∑
ih+1=1

ih+1 6=ih

qih,ih+1

∫ T

t

e−qih (th+1−t)P̃(νth+1,T = k − 1|rνth+1
= rih+1

)dth+1

=
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ih+1 6=ih
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e−qih (th+1−t) ·

·
{ N∑

ih+2,...,ih+k=1

ih+2 6=ih+1,ih+3 6=ih+2,...,ih+k 6=ih+k−1

eqih+1
th+1−qih+k

Tϕh+1,k−1(Q) ·Ψh+1,k−1(th+1, T,Q)
}
dth+1
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=
N∑

ih+1,...,ih+k=1

ih+1 6=ih,ih+2 6=ih+1,...,ih+k 6=ih+k−1

qih,ih+1
eqih t−qih+k

Tϕh+1,k−1(Q)

∫ T

t

e(qih+1
−qih )th+1Ψh+1,k−1(th+1, T,Q)dth+1

=
N∑

ih+1,...,ih+k=1

ih+1 6=ih,ih+2 6=ih+1,...,ih+k 6=ih+k−1

eqih t−qih+k
Tϕh,k(Q)Ψh,k(t, T,Q)dth+1

where in the last passage we have used the fact that

ϕh+1,k−1 = qih+1,i(h+1)+1
· . . . · qi(h+1)+(k−1)−1,i(h+1)+(k−1)

=
ϕh,k
qih,ih+1

and

Ψh+1,k−1(th+1, T,Q) =

∫ T

th+1

e(qih+2
−qih+1

)th+2

∫ T

th+2

e(qih+3
−qih+2

)th+3 · · ·

· · ·
∫ T

th+k−1

e(qih+k
−qih+k−1

)th+kdth+k . . . dth+3dth+2

Observe now that the probabilities P̃(νt,T = k|rνt = rih) do not depend on νt the
number of jumps until t, so they can be represented as

P̃(νt,T = k|rνt = ri0) =
N∑

i1,...,ik=1

i1 6=i0,i2 6=i1,...,ik 6=ik−1

eqi0 t−qikTϕk(Q) ·Ψk(t, T,Q) (87)

where Ψk and ϕk are defined by (29) and (30) respectively.
Finally, recalling that the process r is a CTMC homogeneous w.r.t. the time, the

random variable νt,T has the same distribution as ν0,T−t. In other terms we have

P̃(νt,T = k|rνt = ri0) = P̃(ν0,T−t = k|r(0) = ri0) (88)

=
N∑

i1,...,ik=1

i1 6=i0,i2 6=i1,...,ik 6=ik−1

e−qik (T−t)ϕk(Q) ·Ψk(0, T − t, Q).
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