
Application Layer 2-1

Chapter 2
Application Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,

and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following:
 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)

 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer 2-2

App-layer protocol defines

 types of messages
exchanged,

 e.g., request, response

 message syntax:

 what fields in messages
& how fields are
delineated

 message semantics

 meaning of information
in fields

 rules for when and how
processes send & respond
to messages

open protocols:

 defined in RFCs

 allows for interoperability

 e.g., HTTP, SMTP

proprietary protocols:

 e.g., Skype

Application Layer 2-3

What transport service does an app need?

data integrity

 some apps (e.g., file transfer,
web transactions) require

100% reliable data transfer

 other apps (e.g., audio) can
tolerate some loss

timing

 some apps (e.g., Internet
telephony, interactive
games) require low delay
to be “effective”

throughput

 some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

security

 encryption, data integrity,

…

Application Layer 2-4

Internet transport protocols services

TCP service:
 reliable transport between

sending and receiving
process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantee, security

 connection-oriented: setup
required between client and
server processes

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-5

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 2-6

Web and HTTP

First, a review…
 web page consists of objects

 object can be HTML file, JPEG image, Java applet,
audio file,…

 web page consists of base HTML-file which
includes several referenced objects

 each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-7

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model
 client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

 server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

Application Layer 2-8

HTTP overview (continued)

uses TCP:
 client initiates TCP

connection (creates
socket) to server, port 80

 server accepts TCP
connection from client

 HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must be
maintained

 if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-9

HTTP connections

non-persistent HTTP

 at most one object
sent over TCP
connection

 connection then
closed

 downloading multiple
objects required
multiple connections

persistent HTTP

 multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 2-10

Non-persistent HTTP

suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request

message (containing URL) into

TCP connection socket.

Message indicates that client

wants object

someDepartment/home.index

1b. HTTP server at host

www.someSchool.edu waiting

for TCP connection at port 80.

“accepts” connection, notifying

client

3. HTTP server receives request

message, forms response

message containing requested

object, and sends message into

its socket

time

(contains text,

references to 10

jpeg images)

www.someSchool.edu/someDepartment/home.index

Application Layer 2-11

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of

10 jpeg objects

4. HTTP server closes TCP

connection.

time

Application Layer 2-12

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:

 one RTT to initiate TCP
connection

 one RTT for HTTP request
and first few bytes of HTTP
response to return

 file transmission time

 non-persistent HTTP
response time =

2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer 2-13

Persistent HTTP

non-persistent HTTP issues:
 requires 2 RTTs per object

 OS overhead for each TCP
connection

 browsers often open
parallel TCP connections
to fetch referenced objects

persistent HTTP:
 server leaves connection

open after sending
response

 subsequent HTTP
messages between same
client/server sent over
open connection

 client sends requests as
soon as it encounters a
referenced object

 as little as one RTT for all
the referenced objects

Application Layer 2-14

HTTP request message

 two types of HTTP messages: request, response

 HTTP request message:
 ASCII (human-readable format)

request line

(GET, POST,

HEAD commands)

header

lines

carriage return,

line feed at start

of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character

line-feed character

Application Layer 2-15

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer 2-16

Uploading form input

POST method:
 web page often includes

form input

 input is uploaded to
server in entity body

URL method:
 uses GET method

 input is uploaded in URL
field of request line:

www.somesite.com/animalsearch?monkeys&banana

Application Layer 2-17

Method types

HTTP/1.0:
 GET

 POST

 HEAD

 asks server to leave
requested object out
of response

HTTP/1.1:
 GET, POST, HEAD

 PUT

 uploads file in entity
body to path specified
in URL field

 DELETE

 deletes file specified in
the URL field

Application Layer 2-18

HTTP response message

status line

(protocol

status code

status phrase)

header

lines

data, e.g.,

requested

HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

Application Layer 2-19

HTTP response status codes

200 OK

 request succeeded, requested object later in this msg

301 Moved Permanently

 requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

 request msg not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

 status code appears in 1st line in server-to-
client response message.

 some sample codes:

Application Layer 2-20

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.

anything typed in sent

to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1

Host: cis.poly.edu

by typing this in (hit carriage

return twice), you send

this minimal (but complete)

GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Application Layer 2-21

User-server state: cookies

many Web sites use cookies

four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:

 Susan always access Internet
from PC

 visits specific e-commerce
site for first time

 when initial HTTP requests
arrives at site, site creates:

 unique ID

 entry in backend
database for ID

Application Layer 2-22

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg Amazon server

creates ID

1678 for user create
entry

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database

Application Layer 2-23

Cookies (continued)

what cookies can be used
for:

 authorization
 shopping carts
 recommendations
 user session state (Web

e-mail)

cookies and privacy:

 cookies permit sites to
learn a lot about you

 you may supply name and
e-mail to sites

aside

how to keep “state”:
 protocol endpoints: maintain state at

sender/receiver over multiple
transactions

 cookies: http messages carry state

Application Layer 2-24

Web caches (proxy server)

 user sets browser: Web
accesses via cache

 browser sends all HTTP
requests to cache

 object in cache: cache
returns object

 else cache requests
object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy

server

client origin

server

origin

server

Application Layer 2-25

More about Web caching

 cache acts as both
client and server
 server for original

requesting client

 client to origin server

 typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?

 reduce response time
for client request

 reduce traffic on an
institution’s access link

 Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-26

Caching example:

origin

servers
public

Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:

 access link utilization = 99%

 total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

problem!

Application Layer 2-27

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:

 access link utilization = 99%

 total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

Caching example: fatter access link

origin

servers

1.54 Mbps

access link
154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public

Internet

institutional

network
1 Gbps LAN

institutional

network
1 Gbps LAN

Application Layer 2-28

Caching example: install local cache

origin

servers

1.54 Mbps

access link

local web
cache

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:

 access link utilization = 100%

 total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public

Internet

Application Layer 2-29

Caching example: install local cache

Calculating access link
utilization, delay with cache:

 suppose cache hit rate is 0.4
 40% requests satisfied at cache,

60% requests satisfied at origin

origin

servers

1.54 Mbps

access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)

 = 0.6 (2.01) + 0.4 (~msecs)

 = ~ 1.2 secs

 less than with 154 Mbps link (and
cheaper too!)

public

Internet

institutional

network
1 Gbps LAN

local web
cache

Application Layer 2-30

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version
 no object transmission

delay

 lower link utilization

 cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

 server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

before

<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

after

<date>

client server

Application Layer 2-31

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 2-32

Web Caching and HTTPS

 Caching as a technique to reduce user (perceived) response
time

 Who caches?
 Origin server (database – memory)

 Gateway – reverse proxy (shared cache)

 Proxy (e.g., ISP – share cache)

 Browser (local to user)

 The S stands to TLS, successor of SSL
 HTTP over TLS / HTTP over SSL

 Application security layer guaranteeing privacy, integrity of
communication between entities involved in communication

 Application data are encrypted, middle-boxes can check who is
involved in communication but cannot read the data

Application Layer 2-33

Potential Impact of HTTPS

 Middle-boxes on the delivery chain cannot act on data anymore – data is
encrypted, transparent to the middle-boxes

 Before worrying, we first need to check how much S in HTTPs is out
there?

Application Layer 2-34

How much S in HTTPS

Figure 3. Evolution of HTTPS volume and flow shares over 2.5 years. Vertical lines show the

transition to HTTPS for Facebook and YouTube

Application Layer 2-35

How much S in HTTPS

Figure 4. Comparing HTTPS shares over three one-week periods in the Res-ISP dataset.

Percentages in the bars highlight year-to-year growth.

Application Layer 2-36

Quantifying the Impact of S

Application Layer 2-37

Quantifying the Impact of S

Figure 7: Quantifying TLS handshake costs. Scatter plot of the TLS handshake duration with respect to server

distance (left). TLS handshake duration CDF (right).

External RTT: TCP SYN –ACK response

1 Million distinct TLS flows present in the dataset

Application Layer 2-38

Quantifying the Impact of S

Figure 7: Quantifying TLS handshake costs. Scatter plot of the TLS handshake duration with respect to server

distance (left). TLS handshake duration CDF (right).

External RTT: TCP SYN –ACK response

1 Million distinct TLS flows present in the dataset

Application Layer 2-39

Considerations
 HTTPS accounts for 50% of all HTTP connections and is no longer used

solely for small objects, suggesting that the cost of deployment is
justifiable and manageable for many services.

 The extra latency introduced by HTTPS is not negligible, especially in a
world where one second could cost 1.6 billion in sales (Amazon case
study)

 Most users are unlikely to notice significant jumps in data usage due to
loss of compression, but ISPs stand to see a large increase in upstream
traffic due to loss of caching

 From a user perspective browser-caching techniques and proactive
content push to the edges are feasible

 From and operator (ISP, content provider) viewpoint this poses a burden
 Sol#1: Secure only essential parts of the communication others through HTTP

(privacy?)

 Sol#2: Split proxy approach for not sensitive information (man-in-the-middle (Deep
Packet Inspection)?)

 This said: Youtube mobile version is on clear HTTP

