
Application Layer 2-1

Chapter 2
Application Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,

and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following:
 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)

 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 2-3

DNS: domain name system

people: many identifiers:

 SSN, name, passport #

Internet hosts, routers:

 IP address (32 bit) -
used for addressing
datagrams

 “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)

 note: core Internet function,
implemented as application-
layer protocol

 complexity at network’s
“edge”

Application Layer 2-4

DNS: services, structure

why not centralize DNS?
 single point of failure

 traffic volume

 distant centralized database

 maintenance

DNS services
 hostname to IP address

translation

 host aliasing
 canonical, alias names

 mail server aliasing

 load distribution

 replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

Application Layer 2-5

A bit of history

 Using a human legible name instead of a machine’s numerical
address on the network predates even TCP/IP
 All the way to the ARPAnet era

 Back then, however, a different system was used, as DNS became
operational in 1983, shortly after TCP/IP was deployed

 Each network computer retrieved a file called hosts.txt from a
computer at SRI
 mapping from numerical address to human-legible names (and viceversa)

 Still exists on most modern OSs: aliasing, direct mapping

 Inherently limited: 1 change N hosts need to retrieve file again

Application Layer 2-6

Name Space

 Used to organize objects of various kinds, so that these objects may be referred
to by name.
 Name might be anything you want your choice off modeling the context at hand

 Constraint: uniqueness of names attributed to objects; distinctness of the mapping
function

 Flat naming space: No structure/order imposed, each object assigned a unique identifier
from the available names

 Difficult to break down, no structure

 Inherently sequential lookups

 Hierarchical naming space: can impose order, different structures possible

 Can be distributed

 More efficient lookups exploiting structure

Application Layer 2-7

Domain Name System / Name Space

 Each name is made of several parts (hierarchical)

 Each part (a node) is called a label

 Names are defined on a tree structure with the
root at the top

 DNS requires that children of a node
(those that branch from the upper layer)
have different labels (uniqueness)

 Allows the control of names assignment (and system) to be decentralized

 A domain becomes a sub tree of the domain name space

 Further divided into sub-domains

 The domain name is the domain name of the node at the top of the sub tree

Application Layer 2-8

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:

 client queries root server to find com DNS server

 client queries .com DNS server to get amazon.com DNS server

 client queries amazon.com DNS server to get IP address for
www.amazon.com

… …

Application Layer 2-9

DNS: root name servers

 contacted by local name server that can not resolve name

 root name server:

 contacts authoritative name server if name mapping not known

 gets mapping

 returns mapping to local name server

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA

(5 other sites)

b. USC-ISI Marina del Rey, CA

l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA

f. Internet Software C.

Palo Alto, CA (and 48 other

sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo

(5 other sites)

c. Cogent, Herndon, VA (5 other sites)

d. U Maryland College Park, MD

h. ARL Aberdeen, MD

j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,

OH (5 other sites)

Application Layer 2-10

TLD, authoritative servers

top-level domain (TLD) servers:
 responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp

 Network Solutions maintains servers for .com TLD

 Educause for .edu TLD

authoritative DNS servers:
 organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

 can be maintained by organization or service provider

Application Layer 2-11

Local DNS name server

 does not strictly belong to hierarchy

 each ISP (residential ISP, company, university) has
one
 also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
 has local cache of recent name-to-address translation

pairs (but may be out of date!)

 acts as proxy, forwards query into hierarchy

Application Layer 2-12

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Application Layer 2-13

45

6

3

recursive query:
 puts burden of name

resolution on

contacted name

server

 heavy load at upper

levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server

dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-14

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)

 TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
 if name host changes IP address, may not be known

Internet-wide until all TTLs expire

 update/notify mechanisms proposed IETF standard
 RFC 2136

Application Layer 2-15

DNS records

DNS: distributed db storing resource records (RR)

type=NS
 name is domain (e.g.,

foo.com)

 value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname

 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name

 www.ibm.com is really

servereast.backup2.ibm.com

 value is canonical name

type=MX
 value is name of mailserver

associated with name

Application Layer 2-16

DNS protocol, messages

 query and reply messages, both with same message
format

msg header

 identification: 16 bit # for

query, reply to query uses

same #

 flags:

 query or reply

 recursion desired

 recursion available

 reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-17

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
 provide names, IP addresses of authoritative name server

(primary and secondary)

 registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks

 Bombard root servers
with traffic
 Not successful to date

 Traffic Filtering

 Local DNS servers
cache IPs of TLD
servers, allowing root
server bypass

 Bombard TLD servers
 Potentially more

dangerous

Redirect attacks

 Man-in-middle
 Intercept queries

 DNS poisoning
 Send bogus relies to

DNS server, which
caches

Exploit DNS for DDoS

 Send queries with
spoofed source
address: target IP

 Requires amplification
Application Layer 2-18

Application Layer 2-19

DDoS attack on the DNS (Oct. 2016)

Application Layer 2-20

DNS Amplification Attack

Application Layer 2-21

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 2-22

Pure P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers are intermittently
connected and change IP
addresses

examples:
 file distribution

(BitTorrent)

 Streaming (KanKan)

 VoIP (Skype)

Application Layer 2-23

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
 peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-24

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies:

 time to send one copy: F/us

 time to send N copies: NF/us

increases linearly in N

time to distribute F

to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

 client: each client must
download file copy
 dmin = min client download rate

 min client download time: F/dmin

us

network

di

ui

F

Application Layer 2-25

File distribution time: P2P

 server transmission: must
upload at least one copy

 time to send one copy: F/us

time to distribute F

to N clients using

P2P approach

us

network

di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits

 max upload rate (limting max download rate) is us + Sui

… but so does this, as each peer brings service capacity

increases linearly in N …

Application Layer 2-26

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-27

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

 file divided into 256Kb chunks

 peers in torrent send/receive file chunks

… obtains list

of peers from tracker
… and begins exchanging

file chunks with peers in torrent

Application Layer 2-28

 peer joining torrent:

 has no chunks, but will
accumulate them over time
from other peers

 registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

 while downloading, peer uploads chunks to other peers

 peer may change peers with whom it exchanges chunks

 churn: peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

Application Layer 2-29

BitTorrent: requesting, sending file chunks

requesting chunks:
 at any given time, different

peers have different subsets
of file chunks

 periodically, Alice asks each
peer for list of chunks that
they have

 Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
 Alice sends chunks to those

four peers currently sending her
chunks at highest rate
 other peers are choked by Alice

(do not receive chunks from her)

 re-evaluate top 4 every10 secs

 every 30 secs: randomly select
another peer, starts sending
chunks
 “optimistically unchoke” this peer

 newly chosen peer may join top 4

Application Layer 2-30

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better

trading partners, get file faster !

Distributed Hash Table (DHT)

 Hash table

 DHT paradigm

 Circular DHT and overlay networks

 Peer churn

Key Value

John Washington 132-54-3570

Diana Louise Jones 761-55-3791

Xiaoming Liu 385-41-0902

Rakesh Gopal 441-89-1956

Linda Cohen 217-66-5609

……. ………

Lisa Kobayashi 177-23-0199

Simple database with(key, value) pairs:

• key: human name; value: social security #

Simple Database

• key: movie title; value: IP address

Original Key Key Value

John Washington 8962458 132-54-3570

Diana Louise Jones 7800356 761-55-3791

Xiaoming Liu 1567109 385-41-0902

Rakesh Gopal 2360012 441-89-1956

Linda Cohen 5430938 217-66-5609

……. ………

Lisa Kobayashi 9290124 177-23-0199

• More convenient to store and search on

numerical representation of key

• key = hash(original key)

Hash Table

 Distribute (key, value) pairs over millions of peers
 pairs are evenly distributed over peers

 Any peer can query database with a key
 database returns value for the key

 To resolve query, small number of messages exchanged among
peers

 Each peer only knows about a small number of other
peers

 Robust to peers coming and going (churn)

Distributed Hash Table (DHT)

Assign key-value pairs to peers

 rule: assign key-value pair to the peer that has the
closest ID.

 convention: closest is the immediate successor of
the key.

 e.g., ID space {0,1,2,3,…,63}

 suppose 8 peers: 1,12,13,25,32,40,48,60
 If key = 51, then assigned to peer 60

 If key = 60, then assigned to peer 60

 If key = 61, then assigned to peer 1

1

12

13

25

32
40

48

60

Circular DHT

• each peer only aware of
immediate successor and
predecessor.

“overlay network”

1

12

13

25

32
40

48

60

What is the value
associated with key 53 ?

value

O(N) messages

on avgerage to resolve

query, when there

are N peers

Resolving a query

Circular DHT with shortcuts

• each peer keeps track of IP addresses of predecessor,
successor, short cuts.

• reduced from 6 to 3 messages.
• possible to design shortcuts with O(log N) neighbors, O(log N)

messages in query

1

12

13

25

32
40

48

60

What is the value for
key 53

value

Peer churn

example: peer 5 abruptly leaves

1

3

4

5

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

Peer churn

example: peer 5 abruptly leaves

peer 4 detects peer 5’s departure; makes 8 its immediate
successor

 4 asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.

1

3

4

8
10

12

15

handling peer churn:

peers may come and go (churn)

each peer knows address of its
two successors

each peer periodically pings its
two successors to check aliveness

if immediate successor leaves,
choose next successor as new
immediate successor

