TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers' source port # dest port #
sequence number |
u b)’te stream number of acknowledgement number
first byte in segment’ s || | wnd
d t checksum urg pointer
ata
wmdow Size
acknowledgements: N
eXPeCted from other side sendersequence numberspace
= cumulative ACK
. . sent sent not- usable not
Q: how receiver handles ACKed yet ACKed butnot usable
out-of-order segments gl‘i‘g;;t,,) yet sent
= A: TCP spec doesn’ t say, incoming segment to sender
- up to implementor source port # dest port #
sequence number
- acknowledgement number
A rwnd
checksum urg pointer

Transport Layer 3-1

TCP seqg. numbers, ACKs

Seq=42, ACK=79,data= ‘C’

/

Seq=79, ACK=43,data= ‘C’
host ACKs

receipt

of echoed ——___
C Seq=43, ACK:K

simple telnet scenario

host ACKs
receipt of
‘C’, echoes
back ‘C’

Transport Layer 3-2

TCP round trip time, timeout

« timeout interval: EstimatedRTT plus “safety margin’
" large variation in EstimatedRTT -> larger safety margin

’

<+ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
f*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)
TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Retransmissions excluded from TimeoutInterval computation

Transport Layer 3-3

TCP Congestion Control: details

sender sequence number space

— cwnd —»! TCP sending rate:
""" < roughly: send cwnd
bytes, wait RTT for
jast bytej \ - byte ACKS, then send
e eACKe o more bytes
1(‘Iiglgr|]'1-t”) cwnd
«» sender limits transmission: rate ~ — - bytes/sec
LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-4

Additive Increase/Multiplicative
Decrease

«» QObjective: adjust to changes in the available capacity

< New state variable per connection: CongestionWindow
" limits how much data source has in transit

MaxWin = MIN (CongestionWindow, AdvertisedWindow)
EffWin = MaxWin - (LastByteSent - LastByteAcked)

« |dea:
" increase CongestionWindow when congestion goes down
" decrease CongestionWindow when congestion goes up

AIMD (cont)

% Trace: sawtooth shape behavior

70
60
50 -

o 40
¥30_
20
10

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (seconds)

Slow Start

Obijective: quickly determine the available
capacity in the first

Source Destination

|dea:
" begin with CongestionWindow = | pckt

" double CongestionWindow each RTT
(increment by | packet for each ACK)

= This is exponential increase to probe for
available bandwidth

W\

)

= Up to half of cwnd may get lost ===
Used... \0:

0
0
il
i

= when first starting connection

= when connection goes dead waiting for
timeout

SSTHRESH (slow start threshold)
indicates when to begin additive increase
phase

\l

SSTHRESH and CWND

«» SSTHRESH typically very large on connection setup

+ Set to one half of CongestionWindow on packet loss

" So, SSTHRESH goes through multiplicative decrease for each packet loss
" |f loss is indicated by timeout, set CongestionWindow = 1
 SSTHRESHand CongestionWindow always >= | MSS

< After loss, when new data is ACKed, increase CWND

= Manner depends on whether we’re in slow start or congestion avoidance

Congestion Control Functionality

Until cwnd < slow_start_threshold i

% Slow Start phase (exponential growth)

= Each returning ACK, a new pckt is transmitted
* cwnd -> cwnd + |

= Every RTT

* cwnd -> 2 cwnd

i When cwnd > slow start threshold i

+» Congestion avoidance phase (linear growth)

* Each returning ACK, a new pckt is transmitted
* cwnd -> cwnd + (I/cwnd)

= Every RTT

e cwnd -> cwnd + |

Loss recovery

«» Two ways to detect losses
" Time outs
* Three dupacks

< With timeout expiration
" ssthresh = cwnd /2
= cwnd = | (so, restart in slow start phase)

+ With three dupacks
" ssthresh = cwnd /2
* cwnd = cwnd / 2 (so, restart in cong. avoidance phase)

10

TCP Saw Tooth

Congestion Timeout
Window / Timeout
; may still
occur

Three dupacks

>

Time
Initial Slowstart Fast

Slowstart to pace Retransmit
packets and Recovery

11

Mathis et. al, 1997 — Macroscopic TCP
Throughput Estimation

W = max cwnd
p =2 periodic loss prob. at end. cycle
MSS > Maximum segment size

congestion window (packets)

Loss)
W | CA: linearincrease
w I
2 o i
I I
| |
| |
0 | |
0 o W L 2w

2 Time (RTT)

Model Validation

Throughput vs Loss

Mathis model New Reno CUBIC

5,000
4500

4,000

Throughput (kbps)

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0%

Probability of packet loss

Approaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion network-assisted
control: congestion control:
+ no explicit feedback <+ routers provide
from network feedback to end systems
% congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
<« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-14

Case study: ATM ABR congestion control

ABR: available bit rate:

é . . 14/
< elastic service

+ if sender’ s path
underloaded :

= sender should use
available bandwidth

+ if sender’ s path
congested:
" sender throttled to

minimum guaranteed
rate

RM (resource management)

cells:

<+ sent by sender, interspersed

with data cells

<« bits in RM cell set by switches

(“network-assisted *)

= N/ bit: no increase in rate
(mild congestion)

= Cl bit: congestion
indication

< RM cells returned to sender

by receiver, with bits intact

Transport Layer 3-15

Case study: ATM ABR congestion control

I RM cell H data cell

\d
D B} B e

% two-byte ER (explicit rate) field in RM cell
" congested switch may lower ER value in cell
= senders’ send rate thus max supportable rate on path

< EFCI bit in data cells: set to | in congested switch

" if data cell preceding RM cell has EFCI set, receiver sets
Cl bit in returned RM cell

Transport Layer 3-16

