
Transport Layer 3-1

TCP seq. numbers, ACKs

sequence numbers:

byte stream “number” of
first byte in segment’s
data

acknowledgements:

seq # of next byte
expected from other side

cumulative ACK

Q: how receiver handles
out-of-order segments

A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-2

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-3

 timeout interval: EstimatedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Retransmissions excluded from TimeoutInterval computation

Transport Layer 3-4

TCP Congestion Control: details

 sender limits transmission:

 cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

 roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

5

Additive Increase/Multiplicative

Decrease

 Objective: adjust to changes in the available capacity

 New state variable per connection: CongestionWindow
 limits how much data source has in transit

MaxWin = MIN(CongestionWindow, AdvertisedWindow)

EffWin = MaxWin - (LastByteSent - LastByteAcked)

 Idea:
 increase CongestionWindow when congestion goes down

 decrease CongestionWindow when congestion goes up

6

AIMD (cont)

 Trace: sawtooth shape behavior

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30

40

50

10

10.0

7

Slow Start
 Objective: quickly determine the available

capacity in the first

 Idea:
 begin with CongestionWindow = 1 pckt

 double CongestionWindow each RTT
(increment by 1 packet for each ACK)

 This is exponential increase to probe for
available bandwidth

 Up to half of cwnd may get lost

 Used…
 when first starting connection

 when connection goes dead waiting for
timeout

 SSTHRESH (slow start threshold)
indicates when to begin additive increase
phase

Source Destination

…

8

SSTHRESH and CWND

 SSTHRESH typically very large on connection setup

 Set to one half of CongestionWindow on packet loss

 So, SSTHRESH goes through multiplicative decrease for each packet loss

 If loss is indicated by timeout, set CongestionWindow = 1

• SSTHRESH and CongestionWindow always >= 1 MSS

 After loss, when new data is ACKed, increase CWND
 Manner depends on whether we’re in slow start or congestion avoidance

9

Congestion Control Functionality

 Slow Start phase (exponential growth)

 Each returning ACK, a new pckt is transmitted
• cwnd -> cwnd + 1

 Every RTT
• cwnd -> 2 cwnd

 Congestion avoidance phase (linear growth)

 Each returning ACK, a new pckt is transmitted
• cwnd -> cwnd + (1/cwnd)

 Every RTT
• cwnd -> cwnd + 1

When cwnd > slow_start_threshold

Until cwnd ≤ slow_start_threshold

10

Loss recovery

 Two ways to detect losses

 Time outs

 Three dupacks

 With timeout expiration

 ssthresh = cwnd / 2

 cwnd = 1 (so, restart in slow start phase)

 With three dupacks
 ssthresh = cwnd / 2

 cwnd = cwnd / 2 (so, restart in cong. avoidance phase)

11

TCP Saw Tooth

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeout
may still
occur

Timeout

Three dupacks

Mathis et. al, 1997 – Macroscopic TCP

Throughput Estimation
W max cwnd
p periodic loss prob. at end. cycle
MSS Maximum segment size

CA: linear increase

Loss

Model Validation

Transport Layer 3-13

Transport Layer 3-14

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion
control:

 no explicit feedback
from network

 congestion inferred
from end-system
observed loss, delay

 approach taken by
TCP

network-assisted
congestion control:

 routers provide
feedback to end systems

 single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

explicit rate for
sender to send at

Transport Layer 3-15

Case study: ATM ABR congestion control

ABR: available bit rate:
 “elastic service”

 if sender’s path
“underloaded”:

 sender should use
available bandwidth

 if sender’s path
congested:

 sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:

 sent by sender, interspersed
with data cells

 bits in RM cell set by switches
(“network-assisted”)

 NI bit: no increase in rate
(mild congestion)

 CI bit: congestion
indication

 RM cells returned to sender
by receiver, with bits intact

Transport Layer 3-16

Case study: ATM ABR congestion control

 two-byte ER (explicit rate) field in RM cell
 congested switch may lower ER value in cell

 senders’ send rate thus max supportable rate on path

 EFCI bit in data cells: set to 1 in congested switch

 if data cell preceding RM cell has EFCI set, receiver sets
CI bit in returned RM cell

RM cell data cell

