Chapter 3
Transport Laxer

A note on the use of these ppt slides:

We’' re making these slides freely available to all (faculty, students, readers).
They’ re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only

ask the following:
< If you use these slides (e.g., in a class) that you mention their source

(after all, we’ d like people to use our book!)

+ If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

@AII material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking
A Top-Down Approach

KUROSE | ROSS

Computer
Networking: A Top
Down Approach

6t edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Transport Layer 3-1

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t =0

last packet bit transmitted, t = L / R

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next|
packet, t = RTT + L/ R [~
Q-

U L/R .008

sender = ———T = ooos - 0.00027

Transport Layer 3-2

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
» buffering at sender and/or receiver

data pc:cke’r—»

data packets—» ‘p

<+— ACK packets

(a) a stop-and-wait protocol in operation {b) a pipelined protocol in operation

% two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-3

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fx-- - -
last bit transmitted, t =L/ R

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2nd packet arrives, send ACK
—last bit of 31 packet arrives, send ACK

RTT

ACK arrives, send next]
packet, t=RTT+L/R

- 3-packet pipelining increases
""""""""""" utilization by a factor of 3!

v
3L/ R .0024 '/
sender = ——T 30008 0.00081

U

Transport Layer 3-4

Pipelined protocols: overview

Go-back-N:

<+ sender can have up to

N unacked packets in

pipeline

% receiver only sends
cumulative ack

= doesn’ t ack packet if
there’ s a gap

< sender has timer for
oldest unacked packet

= when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack ed packets in
pipeline

% rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

= when timer expires,
retransmit only that
unacked packet

Transport Layer 3-5

Go-Back-N: sender

+ k-bit seq # in pkt header
= “window” of up to N, consecutive unack’ ed pkts allowed

send_base hextsegnum dlready Usable. ho
L i ack’ed vet sent
JOOIRE L LTRELO0000I | semtogtae [otusam
t __ window size—%
N

« ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK~

" may receive duplicate ACKs (see receiver)

+ timer for oldest in-flight pkt

+ timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-6

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextsegnuml])
if (base == nextsegnum)

start_timer
nextsegnum-++
~~~~~ }
A else
bl e refuse_data(data)
nextsegnum=1 ‘. ( D
Amum=S . timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(rcvpkt) O Udt_Send(Sndpkt[base+l])
&& corrupt(rcvpkt)
udt_send(sndpkt[nextseqgnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer
- Transport Layer 3-7



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rcv(rcvpkt)
-~ ( ) && notcurrupt(rcvpkt)

A T~ ~o - o && hassegnum(rcvpkt,expectedsegnum)
=~ >

expectedseqnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

" may generate duplicate ACKs

" need only remember expectedsegqnum
% out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

* re-ACK pkt with highest in-order seq #

Transport Layer 3-8



GBN in action

sender window (N=4) sender recelver

01 2 3 'Y WA: send pktO

F¥E): 5678 send pktl \ :

0123 NE send Ektz- receive pkt0, send ack0

FPE): 5678 send pkt3 \Xloss receive pktl, send ackl
(wait) receive pkt3, discard,

oFEEEE 678 rcv ack0, send pktd (re)send ackl

01EKEE¥ 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

ignore duplicate ACK

pkt 2 timeout

0 1 EEEY6 7 8 send pkt2
12 3 45 WA send pkt3 \ _
W2 3 45 i send pkt4 rcv pkt2, deliver, send ack2

W2 3 45 W& send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

Transport Layer 3-9



Selective repeat

+ receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt

< sender window

= N consecutive seq # s
* limits seq #s of sent, unACKed pkts

Transport Layer 3-10



Selective repeat: sender, receiver windows

send_base  nexfsegnum dlready Usable. not
' ack’ed yet sent
LTI | sz [ oo
* __ window size —4
N

(a) sender view of sequence numlbers

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIIIIII |opectes ner [ rereseer

t _ window size_4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-11



Selective repeat

— sender

data from above:

+ if next available seq # in
window, send pkt

timeout(n):

+ resend pkt n, restart
timer

ACK(n) in [sendbase,sendbase+N]:
<+ mark pkt n as received

+ if n smallest unACKed
pkt, advance window base
to next unACKed seq #

— receiver

Pl(t nin [rcvbase, rcvbase+N-1]
+ send ACK(n)
» out-of-order: buffer

» in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t N 1IN [rcvbase-N,revbase-1]
+» ACK(n)

otherwise:

% ignore

Transport Layer 3-12




Selective repeat in action

sender window (N=4) sender recelver
k) 5678 send pkt0
K} 5678 send pktl \ .
kt0, send ackO
012 3 IARA send pkt2- receive pkty,
FFEL: 5678 send pkt3 T~Xioss receive pktl, send ackl
] wait
(wait) receive pkt3, buffer,
oMEEX¥ 673 rcv ack0, send pkt4 send ack3
0 1EKEE¥ 78 rcv ackl, send pkt5 receive pkt4, buffer,
send ack4
ﬁrecord ack3 arrived receive pkt5, buffer,
Pkt 2 timeout send ack>
0 1EEEYF6 7 8 send pkt2
URY2 34 O A record ack4 arrived _
012948678 record ack4 arrived I‘C|2/ pktZk, dehl\(/er_ pktZéI %)
0 1EEEEF6 7 8 pkt3, pkt4, pkt5; send ac

Q: what happens when ack2 arrives?

Transport Layer 3-13



sender window receiver window

Selective repeat:  (ferreceipy (after receipt

dilemma 012 —2KO
3012k ofiEE]o 1 2
[FRs 012 —pkt2 — 01EEN1 2
example: 7 > (01 2kXi2
0] 1 2 3 [ T

»
se.q# S: Q, l, 2,3 Jgpmity
< window size=3 pktO

—— will accept packet

] with seq number 0
& receiver sees no (a) no problem

difference in two receiver can’t see sena’er side.
scenarios! receiver behavior identical in both cases’

. something’s (very) wrong!
<+ duplicate data g (very) wrong

accepted as new in FH:012 —DKO
(b) 012 —RKkt1 b/ 1 2 3[EW
[F¥)3012 _pkt2 1 2 3 0 [
‘?4 0 1 2ETE2

Q: what relationship o
between seq # size timeout X [
) . retransmlt pktO
and window size to [EEJ:012 —0kO

will accept packet
with seq number 0

. . ?
avoid problem in (b)! (b) 0ops!

Transport Layer 3-14



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15



TC P: Ove rVieW RFCs: 793,1122,1323, 2018, 258

% point-to-point:
® one sender, one receiver
<+ reliable, in-order byte
steam:

" no “message
. »
boundaries

<+ pipelined:
= TCP congestion and

flow control set window
size

< full duplex data:

» bi-directional data flow
In same connection

= MSS: maximum segment
size
< connection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-16



TCP segment structure

« 32 hits

URG: urgent data
(generally not used)\

source port # dest port #

ACK: ACK #

. Sequence number

valid

\olqlowledgement number

PSH: push data now
(generally not used) —|

head
len used ‘EAP RIS|F| receive window
7
Urg data pointer

RST, SYN, aN—T
connection estab

op}'{ s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Transport Layer 3-17



TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers° source port # dest port #
sequence number
u b)’te stream number of acknowledgement number
first byte in segment’s [ | rwnd
checksum urg pointer
data
wmdow Size
acknowledgements: N

"seq # of next byte
expected from other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn’ t say,
- up to implementor

sender sequence number space

sent sent, not- usable not
ACKed yet ACKed butnot usable
(“in- yet sent
flight”)

incoming segment to sender
dest port #

sequence number

R acknowledgement number

source port #

A

rwnd

checksum

urg pointer

Transport Layer 3-18



TCP seq. numbers, ACKs

Host A Host B
™ \
User &
types
‘C; \

host ACKs
receipt
of echoed
‘C’

Seq=42, ACK=79, w

Seq=79, ACK=43, data= ‘C’

\

Seq=43, ACK:K

simple telnet scenario

host ACKs
receipt of

‘C’, echoes
back ‘C

Transport Layer 3-19



TCP round trip time, timeout

Q: how to set TCP Q_ how to estimate RTT?

timeout value! <+ SampleRTT: measured
. time from segment
« longer than RTT transmission until ACK
= but RTT varies receipt
< too short: premature " j[gnore retransmissions
timeout, unnecessary ~ + SampleRTT will vary, want
retransmissions estimated RTT “smoother

. t00 long: sl : " average several recent
% 100 long: slow reaction measurements, not just

to segment loss current SampleRTT

Transport Layer 3-20



TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

+» exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 +

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

¢ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-21



TCP round trip time, timeout

+ timeout interval: EstimatedRTT plus “safety margin”
" large variation in EstimatedRTT -> larger safety margin

» estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-PB)*DevRTT +
f* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-22



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-23



TCP reliable data transfer

< T CP creates rdt service
” .
on top of IP" s unreliable
service

* pipelined segments S .
s cumulative acks let s initially consider

" single retransmission simplified TCP sender:
timer " ignore duplicate acks

% retransmissions " ignore flow control,
triggered by: congestion control

" timeout events
" duplicate acks

Transport Layer 3-24



TCP sender events:

data rcvd from app:

% create segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

. start timer if not
already running
= think of timer as for

oldest unacked
segment

= expiration interval:
TimeOutInterval

4

L)

L)

timeout;

% retransmit segment
that caused timeout

<% restart timer
ack recvd:

+ if ack acknowledges
previously unacked
segments

= update what is known
to be ACKed

" start timer if there are
still unacked segments

Transport Layer 3-25



TCP sender (simplified)

data received from application above
create segment, seq. #: NextSegNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSeqNum
timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-26



TCP: retransmission scenarios

Host A

g

o

le—— timeout —*

\
Seq=92, 8 bytes of data

-
ACK=100

y

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host B

S

Host A Hos
V./ \

SendBase=92

e—— timeout —

SendBase=100
SendBase=120

SendBase=120

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

ACK=100
ACK=120

\

Seq=92, 8

bytes of data\

\

ACK=120

\

premature timeout

Transport Layer 3-27



TCP: retransmission scenarios

Host A Host B

le—— timeout —*

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of da

ACK=100
X<
ACK=120

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-28



TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with iImmediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment iImmediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-29



TCP fast retransmit

% time-out period often
relatively long:

" long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

= sender often sends
many segments back-
to-back

" if segment is lost, there
will likely be many

duplicate ACKs.

—- JCP fast retransmit ——

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #
" |ikely that unacked
segment lost, so don’ t

wait for timeout

Transport Layer 3-30



TCP fast retransmit

Host A Host B
'\

— Seq=92, 8 bytes of data

Seq= 100%%
\X

(ACK=1OO

timeout

’ACK=1OO
~Seq=100, 20 bytes of data

A4

v VL
fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-31



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-32



TCP flow control

application may

ey |

application
process

remove data from

I_

application

TCP socket buffers ....

... Slower than TCP
receiver is delivering —
(sender is sending)

— flow control

N—

TCP socket

receiver buffers
TAY

|

TCP
code

receiver controls sender, so
sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

IP
code

|
from sender

I 4
!

receiver protocol stack

Transport Layer 3-33



TCP flow control

/7
0‘0

receiver “advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RevBuffer size set via

socket options (typical default
is 4096 bytes)

" many operating systems
autoadjust RevBuffer
sender Iimits amount of
unacked ( in-flight”) data to
receiver’ s rwnd value

guarantees receive buffer
will not overflow

to application process

FI_‘

?
RcvBuffer

T

rwnd

L

buffered data

free buffer space

1

TCP segment payloads

receiver-side buffering

Transport Layer 3-34



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-35



Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

<« agree on connection parameters

application application

O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

Vf network network
i
R |
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname", "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-36



Agreeing to establish a connection

2-way handshake:

P Q: will 2-way handshake
Cr always work in
- " network?
Let’ s talk .
T ESTAB <+ variable delays
OK .
ESTAB & % retransmitted messages

(e.g. req_conn(x)) due to
message loss

| % message reordering

.

choose X |~ | + can t see’ other side
req_conn(>_<L‘
—9 ESTAB
acc_conn(x)
ESTAB &

Transport Layer 3-37



Agreeing to establish a connection

2-way handshake failure scenarios:

N

choose x

retransmit
req_conn(x)

ESTAB

client™
terminates

\req_conn(>_<L‘

R ESTAB

acc_conn(x)

reg_conn(x)

\

connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

req_conn(x)

g

choose x

retransmit

ESTAB

retransmit

data(x+1) ™\

1
client
terminates

~ 7 x completes

\req_conno_(L’
/

acc_conn(x)

~data(x+ 1)\.'

connection

\
req_conn(x)

data(x+1)

ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 3-38



TCP 3-way handshake

client state

LISTEN

SYNSENT

v

ESTAB

choose init seq num, x
send TCP SYN msg

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain

client-to-server data

g
N

4

\

SYNbit=1, Seq=x

P

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

/
\
ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB

Transport Layer 3-39



TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept () ;
A .
Socket clientSocket =
SYN(X) | newSocket ("hostname", "port
ulnb 1 ,.
SYNACK(seq=y,ACKnum=x+1) number™)
create new socket for SYN(seq=x)
communication back to client
| | SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Transport Layer 3-40



TCP: closing a connection

< client, server each close their side of connection
= send TCP segment with FIN bit = |

+ respond to received FIN with ACK

" on receiving FIN, ACK can be combined with own FIN
<+ simultaneous FIN exchanges can be handled

Transport Layer 3-41



TCP: closing a connection

client state
ESTAB
clientSocket.close ()
FIN WAIT 1 can no longer
send but can
receive data
FINVWAIT p) wait for server
n - close
TIMED WAIT —~
timed wait
for 2*max
segment lifetime
CLOSED i

g

4

T FiNbit=1
it=1, Seq=X\’

/
ACKbit=1: ACKnum=x+1
—

/
A)Nbit= 1, seq=y
\

ACKbit=1; ACKnum=y+1

\

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-42



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-43



Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" lost packets (buffer overflow at routers)
" long delays (queueing in router buffers)
<+ a top-10 problem!

Transport Layer 3-44



AEEroaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted =
control: congestion control:
+ no explicit feedback <+ routers provide
from network feedback to end systems
<+ congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
<« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-45



Case study: ATM ABR congestion control

ABR: available bit rate:

(11 . . 13/
» elastic service

» if sender’ s path
underloaded :

= sender should use
available bandwidth

» if sender’ s path
congested:

= sender throttled to
minimum guaranteed
rate

RM (resource management)

cells:

+ sent by sender, interspersed

with data cells

+ bits in RM cell set by switches

(“network-assisted *)

= N/ bit: no increase in rate
(mild congestion)

= Cl bit: congestion
indication

< RM cells returned to sender

by receiver, with bits intact

Transport Layer 3-46



Case study: ATM ABR congestion control

I RM cell H data cell

s‘[u ’-/Hﬂlﬂﬂliﬁﬂﬂl “ T
D F R | R I

+ two-byte ER (explicit rate) field in RM cell

" congested switch may lower ER value in cell

= senders’ send rate thus max supportable rate on path
<« EFCI bit in data cells: set to | in congested switch

" if data cell preceding RM cell has EFCI set, receiver sets
Cl bit in returned RM cell

Transport Layer 3-47



Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-48



TCP congestion control: additive increase
multiplicative decrease
% approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

time
Transport Layer 3-49



TCP Congestion Control: details

sender sequence number space
¢ cWnd ——p|

last byte J \ L last byte
yet ACKed
(“in-
flight™)

< sender limits transmission:

LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

< roughly: send cwnd
bytes, wait RTT for
ACKS, then send

more bytes

cwnd

rate bytes/sec

22

Transport Layer 3-50



TCP Slow Start

Host B

+ when connection begins, =
Increase rate

exponentially until first T —Slesegmen

loss event:
" initially cwnd = | MSS %’

" double cwnd every RTT

" done by incrementing
cwnd for every ACK Ur segments

received
% summary: initial rate is
slow but ramps up
exponentially fast

s
>

+«— RTT—

time

Transport Layer 3-51



TCP: detecting, reacting to loss

%+ loss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

+ loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-52



TCP: switching from slow start to CA

Q: when should the
exponential
increase switch to 4 TCP Reno
linear? 27

A: when cwnd gets
to |/2 of its value
before timeout.

o
l

ssthresh

ssthresh

Congestion window
(in segments)

TCP Tahoe

. . 0
Implementation: 0123456 78 9101112131415
+ variable ssthresh Transmission found

<+ on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

Transport Layer 3-53



S

U

duplicate ACK
dupACKcount++

)

new ACK cwnd = cwnd
cwnd = cwnd+MSS
dupACKcount=0

ransmit new segment(s), as allowed

A t
cwnd = 1 MSS />
ssthresh = 64 KB cwnd > ssthresh
_dupACKcount =0 A ‘
- (;9.«-\ ) timeout
</ ‘({c €))ssthresh = cwnd/2
=a . cwnd = 1 MSS
.‘g‘{j\p timeout R dupACKcount = 0 N
ssthresh = cwnd/2 retransmit missing segment

cwnd = 1 MSS
dupACKcount =0

retransmit missing segment

PR

timeout( < 3))

ssthresh = cwnd/2

cwnd =1

dupACKcount =0
retransmit missing segment

New ACK
cwnd = ssthresh

dupACKcount == dupACKcount = 0

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

__new ACH

mmary: TCP Congestion Control

+ MSS = (MSS/cwnd)

dupACKcount =0
transmit new segment(s), as allowed

duplicate ACK
dupACKcount++

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

v
A

duplicate ACK

cwnd = cwnd + MSS
transmit new segment

(s), as allowed

Transport Layer 3-54



TCP throughput

% avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

+ W: window Size (measured in bytes) Where loss occurs
= avg. window size (# in-flight bytes) is /4 W
= avg. thruput is 3/4W per RTT

avg TCP thruput = % % bytes/sec

N14%4%4%%

Transport Layer 3-55



77

TCP Futures: TCP over “long, fat pipes

0’0

example: 1500 byte segments, |100ms RTT, want
|0 Gbps throughput

requires W = 83,333 in-flight segments

throughput in terms of segment loss probability, L
[Mathis 1997]:

0’0

*%

TCP throughput = L.22 M55

RTT./L

=?» to achieve 10 Gbps throughput, need a loss rate of L
=210 — a very small loss rate!

% new versions of TCP for high-speed

&

Transport Layer 3-56



TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENG—

- bottleneck
Q router

TCP connection 2 capacity R

Transport Layer 3-57



Why is TCP fair?

two competing sessions:
+ additive increase gives slope of |, as throughout increases
+ multiplicative decrease decreases throughput proportionally

Connection 2 throughput 0

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

Transport Layer 3-58



Fairness gmorez

Fairness and UDP Fairness, parallel TCP
» multimedia apps often connections
do not use TCP + application can open
" do not want rate multiple parallel
throttled by congestion  connections between two

control

< instead use UDP;

" send audio/video at . .
constant rate, tolerate  + e.g., link of rate R with 9

hosts
< web browsers do this

packet loss existing connections:
= new app asks for | TCP, gets rate
R/10

" new app asks for || TCPs, gets R/2

Transport Layer 3-59



Chapter 3: summary

< principles behind
transport layer services:
" multiplexing,
demultiplexing
" reliable data transfer
= flow control
" congestion control

< Instantiation,
implementation in the
Internet
= UDP
= TCP

next:
<+ leaving the
network “edge”
(application,
transport layers)
<+ into the network
core

Transport Layer 3-60



