INTRODUZIONE ALLE EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI
 Laurea Magistrale in Matematica- docente A. Cesaroni

Exam 06.02.2014, solution to the exercises.

Question 3.

Consider the following quasilinear problem

$$
(Q) \begin{cases}u_{t}-u_{x x}+\left(u_{x}\right)^{2}=0 & x \in \mathbb{R}, t>0 \\ u(x, 0)=\log \left(\frac{2+x^{2}}{1+x^{2}}\right) & x \in \mathbb{R}\end{cases}
$$

1. Find (using an appropriate transformation and a representation formula) a solution to (Q).
2. Prove that there exists at most one bounded solution $u \in \mathcal{C}^{2,1}(\mathbb{R} \times(0,+\infty)) \cap \mathcal{C}(\mathbb{R} \times$ $[0,+\infty)$) to (Q).
3. Study the behaviour of the bounded solution $u(x, t)$ to Q as $t \rightarrow+\infty$.

Solution. 1. Let assume that a solution u to the problem exist. We define $v(x, t)=$ $e^{-u(x, t)}$. So $v_{t}=-u_{t} e^{-u}, v_{x x}=-u_{x x} e^{-u}+\left(u_{x}\right)^{2} e^{-u}$. So v satisfies

$$
(N) \begin{cases}v_{t}-v_{x x}=0 & x \in \mathbb{R}, t>0 \\ u(v, 0)=\frac{1+x^{2}}{2+x^{2}} & x \in \mathbb{R}\end{cases}
$$

The initial data is bounded, positive and regular, so the problem (N) admits a unique bounded solution

$$
v(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{+\infty} \frac{1+y^{2}}{2+y^{2}} e^{-\frac{(x-y)^{2}}{4 t}} d y .
$$

Observe that by the properties of the heat kernel, $v \in \mathcal{C}^{\infty}(\mathbb{R} \times(0,+\infty)) \cap \mathcal{C}(\mathbb{R} \times[0,+\infty))$ moreover $v>0, v$ is bounded, in particular $\frac{1}{2} \leq v(x, t) \leq 1$.
So, we can define $u(x, t)=-\log v(x, t)$, and $u \in \mathcal{C}^{\infty}(\mathbb{R} \times(0,+\infty)) \cap \mathcal{C}(\mathbb{R} \times[0,+\infty))$ is a bounded solution to (Q).
2. Let u_{1}, u_{2} be two bounded solutions to (Q), then $v_{1}=e^{-u_{1}} \mathrm{e} v_{2}=e^{-u_{2}}$ are two bounded solutions to (N). By the comparison principle between sub and supersolutions with exponenatial growth of the heat equation in $\mathbb{R} \times(0,+\infty)$, we obtain $v_{1}=v_{2}$. This implies that $u_{1}=u_{2}$.
3. By 1 . we get that the unique bounded solution to (Q$)$ is $u(x, t)=-\log v(x, t)$. Moreover $\lim _{t \rightarrow+\infty} v(x, t)=1$ locally uniformly in \mathbb{R}. Then $\lim _{t \rightarrow+\infty} u(x, t)=0$ locally uniformly in \mathbb{R}.

Question 4.

1. State and prove d'Alembert formula for the solution of the wave equation in dimension 1.
2. Find the solution to the following Cauchy Dirichlet problem

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=0 & x>0, t>0 \\ u(0, t)=0 & t>0 \\ u(x, 0)=(1-\cos x)^{2} & x \geq 0 \\ u_{t}(x, 0)=x \sin x & x \geq 0\end{cases}
$$

Solution. 2 We solve the problem with the reflection method. We consider the antisymmetric extension to the initial data on the whole \mathbb{R} as follows. Let $u_{0}(x)=(1-\cos x)^{2}$ and $v_{0}(x)=x \sin x$, then we define

$$
\tilde{u_{0}}(x)=\left\{\begin{array}{ll}
(1-\cos x)^{2} & x \geq 0 \\
-(1-\cos x)^{2} & x<0
\end{array} \quad \tilde{v_{0}}(x)=\left\{\begin{array}{ll}
x \sin x & x \geq 0 \\
-x \sin x & x<0
\end{array}\right. \text {. }\right.
$$

Then $\tilde{u_{0}} \in \mathcal{C}^{2}(\mathbb{R})$ (it is also more regular...) and $\tilde{v_{0}} \in \mathcal{C}^{1}(\mathbb{R})$. We consider the Cauchy problem

$$
\text { (C) } \begin{cases}u_{t t}-c^{2} u_{x x}=0 & x \in \mathbb{R}, t>0 \\ u(x, 0)=\tilde{u_{0}}(x) & x \in \mathbb{R} \\ u_{t}(x, 0)=\tilde{v_{0}}(x) x & x \in \mathbb{R}\end{cases}
$$

The solution of (C) is given by

$$
\tilde{u}(x, t)=\frac{1}{2}\left(\tilde{u}_{0}(x+c t)+\tilde{u_{0}}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} \tilde{v_{0}}(s) d s .
$$

The restriction of \tilde{u} to the half line $x>0$ gives the solution to the Cauchy-Dirichlet problem:

$$
u(x, t)= \begin{cases}\frac{(1-\cos (x+c t))^{2}+(1-\cos (x-c t))^{2}}{2}+\frac{1}{2 c} \int_{-c t}^{x+c t} s \sin s d s & x>c t \\ \frac{(1-\cos (x+c t))^{2}-(1-\cos (x-c t))^{2}}{2}+\frac{1}{2 c} \int_{c t-x}^{x+c t} s \sin s d s & x \leq c t .\end{cases}
$$

