## Harmonic functions: mean value property, Harnack inequality, maximum principles.

Exercise 1. Let $u$ be harmonic in $\mathbb{R}^{n}$. Prove the following.
i) If $u \in L^{p}\left(\mathbb{R}^{n}\right), p \in[1,+\infty)$, then $u \equiv 0$.
ii) If $|D u| \in L^{2}\left(\mathbb{R}^{n}\right)$ then $u$ is constant.

Hint: i) show that $|u|^{p}$ is subharmonic (using Jensen inequality).
Exercise 2. Show that every convex function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is subharmonic. Is it true that every subharmonic function is convex?

Show that if $u$ is a convex superharmonic function then there exists $b \in \mathbb{R}^{n}, c \in \mathbb{R}$ such that $u(x)=b \cdot x+c$.

Hint: recall that if $u$ is convex, then $u$ is continuous. Moreover by convexity we get, for every $y \in \partial B(0,1)$ and $r>0$,

$$
\begin{equation*}
u(x) \leq \frac{1}{2} u(x+r y)+\frac{1}{2} u(x-r y) . \tag{1}
\end{equation*}
$$

Exercise 3. Let $u_{n}$ be a sequence of nonnegative harmonic functions in $\Omega$, open connected set in $\mathbb{R}^{n}$. Assume there exists $x_{0} \in \Omega$ such that $\sum_{n} u_{n}\left(x_{0}\right)$ converges.

Show that $\sum_{n} u_{n}$ converges locally uniformly in $\Omega$.
Exercise 4 (Continuous dependance). Let $\Omega \subseteq \mathbb{R}^{n}$ be an open bounded set, $f \in \mathcal{C}(\bar{\Omega})$, $g \in \mathcal{C}(\partial \Omega)$ and $u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ the solution to

$$
\begin{cases}-\Delta u=f(x) & x \in \Omega \\ u=g(x) & x \in \partial \Omega\end{cases}
$$

i) Show that there exists $C>0$ such that

$$
\sup _{\bar{\Omega}}|u| \leq C\left(\sup _{\bar{\Omega}}|f|+\sup _{\partial \Omega}|g|\right) .
$$

ii) Let $f_{n} \in \mathcal{C}(\Omega)$ and $g_{n} \in \mathcal{C}(\partial \Omega)$ two sequences which converge uniformly to respectively $f$ and $g$ and $u_{n} \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ the solutions to

$$
\begin{cases}-\Delta u=f_{n}(x) & x \in \Omega \\ u=g_{n}(x) & x \in \partial \Omega\end{cases}
$$

Show that $u_{n}$ converges uniformly to $u$ in $\Omega$.
Hint: Consider the functions $u(x) \pm \frac{|x|^{2}}{2 n} \max _{\bar{\Omega}}|f| \mp\left[\sup _{\partial \Omega}|g|+\frac{(\text { diam } \Omega)^{2}}{2 n} \max _{\bar{\Omega}}|f|\right]$.

