INTRODUZIONE ALLE EQUAZIONI ALLE DERIVATE PARZIALI, L.M. IN MATEMATICA, A.A. 2013-2014.

Laplace and Poisson equation.

Exercise 1. i) Let $\beta \geq 0$. Find the solution $u_{\beta} \in \mathcal{C}^2(B(0,R)) \cap \mathcal{C}(\overline{B(0,R)})$ to the Dirichlet problem

$$\begin{cases} -\Delta u = |x|^{\beta} & |x| < R\\ u = 0 & |x| = R. \end{cases}$$

ii) Let $\Omega \in \mathbb{R}^n$ an open bounded set and $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ the solution to

$$\begin{cases} -\Delta u = 1 & x \in \Omega\\ u = 0 & x \in \partial \Omega \end{cases}$$

Show that

$$u(x) \ge \frac{1}{2n} (\operatorname{dist}(x, \partial \Omega))^2.$$

Hint: i) Look for a radial solution u(x) = f(|x|) with $f \in C^2([0, R), f \in C([0, R]))$. ii) Observe that $u \ge 0$ in Ω . Let $x \in \Omega$ and $r = \text{dist}(x, \partial\Omega)$, consider the same problem but in the set $B(x, r) \subseteq \Omega$. Construct a solution for this new problem (using i with $\beta = 0$) and compare with u.

Exercise 2. Let $u : \mathbb{R}^n \to \mathbb{R}$ be harmonic and assume there exists $k \in \mathbb{N}$ and M > 0 such that

$$\frac{|u(x)|}{|x|^k + 1} \le M \qquad \forall x \in \mathbb{R}^n.$$

Show that u is a polynomial of degree at most k.

Exercise 3. Let \mathbb{R}^n_+ be the halfspace $\{(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \mid x_n > 0\}$ and $w \in \mathcal{C}(\overline{\mathbb{R}^n_+})$ harmonic in \mathbb{R}^n_+ such that w = 0 if $x_n = 0$ (w = 0 on $\partial \mathbb{R}^n_+$). Define the (antisymmetric) extension of w to \mathbb{R}^n as follows:

$$\overline{w}(x) = \begin{cases} w(x_1, x_2, \dots, x_n) & \text{if } x_n \ge 0\\ -w(x_1, x_2, \dots, -x_n) & \text{if } x_n \le 0. \end{cases}$$

Show that \overline{w} is harmonic in \mathbb{R}^n .

Exercise 4. We construct a solution to

$$(D) \begin{cases} -\Delta u = 0 & |x| < R\\ u = g(x) & |x| = R \end{cases}$$

(with $g \in \mathcal{C}$) without using Green functions.

i) Let g be a polynomial. So u solves (D) if and only if v = u - g solves

$$(D')\begin{cases} -\Delta v = -\Delta g & |x| < R\\ v = 0 & |x| = R. \end{cases}$$

For every $k \in \mathbb{N}$ let

 $P_k = \{ p : \mathbb{R}^n \to \mathbb{R} \mid p(x) \text{ is a polynomial of degree} \le k \}$

and the functional

 $T_k: P_k \to P_k$ $T(p) = \Delta[(R^2 - |x|^2)p(x)].$

Show that T is injective. Deduce that T is bijective. Prove there exists a unique solution to (D').

ii) Show there exists a solution to (D) for every $g \in \mathcal{C}(\partial B)$.

Hint ii) Recall Stone-Weierstrass theorem.