Introduzione alle Equazioni alle Derivate Parziali, L.M. in Matematica, A.A. 2013-2014.

Maximum principles for elliptic and parabolic operators.

Exercise 1 (Liouville theorem for uniformly elliptic operators). Let

$$
L u(x)=-\operatorname{tr} a(x) D^{2} u(x)+b(x) \cdot D u(x),
$$

where $a(x)$ for every $x \in \mathbb{R}^{n}$ is a symmetric, positive definite matrix such that there exist $\lambda_{0}, \Lambda_{0}>0$ for which

$$
\lambda_{0}|\xi|^{2} \leq \xi^{t} a(x) \xi \leq \Lambda_{0}|\xi|^{2} \quad \forall x \in \mathbb{R}^{n}, \forall \xi \in \mathbb{R}^{n}
$$

Assume moreover that there exists $w \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ such that

- $\lim _{|x| \rightarrow+\infty} w(x)=+\infty$,
- there exists $M>0$ such that $L w(x) \geq 0$ for every $|x|>M$.

Let $u \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ a bounded from above function such that $L u \leq 0$ in \mathbb{R}^{n}.
Show that u is constant.
Hint. : For $\varepsilon>0$, define $u_{\varepsilon}(x)=u(x)-\varepsilon w(x)$. Then $L u_{\varepsilon} \leq 0$ in $|x|>M$ and $\lim _{|x| \rightarrow+\infty} u_{\varepsilon}=-\infty$. Then, applying weak max principle (in which set?) we get $u_{\varepsilon}(x) \leq$ $\max _{|y|=M} u_{\varepsilon}(y)$ for all $|x| \geq M$. This is true for every $\varepsilon>0$, so also when $\varepsilon \rightarrow 0$. Moreover by weak max principle $u(x) \leq \max _{|y|=M} u(y)$ for all $|x| \leq M$. Conclude by strong max principle.

Exercise 2. Let $u \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ such that

- there exists $C \in \mathbb{R}$ such that $u(x) \leq C$ for every $x \in \mathbb{R}^{n}$,
- $-\Delta u(x)+x \cdot D u(x) \leq 0$ for every $x \in \mathbb{R}^{n}$.

Show that u is constant.
Hint: look for a function w such that $-\Delta w+x \cdot D w \geq 0$ for $|x|$ sufficiently large and apply Liouville theorem (the previous exercise). E.g consider $w(x)=|x|^{2}$.

Exercise 3. Let $L u=-\operatorname{tr} a(x) D^{2} u(x)+b(x) \cdot D u(x)$ a uniformly elliptic operator and Ω a bounded connected open set of class C^{2}. Let $u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{1}(\bar{\Omega})$ such that $L u=0$ in Ω.
(i) Let $\partial \Omega=S_{1} \cup S_{2}$, with $S_{1} \neq \emptyset$. If

$$
u=0 \quad x \in S_{1}, \quad \frac{\partial u}{\partial n}=0 \quad x \in S_{2}
$$

then $u \equiv 0$.
(ii) Let $\gamma(x) \in \mathcal{C}\left(\partial \Omega, \mathbb{R}^{n}\right)$ such that $\gamma(x) \cdot n(x)>0$ for every $x \in \partial \Omega$, and $\alpha(x)>0$. If

$$
\alpha(x) u(x)+D u(x) \cdot \gamma(x)=0 \quad x \in \partial \Omega
$$

then $u \equiv 0$.
Hint Apply strong and weak maximum principle.

Exercise 4. Let $u \in \mathcal{C}^{2,1}((0,1) \times(0,+\infty)) \cap \mathcal{C}[0,1] \times[0,+\infty)$ be the solution of

$$
\begin{cases}u_{t}-u_{x x}=0 & (0,1) \times(0,+\infty) \\ u(x, 0)=x(1-x) & x \in(0,1) \\ u(0, t)=u(1, t)=0 & t>0\end{cases}
$$

- Find $\lambda \in \mathbb{R}$ such that

$$
u(x, t) \leq x(1-x) e^{\lambda t}
$$

- Show that $\lim _{t \rightarrow+\infty} u(x, t)=0$ uniformly for $x \in[0,1]$.

Hint: use weak maximum principle..
Exercise 5. Consider the Cauchy-Dirichlet problem in $B(0, R) \times(0,+\infty) \subseteq \mathbb{R}^{4}$

$$
\text { (C) } \begin{cases}u_{t}-\Delta u=1 & x \in B(0, R) t>0 \\ u(x, 0)=0 & x \in B(0, R) \\ u(x, t)=0 & x \in \partial B(0, R), t>0\end{cases}
$$

(1) Find the stationary solution to (C), i.e. the solution to the Dirichlet problem

$$
(D) \begin{cases}-\Delta v=1 & x \in B(0, R) \\ v(x)=0 & x \in \partial B(0, R) .\end{cases}
$$

(2) Show that the solution $u(x, t)$ of (C) converge uniformly in $B(0, R)$ to $v(x)$ solution of (D) for $t \rightarrow+\infty$.
Hint: find $\beta \in \mathbb{R}$ (using weak maximum principle for parabolic operators) such that

$$
v(x)\left(1-e^{-\beta t}\right) \leq u(x, t) \leq v(x) \quad \forall t \geq 0, x \in \overline{B(0,1)}
$$

