Introduzione alle Equazioni alle Derivate Parziali, L.M. in Matematica, A.A. 2013-2014.

Maximum principles for elliptic and parabolic operators 2.

Exercise 1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $L u(x, t)=-\operatorname{tr} a(x, t) D_{x}^{2} u+b(x, t)$. $D_{x} u, x \in \Omega, t>0$, with $a(x, t)$ a symmetric $n \times n$ positive semidefinite matrix. Let $c(x, t)$ be a bounded positive function, such that $c(x, t) \geq \gamma>0$ for every x, t. Let $u \in \mathcal{C}^{2,1}(\Omega \times(0,+\infty)) \cap \mathcal{C}(\bar{\Omega} \times[0,+\infty))$ be the solution to

$$
(C) \begin{cases}u_{t}+L u+c(x, t) u=0 & (x, t) \in \Omega \times(0,+\infty) \\ u(x, t)=0 & (x, t) \in \partial \Omega \times(0,+\infty) \\ u(x, 0)=u_{0}(x) & x \in \bar{\Omega} .\end{cases}
$$

Show that there exists $C>0$ such that $|u(x, t)| \leq C e^{-\gamma t}$ for all $t \geq 0$ and all $x \in \bar{\Omega}$.
Exercise 2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set, $f \in \mathcal{C}^{2}(\bar{\Omega}), g \in \mathcal{C}\left(\partial \Omega\right.$. Let $v \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ be a subsolution to

$$
(D) \begin{cases}-\Delta v \leq f(x) & x \in \Omega \\ v(x) \leq g(x) & x \in \bar{\Omega}\end{cases}
$$

Let $u \in \mathcal{C}^{2,1}(\Omega \times(0,+\infty)) \cap \mathcal{C}(\bar{\Omega} \times[0,+\infty))$ be the solution to

$$
(C) \begin{cases}u_{t}-\Delta u=f(x) & (x, t) \in \Omega \times(0,+\infty) \\ u(x, t)=g(x) & (x, t) \in \partial \Omega \times(0,+\infty) \\ u(x, 0)=v(x) & x \in \bar{\Omega}\end{cases}
$$

Show that the funtion $t \mapsto u(x, t)$ is increasing for every $x \in \bar{\Omega}$.
Hint. Consider $w(x, t)=u(x, t)-v(x)$. Then $w_{t}-\Delta w \geq 0, w(x, 0)=0$, and if $x \in \partial \Omega$, $w(x, t) \geq g(x)-g(x)=0$. So, by minimum principle, $w \geq 0$ everywhere, $u(x, t) \geq v(x)$ for every $t \geq 0$.
Fix $h>0$ and consider $w^{h}(x, t)=u(x, t+h)-u(x, t)$. Then $w_{t}^{h}-\Delta w^{h}=0, w^{h}(x, 0)=$ $u(x, h)-v(x) \geq 0$ (by previous argument), and if $x \in \partial \Omega, w^{h}(x, t)=g(x)-g(x)$. So, by minimum principle, $w^{h} \geq 0$ everywhere.

Exercise 3. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a \mathcal{C}^{1} function, with F^{\prime} bounded (so F is Lipschitz). Consider the semilinear equation

$$
u_{t}-\Delta u=F(u) \quad(x, t) \in \mathbb{R}^{n} \times(0,+\infty)
$$

i) Let $u, v \in \mathcal{C}^{2,1}\left(\mathbb{R}^{n} \times(0,+\infty)\right) \cap \mathcal{C}\left(\mathbb{R}^{n} \times[0,+\infty)\right) 2$ solutions to the problem such that for all $T>0$ there exist $C_{T}, \alpha_{T}>0$ such that

$$
|u(x, t)|+|v(x, t)| \leq C_{T} e^{\alpha_{T}|x|^{2}} \quad \forall t \in[0, T] .
$$

Show that if $u(x, 0) \leq v(x, 0)$ then $u(x, t) \leq v(x, t)$ for all $t>0$.
ii) Consider the Cauchy problem

$$
\text { (C) } \begin{cases}u_{t}-\Delta u=u(1-u)\left(u-\frac{1}{2}\right) & (x, t) \in \mathbb{R}^{n} \times(0,+\infty) \\ u(x, 0)=u_{0}(x) & x \in \mathbb{R}^{n} .\end{cases}
$$

Assume that $0 \leq u_{0}(x) \leq 1$. Show that the unique solution (with exponential growth) satisfies

$$
0 \leq u(x, t) \leq 1 \quad \forall x \in \bar{\Omega}, t \geq 0
$$

Compute $\lim _{t \rightarrow+\infty} u(x, t)$ when $\left\|u_{0}\right\|_{\infty}<\frac{1}{2}$.

