INTRODUZIONE ALLE EQUAZIONI ALLE DERIVATE PARZIALI, L.M. IN MATEMATICA, A.A. 2013-2014.

Maximum principles for elliptic and parabolic operators 2.

Exercise 1. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set and $Lu(x,t) = -\operatorname{tr} a(x,t)D_x^2 u + b(x,t) \cdot D_x u, x \in \Omega, t > 0$, with a(x,t) a symmetric $n \times n$ positive semidefinite matrix. Let c(x,t) be a bounded positive function, such that $c(x,t) \geq \gamma > 0$ for every x,t. Let $u \in \mathcal{C}^{2,1}(\Omega \times (0,+\infty)) \cap \mathcal{C}(\overline{\Omega} \times [0,+\infty))$ be the solution to

$$(C) \begin{cases} u_t + Lu + c(x,t)u = 0 & (x,t) \in \Omega \times (0,+\infty) \\ u(x,t) = 0 & (x,t) \in \partial\Omega \times (0,+\infty) \\ u(x,0) = u_0(x) & x \in \overline{\Omega}. \end{cases}$$

Show that there exists C > 0 such that $|u(x,t)| \leq Ce^{-\gamma t}$ for all $t \geq 0$ and all $x \in \overline{\Omega}$.

Exercise 2. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, $f \in \mathcal{C}^2(\overline{\Omega}), g \in \mathcal{C}(\partial \Omega)$. Let $v \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ be a subsolution to

$$(D) \begin{cases} -\Delta v \le f(x) & x \in \Omega\\ v(x) \le g(x) & x \in \overline{\Omega}. \end{cases}$$

Let $u \in \mathcal{C}^{2,1}(\Omega \times (0, +\infty)) \cap \mathcal{C}(\overline{\Omega} \times [0, +\infty))$ be the solution to

$$(C) \begin{cases} u_t - \Delta u = f(x) & (x,t) \in \Omega \times (0,+\infty) \\ u(x,t) = g(x) & (x,t) \in \partial\Omega \times (0,+\infty) \\ u(x,0) = v(x) & x \in \overline{\Omega}. \end{cases}$$

Show that the function $t \mapsto u(x,t)$ is increasing for every $x \in \overline{\Omega}$.

Hint. Consider w(x,t) = u(x,t) - v(x). Then $w_t - \Delta w \ge 0$, w(x,0) = 0, and if $x \in \partial \Omega$, $w(x,t) \ge g(x) - g(x) = 0$. So, by minimum principle, $w \ge 0$ everywhere, $u(x,t) \ge v(x)$ for every $t \ge 0$.

Fix h > 0 and consider $w^h(x,t) = u(x,t+h) - u(x,t)$. Then $w^h_t - \Delta w^h = 0$, $w^h(x,0) = u(x,h) - v(x) \ge 0$ (by previous argument), and if $x \in \partial\Omega$, $w^h(x,t) = g(x) - g(x)$. So, by minimum principle, $w^h \ge 0$ everywhere.

Exercise 3. Let $F : \mathbb{R} \to \mathbb{R}$ be a \mathcal{C}^1 function, with F' bounded (so F is Lipschitz). Consider the semilinear equation

$$u_t - \Delta u = F(u)$$
 $(x,t) \in \mathbb{R}^n \times (0,+\infty)$

i) Let $u, v \in \mathcal{C}^{2,1}(\mathbb{R}^n \times (0, +\infty)) \cap \mathcal{C}(\mathbb{R}^n \times [0, +\infty))$ 2 solutions to the problem such that for all T > 0 there exist $C_T, \alpha_T > 0$ such that

$$|u(x,t)| + |v(x,t)| \le C_T e^{\alpha_T |x|^2} \quad \forall t \in [0,T].$$

Show that if $u(x,0) \le v(x,0)$ then $u(x,t) \le v(x,t)$ for all t > 0.

ii) Consider the Cauchy problem

$$(C) \begin{cases} u_t - \Delta u = u(1-u)(u-\frac{1}{2}) & (x,t) \in \mathbb{R}^n \times (0,+\infty) \\ u(x,0) = u_0(x) & x \in \mathbb{R}^n. \end{cases}$$

Assume that $0 \le u_0(x) \le 1$. Show that the unique solution (with exponential growth) satisfies

 $0 \le u(x,t) \le 1 \qquad \forall x \in \overline{\Omega}, t \ge 0.$ Compute $\lim_{t \to +\infty} u(x,t)$ when $||u_0||_{\infty} < \frac{1}{2}$.