INTRODUZIONE ALLE EQUAZIONI ALLE DERIVATE PARZIALI, L.M. IN MATEMATICA, A.A. 2013-2014.

Heat equation.

Exercise 1. Let c > 0 and $u_0 \in \mathcal{C}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Provide the representation formula for the solution u to the Cauchy problem

$$(C) \begin{cases} u_t - \Delta u + cu = 0 & \mathbb{R}^n \times (0, +\infty) \\ u(x, 0) = u_0(x) & x \in \mathbb{R}^n. \end{cases}$$

Compute $\lim_{t\to+\infty} u(x,t)$, if it exists, and write if the convergence is uniform.

Exercise 2 (Dissipation). Let $u_0 \in L^1(\mathbb{R}^n)$, and let $u(x,t) = u_0 * \Phi$. Show that $u(\cdot,t) \in L^p(\mathbb{R}^n)$ for all t > 0 and for all $p \in [1, +\infty]$.

Prove that for every p that there exists a constant C_p depending on p, n such that

$$\|u(\cdot,t)\|_{L^p} \le \frac{C_p \|u_0\|_{L^1}}{t^{\frac{n}{2}(1-\frac{1}{p})}}.$$

Hint: by Young inequality $||u(\cdot,t)||_{L^p} \leq ||u_0||_{L^1} ||\Phi(\cdot,t)||_{L^p}$. So, it remains to compute $||\Phi(\cdot,t)||_{L^p}$.

Exercise 3. Let $u_0 \in \mathcal{C}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ such that $\lim_{z \to +\infty} u_0(z) = a \in \mathbb{R}$ and $\lim_{z \to -\infty} u_0(z) = b \in \mathbb{R}$. Let u the solution to the Cauchy problem

$$(C) \begin{cases} u_t - u_{xx} = 0 & \mathbb{R} \times (0, +\infty) \\ u(x, 0) = u_0(x) & x \in \mathbb{R}. \end{cases}$$

Compute $\lim_{t\to+\infty} u(x,t)$, if it exists, and write if the convergence is uniform.

Exercise 4. Let $u_0 \in L^2(\mathbb{R}^n)$, and let $u(x,t) = u_0 * \Phi \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,+\infty))$ the solution to

$$\begin{cases} u_t - \Delta u = 0 & x \in \mathbb{R}^n, t > 0 \\ \lim_{t \to 0^+} \|u(\cdot, t) - u_0(\cdot)\|_{L^2(\mathbb{R}^n)} = 0. \end{cases}$$

Define for every t > 0 the energy

$$E(t) = \int_{\mathbb{R}^n} |u(x,t)|^2 dx.$$

Show that $E'(t) = -2 \int_{\mathbb{R}^n} |Du|^2 dx < 0$ for all t > 0. Deduce that $||u(\cdot, t)||_{L^2(\mathbb{R}^n)} \le ||u_0||_{L^2(\mathbb{R}^n)}$.

Exercise 5. Let Ω be a bounded open set of class \mathcal{C}^1 and let $u \in \mathcal{C}^{2,1}(\Omega \times (0, +\infty)) \cap \mathcal{C}^{1,0}(\overline{\Omega} \times [0, +\infty))$ a solution to the Cauchy Neumann problem

$$(CN) \begin{cases} u_t - \Delta u = 0 & \Omega \times (0, +\infty) \\ \frac{\partial u}{\partial n}(x, t) = 0 & \partial \Omega \times (0, +\infty) \\ u(x, 0) = u_0(x) & \Omega \end{cases}$$

with $u_0 \in \mathcal{C}(\overline{\Omega})$.

We define the thermic energy in Ω at time t as

$$E(t) = \int_{\Omega} u^2(x,t) dx, \qquad t \ge 0.$$

- i) Show that $E'(t) \leq 0$ for $t \in (0, T)$.
- ii) Using (i), prove that the Cauchy Neumann problem

$$\begin{cases} u_t - \Delta u = f(x,t) & \Omega \times (0,+\infty) \\ \frac{\partial u}{\partial n}(x,t) = g(x,t) & \partial \Omega \times (0,+\infty) \\ u(x,0) = u_0(x) & \Omega \end{cases}$$

admits at most one solution $u \in \mathcal{C}^{2,1}(\Omega \times (0, +\infty)) \cap \mathcal{C}^{1,0}(\overline{\Omega} \times [0, +\infty)).$

Exercise 6. Let $u_0 \in \mathcal{C}(\mathbb{R}^n)$ such that $u_0(x) \geq -K$ for all $x \in \mathbb{R}^n$. Consider the quasilinear problem

$$(Q) \begin{cases} u_t - \Delta u + |Du|^2 = 0 & x \in \mathbb{R}^n, t > 0\\ u(x, 0) = u_0(x) & x \in \mathbb{R}^n \end{cases}$$

where $|Du|^2 = \sum_i |u_{x_i}|^2$.

- i) Let $u \in \mathcal{C}^{2,1}(\mathbb{R}^n \times (0, +\infty) \cap \mathcal{C}(\mathbb{R}^n \times [0, +\infty))$ be a solution of the problem. Define $v(x, t) = e^{-u(x,t)}$. Determine which is the Cauchy problem (C) solved by v.
- ii) Compute the unique bounded solution of (C). Show that this solution is positive everywhere.
- iii) Show that (Q) admits at most one bounded solution and provide a representation formula for this solution.