Wave equation.

Exercise 1 (D'Alembert formula). Consider the Cauchy problem in \mathbb{R}

$$
\begin{cases}u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0 & (x, t) \in \mathbb{R} \times(0,+\infty) \\ u(x, 0)=u_{0}(x) & x \in \mathbb{R}, \\ u_{t}(x, 0)=v_{0}(x) & x \in \mathbb{R},\end{cases}
$$

con $u_{0} \in \mathcal{C}^{2}(\mathbb{R}), v_{0} \in \mathcal{C}^{1}(\mathbb{R})$.
(i) Let

$$
v(x, t)=u_{t}(x, t)-c u_{x}(x, t) .
$$

Ahow that v solves the homogeneous transport equation

$$
v_{t}(x, t)+c v_{x}(x, t)=0 \quad(x, t) \in \mathbb{R} \times(0,+\infty)
$$

with initial data $v(x, 0)=v_{0}(x)-c u_{0}^{\prime}(x)$.
Provide a representation formula for v.
(ii) Show that u solves the non homogeneous transport eqaution

$$
u_{t}(x, t)-c u_{x}(x, t)=v(x, t) \quad(x, t) \mathbb{R} \times(0,+\infty)
$$

with initial data $u(x, 0)=u_{0}(x)$, where v has been obtained in (i). Provide the representation formula for u.

Exercise 2. Consider the partial differential equation

$$
(E) \quad u_{t t}+u_{t x}-2 u_{x x}=0 \quad(x, t) \in \mathbb{R} \times(0, T) .
$$

Is the operator in (E) elliptic, parabolic or hyperbolic?
Determine the general form of the solutions to equation (E).
Exercise 3 (Equipartition of energy). Let $u \in \mathcal{C}^{2}$ be the solution to the Cauchy problem

$$
\begin{cases}u_{t t}(x, t)-c^{2} u_{x x}(x, t)=0 & (x, t) \in \mathbb{R} \times(0,+\infty) \\ u(x, 0)=u_{0}(x) & x \in \mathbb{R}, \\ u_{t}(x, 0)=v_{0}(x) & x \in \mathbb{R} .\end{cases}
$$

Assume that u_{0}, v_{0} are smooth functions with compact support contained in $(-k, k), k>0$. Define the kinetic energy as

$$
k(t)=\frac{1}{2} \int_{\mathbb{R}} u_{t}^{2}(x, t) d x
$$

and the potential energy as

$$
p(t)=\frac{c^{2}}{2} \int_{\mathbb{R}} u_{x}^{2}(x, t) d x
$$

(i) Show that $u(x, t)=0$ for $(x, t) \in\{|x|>k+c t\}$.
(ii) Show that $k(t)+p(t)$ is constant for all t.
(iii) Show that there exists $T>0$ such that $k(t)=p(t)$ for $t \geq T$.

Hint for iii): compute explicitly $u_{t}^{2}-c^{2} u_{x}^{2}$ (using d'Alember formula) and show $u_{t}^{2}-$ $c^{2} u_{x}^{2}=0$ for $x \in \mathbb{R}$ and $t>k / c$.
Exercise 4. Let $u \in C^{2}\left(\mathbb{R}^{3} \times[0,+\infty)\right.$ the solution to

$$
\begin{cases}u_{t t}(x, t)-\Delta u(x, t)=0 & (x, t) \in \mathbb{R}^{3} \times(0,+\infty) \\ u(x, 0)=u_{0}(x) & x \in \mathbb{R}^{3}, \\ u_{t}(x, 0)=v_{0}(x) & x \in \mathbb{R}^{3},\end{cases}
$$

with u_{0}, v_{0} smooth functions with compact support contained in $B(0, r)$.
Show that for all fixed t the map

$$
x \longrightarrow u(x, t)
$$

has compact support contained in the annulus

$$
(t-r)^{+} \leq|x| \leq r+t
$$

where $(t-r)^{+}=\max (0, t-r)$.
Hint: use Kirchhoff formula.
Exercise 5. Let $n=3$ and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ a givem smooth function.
Prove that there exist smooth functions $\alpha:(0,+\infty) \rightarrow \mathbb{R}, \alpha \not \equiv 0$, and $\beta:(0,+\infty) \rightarrow$ $[0,+\infty)$, with $\beta(0)=0$, independent of ϕ, such that

$$
u(x, t)=\alpha(|x|) \phi(t-\beta(|x|))
$$

is a spherical wave (a solution of the spherical wave equation) in $\mathbb{R}^{3} \backslash\{0\} \times \mathbb{R}$.
Show that such α, β do not exist for $n=2$ and $n>3$.

