Functional Analysis

Exam- 13 December, 2022- 90 minutes

Exercise 1.

1. Give the definition of absolutely continuous measure and of singular measure (with respect to the Lebesgue measure in \mathbb{R}).
2. Recall the characterization (in terms of the density function..) of Borelian σ-finite measures on \mathbb{R} which are absolutely continuous with respect to the Lebesgue measure.
3. Let

$$
f(x)= \begin{cases}\frac{1}{3} & -1<x<2 \\ 0 & \text { elsewhere }\end{cases}
$$

Is f the density of an absolutely continuous measure μ ? If the answer is positive, compute $\mu(\mathbb{R}), \mu[0,1]$ and $\mu[-2,-1]$.

Exercise 2.

Let $H=M^{2}(\Omega, \mathbb{P}, \mathcal{F})$ the space of random variables with bounded second moment,

1. State the orhogonal projection theorem on Hilbert spaces.
2. Recall the definition of bounded linear operator $T: H \rightarrow H$, where H is a Banach space. Recall the definition of norm of a bounded linear operator.
3. Consider the set

$$
C=\{X \in H \mid \mathbb{E}(X)=0\} .
$$

Show that C is a closed subspace of H.
4. Consider the map $T: H \rightarrow H$ such that $T(X)=X-\mathbb{E}(X)$. Show that this is a bounded linear operator. Compute the norm of this operator.
5. Show that for every $X \in H, X-\mathbb{E}(X)$ is orthogonal to every constants $k \in \mathbb{R}$. Note that $X-\mathbb{E}(X) \in C$. Compute the orthogonal space C^{\perp}.
6. Given $X \in H$, find the best constant $c \in \mathbb{R}$ such that

$$
\mathbb{E}(X-c)^{2}=\min _{k \in \mathbb{R}} \mathbb{E}(X-k)^{2}
$$

Sketch of solutions

Solution 1.

3 Observe that $f(x) \geq 0, f$ is measurable and $\int_{\mathbb{R}} f(x) d x=\int_{-1}^{2} \frac{1}{3} d x=1$. So $f \in L^{1}(\mathbb{R})$, which implies that f is the density of a finite Borelian measure μ which is absolutely continuous with respect to the Lebesgue measure. Moreover for every $A \in \mathcal{B}, \mu(A)=\int_{A} f(x) d x=\frac{1}{3}|A \cap(-1,2)|$. This implies that $\mu[0,1]=\frac{1}{3}$ and $\mu[-2,-1]=0$.

Solution 2.

3 Observe that if $X, Y \in C$, then $\alpha X+\beta Y \in C$ for every $\alpha, \beta \in \mathbb{R}$ since $\mathbb{E}(\alpha X+$ $\beta Y)=\alpha \mathbb{E}(X)+\beta \mathbb{E}(Y)=0$. Moreover if $X_{n} \in C$ for every n and $X_{n} \rightarrow X$ in H, this means that $\mathbb{E}\left(X_{n}-X\right)^{2} \rightarrow 0$. By Jensen's inequality this implies that also $\mathbb{E}\left(X_{n}-X\right) \rightarrow 0$ and since $\mathbb{E}\left(X_{n}\right)=0$ for every n this gives that $\mathbb{E}(X)=0$.

4 Observe that $T(\alpha X+\beta Y)=\alpha X+\beta Y-\mathbb{E}(\alpha X+\beta Y)=\alpha(X-\mathbb{E}(X))+\beta(Y-$ $\mathbb{E}(Y))=\alpha T(X)+\beta T(Y)$. So T is a linear operator. Moreover

$$
\mathbb{E}(T(X))^{2}=\mathbb{E}\left(X^{2}-2 X \mathbb{E}(X)+\mathbb{E}(X)^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2} \leq \mathbb{E}\left(X^{2}\right) .
$$

This gives that $\|T(X)\| \leq\|X\|$ for every $X \in H$ (recall that $\left.\|X\|=\left[\mathbb{E}(X)^{2}\right]^{1 / 2}\right)$. Therefore the operator is bounded. The norm of the operator $\|T\|$ is less or equal than 1 . Now we observe that if $\mathbb{E}(X)=0$, then $T(X)=X$, so T is the identity on the space C. This implies that $\|T\|$ cannot be less than 1 , and then $\|T\|=1$.

5 By definition of the scalar product in H we have that

$$
\mathbb{E}((X-\mathbb{E}(X)) k)=k \mathbb{E}(X)-k \mathbb{E}(X)=0
$$

In particular this implies that $C^{\perp} \supset\{k \in \mathbb{R}\}$ (the orthogonal space of C contains the set of all constants). Assume now that $Y \in C^{\perp}$ is not constant. Then $Y-\mathbb{E}(Y) \in C$. On the other hand since C^{\perp} is a vectorial space also $Y-k \in C^{\perp}$ for every constant k, then also for $k=\mathbb{E}(Y)$. This implies that $Y-\mathbb{E}(Y) \in C \cap C^{\perp}$, and then $Y-\mathbb{E}(Y)=0$, which means that Y is constant.

6 Since C^{\perp} is the space of constants, and $X-\mathbb{E}(X) \in C$, this implies that $X=$ $X-\mathbb{E}(X)+\mathbb{E}(X)$, that is $X-\mathbb{E}(X)$ is the projection of X in the space C and $\mathbb{E}(X)$ is the projection of X on C^{\perp}. Therefore $k=\mathbb{E}(X)$.

