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Some comments and remarks on the heat equation

This note is just an integration. The main reference is Evans, Partial Differential Equations,
chapter 2, section 3.

We define the heat kernel as the function

Φ(x, t) =

 1

(4πt)
n
2
e−

|x|2
4t x ∈ Rn, t > 0

0 x ∈ Rn, t ≤ 0.

To determine the fundamental solution to the heat equation, we used Fourier transform method
(see Evans, chapter 4, section 3, example 2- pag.192).

We enumerate the main properties of the heat kernel:

1. Φ is singular at (0, 0),

2. Φ is radial in the x variable and λnΦ(λx, λ2t) = Φ(x, t).

3. Φ(·, t) ∈ Lp(Rn) for every p ∈ [1,+∞]. For every t > 0, for every x ∈ Rn,

∥Φ(·, t)∥1 =

ˆ
Rn

Φ(x− y, t)dy = 1.

Moreover

∥Φ(·, t)∥p =
1

p
n
2p (4t)

n
2 (1− 1

p )
.

4. Φ ∈ C∞(Rn+1 \ (0, 0), and all the derivatives of Φ (of all orders) are uniformly bounded in
every set Rn × [δ,+∞) for every δ > 0.

5. Φt −∆Φ = 0 for all x ∈ Rn, t ̸= 0 (it is a direct computation).

6. Φ solves (in distributional sense) the Cauchy problem{
Φt −∆Φ = 0 x ∈ Rn t > 0

Φ = δ0 x ∈ Rn t = 0.

Heat equation with initial data in L1(Rn).

Let u0 ∈ L1(Rn). Define the function

u(x, t) =

ˆ
Rn

u0(y)
1

(4πt)
n
2
e−

|x−y|2
4t dy =

1

π
n
2

ˆ
Rn

u0(x+
√
4tz)e−|z|2dz. (1)

Theorem 1. 1. The function u(x, t) ∈ C∞(Rn × (0,+∞)) (this is called istantaneous regu-
larization) and solves{

ut −∆u = 0 x ∈ Rn t > 0

limt→0 ∥u(·, t)− u0(·)∥1 = 0.

2. u(·, t) ∈ Lp(Rn) for every p ∈ [1,+∞],
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3. ˆ
Rn

u(x, t) =

ˆ
Rn

u0(x), ∀t > 0

this property is called mass conservation (in particular if u0 ≥ 0 the L1 norm is conserved1)

4.
lim

t→+∞
∥u(·, t)∥p = 0 ∀p ∈ (1,+∞].

This property is called dissipation.

Proof. 1. u ∈ C∞ because of the properties of heat kernel and convolution. Moreover, again by
the properties of heat kernel, it is a solution to the heat equation for t > 0. We prove that is
assumes in L1 sense the initial datum. Since

´
Φ(x− y, t)dy = 1, we get

ˆ
Rn

|u(x, t)− u0(x)|dx ≤
ˆ
Rn

ˆ
Rn

|u0(y)− u0(x)|
1

(4πt)
n
2
e−

|x−y|2
4t dydx ≤

≤
ˆ
Rn

ˆ
B(x,r)

|u0(y)− u0(x)|
1

(4πt)
n
2
e−

|x−y|2
4t dydx+

ˆ
Rn

ˆ
Rn\B(x,r)

|u0(y)− u0(x)|
1

(4πt)
n
2
e−

|x−y|2
4t dydx (2)

where r > 0. We estimate the first integral in (2) as follows:

ˆ
Rn

ˆ
B(x,r)

|u0(x+
√
4tz)− u0(x)|e−

|x−y|2
4t dydx ≤

ˆ
Rn

ˆ
B(x,r)

sup
h∈Rn,|h|≤r

|u0(x+ h)− u0(x)|
1

(4πt)
n
2
e−

|x−y|2
4t dydx ≤

≤
ˆ
Rn

sup
h∈Rn,|h|≤r

|u0(x+ h)− u0(x)|dx = sup
h∈Rn,|h|≤r

∥u0(·+ h)− u0(·)∥1 → 0 as r → 0. (3)

where the last limit is a general fact in Lp spaces: if f ∈ Lp, then

lim
|h|→0

ˆ
Rn

|f(x+ h)− f(x)|pdx = 0

(see Brezis, Analisi Funzionale, cor. IV.28).
So for every ε > 0, there exists rε such that for all r ∈ (0, rε),

ˆ
Rn

ˆ
B(x,r)

|u0(x+
√
4tz)− u0(x)|e−

|x−y|2
4t dydx ≤ ε ∀r ≤ rε. (4)

As for the second integral in (2), we get, with the change of variable z = y−x√
4t
, and using Fubini-

Tonelli,

´
Rn

´
Rn\B(x,r)

|u0(y)− u0(x)| 1

(4πt)
n
2
e−

|x−y|2
4t dydx

≤
´
Rn

´
Rn\B(0, r√

4t
)
|u0(x+

√
4tz)− u0(x)|e−|z|2dzdx

=
´
Rn\B(0, r√

4t
)
e−|z|2 ´

Rn |u0(x+
√
4tz)− u0(x)|dxdz ≤ 2∥u0∥1

ˆ
Rn\B(0, r√

4t
)

e−|z|2dz → 0(5)

as t → 0.
So for every ε there exists tε such that

ˆ
Rn

ˆ
Rn\B(x,rε)

|u0(y)− u0(x)|
1

(4πt)
n
2
e−

|x−y|2
4t dydx ≤ ε ∀t ≤ tε. (6)

1in general the L1 norm is not always conserved! differently as I said during the lesson..

2



So putting togheter (4) and (6), we obtain that for every ε there exists tε such that

ˆ
Rn

|u(x, t)− u0(x)|dx ≤ 2ε ∀t ≤ tε

which gives the desired conclusion.
2. This follows from properties of convolutions, since Φ(·, t) ∈ Lp(Rn) for all p (see Brezis,

Analisi Funzionale, thm IV.15).
3. By convolution properties, we get that for all t > 0, u0(y)Φ(x− y, t) ∈ L1(Rn × Rn). Then

by Fubini Tonelli theorem

ˆ
Rn

u(x, t)dx =

ˆ
Rn

u0(y)

ˆ
Rn

Φ(x− y, t)dxdy =

ˆ
Rn

u0(y)dy.

The same fact can be proved bu showing that d
dt

´
Rn u(x, t)dx = 0.

4. Form Young inequality and properties of the heat kernel, we get that

∥u(·, t)∥p ≤ ∥u0∥1∥Φ(·, t)∥p ≤ ∥u0∥1
1

p
n
2p (4πt)

n
2 (1− 1

p )
→ 0

as t → +∞ if p > 1. Moreover

∥u(·, t)∥∞ ≤ ∥u0∥1∥Φ(·, t)∥∞ ≤ ∥u0∥1
1

(4πt)
n
2
→ 0.

Remark. If u0 ̸∈ L1 we cannot expect dissipation. If u0 ∈ C(R) and limx→+∞ u0(x) = U+ and
limx→−∞ u0(x) = U−, then

lim
t→+∞

u(x, t) =
U+ + U−

2

locally uniformly in x.

Heat equation with initial data in Lp(Rn).

Let u0 ∈ Lp(Rn). Let u as defined in (1).

Theorem 2. 1. The function u(x, t) ∈ C∞(Rn × (0,+∞)) (this is called istantaneous regu-
larization) and solves{

ut −∆u = 0 x ∈ Rn t > 0

limt→0 ∥u(·, t)− u0(·)∥p = 0.

2. u(·, t) ∈ Lp(Rn), and ∥u(·, t)∥p ≤ ∥u0(·)∥p.

Proof. 1.The arguments is the same as in Theorem 1. The only little changement is in the proof
that u is assumes in Lp sense the initial datum. By Jensen inequality, since

´
Φ(x− y, t)dx = 1,

ˆ
Rn

|u(x, t)− u0(x)|pdx ≤
ˆ
Rn

∣∣∣∣ˆ
Rn

|u0(y)− u0(x)|
1

(4πt)
n
2
e−

|x−y|2
4t dy

∣∣∣∣p dx ≤
ˆ
Rn

ˆ
Rn

|u0(y)− u0(x)|p
1

(4πt)
n
2
e−

|x−y|2
4t dydx ≤

≤
ˆ
Rn

ˆ
B(x,r)

|u0(y)− u0(x)|p
1

(4πt)
n
2
e−

|x−y|2
4t dydx+

ˆ
Rn

ˆ
Rn\B(x,r)

|u0(y)− u0(x)|p
1

(4πt)
n
2
e−

|x−y|2
4t dydx (7)

3



where r > 0. We estimate the first integral in (7) as follows:

ˆ
Rn

ˆ
B(x,r)

|u0(x+
√
4tz)− u0(x)|pe−

|x−y|2
4t dydx ≤

ˆ
Rn

ˆ
B(x,r)

sup
h∈Rn,|h|≤r

|u0(x+ h)− u0(x)|p
1

(4πt)
n
2
e−

|x−y|2
4t dydx ≤

≤
ˆ
Rn

sup
h∈Rn,|h|≤r

|u0(x+ h)− u0(x)|pdx = sup
h∈Rn,|h|≤r

∥u0(·+ h)− u0(·)∥pp → 0 as r → 0. (8)

As for the second integral in (2), we get, with the change of variable z = y−x√
4t
, and using

Fubini-Tonelli,

´
Rn

´
Rn\B(x,r)

|u0(y)− u0(x)|p 1

(4πt)
n
2
e−

|x−y|2
4t dydx

≤
´
Rn

´
Rn\B(0, r√

4t
)
|u0(x+

√
4tz)− u0(x)|pe−|z|2dzdx

=
´
Rn\B(0, r√

4t
)
e−|z|2 ´

Rn |u0(x+
√
4tz)− u0(x)|dxdz ≤ 2∥u0∥p

ˆ
Rn\B(0, r√

4t
)

e−|z|2dz → 0

as t → 0. We conclude as in the proof of Theorem 1.
2. It follows from the properties of convolutions (Young inequality) and of heat kernel.

Heat equation with bounded and continuous initial data.

Let u0 ∈ L∞(Rn) ∩ C(Rn). Let u as defined in (1).
First of all we observe that the heat equation forces infinite speed of propagation for distur-

bances.

Remark. Let u0 ≥ 0 and with compact support. Then u(x, t) > 0 for all x ∈ Rn. In particular
u(·, t) has NOT compact support, but for all t > 0 is strictly positive everywhere. This property
is called infinite speed of propagation.

This means that if the initial temperature is nonnegative and positive somewhere, then the
temperature at any later time (no matter how small) is everywhere positive.

Theorem 3. Let u0 ∈ L∞(Rn) ∩ C(Rn) and let u defined in (1).

1. u ∈ C∞(Rn × (0,+∞)) ∩ C(Rn × [0,+∞)) and solves the Cauchy problem{
ut −∆u = 0 x ∈ Rn t > 0

u(x, 0) = u0(x).

2. There exists C = C(n) such that

sup
x∈Rn

|Dxu(x, t)| ≤
C√
t
∥u0∥∞

for all t > 0.

3. Assume that u0 ∈ C0,α(Rn) for some α ∈ (0, 1] 2. Then for every R > 0 and T > 0 there
exists a constant C = C(n,R, T, α, ∥u0∥∞) such that

sup
x∈B(0,2R)

|ut(x, t)|+ |∆u(x, t)| ≤ C

t1−
α
2

∀t ∈ (0, T ).

2This means that for every compact K ⊂ Rn there exists a constant Ck such that |u0(x)− u0(y)| ≤ Ck|x− y|α
for all x, y ∈ K
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Proof. For the proof of 1 see Evans, chapter 2, section 3, theorem 1 (pag 47-48).
2.

|Dxu(x, t)| ≤ ∥u0∥∞
ˆ
Rn

|x− y|
2t

Φ(x− y, t)dy ≤

with the change of variable z = x−y√
4t
,

≤ ∥u0∥∞
πn/2

√
t

ˆ
Rn

|z|e−|z|2dz.

3. Note that since ut = ∆u, it is sufficient to prove the estimate for |uxixj (x, t)|, i, j ∈
{1, . . . , n}. Observe that since

´ n
R Φ(x− y, t)dy = 1, then

´ n
R Φxixj (x− y, t)dy = 0and so for every

x ∈ Rn,
´ n
R u0(x)Φxixj (x− y, t)dy = 0. Take x ∈ B(0, R) and compute

|uxixj (x, t)| ≤
ˆ
Rn

|u0(y)−u0(x)||Φxixj (x−y, t)|dy ≤
ˆ
Rn

|u0(y)−u0(x)|
(

1

2t
+

|x− y|2

4t2

)
Φ(x−y, t)|dy ≤

ˆ
B(0,R)

|u0(y)−u0(x)|
(

1

2t
+

|x− y|2

4t2

)
Φ(x−y, t)|dy+

ˆ
Rn\B(0,R)

|u0(y)−u0(x)|
(

1

2t
+

|x− y|2

4t2

)
Φ(x−y, t)|dy.

We estimate the first integral as follows:

ˆ
B(0,R)

|u0(y)− u0(x)|
(

1

2t
+

|x− y|2

4t2

)
Φ(x− y, t)|dy

≤ CR

ˆ
B(0,R)

|x− y|α
(

1

2t
+

|x− y|2

4t2

)
Φ(x− y, t)|dy

≤ CR

πn/2

ˆ
Rn

(4t)α/2|z|α 1

2t
(1 + |z|2)e−|z|2dz ≤ C(n,R)

t1−α/2
. (9)

As for the second integral we get

ˆ
Rn\B(0,R)

|u0(y)− u0(x)|
(

1

2t
+

|x− y|2

4t2

)
Φ(x− y, t)|dy

≤ 2∥u0∥∞
πn/2t

ˆ
Rn\B(0, R√

4t
)

(1 + |z|2)e−|z|2dz ≤ 2∥u0∥∞e−
R2

8t

πn/2t

ˆ
Rn\B(0, R√

4t
)

(1 + |z|2)e−|z|2/2dz ≤ C

t1−α/2

since, if z ∈ Rn \B(0, R√
4t
), e−|z|2/2 ≤ e−R2/8t ≤ CT t

α/2 for t ∈ (0, T ).

Proposition 1. Let f ∈ C(Rn × [0, T ]) bounded, and assume that for all t, f(·, t) ∈ C0,α(Rn).
Then there exists a solution u to the inhomogenous Cauchy problem{

ut −∆u = f(x, t) x ∈ Rn t ∈ (0, T )

u(x, 0) = u0(x).

Proof. We start considering the case u0 ≡ 0. Define for all s ∈ (0, T ) vs(x, t) to be the solution to
the Cauchy problem {

vst −∆vs = 0 x ∈ Rn t ∈ (s, T )

vs(x, s) = f(x, s).

Then

vs(x, t) =

ˆ
Rn

f(y, s)Φ(x− y, t− s)dy.
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Define

u(x, t) =

ˆ t

0

vs(x, t)ds.

Then, since f is Holder continuous, we get by the previous theorem that |vst |, |∆vs| ≤ Ctα/2−1 ∈
L1(0, T ) for all x ∈ B(0, R). This implies that we can differentiate u as follows

ut = vt(x, t) +

ˆ t

0

vst ∆u =

ˆ t

0

∆vsds.

From this and the definition of vs we conclude that ut −∆u = f(x, t).
So the solution of the Cauch problem is given (by superposition principle) by

u(x, t) =

ˆ
Rn

u0(y)Φ(x− y, t)dy +

ˆ t

0

ˆ
Rn

f(y, s)Φ(x− y, t− s)dyds.

Comparison principle and uniqueness in Rn × (0, T ).

We start recalling Tychonov counterexample to uniqueness.
Consider the following Cauchy problem{

ut − uxx = 0 x ∈ R t > 0

u(x, 0) = 0.

This problem has obviously the solution u ≡ 0. Let h(t) ∈ C∞(R) defined as h(t) = e−t2 for t > 0
and h(t) = 0 for t ≤ 0. Then

u(x, t) =
∞∑
k=0

h(k)(t)

(2k)!
x2k

is another solution to the Cauchy problem (it is a simple computation, once one observes that the
serie is locally uniform convergent and that we can derive it term by term).

Theorem 4 (Comparison principle). Let c, f be bounded functions. Let u, v ∈ C2,1(Rn × (0, T ))∩
C(Rn × [0, T ]) such that

• ut −∆u+ c(x, t)u ≤ f(x, t),

• vt −∆v + c(x, t)v ≥ f(x, t)

• there exists C > 0, α > 0 such that u(x, t) ≤ Ceα|x|
2

for all x, t ∈ [0, T ],

• there exists C > 0, α > 0 such that v(x, t) ≥ Ceα|x|
2

for all x, t ∈ [0, T ],

• u(x, 0) ≤ v(x, 0).

Then u(x, t) ≤ v(x, t) for all x ∈ Rn, t ∈ [0, T ].

Proof. (See also Evans, theorem 6, pag 57).
Define w(x, t) = e(inf c)t(u(x, t)−v(x, t). Then wt−∆w+ c̃(x, t)w ≤ 0 where c̃ = c(x, t)−inf c ≥

0, w(x, t) ≤ Ceα|x|
2

and w(x, 0) ≤ 0. To conclude it is sufficient to show that w(x, t) ≤ 0 for all
x, t.

Take S < T such that, for some ε > 0, 4α(S + ε) < 1 and define β = 1
4α(S+ε) − α > 0. We

prove that w(x, t) ≤ 0 for all x ∈ Rn, t ∈ [0, S]. To conclude we repeatly apply this result on time
intervals [0, S], [S, 2S].. up to [0, T ].
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Let δ > 0 and define

wδ(x, t) = w(x, t)− δ
1

(S + ε− t)n/2
e

|x|2
4(S+ε−t) .

It is easy to check that (wδ)t − ∆wδ + c̃(x, t)wδ ≤ 0 for x ∈ Rn, t ∈ (0, S), and moreover
wδ(x, 0) ≤ 0.

Using the growth condition and the definition of S, β we get that

wδ(x, t) ≤ eα|x|
2

(
C − δ

1

(S + ε)n/2
eβ|x|

2

)
.

So for δ > 0 fixed there exists Rδ such that wδ(x, t) ≤ 0 for all t ∈ [0, S] and |x| ≥ Rδ.
We consider wδ in the cylinder B(0, Rδ) × [0, S]. It solves (wδ)t − ∆wδ + c̃(x, t)wδ ≤ 0 and

moreover wδ(x, t) ≤ 0 in ∂⋆(B(0, Rδ)× [0, S]). So by parabolic comparison principle we get

wδ(x, t) ≤ 0 ∀x ∈ Rn, t ∈ [0, S].

We conclude letting δ → 0.

Corollary 1. There exists at most one solution to the Cauchy problem{
ut −∆u = f(x, t)

u(x, 0) = u0(x)

such that there exist C,α > 0 with |u(x, t) ≤ Ceα|x|
2

.
Moreover supx∈Rn,t∈[0,T ] |u(x, t)| ≤ ∥u0∥∞ + ∥f∥∞T .
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