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Maximum principles for elliptic operators.

Let Ω ⊂ Rn be a open set and L be the following linear elliptic operator

Lu(x) := − tr a(x)D2u(x) + b(x) ·Du(x) x ∈ Ω.

We assume the following general conditions on the coefficients of L.

Assumption 1. a : Ω → Sn is a bounded continuous function, where Sn is the space of symmetric
n× n matrices).

b : Ω → Rn is a bounded continuous function.

Moreover we assume that L is a degenerate elliptic operator according to this definition.

Definition. The operator L is degenerate elliptic if for every x ∈ Ω, a(x) is a n × n symmetric
positive semidefinite matrix (i.e. all the eigenvalues of a(x) are real and nonnegative).

Moreover we consider the following function.

Assumption 2. c : Ω → R a bounded nonnegative function (so 0 ≤ c(x) ≤ c0 for every x ∈ Ω).

Remark. Note that we are not asking that c is a continuous function, only that c is nonegative
and bounded.

The previous assumptions will hold throughout this note.

Weak Maximum principles for elliptic operators

In this section we will consider degenerate elliptic operators of the form Lu+ c(x)u where x ∈ Ω
which satisfy, besides the standing assumptions, also the following.

Assumption 3. For all x ∈ Ω such that c(x) = 0 there exist µx > 0 and δx > 0 such that

a11(y) > µx ∀y ∈ B(x, δx). (1)

Remark. Note that since a(x) is positive semidefinite for every x, then necessarily a11(x) ≥ 0.
Condition (1) implies that all x ∈ Ω such that c(x) = 0 there exists δx > 0 such that the

matrix a(y) admits at least one positive eigenvalue for every y ∈ B(x, δx).

Theorem 1 (Weak maximum principle). Let Ω be a bounded open set and u ∈ C2(Ω)∩C(Ω) such
that Lu+ c(x)u ≤ 0, where L and c are as above.

Then

• if c ≡ 0, then maxΩ u = max∂Ω u,

• if c ̸≡ 0, then maxΩ u ≤ max∂Ω u+, where u+(y) := max(u(y), 0).

Proof. We start considering the case c ≡ 0. Assume by contradiction that maxΩ u > max∂Ω u.
Let ε > 0 and define

uε(x) = u(x) + εeγx1 (2)

where γ > 0 will be fixed later. Then uε → u uniformly in Ω as ε → 0. Let xε ∈ Ω such that
uε(xε) = maxΩ uε. Then, passing to a subsequence xε → x0, and by uniform convergence we get
that u(x0) = maxΩ u. Since we assumed that maxΩ u > max∂Ω u, necessarily x0 ∈ Ω and then
also xε ∈ Ω for ε sufficiently small.
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Now, since uε is C2 in Ω and xε is a maximum point, Duε(xε) = 0 and D2uε(xε) ≤ 0 (the
hessian in xε is negative semidefinite). This implies that

Luε(xε) = − tr a(xε)D
2uε(xε) + b(xε) ·Du(xε) ≥ 0. (3)

On the other hand, by linearity of the operator L and the assumption that u is a subsolution we
get

Luε(xε) = Lu(xε)− γ2εa11(xε)e
γ(xε)1 + γb1(xε)e

γ(xε)1 ≤ γεeγ(xε)1 (−a11(xε)γ + b1(xε)) , (4)

Now, by assumption (1), there exists δx0 and µx0 such that a11(x) > µx0 for every x ∈ B(x0, δx0).
Since xε → x0, choosing ε sufficiently small we have that xε ∈ B(x0, δx0). For such ε, (4) reads

Luε(xε) ≤ γεeγ(xε)1 (−µx0γ + ∥b∥∞) < 0, (5)

choosing γ > 0 sufficiently large. But then (5) contradicts (3).
We consider now the case c ̸≡ 0. Assume by contradiction that M := maxΩ u > max∂Ω u and

M > 0.
Let M = {x ∈ Ω such that u(x) = M}. If x ∈ M, then Du(x) = 0 and D2u(x) ≤ 0. So, using

this fact for the first inequality and the assumption that u is a subsolution for the second, we get

c(x)u(x) ≤ Lu(x) + c(x)u(x) ≤ 0.

This implies that c(x) = 0 for every x ∈ M.
We define as above the function uε and the sequence xε → x0 ∈ M. So repeating the arguments

in (3),(5) above we get that

c(xε)uε(xε) ≤ Luε(xε) + c(xε)u(xε) + εc(xε)e
γ(xε)1 ≤ εeγ(xε)1

(
−µx0

γ2 + γ∥b∥∞ + ∥c∥∞
)
< 0

choosing γ sufficiently large.
The fact that c(xε)uε(xε) < 0 implies that uε(xε) < 0 for every ε sufficiently small and then,

passing to the limit as ε → 0, u(x0) ≤ 0, in contradiction with the assumption M > 0.

Remark. The weak minimum principle reads as follows.
Let v ∈ C2(Ω) ∩ C(Ω) such that Lv + c(x)v ≥ 0, where L and c are as above. Then

• if c ≡ 0, then minΩ v = min∂Ω v,

• if c ̸≡ 0, then minΩ v ≥ min∂Ω v−, where v−(y) := min(v(y), 0).

A first consequence of the theorem is the comparison principle.

Corollary 1 (Weak comparison principle). Let u, v ∈ C2(Ω) ∩ C(Ω) such that Lu + c(x)u ≤ 0,
and Lv + cv ≥ 0 in Ω, where L and c satisfies the same assumptions as above.

If u ≤ v in ∂Ω, then u ≤ v in Ω.

Proof. Let w = u− v, then Lw+ cw ≤ 0 in Ω and w ≤ 0 on ∂Ω. By the weak maximum principle
maxΩ w ≤ 0, which gives the conclusion.

The comparison principle implies as usual a uniqueness result.

Corollary 2 (Uniqueness for the Dirichlet problem). Let Ω be a bounded open set, then the
Dirichlet problem

(D)

{
Lu+ c(x)u = f(x) x ∈ Ω

u(x) = g(x) x ∈ ∂Ω

admits at most one solution u ∈ C2(Ω) ∩ C(Ω).

Proof. If u1, u2 are two solutions, then w = u1 − u2 satisfies Lw+ cw = 0 in Ω and w = 0 on ∂Ω.
By the weak maximum and minimum principle maxΩ |w| = 0, which gives the conclusion.
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Finally we have the following continuous dependance estimates.

Proposition 1 (Continuous dependance estimates). Let Ω be a bounded open set, g ∈ C(∂Ω) and
u ∈ C2(Ω) ∩ C(Ω) the solution to Dirichlet problem{

Lu+ c(x)u = 0 x ∈ Ω

u(x) = g(x) x ∈ ∂Ω
.

Then
∥u∥∞ ≤ ∥g∥∞.

Proof. Let w(x) = u(x) − ∥g∥∞. Then Lw + cw = Lu + cu − c(x)∥g∥∞ = −c(x)∥g∥∞ ≤ 0 in Ω
and w ≤ 0 on ∂Ω. By the weak maximum principle w ≤ 0, so u(x) ≤ ∥g∥∞ for every x ∈ Ω.

Let v(x) = u(x)+ ∥g∥∞. Then Lv+ cv = Lu+ cu+ c(x)∥g∥∞ = c(x)∥g∥∞ ≥ 0 in Ω and v ≥ 0
on ∂Ω. By the weak minimum principle v ≥ 0, so u(x) ≥ −∥g∥∞ for every x ∈ Ω.

Proposition 2 (Continuous dependance estimates). Let Ω be a bounded open set, f ∈ C(Ω) and
u ∈ C2(Ω) ∩ C(Ω) the solution to Dirichlet problem{

Lu = f(x) x ∈ Ω

u(x) = 0 x ∈ ∂Ω
.

Then there exists a constant C = C(Ω, L), depending of the coefficients a, b and of Ω, such that

∥u∥∞ ≤ C∥f∥∞.

Proof. Let w(x) = u(x)− ∥f∥∞eγx1 , where γ > 0 has to be fixed. Then

Lw = Lu+ ∥f∥∞eγx1(−a11(x)γ
2 + b1(x)γ) = f(x) + ∥f∥∞eγx1(−a11(x)γ

2 + b1(x)γ) ≤ 0

choosing γ sufficiently large. Moreover w ≤ 0 on ∂Ω. By the weak maximum principle w ≤ 0, so
u(x) ≤ ∥f∥∞ infx∈Ω eγx1 for every x ∈ Ω.

Repeating the same argument using weak minimum principle we get the other inequality.

Strong Maximum principles for uniformly elliptic operators

In this section we will consider uniformly elliptic operators L, according to the following definition.

Definition. Let L be a degenerate elliptic operator. Then L is uniformly elliptic in Ω if there
exists λ > 0 such that

ξta(x)ξ ≥ λ|ξ|2 ∀x ∈ Ω ∀ξ ∈ Rn.

Remark. Note that L is uniformly elliptic if for every x the minimal eigenvalue of a(x) is positive
(bigger than λ).

Lemma 1 (Hopf lemma). Assume that L is a uniformly elliptic operator in Ω and that u ∈
C2(Ω) ∩ C(Ω) such that Lu+ c(x)u ≤ 0.

If there exists x0 ∈ ∂Ω such that

• there exists y0 ∈ Ω and r0 > 0 such that B(y0, r0) ⊂ Ω and B(y0, r0) ∩ (Rn \ Ω) = {x0}

• - if c ≡ 0, u(x) < u(x0) for every x ∈ Ω

- if c ̸≡ 0, u(x) < u(x0) for every x ∈ Ω and u(x0) ≥ 0

then for every γ ∈ Rn such that γ · x0−y0

r0
> 0 we get

lim inf
h→0+

u(x0)− u(x0 − hγ)

h
> 0.

3



Remark. Note that by maximality of x0, it is trivial to prove that

lim inf
h→0+

u(x0)− u(x0 − hγ)

h
≥ 0.

Moreover x0−y0

r0
is the exterior normal to Ω (and also to B(y0, r0)) in x0. So, if u is differentiable

at x0, Hopf lemma gives that
∂u

∂n
(x0) > 0.

Proof. We start considering the case c ≡ 0. Let α > 0 to be fixed and define

v(x) = e−α|x−y0|2 − e−αr20 .

Note that v(x) = 0 for every x ∈ ∂B(y0, r0) and v(x) > 0 for every x ∈ B(y0, r0). Define the
function

w(x) = u(x)− u(x0) + εv(x)

where ε > 0 has to be fixed. Compute

Dv(x) = −2α(x− y0)e
−α|x−y0|2

and
D2v(x) = 2αe−α|x−y0|2(−I + 2α(x− y0)⊗ (x− y0)).

Observe that

tr[a(x)(x− y0)⊗ (x− y0)] =
∑

i,j=1,...n

aij(x)(x− y0)i(x− y0)j = (x− y0)
ta(x)(x− y0) ≥ λ|x− y0|2.

Then for every x ∈ Ω such that r0
2 < |x− y0| < r0,

Lw(x) = Lu(x) + εeα|x−y0|2α
(
tr a(x)− 2αλ|x− y0|2 + b(x) · (x− y0)

)
≤

≤ εeαr
2
0α

(
n∥a∥∞ − α

2
λr20 + ∥b∥∞r0

)
< 0

choosing α > 0 sufficiently large.
Moreover for every x ∈ ∂B(y0, r0), w(x) = u(x) − u(x0) ≤ 0 by assumption, and for every

x ∈ ∂B(y0,
r0
2 ),

w(x) = u(x)− u(x0) + εv(x) ≤ sup
x∈∂B(y0,

r0
2

(u(x)− u(x0)) + ε max
∂B(y0,

r0
2

v(x) < 0

if we choose ε sufficienlty small (since by assumption u(X0) > u(x) for every x ∈ Ω).
In conclusion, with these choices of ε, α, Lw ≤ 0 in B(y0, r0) \ B(y0, r0/2) and w ≤ 0 in

∂(B(y0, r0) \ B(y0, r0/2)). We conclude by weak maximum principle that w ≤ 0 for every x ∈
B(y0, r0) \B(y0, r0/2).

Let γ as in the statement and fix h0 such that x0 − h0γ ∈ B(y0, r0) \ B(y0, r0/2). Then for
every 0 < h ≤ h0

u(x0)− u(x0 − hγ)

h
≥ ε

v(x0 − hγ)− v(x0)

h
.

Passing to the limit as h → 0 we get

lim inf
h→0+

u(x0)− u(x0 − hγ)

h
ε lim
h→0+

v(x0 − hγ)− v(x0)

h
= −εDv(x0) · γ = εα(x0 − y0) · γ > 0.

If c ̸≡ 0, we follow the same argument as above, define the same function v and obtain

Lw + c(x)w ≤ −c(x)u(x0) + εeαr
2
0α

(
n∥a∥∞ − α

2
λr20 + ∥b∥∞r0

)
+ εc(x)v(x) ≤

≤ εeαr
2
0α

(
n∥a∥∞ − α

2
λr20 + ∥b∥∞r0

)
+ ε∥c∥∞ < 0

choosing α sufficiently large. Note that we used the fact that c(x)u(x0) ≥ 0 for every x. The
conclusion follows as above.
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We are ready now to prove the strong maximum principle.

Theorem 2 (Strong maximum principle). Let Ω be a open connected set and u ∈ C2(Ω) such that
Lu+ c(x)u ≤ 0, where L and c are as above.

Then

• if c ≡ 0, and there exist x ∈ Ω such that u(x) = supΩ u, then u is constant

• if c ̸≡ 0, and there exist x ∈ Ω such that u(x) = supΩ u, and u(x) ≥ 0 then u is constant .

Proof. Let M = supΩ u and let M = {x ∈ Ω | u(x) = M}. We show that if M ≠ ∅ then M = Ω
(so u is constant). Let C = Ω \M ⊂ Ω. C is open in Ω. We claim that ∂C = ∅ in Ω, so C = C
in Ω. This implies that C is closed and open, so C = ∅ since Ω is connected and Ω \ C ̸= ∅.

By contradiction assume that ∂C ∩ Ω ̸= ∅. This implies that there exist y ∈ C such that
dist(y, ∂Ω) >dist(y, ∂C) = r. So B(y, r) ⊂ C and ∂B(y, r) ∩ ∂C ̸= ∅, whereas ∂B(y, r) ∩ ∂Ω = ∅.
Let ∂B(y, r) ∩ ∂C. So, there exists r′ < r and y′ ∈ [x, y] (y′ is in the segment connecting y, x)
such that B(y′, r′) ⊂ C and ∂B(y′, r′) ∩ ∂C = {x}. So u(z) < M for every z ∈ B(y′, r′) and
u(x) = M and, since x ∈ Ω, Du(x) = 0. But Hopf lemma applied to the set B(y′, r′) we would
have Du(x) · (x− y′) > 0, in contradiction with the fact that Du(x) = 0.

A first consequence of the theorem is the comparison principle.

Corollary 3 (Strong comparison principle). Let u, v ∈ C2(Ω) ∩ C(Ω) such that Lu + c(x)u ≤ 0,
and Lv+ cv ≥ 0 in Ω, where L and c satisfies the same assumptions as above and Ω is connected.

If u ≤ v in Ω, then either u ≡ v or u < v in Ω.

Proof. Let w = u − v, then Lw + cw ≤ 0 in Ω and w ≤ 0 on Ω. If there exists x ∈ Ω such that
w(x) = 0, then by the strong maximum principle, w is constant, so w ≡ 0. If such x does not
exist, then w < 0 in Ω.

We get also the following result on the uniqueness up to constant of solutions to the Neumann
problem.

Corollary 4 (Uniqueness up to constant for the Neumann problem). Let Ω be a bounded open
set, which satisfies the interior sphere condition at every point. Then the Neumann problem

(N)

{
Lu+ c(x)u = f(x) x ∈ Ω
∂u
∂n (x) = g(x) x ∈ ∂Ω

admits at most one solution u ∈ C2(Ω)∩C1(Ω) up to additive constants. This means that if u, v ∈
C2(Ω) ∩ C1(Ω) are solutions to (N) then there exists a constant k ∈ R such that u(x) = v(x) + k
for every x ∈ Ω.

Proof. If u1, u2 are two solutions, then w = u1 − u2 satisfies Lw + cw = 0 in Ω and ∂w
∂n = 0 on

∂Ω. Let M = maxΩ w, we can assume without loss of generality that M ≥ 0 (otherwise define
w = u2 − u1). If w is not constant, by strong maximum principle for every y ∈ Ω, u(y) < M .
Moreover there exists at least one point x ∈ ∂Ω such that u(x) = M . Then by Hopf lemma,
∂w
∂n (x) > 0, in contradiction with the fact that ∂w

∂n (x) = 0. So w ≡ M .

Liouville type results

Using strong and weak maximum principle for uniformly elliptic operators we prove a Liouville
type theorem for subsolutions of uniformy elliptic operators.

So, in this section L will be a uniformly elliptic operator in Rn. Moreover we assume that
there exists a supersolution to L, exploding at infinity. In particular we assume the following.

Assumption 4. There exists M > 0 and w ∈ C2(Rn \B(0,M)) such that

5



• Lw(x) ≥ 0 for every |x| > M ,

• lim|x|→+∞ w(x) = +∞.

Proposition 3 (Liouville type result). Assume that L is uniformly elliptic and that 4 holds. Let
u ∈ C2(Rn) such that Lu ≤ 0 in Rn and u(x) ≤ C for every x ∈ Rn.

Then u is constant.
Analogously, every bounded from below supersolution to L in Rn is constant.

Remark. This result applies also to the laplacian operator in R2. Indeed the function log |x|
satisfies assumption 4. So every bounded from above subharmonic function is constant.

The same result is not true in Rn for n ≥ 3 (since in this case, assumption 4 is not satisfied).
Indeed there are bounded subharmonic functions in Rn, e.g. u(x) = −(1+ |x|2)−1 is subharmonic

and bounde in Rn with n ≥ 4 and u(x) = −(1 + |x|2)− 1
2 is subharmonic and bounded in R3.

Proof. Let u be bounded from above and ε > 0. Define vε = u − εw for |x| > 2M . Then
vε ∈ C2{x ∈ Rn, |x| ≥ 2M} and lim|x|→+∞ vε(x) = −∞ and Lvε = Lu − εLw ≤ 0 for every
|x| > 2M . Define Cε = max|x|=2M vε(x). So, since lim|x|→+∞ vε(x) = −∞, there exists Kε > 2M
such that vε(x) < Cε for every |x| ≥ Kε.

Moreover, by weak maximum principle in the set {x ∈ Rn | 2M < |x| < Kε} we have that

max
{x∈Rn | 2M≤|x|≤Kε}

vε(x) = max
{x∈Rn | |x|=2M or |x|=Kε}

vε(x). (6)

Since vε(x) < Cε for every |x| ≥ Kε, we obtain from (6) that for every |y| ≥ 2M

vε(y) = u(y)− εw(y) ≤ max
{x∈Rn | |x|=2M}

vε(x) ≤ max
{x∈Rn | |x|=2M}

u(x)− ε min
{x∈Rn | |x|=2M}

w(x). (7)

Sending ε → 0 in (7), we obtain

u(y) ≤ max
{x∈Rn | |x|=2M}

u(x) ∀ |y| > 2M.

Moreover by weak maximum principle appied in B(0, 2M), we get that

u(y) ≤ max
{x∈Rn | |x|=2M}

u(x) ∀ |y| < 2M.

Putting together the last two inequalities we get

u(y) ≤ max
{x∈Rn | |x|=2M}

u(x) ∀ y ∈ Rn.

This implies that u attains a maximum in some point in ∂B(0, 2M), so, by strong masimum
principle u is constant.

6


