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Maximum principles for elliptic operators.

Let Q C R™ be a open set and L be the following linear elliptic operator
Lu(z) := —tr a(z)D?*u(z) + b(x) - Du(x) xz € Q.

We assume the following general conditions on the coefficients of L.

Assumption 1. a: 2 — 5, is a bounded continuous function, where .S,, is the space of symmetric
n X n matrices).
b:Q — R" is a bounded continuous function.

Moreover we assume that L is a degenerate elliptic operator according to this definition.

Definition. The operator L is degenerate elliptic if for every = € Q, a(z) is a n X n symmetric
positive semidefinite matrix (i.e. all the eigenvalues of a(x) are real and nonnegative).

Moreover we consider the following function.
Assumption 2. ¢: ) — R a bounded nonnegative function (so 0 < ¢(z) < ¢y for every x € Q).

Remark. Note that we are not asking that ¢ is a continuous function, only that ¢ is nonegative
and bounded.

The previous assumptions will hold throughout this note.

Weak Maximum principles for elliptic operators

In this section we will consider degenerate elliptic operators of the form Lu + ¢(z)u where x €
which satisfy, besides the standing assumptions, also the following.

Assumption 3. For all x € Q such that ¢(z) = 0 there exist u, > 0 and §, > 0 such that
a11(y) > te Yy € B(z,6y). (1)

Remark. Note that since a(x) is positive semidefinite for every x, then necessarily aqq(z) > 0.
Condition (1) implies that all x € Q such that c¢(z) = 0 there exists J, > 0 such that the
matrix a(y) admits at least one positive eigenvalue for every y € B(x,d,).

Theorem 1 (Weak maximum principle). Let Q be a bounded open set and u € C?(Q2)NC(Q) such
that Lu + ¢(z)u < 0, where L and ¢ are as above.
Then

o if c =0, then maxgu = maxsq u,
e if c#0, then maxgu < maxgou™, where u™(y) := max(u(y),0).

Proof. We start considering the case ¢ = 0. Assume by contradiction that maxgu > maxaq u.
Let € > 0 and define
ue(x) = u(x) + ™ (2)

where v > 0 will be fixed later. Then u. — u uniformly in Q as e — 0. Let 2. € Q such that
U (z.) = maxgu.. Then, passing to a subsequence . — zo, and by uniform convergence we get
that u(zo) = maxgu. Since we assumed that maxgu > maxpq u, necessarily zo € Q and then
also z. €  for e sufficiently small.



Now, since u. is C? in  and z. is a maximum point, Du.(z.) = 0 and D?u.(z.) < 0 (the
hessian in z. is negative semidefinite). This implies that

Luc(x.) = —tr a(z.)D?uc(z.) + b(x.) - Du(x:) > 0. (3)

On the other hand, by linearity of the operator L and the assumption that u is a subsolution we
get

Lue(ze) = Lu(x:) — ’yzsall(xs)e%%)l + ’ybl(xs)e”(wa)l < 7567(‘“)1 (—ar(ze)y+b1(ze)), (4)

Now, by assumption (1), there exists d,, and pg, such that a;;(x) > pg, for every x € B(zg, 0y, )-
Since xze — xo, choosing ¢ sufficiently small we have that x. € B(xo,d5,). For such €, (4) reads

Luc(ze) < 'VEey(ws)l (=t + [Pl c) <0, (5)

choosing v > 0 sufficiently large. But then (5) contradicts (3).

We consider now the case ¢ # 0. Assume by contradiction that M := maxgu > maxpo u and
M > 0.

Let M = {x € Q such that u(x) = M}. If x € M, then Du(z) = 0 and D?*u(x) < 0. So, using
this fact for the first inequality and the assumption that u is a subsolution for the second, we get

c(x)u(zr) < Lu(z) + c(z)u(z) < 0.

This implies that ¢(z) = 0 for every x € M.
We define as above the function u. and the sequence x. — g € M. So repeating the arguments
in (3),(5) above we get that

c(xe)ue(ze) < Lue(ze) + c(we)u(we) + EC@E)GW(%)I < e (@ (_NZO'VQ + 7]l oo + ”CHOO) <0

choosing v sufficiently large.
The fact that c(xe)ue(xe) < 0 implies that u.(z.) < 0 for every ¢ sufficiently small and then,
passing to the limit as € — 0, u(xg) < 0, in contradiction with the assumption M > 0. O

Remark. The weak minimum principle reads as follows.
Let v € C%(Q) NC(Q) such that Lv + ¢(x)v > 0, where L and ¢ are as above. Then

e if ¢ = 0, then ming v = mingq v,
o if ¢ # 0, then mingv > minpg v~, where v~ (y) := min(v(y),0).
A first consequence of the theorem is the comparison principle.

Corollary 1 (Weak comparison principle). Let u,v € C3(Q) N C(Q) such that Lu + c¢(x)u < 0,
and Lv +cv > 0 in Q, where L and c satisfies the same assumptions as above.
If u <win 09, then u < wv in Q.

Proof. Let w=u—v, then Lw+ cw < 0in Q and w < 0 on 02. By the weak maximum principle
maxgw < 0, which gives the conclusion. O

The comparison principle implies as usual a uniqueness result.

Corollary 2 (Uniqueness for the Dirichlet problem). Let  be a bounded open set, then the
Dirichlet problem

Lu+c(x)u=f(z) xze€Q
(D {u(x) = g(z) x € 00

admits at most one solution u € C*(2) NC(Q).

Proof. If ui,us are two solutions, then w = u; — ug satisfies Lw + cw = 0 in  and w = 0 on 90N2.
By the weak maximum and minimum principle maxg |w| = 0, which gives the conclusion. O



Finally we have the following continuous dependance estimates.

Proposition 1 (Continuous dependance estimates). Let 2 be a bounded open set, g € C(98) and
u € C3(Q) NC(Q) the solution to Dirichlet problem

Lu+c(z)u=0 z€Q
u(z) = g(x) €N
Then
[ufloe < ll9lloo-

Proof. Let w(z) = u(x) — ||gllco. Then Lw + cw = Lu + cu — ¢(z)]|glloc = —¢(@)]|g|loc < 0 in
and w < 0 on 9. By the weak maximum principle w < 0, so u(x) < ||g||o for every z € Q.

Let v(z) = u(x) 4 ||g]loc- Then Lv+ cv = Lu+ cu+ ¢(2)]|g]|oo = ¢(2)||g|loc = 0in Q@ and v > 0
on 9. By the weak minimum principle v > 0, so u(z) > —||g||e for every z € Q. O

Proposition 2 (Continuous dependance estimates). Let ) be a bounded open set, f € C(Q) and
u € C3(Q) NC(Q) the solution to Dirichlet problem

Lu=f(z) z€Q
u(z) =0 x€0Q’

Then there exists a constant C = C(Q, L), depending of the coefficients a,b and of Q, such that

[ulloc < Ol flloo-

Proof. Let w(x) = u(x) — || f|lcce?™*, where v > 0 has to be fixed. Then
Lw = Lu+ || fllce™ (—ar1 (2)7* + b1(2)7) = f(2) + [ floc€”™ (=a11(2)7* + br(x)y) <0

choosing ~ sufficiently large. Moreover w < 0 on 92. By the weak maximum principle w < 0, so
u(z) < || flloo inf .5 €™ for every z € Q.
Repeating the same argument using weak minimum principle we get the other inequality. [

Strong Maximum principles for uniformly elliptic operators

In this section we will consider uniformly elliptic operators L, according to the following definition.

Definition. Let L be a degenerate elliptic operator. Then L is uniformly elliptic in Q if there
exists A > 0 such that
Ea(x)e > NP Ve e QVEER™

Remark. Note that L is uniformly elliptic if for every x the minimal eigenvalue of a(x) is positive
(bigger than \).

Lemma li(Hopf lemma). Assume that L is a uniformly elliptic operator in Q and that u €
C2(Q)NC(Q) such that Lu + c(z)u < 0.
If there exists xo € 0N such that

o there exists yo € Q and ro > 0 such that B(yo,ro) C Q and B(yo,ro) N (R™\ Q) = {zo}

o - ifc=0, u(z) < u(zg) for every x € Q
-ifeZ 0, u(z) < u(zg) for every x € Q and u(xg) >0

then for every v € R™ such that - #2242 > 0 we get

lim inf > 0.

h—0t

u(zo) — u(wo — hy)
h



Remark. Note that by maximality of xg, it is trivial to prove that

lim inf 20 = @0 = )
h—0t h

> 0.

Moreover 2= is the exterior normal to €2 (and also to B(yo, o)) in zo. So, if u is differentiable
at xo, Hopf lemma gives that

Ju
. > 0.
on (%)
Proof. We start considering the case ¢ = 0. Let o > 0 to be fixed and define
v(r) = e—alz=yol® _ garg

Note that v(xz) = 0 for every x € 0B(yo,70) and v(z) > 0 for every x € B(yo,ro). Define the
function
w(z) = u(x) — u(xo) + ev(x)
where € > 0 has to be fixed. Compute
‘2

Dv(z) = —2a(x — yo)e_‘x"”_y0

and )
D%y(zx) = 2ae™ =%l (T 4 2a(x — yo) @ (z — yo))-
Observe that

trfa(z)(z —yo) ® (x—go)] = D ay(@)(@—yo)ilx —yo); = (& — o) a(z) (@ —yo) = Alx — yol*.

i,j=1,..n

Then for every x € (2 such that 3 < |z — yo| < 70,

Lw(x) = Lu(x) + eeclo—wol* (tr a(z) — 20A|z — yo> + b(z) - (z — yo)) <

p «
< zeia (nlalloo = SAE + Docro) < 0

choosing « > 0 sufficiently large.
Moreover for every = € 0B(yo,70), w(z) = u(x) — u(zg) < 0 by assumption, and for every
x € OB(yo, ),

w(z) = u(z) — u(zo) +ev(z) < sup  (u(x) —u(zo)) +e max wv(z) <0
zEBB(yo,TTO aB(ymTTO

if we choose ¢ sufficienlty small (since by assumption u(Xg) > u(x) for every z € Q).

In conclusion, with these choices of ¢,a, Lw < 0 in B(yo,70) \ B(y0,70/2) and w < 0 in
A(B(yo,r0) \ B(yo,r0/2)). We conclude by weak maximum principle that w < 0 for every = €
B(yo,m0) \ B(yo,70/2).

Let v as in the statement and fix hg such that zo — hoy € B(yo,70) \ B(yo,70/2). Then for
every 0 < h < hy

u(zo) — u(xg — hy) < v(xg — hy) — v(xo)
€ .
h - h
Passing to the limit as h — 0 we get

lim inf u(zo) — u(wo — h’Y)E lim v(xo — hy) — v(zo)
h—0+ h h—0+ h

= —eDv(zg) -y =ea(xg—yo) - v > 0.
If ¢ # 0, we follow the same argument as above, define the same function v and obtain
Lw + c(x)w < —c(z)u(xo) + £e®Toq (nHaHOQ - %AT% + ||b\|oo7‘o> +ec(x)v(x) <

< ee”lq (n||a||oo - %/\7‘3 + Hb||ooro) tefeflee <0

choosing « sufficiently large. Note that we used the fact that c(x)u(xg) > 0 for every z. The
conclusion follows as above. O



We are ready now to prove the strong maximum principle.

Theorem 2 (Strong maximum principle). Let 2 be a open connected set and u € C?(Q) such that
Lu + ¢(z)u <0, where L and c are as above.
Then

e if ¢ =0, and there exist x € ) such that u(z) = supq u, then u is constant

o if c#0, and there exist x € Q such that u(r) = supq u, and u(zx) > 0 then u is constant .

Proof. Let M = supgu and let M = {z € Q | u(z) = M}. We show that if M # () then M = Q
(so u is constant). Let C = Q\ M C Q. C is open in Q. We claim that 9C = in Q, so C = C
in Q. This implies that C is closed and open, so C' = {) since {2 is connected and Q \ C # 0.

By contradiction assume that OC N Q # (). This implies that there exist y € C such that
dist(y, 02) >dist(y,0C) = r. So B(y,r) C C and 0B(y,r) NOC # (), whereas dB(y,r) NN = (.
Let 0B(y,r) N OC. So, there exists ' < r and y" € [z,y] (¥ is in the segment connecting y, x)
such that B(y',r") € C and 9B(y',r") N 9C = {z}. So u(z) < M for every z € B(y',r’) and
u(z) = M and, since z € Q, Du(z) = 0. But Hopf lemma applied to the set B(y',r’) we would
have Du(x) - (z —y') > 0, in contradiction with the fact that Du(z) = 0. O

A first consequence of the theorem is the comparison principle.

Corollary 3 (Strong comparison principle). Let u,v € C2(2) N C(Q) such that Lu + c(x)u < 0,
and Lv+cv > 0 in Q, where L and c satisfies the same assumptions as above and ) is connected.
If u < v in Q, then either u =v or u < v in .

Proof. Let w = u — v, then Lw + cw < 0 in 2 and w < 0 on €. If there exists z € ) such that
w(z) = 0, then by the strong maximum principle, w is constant, so w = 0. If such = does not
exist, then w < 0 in . O

We get also the following result on the uniqueness up to constant of solutions to the Neumann
problem.

Corollary 4 (Uniqueness up to constant for the Neumann problem). Let Q be a bounded open
set, which satisfies the interior sphere condition at every point. Then the Neumann problem

Lu+c(x)u=f(z) z€Q
(N){ “()=g(e)  weon

admits at most one solution u € C*(2) NC*(Q) up to additive constants. This means that if u,v €
C*() NCH(Q) are solutions to (N) then there exists a constant k € R such that u(z) = v(x) + k
for every x € Q.

Proof. If uy,us are two solutions, then w = u; — us satisfies Lw + cw = 0 in Q and % =0 on
0Q. Let M = maxgw, we can assume without loss of generality that M > 0 (otherwise define
w = ug — up). If w is not constant, by strong maximum principle for every y € Q, u(y) < M.
Moreover there exists at least one point x € 9 such that u(x) = M. Then by Hopf lemma,

an( x) > 0, in contradiction with the fact that Bw( )=0. Sow =M. O

Liouville type results

Using strong and weak maximum principle for uniformly elliptic operators we prove a Liouville
type theorem for subsolutions of uniformy elliptic operators.

So, in this section L will be a uniformly elliptic operator in R™. Moreover we assume that
there exists a supersolution to L, exploding at infinity. In particular we assume the following.

Assumption 4. There exists M > 0 and w € C*(R™ \ B(0, M)) such that



o Lw(x) > 0 for every |z| > M,
o lim )40 w(x) = 400.

Proposition 3 (Liouville type result). Assume that L is uniformly elliptic and that 4 holds. Let
u € C*(R™) such that Lu < 0 in R™ and u(x) < C for every x € R".

Then u is constant.

Analogously, every bounded from below supersolution to L in R™ is constant.

Remark. This result applies also to the laplacian operator in R?. Indeed the function log |z
satisfies assumption 4. So every bounded from above subharmonic function is constant.

The same result is not true in R™ for n > 3 (since in this case, assumption 4 is not satisfied).
Indeed there are bounded subharmonic functions in R", e.g. u(z) = —(1+ |z|?)~! is subharmonic
and bounde in R" with n > 4 and u(z) = —(1 + |z[2)2 is subharmonic and bounded in R3.

Proof. Let u be bounded from above and ¢ > 0. Define v. = uw — ew for |z| > 2M. Then
ve € C*{z € R", |z| > 2M} and limjg, o ve(z) = —o0 and Lv, = Lu — eLw < 0 for every
|z] > 2M. Define C. = max;|—aps ve(¥). So, since lim||_, o ve(7) = —00, there exists K. > 2M
such that v.(x) < C; for every |z| > K..

Moreover, by weak maximum principle in the set {z € R" | 2M < |z| < K.} we have that

ve (). (6)

max ve(z) = max
{weR™ | 2M<|z|<K:} {zeR™ | |x|=2M or |z|=K.}
Since v (z) < C. for every |z| > K., we obtain from (6) that for every |y| > 2M

— - < < - i (7
vely) = uly) —ewly) < (weRr | Jal=201) ve(2) < {IER"HRE\)ﬁ:QM}U(I) E{IER”H\H|:IL*1\:21VI}w(m) @

Sending € — 0 in (7), we obtain

u(y) <

< max u(x Y|yl > 2M.
{zeR™ | |z|=2M} ( ) | ‘

Moreover by weak maximum principle appied in B(0,2M), we get that

u(y) <

v 2M.
= e oany u() ly| <

Putting together the last two inequalities we get

u(y) <

< max u(x VyeR"
{zeR™ | |x|=2M} ( ) Y

This implies that « attains a maximum in some point in 0B(0,2M), so, by strong masimum
principle u is constant. O



