Introduzione alle equazioni alle derivate parziali,

 Laurea Magistrale in Matematica, A.A. 2013/2014
Maximum principles for elliptic operators.

Let $\Omega \subset \mathbb{R}^{n}$ be a open set and L be the following linear elliptic operator

$$
L u(x):=-\operatorname{tr} a(x) D^{2} u(x)+b(x) \cdot D u(x) \quad x \in \Omega
$$

We assume the following general conditions on the coefficients of L.
Assumption 1. $a: \Omega \rightarrow S_{n}$ is a bounded continuous function, where S_{n} is the space of symmetric $n \times n$ matrices).
$b: \Omega \rightarrow \mathbb{R}^{n}$ is a bounded continuous function.
Moreover we assume that L is a degenerate elliptic operator according to this definition.
Definition. The operator L is degenerate elliptic if for every $x \in \Omega, a(x)$ is a $n \times n$ symmetric positive semidefinite matrix (i.e. all the eigenvalues of $a(x)$ are real and nonnegative).

Moreover we consider the following function.
Assumption 2. $c: \Omega \rightarrow R$ a bounded nonnegative function (so $0 \leq c(x) \leq c_{0}$ for every $x \in \Omega$).
Remark. Note that we are not asking that c is a continuous function, only that c is nonegative and bounded.

The previous assumptions will hold throughout this note.

Weak Maximum principles for elliptic operators

In this section we will consider degenerate elliptic operators of the form $L u+c(x) u$ where $x \in \Omega$ which satisfy, besides the standing assumptions, also the following.

Assumption 3. For all $x \in \Omega$ such that $c(x)=0$ there exist $\mu_{x}>0$ and $\delta_{x}>0$ such that

$$
\begin{equation*}
a_{11}(y)>\mu_{x} \quad \forall y \in B\left(x, \delta_{x}\right) . \tag{1}
\end{equation*}
$$

Remark. Note that since $a(x)$ is positive semidefinite for every x, then necessarily $a_{11}(x) \geq 0$.
Condition (1) implies that all $x \in \Omega$ such that $c(x)=0$ there exists $\delta_{x}>0$ such that the matrix $a(y)$ admits at least one positive eigenvalue for every $y \in B\left(x, \delta_{x}\right)$.

Theorem 1 (Weak maximum principle). Let Ω be a bounded open set and $u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ such that $L u+c(x) u \leq 0$, where L and c are as above.

Then

- if $c \equiv 0$, then $\max _{\bar{\Omega}} u=\max _{\partial \Omega} u$,
- if $c \not \equiv 0$, then $\max _{\bar{\Omega}} u \leq \max _{\partial \Omega} u^{+}$, where $u^{+}(y):=\max (u(y), 0)$.

Proof. We start considering the case $c \equiv 0$. Assume by contradiction that $\max _{\bar{\Omega}} u>\max _{\partial \Omega} u$.
Let $\varepsilon>0$ and define

$$
\begin{equation*}
u_{\varepsilon}(x)=u(x)+\varepsilon e^{\gamma x_{1}} \tag{2}
\end{equation*}
$$

where $\gamma>0$ will be fixed later. Then $u_{\varepsilon} \rightarrow u$ uniformly in $\bar{\Omega}$ as $\varepsilon \rightarrow 0$. Let $x_{\varepsilon} \in \bar{\Omega}$ such that $u_{\varepsilon}\left(x_{\varepsilon}\right)=\max _{\bar{\Omega}} u_{\varepsilon}$. Then, passing to a subsequence $x_{\varepsilon} \rightarrow x_{0}$, and by uniform convergence we get that $u\left(x_{0}\right)=\max _{\bar{\Omega}} u$. Since we assumed that $\max _{\bar{\Omega}} u>\max _{\partial \Omega} u$, necessarily $x_{0} \in \Omega$ and then also $x_{\varepsilon} \in \Omega$ for ε sufficiently small.

Now, since u_{ε} is \mathcal{C}^{2} in Ω and x_{ε} is a maximum point, $D u_{\varepsilon}\left(x_{\varepsilon}\right)=0$ and $D^{2} u_{\varepsilon}\left(x_{\varepsilon}\right) \leq 0$ (the hessian in x_{ε} is negative semidefinite). This implies that

$$
\begin{equation*}
L u_{\varepsilon}\left(x_{\varepsilon}\right)=-\operatorname{tr} a\left(x_{\varepsilon}\right) D^{2} u_{\varepsilon}\left(x_{\varepsilon}\right)+b\left(x_{\varepsilon}\right) \cdot D u\left(x_{\varepsilon}\right) \geq 0 \tag{3}
\end{equation*}
$$

On the other hand, by linearity of the operator L and the assumption that u is a subsolution we get

$$
\begin{equation*}
L u_{\varepsilon}\left(x_{\varepsilon}\right)=L u\left(x_{\varepsilon}\right)-\gamma^{2} \varepsilon a_{11}\left(x_{\varepsilon}\right) e^{\gamma\left(x_{\varepsilon}\right)_{1}}+\gamma b_{1}\left(x_{\varepsilon}\right) e^{\gamma\left(x_{\varepsilon}\right)_{1}} \leq \gamma \varepsilon e^{\gamma\left(x_{\varepsilon}\right)_{1}}\left(-a_{11}\left(x_{\varepsilon}\right) \gamma+b_{1}\left(x_{\varepsilon}\right)\right) \tag{4}
\end{equation*}
$$

Now, by assumption (1), there exists $\delta_{x_{0}}$ and $\mu_{x_{0}}$ such that $a_{11}(x)>\mu_{x_{0}}$ for every $x \in B\left(x_{0}, \delta_{x_{0}}\right)$. Since $x_{\varepsilon} \rightarrow x_{0}$, choosing ε sufficiently small we have that $x_{\varepsilon} \in B\left(x_{0}, \delta_{x_{0}}\right)$. For such ε, (4) reads

$$
\begin{equation*}
L u_{\varepsilon}\left(x_{\varepsilon}\right) \leq \gamma \varepsilon e^{\gamma\left(x_{\varepsilon}\right)_{1}}\left(-\mu_{x_{0}} \gamma+\|b\|_{\infty}\right)<0 \tag{5}
\end{equation*}
$$

choosing $\gamma>0$ sufficiently large. But then (5) contradicts (3).
We consider now the case $c \not \equiv 0$. Assume by contradiction that $M:=\max _{\bar{\Omega}} u>\max _{\partial \Omega} u$ and $M>0$.

Let $\mathcal{M}=\{x \in \Omega$ such that $u(x)=M\}$. If $x \in \mathcal{M}$, then $D u(x)=0$ and $D^{2} u(x) \leq 0$. So, using this fact for the first inequality and the assumption that u is a subsolution for the second, we get

$$
c(x) u(x) \leq L u(x)+c(x) u(x) \leq 0
$$

This implies that $c(x)=0$ for every $x \in \mathcal{M}$.
We define as above the function u_{ε} and the sequence $x_{\varepsilon} \rightarrow x_{0} \in \mathcal{M}$. So repeating the arguments in (3),(5) above we get that

$$
c\left(x_{\varepsilon}\right) u_{\varepsilon}\left(x_{\varepsilon}\right) \leq L u_{\varepsilon}\left(x_{\varepsilon}\right)+c\left(x_{\varepsilon}\right) u\left(x_{\varepsilon}\right)+\varepsilon c\left(x_{\varepsilon}\right) e^{\gamma\left(x_{\varepsilon}\right)_{1}} \leq \varepsilon e^{\gamma\left(x_{\varepsilon}\right)_{1}}\left(-\mu_{x_{0}} \gamma^{2}+\gamma\|b\|_{\infty}+\|c\|_{\infty}\right)<0
$$

choosing γ sufficiently large.
The fact that $c\left(x_{\varepsilon}\right) u_{\varepsilon}\left(x_{\varepsilon}\right)<0$ implies that $u_{\varepsilon}\left(x_{\varepsilon}\right)<0$ for every ε sufficiently small and then, passing to the limit as $\varepsilon \rightarrow 0, u\left(x_{0}\right) \leq 0$, in contradiction with the assumption $M>0$.

Remark. The weak minimum principle reads as follows.
Let $v \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ such that $L v+c(x) v \geq 0$, where L and c are as above. Then

- if $c \equiv 0$, then $\min _{\bar{\Omega}} v=\min _{\partial \Omega} v$,
- if $c \not \equiv 0$, then $\min _{\bar{\Omega}} v \geq \min _{\partial \Omega} v^{-}$, where $v^{-}(y):=\min (v(y), 0)$.

A first consequence of the theorem is the comparison principle.
Corollary 1 (Weak comparison principle). Let $u, v \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ such that $L u+c(x) u \leq 0$, and $L v+c v \geq 0$ in Ω, where L and c satisfies the same assumptions as above.

If $u \leq v$ in $\partial \Omega$, then $u \leq v$ in $\bar{\Omega}$.
Proof. Let $w=u-v$, then $L w+c w \leq 0$ in Ω and $w \leq 0$ on $\partial \Omega$. By the weak maximum principle $\max _{\bar{\Omega}} w \leq 0$, which gives the conclusion.

The comparison principle implies as usual a uniqueness result.
Corollary 2 (Uniqueness for the Dirichlet problem). Let Ω be a bounded open set, then the Dirichlet problem

$$
(D) \begin{cases}L u+c(x) u=f(x) & x \in \Omega \\ u(x)=g(x) & x \in \partial \Omega\end{cases}
$$

admits at most one solution $u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$.
Proof. If u_{1}, u_{2} are two solutions, then $w=u_{1}-u_{2}$ satisfies $L w+c w=0$ in Ω and $w=0$ on $\partial \Omega$. By the weak maximum and minimum principle $\max _{\bar{\Omega}}|w|=0$, which gives the conclusion.

Finally we have the following continuous dependance estimates.
Proposition 1 (Continuous dependance estimates). Let Ω be a bounded open set, $g \in \mathcal{C}(\partial \Omega)$ and $u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ the solution to Dirichlet problem

$$
\left\{\begin{array}{ll}
L u+c(x) u=0 & x \in \Omega \\
u(x)=g(x) & x \in \partial \Omega
\end{array} .\right.
$$

Then

$$
\|u\|_{\infty} \leq\|g\|_{\infty} .
$$

Proof. Let $w(x)=u(x)-\|g\|_{\infty}$. Then $L w+c w=L u+c u-c(x)\|g\|_{\infty}=-c(x)\|g\|_{\infty} \leq 0$ in Ω and $w \leq 0$ on $\partial \Omega$. By the weak maximum principle $w \leq 0$, so $u(x) \leq\|g\|_{\infty}$ for every $x \in \bar{\Omega}$.

Let $v(x)=u(x)+\|g\|_{\infty}$. Then $L v+c v=L u+c u+c(x)\|g\|_{\infty}=c(x)\|g\|_{\infty} \geq 0$ in Ω and $v \geq 0$ on $\partial \Omega$. By the weak minimum principle $v \geq 0$, so $u(x) \geq-\|g\|_{\infty}$ for every $x \in \bar{\Omega}$.

Proposition 2 (Continuous dependance estimates). Let Ω be a bounded open set, $f \in \mathcal{C}(\Omega)$ and $u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ the solution to Dirichlet problem

$$
\begin{cases}L u=f(x) & x \in \Omega \\ u(x)=0 & x \in \partial \Omega\end{cases}
$$

Then there exists a constant $C=C(\Omega, L)$, depending of the coefficients a, b and of Ω, such that

$$
\|u\|_{\infty} \leq C\|f\|_{\infty}
$$

Proof. Let $w(x)=u(x)-\|f\|_{\infty} e^{\gamma x_{1}}$, where $\gamma>0$ has to be fixed. Then

$$
L w=L u+\|f\|_{\infty} e^{\gamma x_{1}}\left(-a_{11}(x) \gamma^{2}+b_{1}(x) \gamma\right)=f(x)+\|f\|_{\infty} e^{\gamma x_{1}}\left(-a_{11}(x) \gamma^{2}+b_{1}(x) \gamma\right) \leq 0
$$

choosing γ sufficiently large. Moreover $w \leq 0$ on $\partial \Omega$. By the weak maximum principle $w \leq 0$, so $u(x) \leq\|f\|_{\infty} \inf _{x \in \bar{\Omega}} e^{\gamma x_{1}}$ for every $x \in \bar{\Omega}$.

Repeating the same argument using weak minimum principle we get the other inequality.

Strong Maximum principles for uniformly elliptic operators

In this section we will consider uniformly elliptic operators L, according to the following definition.
Definition. Let L be a degenerate elliptic operator. Then L is uniformly elliptic in Ω if there exists $\lambda>0$ such that

$$
\xi^{t} a(x) \xi \geq \lambda|\xi|^{2} \quad \forall x \in \Omega \forall \xi \in \mathbb{R}^{n} .
$$

Remark. Note that L is uniformly elliptic if for every x the minimal eigenvalue of $a(x)$ is positive (bigger than λ).

Lemma 1 (Hopf lemma). Assume that L is a uniformly elliptic operator in Ω and that $u \in$ $\mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ such that $L u+c(x) u \leq 0$.

If there exists $x_{0} \in \partial \Omega$ such that

- there exists $y_{0} \in \Omega$ and $r_{0}>0$ such that $B\left(y_{0}, r_{0}\right) \subset \Omega$ and $\overline{B\left(y_{0}, r_{0}\right)} \cap\left(\mathbb{R}^{n} \backslash \Omega\right)=\left\{x_{0}\right\}$
- - if $c \equiv 0, u(x)<u\left(x_{0}\right)$ for every $x \in \Omega$
- if $c \not \equiv 0, u(x)<u\left(x_{0}\right)$ for every $x \in \Omega$ and $u\left(x_{0}\right) \geq 0$
then for every $\gamma \in \mathbb{R}^{n}$ such that $\gamma \cdot \frac{x_{0}-y_{0}}{r_{0}}>0$ we get

$$
\lim \inf _{h \rightarrow 0^{+}} \frac{u\left(x_{0}\right)-u\left(x_{0}-h \gamma\right)}{h}>0
$$

Remark. Note that by maximality of x_{0}, it is trivial to prove that

$$
\lim \inf _{h \rightarrow 0^{+}} \frac{u\left(x_{0}\right)-u\left(x_{0}-h \gamma\right)}{h} \geq 0
$$

Moreover $\frac{x_{0}-y_{0}}{r_{0}}$ is the exterior normal to Ω (and also to $B\left(y_{0}, r_{0}\right)$) in x_{0}. So, if u is differentiable at x_{0}, Hopf lemma gives that

$$
\frac{\partial u}{\partial n}\left(x_{0}\right)>0
$$

Proof. We start considering the case $c \equiv 0$. Let $\alpha>0$ to be fixed and define

$$
v(x)=e^{-\alpha\left|x-y_{0}\right|^{2}}-e^{-\alpha r_{0}^{2}}
$$

Note that $v(x)=0$ for every $x \in \partial B\left(y_{0}, r_{0}\right)$ and $v(x)>0$ for every $x \in B\left(y_{0}, r_{0}\right)$. Define the function

$$
w(x)=u(x)-u\left(x_{0}\right)+\varepsilon v(x)
$$

where $\varepsilon>0$ has to be fixed. Compute

$$
D v(x)=-2 \alpha\left(x-y_{0}\right) e^{-\alpha\left|x-y_{0}\right|^{2}}
$$

and

$$
D^{2} v(x)=2 \alpha e^{-\alpha\left|x-y_{0}\right|^{2}}\left(-I+2 \alpha\left(x-y_{0}\right) \otimes\left(x-y_{0}\right)\right)
$$

Observe that
$\operatorname{tr}\left[a(x)\left(x-y_{0}\right) \otimes\left(x-y_{0}\right)\right]=\sum_{i, j=1, \ldots n} a_{i j}(x)\left(x-y_{0}\right)_{i}\left(x-y_{0}\right)_{j}=\left(x-y_{0}\right)^{t} a(x)\left(x-y_{0}\right) \geq \lambda\left|x-y_{0}\right|^{2}$.
Then for every $x \in \Omega$ such that $\frac{r_{0}}{2}<\left|x-y_{0}\right|<r_{0}$,

$$
\begin{aligned}
L w(x)=L u(x) & +\varepsilon e^{\alpha\left|x-y_{0}\right|^{2}} \alpha\left(\operatorname{tr} a(x)-2 \alpha \lambda\left|x-y_{0}\right|^{2}+b(x) \cdot\left(x-y_{0}\right)\right) \leq \\
& \leq \varepsilon e^{\alpha r_{0}^{2}} \alpha\left(n\|a\|_{\infty}-\frac{\alpha}{2} \lambda r_{0}^{2}+\|b\|_{\infty} r_{0}\right)<0
\end{aligned}
$$

choosing $\alpha>0$ sufficiently large.
Moreover for every $x \in \partial B\left(y_{0}, r_{0}\right), w(x)=u(x)-u\left(x_{0}\right) \leq 0$ by assumption, and for every $x \in \partial B\left(y_{0}, \frac{r_{0}}{2}\right)$,

$$
w(x)=u(x)-u\left(x_{0}\right)+\varepsilon v(x) \leq \sup _{x \in \partial B\left(y_{0}, \frac{r_{0}}{2}\right.}\left(u(x)-u\left(x_{0}\right)\right)+\varepsilon \max _{\partial B\left(y_{0}, \frac{r_{0}}{2}\right.} v(x)<0
$$

if we choose ε sufficienlty small (since by assumption $u\left(X_{0}\right)>u(x)$ for every $x \in \Omega$).
In conclusion, with these choices of $\varepsilon, \alpha, L w \leq 0$ in $B\left(y_{0}, r_{0}\right) \backslash B\left(y_{0}, r_{0} / 2\right)$ and $w \leq 0$ in $\partial\left(B\left(y_{0}, r_{0}\right) \backslash B\left(y_{0}, r_{0} / 2\right)\right)$. We conclude by weak maximum principle that $w \leq 0$ for every $x \in$ $B\left(y_{0}, r_{0}\right) \backslash B\left(y_{0}, r_{0} / 2\right)$.

Let γ as in the statement and fix h_{0} such that $x_{0}-h_{0} \gamma \in B\left(y_{0}, r_{0}\right) \backslash B\left(y_{0}, r_{0} / 2\right)$. Then for every $0<h \leq h_{0}$

$$
\frac{u\left(x_{0}\right)-u\left(x_{0}-h \gamma\right)}{h} \geq \varepsilon \frac{v\left(x_{0}-h \gamma\right)-v\left(x_{0}\right)}{h}
$$

Passing to the limit as $h \rightarrow 0$ we get

$$
\lim \inf _{h \rightarrow 0^{+}} \frac{u\left(x_{0}\right)-u\left(x_{0}-h \gamma\right)}{h} \varepsilon \lim _{h \rightarrow 0^{+}} \frac{v\left(x_{0}-h \gamma\right)-v\left(x_{0}\right)}{h}=-\varepsilon D v\left(x_{0}\right) \cdot \gamma=\varepsilon \alpha\left(x_{0}-y_{0}\right) \cdot \gamma>0
$$

If $c \not \equiv 0$, we follow the same argument as above, define the same function v and obtain

$$
\begin{aligned}
L w+c(x) w \leq & -c(x) u\left(x_{0}\right)+\varepsilon e^{\alpha r_{0}^{2}} \alpha\left(n\|a\|_{\infty}-\frac{\alpha}{2} \lambda r_{0}^{2}+\|b\|_{\infty} r_{0}\right)+\varepsilon c(x) v(x) \leq \\
& \leq \varepsilon e^{\alpha r_{0}^{2}} \alpha\left(n\|a\|_{\infty}-\frac{\alpha}{2} \lambda r_{0}^{2}+\|b\|_{\infty} r_{0}\right)+\varepsilon\|c\|_{\infty}<0
\end{aligned}
$$

choosing α sufficiently large. Note that we used the fact that $c(x) u\left(x_{0}\right) \geq 0$ for every x. The conclusion follows as above.

We are ready now to prove the strong maximum principle.
Theorem 2 (Strong maximum principle). Let Ω be a open connected set and $u \in \mathcal{C}^{2}(\Omega)$ such that $L u+c(x) u \leq 0$, where L and c are as above.

Then

- if $c \equiv 0$, and there exist $x \in \Omega$ such that $u(x)=\sup _{\Omega} u$, then u is constant
- if $c \not \equiv 0$, and there exist $x \in \Omega$ such that $u(x)=\sup _{\Omega} u$, and $u(x) \geq 0$ then u is constant.

Proof. Let $M=\sup _{\Omega} u$ and let $\mathcal{M}=\{x \in \Omega \mid u(x)=M\}$. We show that if $\mathcal{M} \neq \emptyset$ then $\mathcal{M}=\Omega$ (so u is constant). Let $C=\Omega \backslash \mathcal{M} \subset \Omega$. C is open in Ω. We claim that $\partial C=\emptyset$ in Ω, so $C=\bar{C}$ in Ω. This implies that C is closed and open, so $C=\emptyset$ since Ω is connected and $\Omega \backslash C \neq \emptyset$.

By contradiction assume that $\partial C \cap \Omega \neq \emptyset$. This implies that there exist $y \in C$ such that $\operatorname{dist}(y, \partial \Omega)>\operatorname{dist}(y, \partial C)=r$. So $B(y, r) \subset C$ and $\partial B(y, r) \cap \partial C \neq \emptyset$, whereas $\partial B(y, r) \cap \partial \Omega=\emptyset$. Let $\partial B(y, r) \cap \partial C$. So, there exists $r^{\prime}<r$ and $y^{\prime} \in[x, y]\left(y^{\prime}\right.$ is in the segment connecting $\left.y, x\right)$ such that $B\left(y^{\prime}, r^{\prime}\right) \subset C$ and $\partial B\left(y^{\prime}, r^{\prime}\right) \cap \partial C=\{x\}$. So $u(z)<M$ for every $z \in B\left(y^{\prime}, r^{\prime}\right)$ and $u(x)=M$ and, since $x \in \Omega, D u(x)=0$. But Hopf lemma applied to the set $B\left(y^{\prime}, r^{\prime}\right)$ we would have $D u(x) \cdot\left(x-y^{\prime}\right)>0$, in contradiction with the fact that $D u(x)=0$.

A first consequence of the theorem is the comparison principle.
Corollary 3 (Strong comparison principle). Let $u, v \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}(\bar{\Omega})$ such that $L u+c(x) u \leq 0$, and $L v+c v \geq 0$ in Ω, where L and c satisfies the same assumptions as above and Ω is connected.

If $u \leq v$ in Ω, then either $u \equiv v$ or $u<v$ in Ω.
Proof. Let $w=u-v$, then $L w+c w \leq 0$ in Ω and $w \leq 0$ on Ω. If there exists $x \in \Omega$ such that $w(x)=0$, then by the strong maximum principle, w is constant, so $w \equiv 0$. If such x does not exist, then $w<0$ in Ω.

We get also the following result on the uniqueness up to constant of solutions to the Neumann problem.

Corollary 4 (Uniqueness up to constant for the Neumann problem). Let Ω be a bounded open set, which satisfies the interior sphere condition at every point. Then the Neumann problem

$$
(N) \begin{cases}L u+c(x) u=f(x) & x \in \Omega \\ \frac{\partial u}{\partial n}(x)=g(x) & x \in \partial \Omega\end{cases}
$$

admits at most one solution $u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{1}(\bar{\Omega})$ up to additive constants. This means that if $u, v \in$ $\mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{1}(\bar{\Omega})$ are solutions to (N) then there exists a constant $k \in \mathbb{R}$ such that $u(x)=v(x)+k$ for every $x \in \bar{\Omega}$.

Proof. If u_{1}, u_{2} are two solutions, then $w=u_{1}-u_{2}$ satisfies $L w+c w=0$ in Ω and $\frac{\partial w}{\partial n}=0$ on $\partial \Omega$. Let $M=\max _{\bar{\Omega}} w$, we can assume without loss of generality that $M \geq 0$ (otherwise define $w=u_{2}-u_{1}$). If w is not constant, by strong maximum principle for every $y \in \Omega, u(y)<M$. Moreover there exists at least one point $x \in \partial \Omega$ such that $u(x)=M$. Then by Hopf lemma, $\frac{\partial w}{\partial n}(x)>0$, in contradiction with the fact that $\frac{\partial w}{\partial n}(x)=0$. So $w \equiv M$.

Liouville type results

Using strong and weak maximum principle for uniformly elliptic operators we prove a Liouville type theorem for subsolutions of uniformy elliptic operators.

So, in this section L will be a uniformly elliptic operator in \mathbb{R}^{n}. Moreover we assume that there exists a supersolution to L, exploding at infinity. In particular we assume the following.

Assumption 4. There exists $M>0$ and $w \in \mathcal{C}^{2}\left(\mathbb{R}^{n} \backslash B(0, M)\right)$ such that

- $L w(x) \geq 0$ for every $|x|>M$,
- $\lim _{|x| \rightarrow+\infty} w(x)=+\infty$.

Proposition 3 (Liouville type result). Assume that L is uniformly elliptic and that 4 holds. Let $u \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ such that $L u \leq 0$ in \mathbb{R}^{n} and $u(x) \leq C$ for every $x \in \mathbb{R}^{n}$.

Then u is constant.
Analogously, every bounded from below supersolution to L in \mathbb{R}^{n} is constant.
Remark. This result applies also to the laplacian operator in \mathbb{R}^{2}. Indeed the function $\log |x|$ satisfies assumption 4 . So every bounded from above subharmonic function is constant.

The same result is not true in \mathbb{R}^{n} for $n \geq 3$ (since in this case, assumption 4 is not satisfied). Indeed there are bounded subharmonic functions in \mathbb{R}^{n}, e.g. $u(x)=-\left(1+|x|^{2}\right)^{-1}$ is subharmonic and bounde in \mathbb{R}^{n} with $n \geq 4$ and $u(x)=-\left(1+|x|^{2}\right)^{-\frac{1}{2}}$ is subharmonic and bounded in \mathbb{R}^{3}.

Proof. Let u be bounded from above and $\varepsilon>0$. Define $v_{\varepsilon}=u-\varepsilon w$ for $|x|>2 M$. Then $v_{\varepsilon} \in \mathcal{C}^{2}\left\{x \in \mathbb{R}^{n},|x| \geq 2 M\right\}$ and $\lim _{|x| \rightarrow+\infty} v_{\varepsilon}(x)=-\infty$ and $L v_{\varepsilon}=L u-\varepsilon L w \leq 0$ for every $|x|>2 M$. Define $C_{\varepsilon}=\max _{|x|=2 M} v_{\varepsilon}(x)$. So, since $\lim _{|x| \rightarrow+\infty} v_{\varepsilon}(x)=-\infty$, there exists $K_{\varepsilon}>2 M$ such that $v_{\varepsilon}(x)<C_{\varepsilon}$ for every $|x| \geq K_{\varepsilon}$.

Moreover, by weak maximum principle in the set $\left\{x \in \mathbb{R}^{n}\left|2 M<|x|<K_{\varepsilon}\right\}\right.$ we have that

$$
\begin{equation*}
\max _{\left\{x \in \mathbb{R}^{n}\right.}^{\left|2 M \leq|x| \leq K_{\varepsilon}\right\}} ⿻ 上 v_{\varepsilon}(x)=\max _{\left\{x \in \mathbb{R}^{n}| | x \mid=2 M \text { or }|x|=K_{\varepsilon}\right\}} v_{\varepsilon}(x) . \tag{6}
\end{equation*}
$$

Since $v_{\varepsilon}(x)<C_{\varepsilon}$ for every $|x| \geq K_{\varepsilon}$, we obtain from (6) that for every $|y| \geq 2 M$

$$
\begin{equation*}
v_{\varepsilon}(y)=u(y)-\varepsilon w(y) \leq \max _{\left\{x \in \mathbb{R}^{n}| | x \mid=2 M\right\}} v_{\varepsilon}(x) \leq \max _{\left\{x \in \mathbb{R}^{n}| | x \mid=2 M\right\}} u(x)-\varepsilon \min _{\left\{x \in \mathbb{R}^{n}| | x \mid=2 M\right\}} w(x) . \tag{7}
\end{equation*}
$$

Sending $\varepsilon \rightarrow 0$ in (7), we obtain

$$
u(y) \leq \max _{\left\{x \in \mathbb{R}^{n}| | x \mid=2 M\right\}} u(x) \quad \forall|y|>2 M
$$

Moreover by weak maximum principle appied in $B(0,2 M)$, we get that

$$
u(y) \leq \max _{\left\{x \in \mathbb{R}^{n}| | x \mid=2 M\right\}} u(x) \quad \forall|y|<2 M .
$$

Putting together the last two inequalities we get

$$
u(y) \leq \max _{\left\{x \in \mathbb{R}^{n}| | x \mid=2 M\right\}} u(x) \quad \forall y \in \mathbb{R}^{n} .
$$

This implies that u attains a maximum in some point in $\partial B(0,2 M)$, so, by strong masimum principle u is constant.

