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Maximum principle for parabolic operators

Let Ω ⊂ Rn be a open set , T > 0 and L be the following linear elliptic operator in ΩT = Ω×(0, T )

k(x, t)ut(x, t)+Lu(x, t) := k(x, t)ut(x, t)−tr a(x, t)D2
xu(x, t)+b(x, t)·Dxu(x, t) (x, t) ∈ Ω×(0, T ),

where D2
xu(x, t) = (uxixj (x, t))i,j=1,...,n and Dxu(x, t) = (uxi(x, t))i=1,...,n are the hessian and the

gradient with respect to the x coordinates.
We assume the following general conditions on the coefficients of L.

Assumption 1. a : ΩT → Sn is a bounded continuous function, where Sn is the space of
symmetric n× n matrices).

b : ΩT → Rn is a bounded continuous function.
k : ΩT → R is a bounded continuous function.

Moreover we assume that kut + L(u) is a parabolic operator according to this definition.

Definition. The operator ut+Lu is parabolic if there exists k0 > 0 such that for every (x, t) ∈ ΩT ,
k(x, t) ≥ k0 > 0, and for every (x, t) ∈ ΩT a(x, t) is a n×n symmetric positive semidefinite matrix
(i.e. all the eigenvalues of a(x) are real and nonnegative).

Moreover we consider the following function.

Assumption 2. c : Ω→ R is a bounded function .

Remark. Note that we are not asking that c is a nonnegative (neither continuous) function.

For parabolic problem, there is a relevant part of the boundary, called the parabolic boundary.

Definition. [parabolic boundary] Let ΩT = Ω× (0, T ). Then the parabolic boundary is ∂?ΩT =
∂Ω× [0, T ] ∪ Ω× {0}.

The previous assumptions will hold throughout this part.

Weak maximum principle for parabolic operators

In this section we will consider parabolic operators of the form k(x, t)ut + Lu + c(x, t)u where
(x, t) ∈ ΩT which satisfy, besides the standing assumptions, also the following.

Assumption 3. For all (x, t) ∈ ΩT such that c(x, t) = 0 there exist µ > 0 and δ > 0 such that

a11(y, s) > µ ∀(y, s) ∈ B((x, t), δ). (1)

We assume the solutions to the parabolic problem are classical, in the sense that belong to the
following set

C2,1(ΩT ) = {u : ΩT → R | u(·, t) ∈ C2(Ω) u(x, ·) ∈ C1(0, T ) ∀x ∈ Ω, t ∈ (0, T )}.

Theorem 1 (Weak maximum principle). Let Ω be a bounded open set and u ∈ C2,1(ΩT ) ∩ C(ΩT )
such that k(x, t)ut + Lu + c(x, t)u ≤ 0, where L, k and c are as above. Assume moreover that
c ≥ 0.

• If c ≡ 0, then maxΩT
u = max∂?ΩT

u,

• if c 6≡ 0, then maxΩT
u ≤ max∂?ΩT

u+, where u+(y) := max(u(y), 0).
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Proof. Let c ≡ 0. A parabolic operator is in particular a degenerate elliptic operator. So under our
assumptions, weak maximum principle holds. This implies that maxΩT

u = max∂ΩT
u. Assume by

contradiction that u(y, s) < maxΩ×{T} u for every (y, s) ∈ ΩT ∩∂?ΩT . Take 0 < ε << T and define

vε(x, t) = u(x, t) − εt. So vε → u uniformly in ΩT as ε → 0. Let (xε, tε) such that vε(xε, tε) =
maxΩ×[0,T−ε] vε. Then, by uniform convergence, (xε, tε) converge, up to a subsequence, as ε→ 0,

to a point (x, t) such that u(x, t) = maxΩ×[0,T ] u. By our assumption, necessarily (x, t) ∈ Ω×{T}.
We compute (vε)t = ut − ε, Dxvε = Dxuε and D2

xvε = D2
xu. So

k(x, t)(vε)t + Lvε(x, t) = k(x, t)ut + Lu(x, t)− εk(x, t) ≤ −εk0 < 0. (2)

Moreover, since (xε, tε)→ (x, t) ∈ Ω× {T} and tε ≤ Tε, we have that for ε sufficiently small xε is
in the interior of Ω. This implies Dxvε(xε, tε) = 0 and D2

xvε(xε, tε) ≤ 0. Moreover by maximality
(vε)t(xε, tε) ≥ 0. So, using the fact that the operator is parabolic,

k(xε, tε)(vε)t(xε, tε) + Lvε(xε, tε) ≥ 0. (3)

But this is in contradiction with (2).
If c 6≡ 0, then the same arguments apply. We assume by contradiction that u(y, s) <

maxΩ×{T} u for every (y, s) ∈ ΩT ∩ ∂?ΩT and that maxΩ×{T} u > 0. In place of (2) we get

k(x, t)(vε)t+Lvε(x, t)+c(x, t)vε(x, t) = k(x, t)ut+Lu(x, t)+c(x, t)u(x, t)−εk(x, t)−εtc(x, t) ≤ −εk0 < 0

and in place of (3)

k(xε, tε)(vε)t(xε, tε) + Lvε(xε, tε) + c(xε, tε)vε ≥ c(xε, tε)vε(xε, tε) ≥ 0

since vε(xε, tε)→ u(x, t) > 0.

Remark. It is possible to state also the weak minimum principle (exercise).

The main consequence of the weak maximum principle is the comparison principle, in which
it is only needed to assume that c is bounded (not necessarily nonnegative).

Corollary 1 (Weak comparison principle). Let u, v ∈ C2,1(ΩT ) ∩ C(ΩT ) such that kut + Lu +
c(x)u ≤ 0, and kvt + Lv + cv ≥ 0 in Ω, where L and c satisfies the same assumptions as above.

If u ≤ v in ∂?ΩT , then u ≤ v in ΩT .

Proof. Let w = u − v, then kwt + Lw + cw ≤ 0 in ΩT and w ≤ 0 on ∂?Ω. If c(x, t) < 0 at some

point, define v(x, t) = e−
inf c
k0

tw(x, t).
We get

0 ≥ e−
inf c
k0

t (kwt + Lw + cw) = kvt + Lv +

(
c− inf c

k0
k

)
v.

Recalling that k(x, t) ≥ k0 > 0 for every x, t and that inf c < 0, we obtain that

c(x, t)− inf c

k0
k(x, t) ≥ c(x, t)− inf c ≥ 0 ∀x, t.

So v is a subsolution of the parabolic operator kvt + Lv + c̃v where the coefficient c̃ is bounded
and nonnegative.

So by the weak maximum principle maxΩT
v ≤ 0, then also maxΩT

w ≤ 0, which gives the
conclusion.

The comparison principle implies as usual a uniqueness result (which can be stated for un-
bounded intervals of time).
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Corollary 2 (Uniqueness for the Cauchy-Dirichlet problem). Let Ω be a bounded open set, then
the Cauchy-Dirichlet problem

(D)


kut + Lu+ c(x, t)u = f(x, t) (x, t) ∈ Ω× (0,+∞)

u(x, t) = g(x, t) x ∈ ∂Ω t ∈ (0,+∞)

u(x, 0) = u0(x) x ∈ Ω

admits at most one solution u ∈ C2,1(Ω× (0,+∞) ∩ C(Ω× [0,+∞)).

Proof. If u1, u2 are two solutions, then w = u1−u2 satisfies kwt+Lw+cw = 0 in Ω×(0, T ) for every
T > 0 and w = 0 on ∂?ΩT . By the weak maximum and minimum principle maxΩ×[0,T ] |w| = 0,
which gives the conclusion, by the arbitrariness of T .

Proposition 1 (Continuous dependance estimates). Let f ∈ C(ΩT ), u0 ∈ C(Ω) and g ∈ C(∂Ω ×
(0, T ) such that g(x, 0) = u0(x).

Let u ∈ C2,1(ΩT ) ∩ C(ΩT ) the solution to the Cauchy-Dirichlet problem

(D)


kut + Lu+ c(x, t)u = f(x, t) (x, t) ∈ Ω× (0,+∞)

u(x, t) = g(x, t) x ∈ ∂Ω t ∈ (0,+∞)

u(x, 0) = u0(x) x ∈ Ω.

Then

max
ΩT

|u| ≤ ‖u0‖∞ + ‖g‖∞ +
‖f‖∞
k0

T.

Proof. Define w(x, t) = u(x, t)− ‖u0‖∞ − ‖g‖∞ − ‖f‖∞k0
t. Then

k(x, t)wt+Lw+c(x, t)w = k(x, t)ut−k(x, t)
‖f‖∞
k0

+Lu+c(x, t)u−c(x, t)(‖u0‖∞+‖g‖∞+
‖f‖∞
k0

t) ≤

≤ f(x, t)− ‖f‖∞ ≤ 0

since c(x, t) ≥ 0 and k(x, t)‖f‖∞k0
≥ ‖f‖∞. Moreover w(x, t) ≤ 0 for (x, t) ∈ ∂?ΩT . So, by weak

maximum principle we have that

u(x, t) ≤ ‖u0‖∞ + ‖g‖∞ +
‖f‖∞
k0

t ≤ ‖u0‖∞ + ‖g‖∞ +
‖f‖∞
k0

T

for every (x, t) ∈ ΩT . The other inequality is obtained similarly using weak minimum principle.

Strong maximum principle for parabolic operators

In this section we will consider uniformly parabolic operators, according to the following definition.

Definition. Let kut + Lu be a parabolic operator. Then it is uniformly elliptic in ΩT if there
exists λ > 0 such that

ξta(x, t)ξ ≥ λ|ξ|2 ∀(x, t) ∈ ΩT ∀ξ ∈ Rn.

Remark. Note that a uniformly parabolic operator is a degenerate elliptic operator (not uniformly
elliptic!)

Also for parabolic operators, there is a strong maximum principle, that we are not going to
prove (the proof is based on Harnack inequality for uniformly parabolic operators and can be
found in Evans, PDEs).

Theorem 2 (Strong maximum principle). Let Ω be a connected set and u ∈ C2,1(ΩT ) ∩ C(ΩT )
such that k(x, t)ut +Lu+ c(x)u ≤ 0, where L, k and c are as above. Assume moreover that c ≥ 0.
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• If c ≡ 0, and there exists (x, t) ∈ ΩT such that M = maxΩT
u = u(x, t), then u(y, s) ≡ M

for all y ∈ Ω and all s ∈ [0, t];

• if c 6≡ 0, and there exists (x, t) ∈ ΩT such that M = maxΩT
u = u(x, t) ≥ 0, then u(y, s) ≡M

for all y ∈ Ω and all s ∈ [0, t].

Remark. We can state as follows this maximum principle: if u attains a maximum (a nonnegative
maximum if c 6≡ 0) at some interior point, then u is contant at all earlier times
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