## Introduzione alle equazioni alle derivate parziali, Laurea Magistrale in Matematica, A.A. 2013/2014 <br> Maximum principle for parabolic operators

Let $\Omega \subset \mathbb{R}^{n}$ be a open set , $T>0$ and $L$ be the following linear elliptic operator in $\Omega_{T}=\Omega \times(0, T)$
$k(x, t) u_{t}(x, t)+L u(x, t):=k(x, t) u_{t}(x, t)-\operatorname{tr} a(x, t) D_{x}^{2} u(x, t)+b(x, t) \cdot D_{x} u(x, t) \quad(x, t) \in \Omega \times(0, T)$,
where $D_{x}^{2} u(x, t)=\left(u_{x_{i} x_{j}}(x, t)\right)_{i, j=1, \ldots, n}$ and $D_{x} u(x, t)=\left(u_{x_{i}}(x, t)\right)_{i=1, \ldots, n}$ are the hessian and the gradient with respect to the $x$ coordinates.

We assume the following general conditions on the coefficients of $L$.
Assumption 1. $a: \Omega_{T} \rightarrow S_{n}$ is a bounded continuous function, where $S_{n}$ is the space of symmetric $n \times n$ matrices).
$b: \Omega_{T} \rightarrow \mathbb{R}^{n}$ is a bounded continuous function.
$k: \Omega_{T} \rightarrow \mathbb{R}$ is a bounded continuous function.
Moreover we assume that $k u_{t}+L(u)$ is a parabolic operator according to this definition.
Definition. The operator $u_{t}+L u$ is parabolic if there exists $k_{0}>0$ such that for every $(x, t) \in \Omega_{T}$, $k(x, t) \geq k_{0}>0$, and for every $(x, t) \in \Omega_{T} a(x, t)$ is a $n \times n$ symmetric positive semidefinite matrix (i.e. all the eigenvalues of $a(x)$ are real and nonnegative).

Moreover we consider the following function.
Assumption 2. $c: \Omega \rightarrow R$ is a bounded function .
Remark. Note that we are not asking that $c$ is a nonnegative (neither continuous) function.
For parabolic problem, there is a relevant part of the boundary, called the parabolic boundary.
Definition. [parabolic boundary] Let $\Omega_{T}=\Omega \times(0, T)$. Then the parabolic boundary is $\partial^{\star} \Omega_{T}=$ $\partial \Omega \times[0, T] \cup \bar{\Omega} \times\{0\}$.

The previous assumptions will hold throughout this part.

## Weak maximum principle for parabolic operators

In this section we will consider parabolic operators of the form $k(x, t) u_{t}+L u+c(x, t) u$ where $(x, t) \in \Omega_{T}$ which satisfy, besides the standing assumptions, also the following.

Assumption 3. For all $(x, t) \in \Omega_{T}$ such that $c(x, t)=0$ there exist $\mu>0$ and $\delta>0$ such that

$$
\begin{equation*}
a_{11}(y, s)>\mu \quad \forall(y, s) \in B((x, t), \delta) . \tag{1}
\end{equation*}
$$

We assume the solutions to the parabolic problem are classical, in the sense that belong to the following set

$$
\mathcal{C}^{2,1}\left(\Omega_{T}\right)=\left\{u: \Omega_{T} \rightarrow \mathbb{R} \mid u(\cdot, t) \in \mathcal{C}^{2}(\Omega) \quad u(x, \cdot) \in \mathcal{C}^{1}(0, T) \quad \forall x \in \Omega, t \in(0, T)\right\}
$$

Theorem 1 (Weak maximum principle). Let $\Omega$ be a bounded open set and $u \in \mathcal{C}^{2,1}\left(\Omega_{T}\right) \cap \mathcal{C}\left(\overline{\Omega_{T}}\right)$ such that $k(x, t) u_{t}+L u+c(x, t) u \leq 0$, where $L, k$ and $c$ are as above. Assume moreover that $c \geq 0$.

- If $c \equiv 0$, then $\max _{\bar{\Omega}_{T}} u=\max _{\partial^{\star} \Omega_{T}} u$,
- if $c \not \equiv 0$, then $\max _{\bar{\Omega}_{T}} u \leq \max _{\partial^{\star} \Omega_{T}} u^{+}$, where $u^{+}(y):=\max (u(y), 0)$.

Proof. Let $c \equiv 0$. A parabolic operator is in particular a degenerate elliptic operator. So under our assumptions, weak maximum principle holds. This implies that $\max _{\bar{\Omega}_{T}} u=\max _{\partial \Omega_{T}} u$. Assume by contradiction that $u(y, s)<\max _{\Omega \times\{T\}} u$ for every $(y, s) \in \Omega_{T} \cap \partial^{\star} \Omega_{T}$. Take $0<\varepsilon \ll T$ and define $v_{\varepsilon}(x, t)=u(x, t)-\varepsilon t$. So $v_{\varepsilon} \rightarrow u$ uniformly in $\bar{\Omega}_{T}$ as $\varepsilon \rightarrow 0$. Let $\left(x_{\varepsilon}, t_{\varepsilon}\right)$ such that $v_{\varepsilon}\left(x_{\varepsilon}, t_{\varepsilon}\right)=$ $\max _{\bar{\Omega} \times[0, T-\varepsilon]} v_{\varepsilon}$. Then, by uniform convergence, $\left(x_{\varepsilon}, t_{\varepsilon}\right)$ converge, up to a subsequence, as $\varepsilon \rightarrow 0$, to a point $(x, t)$ such that $u(x, t)=\max _{\bar{\Omega} \times[0, T]} u$. By our assumption, necessarily $(x, t) \in \Omega \times\{T\}$.

We compute $\left(v_{\varepsilon}\right)_{t}=u_{t}-\varepsilon, D_{x} v_{\varepsilon}=D_{x} u_{\varepsilon}$ and $D_{x}^{2} v_{\varepsilon}=D_{x}^{2} u$. So

$$
\begin{equation*}
k(x, t)\left(v_{\varepsilon}\right)_{t}+L v_{\varepsilon}(x, t)=k(x, t) u_{t}+L u(x, t)-\varepsilon k(x, t) \leq-\varepsilon k_{0}<0 \tag{2}
\end{equation*}
$$

Moreover, since $\left(x_{\varepsilon}, t_{\varepsilon}\right) \rightarrow(x, t) \in \Omega \times\{T\}$ and $t_{\varepsilon} \leq T_{\varepsilon}$, we have that for $\varepsilon$ sufficiently small $x_{\varepsilon}$ is in the interior of $\Omega$. This implies $D_{x} v_{\varepsilon}\left(x_{\varepsilon}, t_{\varepsilon}\right)=0$ and $D_{x}^{2} v_{\varepsilon}\left(x_{\varepsilon}, t_{\varepsilon}\right) \leq 0$. Moreover by maximality $\left(v_{\varepsilon}\right)_{t}\left(x_{\varepsilon}, t_{\varepsilon}\right) \geq 0$. So, using the fact that the operator is parabolic,

$$
\begin{equation*}
k\left(x_{\varepsilon}, t_{\varepsilon}\right)\left(v_{\varepsilon}\right)_{t}\left(x_{\varepsilon}, t_{\varepsilon}\right)+L v_{\varepsilon}\left(x_{\varepsilon}, t_{\varepsilon}\right) \geq 0 \tag{3}
\end{equation*}
$$

But this is in contradiction with (2).
If $c \not \equiv 0$, then the same arguments apply. We assume by contradiction that $u(y, s)<$ $\max _{\Omega \times\{T\}} u$ for every $(y, s) \in \Omega_{T} \cap \partial^{\star} \Omega_{T}$ and that $\max _{\Omega \times\{T\}} u>0$. In place of (2) we get
$k(x, t)\left(v_{\varepsilon}\right)_{t}+L v_{\varepsilon}(x, t)+c(x, t) v_{\varepsilon}(x, t)=k(x, t) u_{t}+L u(x, t)+c(x, t) u(x, t)-\varepsilon k(x, t)-\varepsilon t c(x, t) \leq-\varepsilon k_{0}<0$
and in place of (3)

$$
k\left(x_{\varepsilon}, t_{\varepsilon}\right)\left(v_{\varepsilon}\right)_{t}\left(x_{\varepsilon}, t_{\varepsilon}\right)+L v_{\varepsilon}\left(x_{\varepsilon}, t_{\varepsilon}\right)+c\left(x_{\varepsilon}, t_{\varepsilon}\right) v_{\varepsilon} \geq c\left(x_{\varepsilon}, t_{\varepsilon}\right) v_{\varepsilon}\left(x_{\varepsilon}, t_{\varepsilon}\right) \geq 0
$$

since $v_{\varepsilon}\left(x_{\varepsilon}, t_{\varepsilon}\right) \rightarrow u(x, t)>0$.
Remark. It is possible to state also the weak minimum principle (exercise).
The main consequence of the weak maximum principle is the comparison principle, in which it is only needed to assume that $c$ is bounded (not necessarily nonnegative).

Corollary 1 (Weak comparison principle). Let $u, v \in \mathcal{C}^{2,1}\left(\Omega_{T}\right) \cap \mathcal{C}\left(\overline{\Omega_{T}}\right)$ such that $k u_{t}+L u+$ $c(x) u \leq 0$, and $k v_{t}+L v+c v \geq 0$ in $\Omega$, where $L$ and $c$ satisfies the same assumptions as above. If $u \leq v$ in $\partial^{\star} \Omega_{T}$, then $u \leq v$ in $\overline{\Omega_{T}}$.

Proof. Let $w=u-v$, then $k w_{t}+L w+c w \leq 0$ in $\Omega_{T}$ and $w \leq 0$ on $\partial^{\star} \Omega$. If $c(x, t)<0$ at some point, define $v(x, t)=e^{-\frac{\inf c}{k_{0}} t} w(x, t)$.

We get

$$
0 \geq e^{-\frac{\inf c}{k_{0}} t}\left(k w_{t}+L w+c w\right)=k v_{t}+L v+\left(c-\frac{\inf c}{k_{0}} k\right) v
$$

Recalling that $k(x, t) \geq k_{0}>0$ for every $x, t$ and that $\inf c<0$, we obtain that

$$
c(x, t)-\frac{\inf c}{k_{0}} k(x, t) \geq c(x, t)-\inf c \geq 0 \quad \forall x, t
$$

So $v$ is a subsolution of the parabolic operator $k v_{t}+L v+\tilde{c} v$ where the coefficient $\tilde{c}$ is bounded and nonnegative.

So by the weak maximum principle $\max _{\bar{\Omega}_{T}} v \leq 0$, then also $\max _{\bar{\Omega}_{T}} w \leq 0$, which gives the conclusion.

The comparison principle implies as usual a uniqueness result (which can be stated for unbounded intervals of time).

Corollary 2 (Uniqueness for the Cauchy-Dirichlet problem). Let $\Omega$ be a bounded open set, then the Cauchy-Dirichlet problem

$$
(D) \begin{cases}k u_{t}+L u+c(x, t) u=f(x, t) & (x, t) \in \Omega \times(0,+\infty) \\ u(x, t)=g(x, t) & x \in \partial \Omega t \in(0,+\infty) \\ u(x, 0)=u_{0}(x) & x \in \bar{\Omega}\end{cases}
$$

admits at most one solution $u \in \mathcal{C}^{2,1}(\Omega \times(0,+\infty) \cap \mathcal{C}(\bar{\Omega} \times[0,+\infty))$.
Proof. If $u_{1}, u_{2}$ are two solutions, then $w=u_{1}-u_{2}$ satisfies $k w_{t}+L w+c w=0$ in $\Omega \times(0, T)$ for every $T>0$ and $w=0$ on $\partial^{\star} \Omega_{T}$. By the weak maximum and minimum principle $\max _{\bar{\Omega} \times[0, T]}|w|=0$, which gives the conclusion, by the arbitrariness of $T$.
Proposition 1 (Continuous dependance estimates). Let $f \in \mathcal{C}\left(\overline{\Omega_{T}}\right), u_{0} \in \mathcal{C}(\bar{\Omega})$ and $g \in \mathcal{C}(\partial \Omega \times$ $(0, T)$ such that $g(x, 0)=u_{0}(x)$.

Let $u \in \mathcal{C}^{2,1}\left(\Omega_{T}\right) \cap \mathcal{C}\left(\overline{\Omega_{T}}\right)$ the solution to the Cauchy-Dirichlet problem

$$
(D) \begin{cases}k u_{t}+L u+c(x, t) u=f(x, t) & (x, t) \in \Omega \times(0,+\infty) \\ u(x, t)=g(x, t) & x \in \partial \Omega t \in(0,+\infty) \\ u(x, 0)=u_{0}(x) & x \in \bar{\Omega}\end{cases}
$$

Then

$$
\max _{\bar{\Omega}_{T}}|u| \leq\left\|u_{0}\right\|_{\infty}+\|g\|_{\infty}+\frac{\|f\|_{\infty}}{k_{0}} T .
$$

Proof. Define $w(x, t)=u(x, t)-\left\|u_{0}\right\|_{\infty}-\|g\|_{\infty}-\frac{\|f\|_{\infty}}{k_{0}} t$. Then

$$
\begin{gathered}
k(x, t) w_{t}+L w+c(x, t) w=k(x, t) u_{t}-k(x, t) \frac{\|f\|_{\infty}}{k_{0}}+L u+c(x, t) u-c(x, t)\left(\left\|u_{0}\right\|_{\infty}+\|g\|_{\infty}+\frac{\|f\|_{\infty}}{k_{0}} t\right) \leq \\
\leq f(x, t)-\|f\|_{\infty} \leq 0
\end{gathered}
$$

since $c(x, t) \geq 0$ and $k(x, t) \frac{\|f\|_{\infty}}{k_{0}} \geq\|f\|_{\infty}$. Moreover $w(x, t) \leq 0$ for $(x, t) \in \partial^{\star} \Omega_{T}$. So, by weak maximum principle we have that

$$
u(x, t) \leq\left\|u_{0}\right\|_{\infty}+\|g\|_{\infty}+\frac{\|f\|_{\infty}}{k_{0}} t \leq\left\|u_{0}\right\|_{\infty}+\|g\|_{\infty}+\frac{\|f\|_{\infty}}{k_{0}} T
$$

for every $(x, t) \in \bar{\Omega}_{T}$. The other inequality is obtained similarly using weak minimum principle.

## Strong maximum principle for parabolic operators

In this section we will consider uniformly parabolic operators, according to the following definition.
Definition. Let $k u_{t}+L u$ be a parabolic operator. Then it is uniformly elliptic in $\Omega_{T}$ if there exists $\lambda>0$ such that

$$
\xi^{t} a(x, t) \xi \geq \lambda|\xi|^{2} \quad \forall(x, t) \in \Omega_{T} \forall \xi \in \mathbb{R}^{n} .
$$

Remark. Note that a uniformly parabolic operator is a degenerate elliptic operator (not uniformly elliptic!)

Also for parabolic operators, there is a strong maximum principle, that we are not going to prove (the proof is based on Harnack inequality for uniformly parabolic operators and can be found in Evans, PDEs).

Theorem 2 (Strong maximum principle). Let $\Omega$ be a connected set and $u \in \mathcal{C}^{2,1}\left(\Omega_{T}\right) \cap \mathcal{C}\left(\overline{\Omega_{T}}\right)$ such that $k(x, t) u_{t}+L u+c(x) u \leq 0$, where $L, k$ and $c$ are as above. Assume moreover that $c \geq 0$.

- If $c \equiv 0$, and there exists $(x, t) \in \Omega_{T}$ such that $M=\max _{\bar{\Omega}_{T}} u=u(x, t)$, then $u(y, s) \equiv M$ for all $y \in \bar{\Omega}$ and all $s \in[0, t]$;
- if $c \not \equiv 0$, and there exists $(x, t) \in \Omega_{T}$ such that $M=\max _{\bar{\Omega}_{T}} u=u(x, t) \geq 0$, then $u(y, s) \equiv M$ for all $y \in \bar{\Omega}$ and all $s \in[0, t]$.

Remark. We can state as follows this maximum principle: if $u$ attains a maximum (a nonnegative maximum if $c \not \equiv 0$ ) at some interior point, then $u$ is contant at all earlier times

