Introduzione alle equazioni alle derivate parziali, Laurea Magistrale in Matematica, A.A. 2013/2014

Maximum principle for parabolic operators

Let $\Omega \subset \mathbb{R}^n$ be a open set , T > 0 and L be the following linear elliptic operator in $\Omega_T = \Omega \times (0,T)$

$$k(x,t)u_t(x,t) + Lu(x,t) := k(x,t)u_t(x,t) - \text{tr } a(x,t)D_x^2u(x,t) + b(x,t) \cdot D_xu(x,t) \qquad (x,t) \in \Omega \times (0,T),$$

where $D_x^2 u(x,t) = (u_{x_i x_j}(x,t))_{i,j=1,...,n}$ and $D_x u(x,t) = (u_{x_i}(x,t))_{i=1,...,n}$ are the hessian and the gradient with respect to the x coordinates.

We assume the following general conditions on the coefficients of L.

Assumption 1. $a: \Omega_T \to S_n$ is a bounded continuous function, where S_n is the space of symmetric $n \times n$ matrices).

 $b: \Omega_T \to \mathbb{R}^n$ is a bounded continuous function.

 $k: \Omega_T \to \mathbb{R}$ is a bounded continuous function.

Moreover we assume that $ku_t + L(u)$ is a parabolic operator according to this definition.

Definition. The operator $u_t + Lu$ is parabolic if there exists $k_0 > 0$ such that for every $(x, t) \in \Omega_T$, $k(x, t) \ge k_0 > 0$, and for every $(x, t) \in \Omega_T \ a(x, t)$ is a $n \times n$ symmetric positive semidefinite matrix (i.e. all the eigenvalues of a(x) are real and nonnegative).

Moreover we consider the following function.

Assumption 2. $c: \Omega \to R$ is a bounded function.

Remark. Note that we are not asking that c is a nonnegative (neither continuous) function.

For parabolic problem, there is a relevant part of the boundary, called the parabolic boundary.

Definition. [parabolic boundary] Let $\Omega_T = \Omega \times (0, T)$. Then the parabolic boundary is $\partial^* \Omega_T = \partial \Omega \times [0, T] \cup \overline{\Omega} \times \{0\}$.

The previous assumptions will hold throughout this part.

Weak maximum principle for parabolic operators

In this section we will consider parabolic operators of the form $k(x,t)u_t + Lu + c(x,t)u$ where $(x,t) \in \Omega_T$ which satisfy, besides the standing assumptions, also the following.

Assumption 3. For all $(x,t) \in \Omega_T$ such that c(x,t) = 0 there exist $\mu > 0$ and $\delta > 0$ such that

$$a_{11}(y,s) > \mu \qquad \forall (y,s) \in B((x,t),\delta).$$

$$\tag{1}$$

We assume the solutions to the parabolic problem are classical, in the sense that belong to the following set

$$\mathcal{C}^{2,1}(\Omega_T) = \{ u : \Omega_T \to \mathbb{R} \mid u(\cdot, t) \in \mathcal{C}^2(\Omega) \mid u(x, \cdot) \in \mathcal{C}^1(0, T) \quad \forall x \in \Omega, t \in (0, T) \}.$$

Theorem 1 (Weak maximum principle). Let Ω be a bounded open set and $u \in C^{2,1}(\Omega_T) \cap C(\overline{\Omega_T})$ such that $k(x,t)u_t + Lu + c(x,t)u \leq 0$, where L, k and c are as above. Assume moreover that $c \geq 0$.

- If $c \equiv 0$, then $\max_{\overline{\Omega}_T} u = \max_{\partial^* \Omega_T} u$,
- if $c \not\equiv 0$, then $\max_{\overline{\Omega}_T} u \leq \max_{\partial^* \Omega_T} u^+$, where $u^+(y) := \max(u(y), 0)$.

Proof. Let $c \equiv 0$. A parabolic operator is in particular a degenerate elliptic operator. So under our assumptions, weak maximum principle holds. This implies that $\max_{\overline{\Omega}_T} u = \max_{\partial \Omega_T} u$. Assume by contradiction that $u(y, s) < \max_{\Omega \times \{T\}} u$ for every $(y, s) \in \Omega_T \cap \partial^* \Omega_T$. Take $0 < \varepsilon << T$ and define $v_{\varepsilon}(x, t) = u(x, t) - \varepsilon t$. So $v_{\varepsilon} \to u$ uniformly in $\overline{\Omega}_T$ as $\varepsilon \to 0$. Let $(x_{\varepsilon}, t_{\varepsilon})$ such that $v_{\varepsilon}(x_{\varepsilon}, t_{\varepsilon}) = \max_{\overline{\Omega} \times [0, T-\varepsilon]} v_{\varepsilon}$. Then, by uniform convergence, $(x_{\varepsilon}, t_{\varepsilon})$ converge, up to a subsequence, as $\varepsilon \to 0$, to a point (x, t) such that $u(x, t) = \max_{\overline{\Omega} \times [0, T]} u$. By our assumption, necessarily $(x, t) \in \Omega \times \{T\}$.

We compute $(v_{\varepsilon})_t = u_t - \varepsilon$, $D_x v_{\varepsilon} = D_x u_{\varepsilon}$ and $D_x^2 v_{\varepsilon} = D_x^2 u$. So

$$k(x,t)(v_{\varepsilon})_{t} + Lv_{\varepsilon}(x,t) = k(x,t)u_{t} + Lu(x,t) - \varepsilon k(x,t) \le -\varepsilon k_{0} < 0.$$
⁽²⁾

Moreover, since $(x_{\varepsilon}, t_{\varepsilon}) \to (x, t) \in \Omega \times \{T\}$ and $t_{\varepsilon} \leq T_{\varepsilon}$, we have that for ε sufficiently small x_{ε} is in the interior of Ω . This implies $D_x v_{\varepsilon}(x_{\varepsilon}, t_{\varepsilon}) = 0$ and $D_x^2 v_{\varepsilon}(x_{\varepsilon}, t_{\varepsilon}) \leq 0$. Moreover by maximality $(v_{\varepsilon})_t(x_{\varepsilon}, t_{\varepsilon}) \geq 0$. So, using the fact that the operator is parabolic,

$$k(x_{\varepsilon}, t_{\varepsilon})(v_{\varepsilon})_t(x_{\varepsilon}, t_{\varepsilon}) + Lv_{\varepsilon}(x_{\varepsilon}, t_{\varepsilon}) \ge 0.$$
(3)

But this is in contradiction with (2).

If $c \neq 0$, then the same arguments apply. We assume by contradiction that $u(y,s) < \max_{\Omega \times \{T\}} u$ for every $(y,s) \in \Omega_T \cap \partial^* \Omega_T$ and that $\max_{\Omega \times \{T\}} u > 0$. In place of (2) we get

 $k(x,t)(v_{\varepsilon})_{t} + Lv_{\varepsilon}(x,t) + c(x,t)v_{\varepsilon}(x,t) = k(x,t)u_{t} + Lu(x,t) + c(x,t)u(x,t) - \varepsilon k(x,t) - \varepsilon tc(x,t) \le -\varepsilon k_{0} < 0$

and in place of (3)

$$k(x_{\varepsilon}, t_{\varepsilon})(v_{\varepsilon})_t(x_{\varepsilon}, t_{\varepsilon}) + Lv_{\varepsilon}(x_{\varepsilon}, t_{\varepsilon}) + c(x_{\varepsilon}, t_{\varepsilon})v_{\varepsilon} \ge c(x_{\varepsilon}, t_{\varepsilon})v_{\varepsilon}(x_{\varepsilon}, t_{\varepsilon}) \ge 0$$

since $v_{\varepsilon}(x_{\varepsilon}, t_{\varepsilon}) \to u(x, t) > 0$.

Remark. It is possible to state also the weak minimum principle (exercise).

The main consequence of the weak maximum principle is the comparison principle, in which it is only needed to assume that c is bounded (not necessarily nonnegative).

Corollary 1 (Weak comparison principle). Let $u, v \in C^{2,1}(\Omega_T) \cap C(\overline{\Omega_T})$ such that $ku_t + Lu + c(x)u \leq 0$, and $kv_t + Lv + cv \geq 0$ in Ω , where L and c satisfies the same assumptions as above. If $u \leq v$ in $\partial^*\Omega_T$, then $u \leq v$ in $\overline{\Omega_T}$.

Proof. Let w = u - v, then $kw_t + Lw + cw \le 0$ in Ω_T and $w \le 0$ on $\partial^*\Omega$. If c(x,t) < 0 at some point, define $v(x,t) = e^{-\frac{\inf c}{k_0}t}w(x,t)$.

We get

$$0 \ge e^{-\frac{\inf c}{k_0}t} \left(kw_t + Lw + cw \right) = kv_t + Lv + \left(c - \frac{\inf c}{k_0}k \right)v.$$

Recalling that $k(x,t) \ge k_0 > 0$ for every x, t and that $\inf c < 0$, we obtain that

$$c(x,t) - \frac{\inf c}{k_0} k(x,t) \ge c(x,t) - \inf c \ge 0 \qquad \forall x,t.$$

So v is a subsolution of the parabolic operator $kv_t + Lv + \tilde{c}v$ where the coefficient \tilde{c} is bounded and nonnegative.

So by the weak maximum principle $\max_{\overline{\Omega}_T} v \leq 0$, then also $\max_{\overline{\Omega}_T} w \leq 0$, which gives the conclusion.

The comparison principle implies as usual a uniqueness result (which can be stated for unbounded intervals of time).

Corollary 2 (Uniqueness for the Cauchy-Dirichlet problem). Let Ω be a bounded open set, then the Cauchy-Dirichlet problem

$$(D)\begin{cases} ku_t + Lu + c(x,t)u = f(x,t) & (x,t) \in \Omega \times (0,+\infty) \\ u(x,t) = g(x,t) & x \in \partial\Omega \ t \in (0,+\infty) \\ u(x,0) = u_0(x) & x \in \overline{\Omega} \end{cases}$$

admits at most one solution $u \in \mathcal{C}^{2,1}(\Omega \times (0, +\infty) \cap \mathcal{C}(\overline{\Omega} \times [0, +\infty))).$

Proof. If u_1, u_2 are two solutions, then $w = u_1 - u_2$ satisfies $kw_t + Lw + cw = 0$ in $\Omega \times (0, T)$ for every T > 0 and w = 0 on $\partial^* \Omega_T$. By the weak maximum and minimum principle $\max_{\overline{\Omega} \times [0,T]} |w| = 0$, which gives the conclusion, by the arbitrariness of T.

Proposition 1 (Continuous dependance estimates). Let $f \in \mathcal{C}(\overline{\Omega_T})$, $u_0 \in \mathcal{C}(\overline{\Omega})$ and $g \in \mathcal{C}(\partial \Omega \times (0,T)$ such that $g(x,0) = u_0(x)$.

Let $u \in \mathcal{C}^{2,1}(\overline{\Omega_T}) \cap \mathcal{C}(\overline{\Omega_T})$ the solution to the Cauchy-Dirichlet problem

$$(D)\begin{cases} ku_t + Lu + c(x,t)u = f(x,t) & (x,t) \in \Omega \times (0,+\infty) \\ u(x,t) = g(x,t) & x \in \partial\Omega \ t \in (0,+\infty) \\ u(x,0) = u_0(x) & x \in \overline{\Omega}. \end{cases}$$

Then

$$\max_{\overline{\Omega}_T} |u| \le \|u_0\|_{\infty} + \|g\|_{\infty} + \frac{\|f\|_{\infty}}{k_0} T.$$

Proof. Define $w(x,t) = u(x,t) - ||u_0||_{\infty} - ||g||_{\infty} - \frac{||f||_{\infty}}{k_0}t$. Then

$$\begin{aligned} k(x,t)w_t + Lw + c(x,t)w &= k(x,t)u_t - k(x,t)\frac{\|f\|_{\infty}}{k_0} + Lu + c(x,t)u - c(x,t)(\|u_0\|_{\infty} + \|g\|_{\infty} + \frac{\|f\|_{\infty}}{k_0}t) \leq \\ &\leq f(x,t) - \|f\|_{\infty} \leq 0 \end{aligned}$$

since $c(x,t) \ge 0$ and $k(x,t) \frac{\|f\|_{\infty}}{k_0} \ge \|f\|_{\infty}$. Moreover $w(x,t) \le 0$ for $(x,t) \in \partial^* \Omega_T$. So, by weak maximum principle we have that

$$u(x,t) \le \|u_0\|_{\infty} + \|g\|_{\infty} + \frac{\|f\|_{\infty}}{k_0}t \le \|u_0\|_{\infty} + \|g\|_{\infty} + \frac{\|f\|_{\infty}}{k_0}T$$

for every $(x,t) \in \overline{\Omega}_T$. The other inequality is obtained similarly using weak minimum principle. \Box

Strong maximum principle for parabolic operators

In this section we will consider uniformly parabolic operators, according to the following definition.

Definition. Let $ku_t + Lu$ be a parabolic operator. Then it is uniformly elliptic in Ω_T if there exists $\lambda > 0$ such that

$$\xi^t a(x,t)\xi \ge \lambda |\xi|^2 \qquad \forall (x,t) \in \Omega_T \ \forall \xi \in \mathbb{R}^n.$$

Remark. Note that a uniformly parabolic operator is a degenerate elliptic operator (not uniformly elliptic!)

Also for parabolic operators, there is a strong maximum principle, that we are not going to prove (the proof is based on Harnack inequality for uniformly parabolic operators and can be found in Evans, PDEs).

Theorem 2 (Strong maximum principle). Let Ω be a connected set and $u \in C^{2,1}(\Omega_T) \cap C(\overline{\Omega_T})$ such that $k(x,t)u_t + Lu + c(x)u \leq 0$, where L, k and c are as above. Assume moreover that $c \geq 0$.

- If $c \equiv 0$, and there exists $(x,t) \in \Omega_T$ such that $M = \max_{\overline{\Omega}_T} u = u(x,t)$, then $u(y,s) \equiv M$ for all $y \in \overline{\Omega}$ and all $s \in [0,t]$;
- if $c \neq 0$, and there exists $(x,t) \in \Omega_T$ such that $M = \max_{\overline{\Omega}_T} u = u(x,t) \ge 0$, then $u(y,s) \equiv M$ for all $y \in \overline{\Omega}$ and all $s \in [0,t]$.

Remark. We can state as follows this maximum principle: if u attains a maximum (a nonnegative maximum if $c \neq 0$) at some interior point, then u is contant at all earlier times