Short notes for the course of Functional Analysis, PhD in Statistics

Annalisa Cesaroni

Contents

1 Introduction 1
2 Measure theory and integration 3
2.1 Measure space 3
2.2 Borel measures on \mathbb{R} and cumulative distribution functions 4
2.3 The Lebesgue measure on \mathbb{R} and \mathbb{R}^{n}. 6
2.4 Measurable functions 7
2.5 Integration with respect to the Lebesgue measure 8
2.6 Decomposition of measures 9
2.7 Distribution of a random variable 10
2.8 Problems 13
3 Banach spaces 14
3.1 Banach spaces 14
3.2 Bounded linear operators 15
$3.3 L^{p}$ spaces 16
3.4 Spaces of random variables with finite moments 18
3.5 Modes of convergence and compactness theorems 19
3.6 Problems 21
4 Hilbert spaces 23
4.1 Hilbert spaces 23
4.2 Orthogonality and projections in Hilbert spaces 23
4.3 Hilbert space of random variables and conditional expectation 25
4.4 The Hilbert spaces L^{2} and H^{1} 27
4.5 Bounded linear operators in Hilbert spaces 29
4.6 Problems 31
References 32
A Solutions to problems Section 2 32
B Solutions to problems Section 3 34
C Solutions to problems Section 4 38

1 Introduction

These notes are intended for the first year students of the PhD course in Statistics, at University of Padova. They are not exhaustive, nor complete, but they could serve as a basis of the study of the arguments presented during the course of Functional Analysis. The topics are presented in a
quite informal way, trying to reach also students without a specific preparation in mathematics. Only few proofs are provided and for the others bibliographical references are provided. The notes are divided in 2 parts: the first part contains a review of results of Real Analysis, in particular on measure theory and integration with respect to the Lebesgue measure, whereas the second part is a brief review of basic results in linear Functional Analysis, in particular on Banach and Hilbert spaces, and to the main examples, the L^{p} spaces and the L^{2} space. At the end of each section some exercises are proposed, more or less simple to solve. In the appendix there are the (sketchy) solutions to the problems.

2 Measure theory and integration

2.1 Measure space

We fix a set X and we define $\mathcal{P}(X)$ the set of all subsets of X.
Definition 2.1. $\Sigma \subset \mathcal{P}(X)$ is a σ-algebra on X if

- it is closed by complement, that is if $A \in \Sigma$ then $X \backslash A \in \Sigma$,
- it is closed by countable union, that is if $\left(A_{i}\right)_{i}$ is a sequence of elements in Σ then $\cup_{i=1}^{\infty} A_{i} \in \Sigma$.

Let $C \subseteq \mathcal{P}(X)$, then $\Sigma(\mathcal{C})$, the σ-algebra generated by \mathcal{C} is the smallest σ-algebra which contains all the elements in \mathcal{C} (and then all countable intersections and countable unions of elements in \mathcal{C}).

The smallest possible σ-algebra on X is given by $\Sigma=\{\emptyset, X\}$, and the largest possible σ-algebra on X is $\Sigma=\mathcal{P}(X)$.

Definition 2.2. $\mathcal{B}(\mathbb{R})$ is the σ-algebra on \mathbb{R} generated by all the intervals $\mathcal{C}=\{(a, b) \mid a, b \in \mathbb{R}\}$. $\mathcal{B}\left(\mathbb{R}^{N}\right)$ is the σ-algebra on \mathbb{R}^{N} generated by all the pluri-rectangulars $\mathcal{C}=\left\{\Pi_{i=1}^{N}\left(a_{i}, b_{i}\right) \mid a_{i}, b_{i} \in \mathbb{R}\right\}$.

Remark 2.3. Note that $\sigma(\mathcal{C})=\mathcal{B}(\mathbb{R})$ also when $\mathcal{C}=\{(a, b] \mid a, b \in \mathbb{R}\}$, since $(a, b)=\cup_{n}\left(a, b-\frac{1}{n}\right]$, or when $\mathcal{C}=\{[a, b) \mid a, b \in \mathbb{R}\}$, since $(a, b)=\cup_{n}\left[a+\frac{1}{n}, b\right)$, or when $\mathcal{C}=\{[a, b] \mid a, b \in \mathbb{R}\}$ again because $(a, b)=\cup_{n}\left[a+\frac{1}{n}, b-\frac{1}{n}\right]$. Analogously $\sigma(\mathcal{C})=\mathcal{B}(\mathbb{R})$ when $\mathcal{C}=\{(a,+\infty) \mid a \in \mathbb{R}\}$, since $(a, b]=(a,+\infty) \cap(-\infty, b]$, and $(-\infty, b]=\mathbb{R} \backslash(b,+\infty)$ and so on.
Definition 2.4. Let Σ be a σ-algebra on X. A function $\mu: \Sigma \rightarrow[0,+\infty]$ is a measure if
$-\mu(\emptyset)=0$,

- it is σ-additive, that is if $\left(A_{i}\right)_{i}$ is a sequence of elements in Σ with $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$ then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{+\infty} \mu\left(A_{i}\right)$.
(X, Σ, μ) is called a measure space.
If $\mu(X)<+\infty$, then μ is a finite measure (a probability measure if $\mu(X)=1$). Usually measure spaces with probability measures are denoted with Ω (in place of X), the σ-algebra is \mathcal{F} (in place of Σ) and the measure is \mathbb{P} (in place of μ).

If $X=\cup_{i} A_{i}$, with $\mu\left(A_{i}\right)<+\infty$ for all i, μ is σ-finite.
If $X=\mathbb{R}^{n}, n \geq 1$ and $\Sigma=\mathcal{B}\left(\mathbb{R}^{n}\right)$, then μ is called a Borel measure.
Example 2.5. Let $x_{0} \in \mathbb{R}$, and define the measure on $\mathcal{P}(\mathbb{R})$ as $\delta_{x_{0}}(A)=\left\{\begin{array}{ll}1 & x_{0} \in A \\ 0 & x_{0} \notin A\end{array}\right.$.
Then $\delta_{x_{0}}$ is called Dirac measure centered at x_{0}.
Proposition 2.6 (Monotonicity, subadditivity, continuity). Let μ be a measure on Σ. Then
(i) if $A \subset B, A, B \in \Sigma$, then $\mu(A) \leq \mu(B)$ (monotonicity with respect to inclusion);
(ii) if $\left(A_{i}\right)_{i}$ is a sequence of elements in Σ then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{+\infty} \mu\left(A_{i}\right)$;
(iii) if $\left(A_{i}\right)_{i}$ is a sequence of elements in Σ with $A_{i} \subseteq A_{i+1}$ then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow+\infty} \mu\left(A_{i}\right)$;
(iv) if $\left(A_{i}\right)_{i}$ is a sequence of elements in Σ with $A_{i} \supseteq A_{i+1}$ and $\mu\left(A_{i_{0}}\right)<+\infty$ for some i_{0}, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow+\infty} \mu\left(A_{i}\right)$.
Proof. (i) Observe that $B=A \cup(B \backslash A)$, so by σ-additivity $\mu(B)=\mu(A)+\mu(B \backslash A) \geq \mu(A)$.
(ii) Let $B_{1}=A_{1}$ and $B_{i}=A_{i} \backslash \cup_{k=1}^{i-1} A_{k}$ then B_{i} are disjoint and

$$
\mu\left(\cup_{i} A_{i}\right)=\mu\left(\cup_{i} B_{i}\right)=\sum_{i=1}^{+\infty} \mu\left(B_{i}\right) \leq \sum_{i=1}^{+\infty} \mu\left(A_{i}\right)
$$

(iii) Let $B_{1}=a_{1}$ and $B_{i}=A_{i} \backslash A_{i-1}$ then

$$
\mu\left(\cup_{i} A_{i}\right)=\mu\left(\cup_{i} B_{i}\right)=\sum_{i=1}^{+\infty} \mu\left(B_{i}\right)=\lim _{n \rightarrow+\infty} \sum_{i=1}^{n} \mu\left(B_{i}\right)=\mu\left(A_{n}\right)
$$

(iv) Let $F_{i}=A_{i_{0}} \backslash A_{i}$ for $i>i_{0}$. Then $\mu\left(A_{i_{0}}\right)=\mu\left(F_{i}\right)+\mu\left(A_{i}\right), F_{i} \subseteq F_{i+1}$ and $\cup_{i} F_{i}=A_{i_{0}} \backslash \cap_{i} A_{i}$. Therefore by 1), we get

$$
\mu\left(A_{i_{0}}\right)=\mu\left(\cap_{i} A_{i}\right)+\lim _{i} \mu\left(F_{i}\right)=\mu\left(\cap_{i} A_{i}\right)+\lim _{i}\left(\mu\left(A_{i_{0}}\right)-\mu\left(A_{i}\right)\right)
$$ and we cancel $\mu\left(A_{i_{0}}\right)$ from both sides.

Definition 2.7. Let (X, Σ, μ) a measure space. The completion of Σ with respect to μ is the σ-algebra

$$
\mathcal{M}=\{A \subseteq X \mid \exists B, C \in \Sigma, \mu(C)=0, B \subseteq A, A \backslash B \subseteq C\}
$$

Definition 2.8. Let (X, Σ, μ) a measure space. A property holds almost everywhere if there exists $N \in \Sigma$ with $\mu(N)=0$ such that the property holds for all $x \in X \backslash N$.

Proposition 2.9. Let Σ be a σ-algebra on X and $\mu: \Sigma \rightarrow[0,+\infty]$ with $\mu(\emptyset)=0$. Then they are equivalent:
(i) μ is σ-additive: if $\left(A_{i}\right)_{i}$ is a sequence of elements in Σ with $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$ then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{+\infty} \mu\left(A_{i}\right)$,
(ii) μ is additive: if $A, B \in \Sigma$ and $A \cap B=\emptyset$ then $\mu(A \cap B)=\mu(A)+\mu(B)$ and
μ is countable subadditive: if $\left(A_{i}\right)_{i}$ is a sequence of elements in Σ then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right) \leq$ $\sum_{i=1}^{+\infty} \mu\left(A_{i}\right) ;$
(iii) μ is additive: if $A, B \in \Sigma$ and $A \cap B=\emptyset$ then $\mu(A \cap B)=\mu(A)+\mu(B)$
and
μ is continuous on increasing sequence of sets: if $\left(A_{i}\right)_{i}$ is a sequence of elements in Σ with $A_{i} \subseteq A_{i+1}$ then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow+\infty} \mu\left(A_{i}\right)$.

Proof. The fact that (i) implies (ii) and that (i) implies (iii) has been proved in Proposition 2.6. We prove that (ii) implies (i). We consider a sequence $\left(A_{i}\right)_{i}$ of elements in Σ with $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. Then by (ii) we get that $\mu\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{+\infty} \mu\left(A_{i}\right)$. On the other hand by additivity and monotonicity (which is a consequence of additivity) we get that for every $n, \mu\left(\cup_{i=1}^{\infty} A_{i}\right) \geq$ $\mu\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$. Sending $n \rightarrow+\infty$ we conclude $\mu\left(\cup_{i=1}^{\infty} A_{i}\right) \geq \sum_{i=1}^{+\infty} \mu\left(A_{i}\right)$.

We prove that (iii) implies (i). We consider a sequence $\left(A_{i}\right)_{i}$ of elements in Σ with $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. We define $B_{i}=\cup_{j=1}^{i} A_{j}$. Then $\cup_{i} B_{i}=\cup_{i} A_{i}$. Note that by additivity $\mu\left(B_{i}\right)=$ $\sum_{j=1}^{i} \mu\left(A_{j}\right)$ and that $B_{1} \subseteq B_{2} \subseteq B_{3} \ldots$ Therefore by (iii) and additivity we get

$$
\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\mu\left(\cup_{i=1}^{\infty} B_{i}\right)=\lim _{i \rightarrow+\infty} \mu\left(B_{i}\right)=\lim _{i \rightarrow+\infty} \sum_{j=1}^{i} \mu\left(A_{j}\right)=\sum_{j=1}^{+\infty} \mu\left(A_{j}\right)
$$

2.2 Borel measures on \mathbb{R} and cumulative distribution functions

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing function which is right continuous, that is $\lim _{x \rightarrow a^{+}} F(x)=F(a)$. We define for all $a, b \in \mathbb{R}$,

$$
\mu_{F}(a, b]=F(b)-F(a) .
$$

Moreover $\mu_{F}(\emptyset)=0$ and for all sequences $a_{1}<b_{1}<a_{2}<b_{2}<\cdots<a_{i}<b_{i}<a_{i+1}<b_{i+1} \ldots$

$$
\mu_{F}\left(\cup_{i}\left(a_{i}, b_{i}\right]\right)=\sum_{i} F\left(b_{i}\right)-F\left(a_{i}\right)
$$

Observe that if we define $\mathcal{C}=\{(a, b], a, b \in \mathbb{R}\}$, then $\Sigma(\mathcal{C})=\mathcal{B}(\mathbb{R})$. Note that if $F_{1}=F_{2}+c$ for some constant then $\mu_{F_{1}}=\mu_{F_{2}}$. Also the viceversa is true: if $\mu_{F_{1}}=\mu_{F_{2}}$, then $F_{1}=F_{2}+c$ for some constant c.

Remark 2.10. Note that F monotone increasing implies that $\mu_{F}(a, b] \geq 0$, and moreover, since F is right continuous, then

$$
\mu_{F}\left(\cup_{n}(a+1 / n, b]\right)=\mu_{F}(a, b]=F(b)-F(a)=F(b)-\lim _{n} F(a+1 / n)=\lim _{n} \mu_{F}(a+1 / n, b]
$$

Reasoning as before, it is possible to see that, at least when restricted to \mathcal{C}, there holds that μ_{F} has positive values, is additive and is continuous with respect to increasing sequences of sets (which is enough to get σ-additivity if μ_{F} is defined on a σ-algebra, see Proposition 2.9).

We recall that F is monotone increasing and then $\lim _{x \rightarrow+\infty} F(x)=\sup F$ and $\lim _{x \rightarrow-\infty} F(x)=$ $\inf F$ (we say that if $F(\mathbb{R})$ is unbounded from above, $\sup F=+\infty$ and if $F(\mathbb{R})$ is unbounded from below, $\inf F=-\infty)$.

We may extend μ_{F} to intervals obtained by unions and intersections of elements in \mathcal{C}, and using additivity and continuity. In particular we get

$$
\begin{aligned}
\mu_{F}(a,+\infty) & =\mu_{F}\left(\cup_{n}(a, a+n]\right)=\lim _{n} F(a+n)-F(a)=\sup F-F(a) \\
\mu_{F}(-\infty, b] & =\mu_{F}\left(\cup_{n}(b-n, b]\right)=\lim _{n} F(b)-F(b-n)=F(b)-\inf F \\
\mu_{F}(a, b) & =\mu_{F}\left(\cup_{n \geq n_{0}}(a, b-1 / n]\right)=\lim _{n} F(b-1 / n)-F(a)=\lim _{x \rightarrow b^{-}} F(x)-F(a) \\
\mu_{F}(-\infty, b) & =\mu_{F}((-\infty, b-1] \cup(b-1, b))=\mu_{F}((-\infty, b-1])+\mu_{F}((b-1, b)) \\
& =\lim _{x \rightarrow b^{-}} F(x)-F(b-1)+F(b-1)-\inf F=\lim _{x \rightarrow b^{-}} F(x)-\inf F \\
\mu_{F}[a, b)= & =\mu_{F}[(a-1, b) \backslash(a-1, a)]=\mu_{F}(a-1, b)-\mu_{F}(a-1, a) \\
& =\lim _{x \rightarrow b} F(x)-F(a-1)-\lim _{x \rightarrow a^{-}} F(x)+F(a-1)=\lim _{x \rightarrow b^{-}} F(x)-\lim _{x \rightarrow a^{-}} F(x) \\
\mu_{F}[a, b] & =\mu_{F}[[a, b+1) \backslash(b, b+1)]=\mu_{F}[a, b+1)-\mu_{F}(b, b+1) \\
& =F(b)-\lim _{x \rightarrow a^{-}} F(x) \\
\mu_{F}[a,+\infty) & =\sup _{F}-\lim _{x \rightarrow a^{-}} F(x) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\mu_{F}(\mathbb{R}) & =\mu_{F}\left(\cup_{n}(a-n, b+n]\right)=\lim _{n} F(b+n)-F(a-n)=\sup F-\inf F \\
\mu_{F}(\{a\}) & =\mu_{F}((c, a] \backslash(c, a)) \\
& =\mu_{F}((c, a])-\mu_{F}((c, a))=F(a)-F(c)-\left(\lim _{x \rightarrow a^{-}} F(x)-F(c)=F(a)-\lim _{x \rightarrow a^{-}} F(x) .\right.
\end{aligned}
$$

Theorem 2.11. (i) There exists a unique Borel measure $\overline{\mu_{F}}$ which coincides with μ_{F} on intervals $(a, b]$. This measure is σ-finite and it is finite if and only if $\sup F-\inf F<+\infty$.
(ii) Given a Borel measure on \mathbb{R} which is σ-finite, there exists F monotone increasing and right continuous such that $\mu=\mu_{F}$. F is unique up to addition of constants: that is if $\mu=\mu_{F}=\mu_{G}$ then there exists $c \in \mathbb{R}$ such that $F(x)=G(x)+c$ for all x. t

Proof. (i) The proof is based on the Caratheodory criterion, and we refer to [2, Theorem 1.14, Theorem 1.16]. As for the σ - finiteness it is sufficient to observe that $\mu_{F}(-n, n]=F(n)-$ $F(-n)<+\infty$ and $\mathbb{R}=\cup_{n}(-n, n]$. Moreover, since $\mu_{F}(\mathbb{R})=\sup F-\inf F$, we conclude that F is finite iff $\sup _{F}-\inf F<+\infty$.
(ii) We want to construct F. Put $F(0)=0$ and

$$
F(x)= \begin{cases}\mu(0, x] & x>0 \\ -\mu(x, 0] & x<0\end{cases}
$$

Observe that if $b>a \geq 0, F(b)-F(a)=\mu(0, b]-\mu(0, a]=\mu(0, b] \backslash(0, a]=\mu(a, b] \geq 0$, if $0 \geq b>a$, then $F(b)-F(a)=-\mu(b, 0]+\mu(a, 0]=\mu(a, 0] \backslash(b, 0]=\mu(a, b] \geq 0$ and finally if $a<0<b$, then $F(b)-F(a)=\mu(0, b]+\mu(a, 0]=\mu(a, b] \geq 0$. So F is increasing.
We check that it is right continuous. First of all observe that for $a>0, \lim _{x \rightarrow a^{+}} F(x)=$ $\lim _{n} F(a+1 / n)=\lim _{n} \mu(0, a+1 / n]=\mu\left(\cap_{n}(0, a+1 / n]\right)=\mu(0, a]=F(a)$. If $a=0$ $\lim _{x \rightarrow 0^{+}} F(x)=\lim _{n} F(1 / n)=\lim _{n} \mu(0,1 / n]=\mu\left(\cap_{n}(0,1 / n]\right)=\mu(\emptyset)=0=F(0)$. Finally if $a<0$, then $\lim _{x \rightarrow a^{+}} F(x)=\lim _{n} F(a+1 / n)=-\lim _{n} \mu(a+1 / n, 0]=-\mu\left(\cup_{n}(a+1 / n, 0]\right)=$ $-\mu(a, 0]=F(a)$.
Finally we already checked that $\mu(a, b]=F(b)-F(a)$ and then we conclude that $\mu=\mu_{F}$.
Assume now that there exists a right continuous increasing function G such that $\mu=\mu_{G}$. Then for $x>0, F(x)=\mu(0, x]=\mu_{G}(0, x]=G(x)-G(0)$ and for $x<0$ then $F(x)=$ $-\mu(x, 0]=\mu_{G}(x, 0]=-(G(0)-G(x))=G(x)-G(0)$. So, this implies that $F(x)=$ $G(x)-G(0)$ (for $x=0$ this is trivially verified).

Definition 2.12. Let μ be a finite Borel measure. The function $F(x)$ associated to the measure μ and normalized in order to have $\inf F=0$ is called the cumulative distribution function of the measure μ. It is easy to check that $F(x):=\mu(-\infty, x]$.

2.3 The Lebesgue measure on \mathbb{R} and \mathbb{R}^{n}.

Definition 2.13. Let $F(x)=x$ for all x, then $\bar{\mu}_{F}$ is called Lebesgue measure. We indicate with \mathcal{L}. We denote with $\mathcal{M}(\mathbb{R})$ the completion of $\mathcal{B}(\mathbb{R})$ with respect to \mathcal{L}, and we call it the Σ-algebra of Lebesgue measurable sets.

Proposition 2.14. The Lebesgue measure
(i) associates to each interval its length,
(ii) is translation invariant, that is $\mathcal{L}(A+x)=\mathcal{L}(A)$ for all $x \in \mathbb{R}, A \in \mathcal{M}$,
(iii) is homogenous, that is $\mathcal{L}(\lambda A)=\lambda \mathcal{L}(A)$ for all $\lambda>0, A \in \mathcal{M}$,
(iv) assigns measure 0 to points, and so also to countable sets (e.g. \mathbb{Q}),
(v) it is σ-finite, since $\mathbb{R}=\cup_{n \in \mathbb{N}}(-n, n)$ and $\mathcal{L}(-n, n)=2 n$.

Proof. The proof is immediate by definitions and σ-additivity. Exercise.
Measurable sets in \mathbb{R} which contain at least one interval (they are called sets with non empty interior) have positive measure. On the other hand sets which are given by countable union of isolated points have measure zero. Nevertheless there are sets with empty interior in \mathbb{R} (so that do not contain any interval) and with positive measure (almost full measure).

Example 2.15 (A set of positive measure which does not contain any interval). Let $\left(r_{n}\right)$ be an enumeration of $\mathbb{Q} \cap[0,1]$ and fix $\varepsilon>0$ small.

Set $A=\cup_{n}\left(r_{n}-\varepsilon 2^{-n}, r_{n}+\varepsilon 2^{-n}\right)$. Then by subadditivity, $\mathcal{L}(A) \leq \sum_{n} 2 \varepsilon 2^{-n}=4 \varepsilon$. Moreover $B=[0,1] \backslash A$ is a set which does not contain any interval (otherwise it should contain some rational number but $\mathbb{Q} \cap[0,1] \subseteq A$), and moreover $\mathcal{L}(B) \geq 1-4 \varepsilon>0$.

Not all the subsets of \mathbb{R} are contained in $\mathcal{M}(\mathbb{R})$, so there are sets which are not measurable. This is due to the fact that if we want to define a measure μ on the intervals of \mathbb{R} such that $\mu([0,1])=1, \mu(A \cup B)=\mu(A)+\mu(B)$ if $A \cap B=\emptyset$ and $\mu(A)=\mu(B)$ if B can be obtained translating and rotating A, then the σ - algebra of measurable sets cannot be $\mathcal{P}(\mathbb{R})$.

Example 2.16 (A set which is not (Lebesgue) measurable). We say that $x, y \in[0,1]$ are equivalent if $x-y \in \mathbb{Q}$. Let $P \in[0,1]$ a set such that P consists of exactly one representative point from each equivalence class (this set exists by the axiom of choice). In particular this means that if $p, p^{\prime} \in P$, $p \neq p^{\prime}$, then $p-p^{\prime} \notin \mathbb{Q}$. We claim that P provides the required example of a non measurable set. We prove it by contradiction, showing that it is not possible for P to be measurable.

For each $q \in \mathbb{Q} \cap[0,1]$, define
$\left.P_{q}=[(P+q) \cap[0,1)] \cup[(P+q) \backslash[0,1))-1\right]=\{p+q, p \in P \cap[0,1-q)\} \cup\{p+q-1, p \in P \cap[1-q, 1)\}$.
So P_{q} is obtained by considering $P+q$ and then shifting back of 1 unit the part of $P+q$ which is outside the interval $[0,1)$.

First of all we observe that $\mathcal{L}(P)=\mathcal{L}\left(P_{q}\right)$. Indeed $\left.[(P+q) \cap[0,1)] \cap[(P+q) \backslash[0,1))-1\right]=\emptyset$, since if $p+q \in[0,1)$ for some $p \in P$ and $p^{\prime}+q-1 \in[0,1)$ for some $p^{\prime} \in P$, then necessarily $p+q \neq p^{\prime}+q-1$, since $p, p^{\prime} \in[0,1)$.

Moreover we observe that if $r \neq q \in \mathbb{Q} \cap[0,1)$, then $P_{r} \cap P_{q}=\emptyset$. Indeed assume it is not true and $x \in P_{r} \cap P_{q}$, this means that $x=p+r=p^{\prime}+q$, for some $p, p^{\prime} \in P$ or $x=p+r=p^{\prime}+q-1$, or $x=p+r-1=p^{\prime}+q$. In any case we get that $p-p^{\prime} \in \mathbb{Q}$, which implies that $p=p^{\prime}$ by definition of the set P and so $r=q$.

Finally we observe that $\cup_{q \in \mathbb{Q} \cap[0,1)} P_{q}=[0,1)$. Indeed take $x \in[0,1)$, then there exists $p \in P$ such that x is equivalent to P, which means that there exists $q \in \mathbb{Q}$ such that $x=p+q$. In particular this implies that $q \in(0,1]$ and $x \in P_{q}$.

We conclude by σ-additivity that

$$
1=\mathcal{L}([0,1))=\mathcal{L}\left(\cup_{q \in \mathbb{Q} \cap[0,1)} P_{q}\right)=\sum_{q \in \mathbb{Q} \cap[0,1)} \mathcal{L}\left(P_{q}\right)=\sum_{q \in \mathbb{Q} \cap[0,1)} \mathcal{L}(P)= \begin{cases}0 & \text { if } \mathcal{L}(P)=0 \\ +\infty & \text { if } \mathcal{L}(P)>0\end{cases}
$$

which is not possible.
It is possible to define the Lebesgue measures on \mathbb{R}^{n} as the product measure of the Lebesgue measure on \mathbb{R}. It is a Borel maesure and we denote with \mathcal{M} the Σ-algebra of Lebesgue measurable sets. We refer to [2, Section2.6].

Proposition 2.17. The Lebesgue measure on \mathbb{R}^{n}
(i) associates to each set its volume,
(ii) is translation invariant, that is $\mathcal{L}(A+x)=\mathcal{L}(A)$ for all $x \in \mathbb{R}^{n}, A \in \mathcal{M}$,
(iii) is n-homogenous, that is $\mathcal{L}(\lambda A)=\lambda^{n} \mathcal{L}(A)$ for all $\lambda>0, A \in \mathcal{M}$, in particular $\mathcal{L}(B(0, r))=$ $r^{n} \mathcal{L}(B(0,1))$, where $B(0, r)$ is the ball if radius r centered at 0 ,
(iv) it is σ-finite, since $\mathbb{R}^{n}=\cup_{k \in \mathbb{N}} B(0, k)$ and $\mathcal{L} B(0, k)=k^{n} \mathcal{L}(B(0,1))$.

2.4 Measurable functions

Definition 2.18. Let (X, Σ, μ) be a measure space, and let $f: X \rightarrow \mathbb{R}$ be a function. Then f is measurable if for all $t \in \mathbb{R}$,

$$
A(t):=\{x \in X \mid f(x)>t\}=f^{-1}(t,+\infty) \in \Sigma
$$

In particular we will be interested in the case in which $(X, \Sigma, \mu)=\left(\mathbb{R}^{n}, \mathcal{M}, \mathcal{L}\right)$. In this case saying that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is measurable is equivalent to require that for all $A \in \mathcal{B}(\mathbb{R}), f^{-1}(A) \in \mathcal{M}$.

Example 2.19. Let $A \in \mathcal{M}$ and define the characteristic function of A as

$$
\chi_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}
$$

Then χ_{A} is measurable. Indeed $A(t)=\emptyset$ for $t \geq 1, A(t)=\mathbb{R}^{n}$ for $t \leq 0$ and $A(t)=A$ for $t \in(0,1)$.
Example 2.20 (Random variables). If $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space (that is a measure space endowed with a probability measure), the measurable functions, that is functions $f: \Omega \rightarrow \mathbb{R}$ such that for all $t \in \mathbb{R}, A(t):=\{\omega \in \Omega \mid f(\omega)>t\} \in \mathcal{F}$, are called random variables. Usually random variables are indicated with X instead of f.

There is a notion of convergence of measurable functions which is quite used in probability.
Definition 2.21 (Convergence in measure). Let f_{n}, f be measurable functions defined on the measure space (X, Σ, μ). Then f_{n} converge to f in measure if for every $\varepsilon>0$

$$
\lim _{n} \mu\left\{x \in X| | f_{n}(x)-f(x) \mid \geq \varepsilon\right\}=0
$$

If we are in a probability space, this convergence is called convergence in probability, since it reads

$$
\lim _{n} \mathbb{P}\left\{\omega \in \Omega| | X_{n}(\omega)-X(\omega) \mid \geq \varepsilon\right\}=0
$$

2.5 Integration with respect to the Lebesgue measure

Definition 2.22. Let $k \geq 1, A_{1}, \ldots A_{K}$ a finite family of disjoint sets in \mathcal{M} and $c_{1}, \ldots c_{k}>0$. The function $\phi(x)=\sum_{i=1}^{k} c_{i} \chi_{A_{i}}(x)$ is called simple function. It is a measurable (positive) function and we define its integral as

$$
\int_{\mathbb{R}^{N}} \phi(x) d x=\sum_{i=1}^{k} c_{i} \mathcal{L}\left(A_{i}\right) .
$$

Definition 2.23 (Lebesgue integral). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function such that $f(x) \geq 0$ for all x. Then

$$
\int_{\mathbb{R}^{n}} f(x) d x=\sup \left\{\int_{\mathbb{R}^{n}} \phi(x) d x \mid \phi \text { simple function with } \phi \leq f\right\}
$$

If f is not positive we define its positve part $f^{+}(x)=\max (f(x), 0)$ and its negative part $f^{-}(x)=\max (-f(x), 0)$ and we define

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{\mathbb{R}^{n}} f^{+}(x) d x-\int_{\mathbb{R}^{n}} f^{-}(x) d x .
$$

Note that $\int_{\mathbb{R}^{n}}|f(x)| d x=\int_{\mathbb{R}^{n}} f^{+}(x) d x+\int_{\mathbb{R}^{n}} f^{-}(x) d x$.
Since $f^{+} \leq|f|, f^{-} \leq|\mathfrak{f}|$, we have that

$$
\left|\int_{\mathbb{R}^{n}} f(x) d x\right|<+\infty \quad \text { iff } \quad \int_{\mathbb{R}^{n}}|f(x)| d x<+\infty
$$

We denote

$$
L^{1}\left(\mathbb{R}^{n}\right):=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid f \text { is measurable and } \int_{\mathbb{R}^{n}}|f(x)| d x<+\infty\right\}
$$

If $A \in \mathcal{M}$, then we define

$$
L^{1}(A)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid f \text { is measurable and } \int_{\mathbb{R}^{n}}|f(x)| \chi_{A}(x)=\int_{A}|f(x)| d x<+\infty\right\}
$$

Proposition 2.24. The following properties hold.

- If $f=0$ almost everywhere then $\int_{\mathbb{R}^{n}} f(x)=0$. If $\int_{\mathbb{R}^{n}}|f(x)| d x=0$ then $f=0$ almost everywhere.
- If f, g are measurable functions such that $f=g$ almost everywhere, then $\int_{\mathbb{R}^{n}} f(x) d x=$ $\int_{\mathbb{R}^{n}} g(x) d x$.
- If $f, g \in L^{1}\left(\mathbb{R}^{n}\right), \alpha, \beta \in \mathbb{R}$, then $\int_{\mathbb{R}^{n}} \alpha f(x)+\beta g(x) d x=\alpha \int_{\mathbb{R}^{n}} f(x) d x+\beta \int_{\mathbb{R}^{n}} g(x) d x$.
- If $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$, and $f \leq g$ then $\int_{\mathbb{R}^{n}} f(x) d x \leq \int_{\mathbb{R}^{n}} g(x) d x$.

Proof. The proof is obtained by exploiting definitions, see [2, Section 2..2]
Remark 2.25. [On the definition of L^{1}] Note that due to the previous proposition, in particular the fact that if f, g are measurable functions such that $f=g$ almost everywhere, then $\int_{\mathbb{R}^{n}} f(x) d x=$ $\int_{\mathbb{R}^{n}} g(x) d x$, we identify functions in $L^{1}\left(\mathbb{R}^{n}\right)$ which coincide almost everywhere. So a function f in $L^{1}\left(\mathbb{R}^{n}\right)$ is actually a class of equivalence of functions, we do not distinguish functions which are different on sets of measure zero.

Theorem 2.26 (Monotone convergence). Let $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ measurables, positive, i.e. $f_{k} \geq 0$ for all k, and such that $f_{k}(x) \leq f_{k+1}(x)$ for all x and for all k. Then

$$
\lim _{k} \int_{\mathbb{R}^{n}} f_{k}(x) d x=\int_{\mathbb{R}^{n}} \lim _{k} f_{k}(x) d x
$$

Proof. See [2, Theorem 2.14].
Proposition 2.27. An equivalent definition of the Lebesgue integral (which can be very useful) is the following. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ measurable and positive. Let for every $t>0 \quad F(t)=\mathcal{L}(A(t))=$ $\mathcal{L}\{x \mid f(x)>t\}$. F is called the repartition function of f. Then

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{+\infty} F(t) d t .
$$

Proof. See [2, Proposition 6.24]

2.6 Decomposition of measures

Definition 2.28. Let ν, ρ be measures defined on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$.
ν is absolutely continuous with respect to \mathcal{L}, and we write $\nu \ll \mathcal{L}$ if $\nu(A)=0$ for all $A \in \mathcal{B}$ such that $\mathcal{L}(A)=0$.
ρ is singular with respect to \mathcal{L}, and we write $\rho \perp \mathcal{L}$, if there exist $A, B \in \mathcal{B}, A \cap B=\emptyset$, $A \cup B=\mathbb{R}^{n}$, such that $\mathcal{L}(A)=0$ and $\rho(B)=0$.

Example 2.29. Let $x_{0} \in \mathbb{R}$ and consider the Dirac measure $\delta_{x_{0}}$ centered at x_{0}. Then it is singular with respect to \mathcal{L}. Indeed fix $A=\mathbb{R} \backslash\left\{x_{0}\right\}, B=\left\{x_{0}\right\}$, and observe that $\mathcal{L}(B)=0$ and $\delta_{x_{0}}(A)=0$.

Proposition 2.30. Let $f \geq 0$, measurable and such that $\int_{-M}^{M} f(x) d x<+\infty$ for all $M>0$. Define the function

$$
\nu_{f}: \mathcal{M} \rightarrow[0,+\infty] \quad \text { as } \quad \nu_{f}(A)=\int_{A} f(x) d x
$$

Then ν_{f} is a measure on $\left(\mathbb{R}^{n}, \mathcal{M}\right)$, which is σ-finite and which is absolutely continuous with respect to \mathcal{L}. If $f \in L^{1}\left(\mathbb{R}^{n}\right)$ the measure is finite.

Proof. First of all we show that it is a measure. Observe that $f(x) \chi_{\emptyset}(x)=0$ almost everywhere, then $\nu_{f}(\emptyset)=0$. Let $A_{i} \in \mathcal{M}$ which are pairwise disjoint. Define the simple function $\phi_{k}(x)=$ $\sum_{i=1}^{k} \chi_{A_{i}}(x)$. Note that $\lim _{k} \phi_{k}(x)=\chi_{\cup_{i} A_{i}}(x)$. Moreover $0 \leq f(x) \phi_{k}(x) \leq f(x) \phi_{k+1}(x)$ and so by the monotone convergence theorem we get

$$
\lim _{k} \int_{\mathbb{R}^{n}} \phi_{k}(x) f(x) d x=\int_{\mathbb{R}^{n}} \lim _{k} \phi_{k}(x) f(x) d x
$$

Observe that

$$
\begin{gathered}
\lim _{k} \int_{\mathbb{R}^{n}} \phi_{k}(x) f(x) d x=\lim _{k} \int_{\mathbb{R}^{n}} \sum_{i=1}^{k} \phi_{i}(x) f(x) d x=\lim _{k} \sum_{i=1}^{k} \int_{\mathbb{R}^{n}} \phi_{i}(x) f(x) d x \\
=\lim _{k} \sum_{i=1}^{k} \int_{A_{i}} f(x) d x=\lim _{k} \sum_{i=1}^{k} \nu_{f}\left(A_{i}\right)=\sum_{i=1}^{+\infty} \nu_{f}\left(A_{i}\right)
\end{gathered}
$$

and

$$
\int_{\mathbb{R}^{n}} \lim _{k} \phi_{k}(x) f(x) d x=\int_{\mathbb{R}^{n}} \chi_{\cup_{i} A_{i}}(x) f(x) d x=\nu_{f}\left(\cup_{i} A_{i}\right)
$$

Therefore we get that ν_{f} is a measure.
Since $\nu_{f}(B(0, k))=\int_{B(0, k)} f(x) d x<+\infty$ by assumption, then ν_{f} is σ-finite.
Finally, note that if $A \in \mathcal{M}$ and $\mathcal{L}(A)=0$, this implies that $\chi_{A}(x)=0$ almost everywhere. Therefore also $f(x) \chi_{A}(x)=0$ almost everywhere, which implies $\nu_{f}(A)=0$.

Example 2.31. Let $f(x)=e^{-|x|^{2}}$. Then $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and the measure ν_{f} is called the Gaussian measure. Note that it is a finite measure, and $\int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x=\pi^{n / 2}$, see [2, Prop. 2.53].

Theorem 2.32 (Lebesgue-Radon-Nikodym theorem). Let μ a Borelian measure on \mathbb{R}^{n} which is σ-finite. Then there exist a unique $\nu \ll \mathcal{L}$ (absolutely continuous part) and a unique $\rho \perp \mathcal{L}$ (singular part) such that $\mu=\nu+\rho$.

Moreover there exists $f \geq 0$, measurable and such that $\int_{B_{R}} f(x) d x<+\infty$ for all $R>0$, for which $\nu=\nu_{f}$.
f is called the density of ν, or the Radon-Nikodym derivative of ν and can be obtained (if the measure ν is regular) as $f(x)=\lim _{r \rightarrow 0} \frac{\nu(B(x, r))}{\mathcal{L}(B(x, r))}$.

Proof. For the proof we refer to [2, Section 3.2].

2.7 Distribution of a random variable

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X: \Omega \rightarrow \mathbb{R}$ be a random variable (see Section 2.4). Then the distribution \mathbb{P}_{X} of X is the Borel measure induced on \mathbb{R} by X, defined as follows: for every $A \in \mathcal{B}(\mathbb{R})$,

$$
\mathbb{P}_{X}(A)=\mathbb{P}(\{\omega \mid X(\omega) \in A\})
$$

The cumulative distribution function associated to such Borel measure is defined as

$$
F_{X}(x)=\mathbb{P}(\{\omega \mid X(\omega) \leq x\})
$$

The distribution identifies the random variable, and often the random variables are described just in terms of their distributions.

Remark 2.33 (The cumulative distribution function). If X is an (absolutely) continuous random variable, \mathbb{P}_{X} is an absolutely continuous measure and F_{X} is an absolutely continuous function. The density of P_{X} with respect to the Lebesgue measure is

$$
f_{X}(x)=F_{X}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \quad \text { for a.e. } x \in \mathbb{R} .
$$

If X is a discrete random variable, \mathbb{P}_{X} is a singular measure with respect to the Lebesgue measure and F_{X} is a monotone piecewise constant function.

More generally if F_{X} is the cumulative distribution function associated to a random variable, then F a right continuous, monotone increasing function, which we normalize to have inf $F_{X}=0$ (and obviously sup $F=1$). F_{X} has at most countably many discontinuity points, that are those for which $F(a)>\lim _{x \rightarrow a^{-}} F(x)$, or equivalently for which

$$
\mathbb{P}(\{\omega \mid X(\omega)=a\})>0
$$

We define

$$
F_{X}^{d}(x):=\sum_{y \leq x} \mathbb{P}(\{\omega \mid X(\omega)=a\})
$$

Note that F_{d} is a monotone increasing function, which is a.e. constant and has jumps only at discontinuity points of F_{X}.

So the function $F_{X}-F_{X}^{d}$ is a continuous function, and it is easy to check it is still monotone increasing. A deep result in mathematical analysis (see [2, Thm 3.23]) states that monotone increasing functions F are differentiable a.e.- that is for a.e. $a \in \mathbb{R}$ there exists $F^{\prime}(a)=$ $\lim _{h \rightarrow 0} \frac{F(a+h)-F(a)}{h}$ and moreover $F^{\prime}(a) \geq 0$ a.e. So we define the absolutely continuous part of F_{X} as

$$
F_{X}^{a c}(x)=\int_{-\infty}^{x} F_{X}^{\prime}(y) d y=\int_{-\infty}^{x}\left(F_{X}-F_{X}^{d}\right)^{\prime}(y) d y
$$

So, $F_{X}^{\prime}(x)$ is the density of the absolutely continuous measure $\mu_{F_{X}^{a c}}$.
It is possible to prove that in general

$$
F_{X}(x)=F_{X}^{d}(x)+F_{X}^{a c}(x)+F_{X}^{s}(x)
$$

where F_{X}^{s} is a continuous and increasing function, whose derivative is zero in almost all x, but it can be not identically zero (a typical example is the devil's staircase function, or the Cantor function).

The three functions $F_{X}^{d}, F_{X}^{a c}, F_{X}^{s}$ are all increasing, but are of very different nature:

- F_{X}^{d} can only increase by jumps and it is constants between two consecutive jumps,
- $F_{X}^{a c}$ is a "nice" function with the property of being the integral of its derivative, which coincide with the distribution density,
$-F_{X}^{s}$ is quite weird function, indeed quite hard to imagine (continuous, increasing with zero derivative a.e.).

We typically deal with real random variables such that the singular part F_{X}^{s} of their distribution function is identically zero.

Moreover, we see that a real random variable is discrete if and only if $F_{X}=F_{X}^{d}$ and it is absolutely continuous if and only if $F_{X}=F_{X}^{a c}$ and in this case $f_{X}(x)=F_{X}^{\prime}(x)$.
Remark 2.34 (Joint distribution). If X, Y are random variables on the same probability space, that is $X, Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}$, we may define the joint cumulative distribution function as

$$
F_{X, Y}(x, y)=\mathbb{P}(\{\omega \mid X(\omega) \leq x\} \cap\{\omega \mid Y(\omega) \leq y\})
$$

If X, Y are independent then $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$. Two random variables X and Y are jointly continuous if there exists a nonnegative function $f_{X, Y}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that for any measurable set $A \subseteq \mathbb{R}^{2}$ there holds

$$
\mathbb{P}(\{\omega \|(X(\omega), Y(\omega)) \in A\})=\int_{A} f_{a, y}(x, y) d x d y
$$

The function $f_{X, Y}(x, y)$ is called the joint probability density function and is obtained as

$$
f_{X, Y}(x, y)=\frac{d^{2}}{d x d y} F_{X, Y}(x, y) \quad \text { a.e.. }
$$

Given the joint probability density function it is possible to recover the density functions of X and Y as the marginals:

$$
f_{X}(x)=\int_{\infty}^{+\infty} f_{X, Y}(x, y) d y \quad f_{Y}(y)=\int_{\infty}^{+\infty} f_{X, Y}(x, y) d x
$$

On the other hand, given the marginals f_{X}, f_{Y}, there is not a unique associated joint probability density function (apart from the case in which X, Y are independent, in which case $f_{X, Y}(x, y)=$ $\left.f_{X}(x) f_{Y}(y)\right)$.

Remark 2.35. Some examples of widely used random variables/distributions:

- the gamma distribution with parameters a, b is an absolutely continuous measure with density $f(x)=\Gamma(a)^{-1} b^{a} x^{a-1} e^{-b x} \chi_{(0,+\infty)}(x)$
- the chi-square distribution is a gamma distribution with parameters $n / 2,1 / 2$,
- the normal or Gaussian distribution with parameters μ, σ is an absolutely continuous random variable, with density $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma}}$,
- the standard normal distribution is a normal distribution with parameters 0,1 , that is an absolutely continuous measure with density $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$,
- the binomial distribution of parameters n, p is a singular measure, and it is given by $\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \delta_{k}$ where δ_{k} is the Dirac measure centered at k,
- the Poisson distribution of parameter λ is a singular measure, and it is given by $e^{-\lambda} \sum_{k=0}^{+\infty} \frac{\lambda^{k}}{k!} \delta_{k}$ where δ_{k} is the Dirac measure centered at k.

Definition 2.36. The nth-moment of a random variable X is given by $\mathbb{E}\left(X^{n}\right)$, more precisely

- if X is a continuous random variable (whose associated distribution has density f) then

$$
\mathbb{E}\left(X^{n}\right)=\int_{\mathbb{R}} x^{n} f(x) d x
$$

- if X is a discrete random variable (taking values on \mathbb{Z}),

$$
\mathbb{E}\left(X^{n}\right)=\sum_{k \in \mathbb{Z}} k^{n} P(\omega \mid X(\omega)=k)
$$

Note that $\mathbb{E}\left(X^{n}\right)<+\infty$ if and only if $\mathbb{E}\left(|X|^{n}\right)<+\infty$.
We recall that the moment for $n=1$, that is $\mathbb{E}(X)$, is called the mean, whereas $\mathbb{E}\left(X^{2}\right)-$ $(\mathbb{E}(X))^{2}$ is called the variance.

2.8 Problems

(i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone function. Show that f is Lebesgue measurable.
(ii) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a Lebesgue measurable function and let $g: \mathbb{R}^{n} \rightarrow R$ such that $f(x)=g(x)$ for almost every $x \in \mathbb{R}^{n}$. Show that g is Lebesgue measurable.
(iii) Consider the right continuous increasing function on \mathbb{R}

$$
F(x)= \begin{cases}x & x<0 \\ x+1 & x \geq 0\end{cases}
$$

Which is the Borel measure associated to this function?
(iv) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a positive function. Let $F(t)$ the repartition function of f. Recall that $\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{+\infty} F(t) d t$.
Show that for all $p>1$

$$
\int_{\mathbb{R}^{n}}|f(x)|^{p} d x=p \int_{0}^{+\infty} t^{p-1} F(t) d t .
$$

So $f \in L^{p}\left(\mathbb{R}^{n}\right)$ if and only if $p \int_{0}^{+\infty} t^{p-1} F(t) d t<+\infty$.
(v) Let

$$
f(x)= \begin{cases}\frac{1}{|x|} & |x| \leq 1, x \neq 0 \\ 0 & |x|>1, x=0\end{cases}
$$

For which p, is the function $f \in L^{p}\left(\mathbb{R}^{n}\right)$?
(vi) Let

$$
f(x)= \begin{cases}\log \left(\frac{1}{|x|}\right) & 0<|x|<1 \\ 0 & |x|=0\end{cases}
$$

Show that $f \in L^{1}(B(0,1))$.
Is it true that the function f satisfies $f \in L^{p}(B(0,1))$ for every $p \geq 1$?
Is it true that $f \in L^{\infty}(B(0,1))$?
(vii) Let

$$
f(x)= \begin{cases}\frac{1}{|x|} & |x|>1 \\ 1 & |x| \leq 1\end{cases}
$$

For which p, is the function f in the space $L^{p}\left(\mathbb{R}^{n}\right)$?

3 Banach spaces

3.1 Banach spaces

Let X be a vectorial space on \mathbb{R} (this means that it is closed by summation and by multiplication by scalars, that is if $x, y \in X, \lambda, \mu \in \mathbb{R}$, then $\lambda x+\mu y \in X)$.

Definition 3.1. A norm $\|\cdot\|: X \rightarrow[0,+\infty)$ is a function such that

- $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ iff $x=0$ (positivity);
- $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in X, \lambda \in \mathbb{R}$ (homogeneity);
$-\|x+y\| \leq\|x\|+\|y\|$ (triangular inequality).
$(X,\|\cdot\|)$ is a normed space.
Example 3.2. On \mathbb{R}^{n} we may define the euclidean norm $|x|=\sqrt{x_{1}^{2}+\cdots+\left|x_{n}\right|^{2}}$.
A norm induces on X a metric structure on X in the following way.
Definition 3.3 (Metric structure and notion of convergence). Let $(X,\|\cdot\|)$ be a normed space. We define a distance between elements in X as

$$
d(x, y)=\|x-y\| .
$$

Note that this is a good definition, since it is positive, zero only if $x=y$, and satisfies the triangular inequality, that is $d(x, z) \leq d(x, y)+d(y, z)$ for all x, y, z.

We define the balls associated to this distance as follows: we fix a center $x_{0} \in X$ and a radius $r>0$ and we set

$$
B\left(x_{0}, r\right)=\left\{x \in X \mid\left\|x-x_{0}\right\|<r\right\} .
$$

A set $A \subseteq X$ is open if for all $x \in A$ there exists $r>0$ such that $B(x, r) \subseteq A$. A set C is closed is $X \backslash C$ is open.

Let $\left(x_{n}\right)_{n}$ a sequence of element in X and $x \in X$. Then

$$
\lim _{n} x_{n}=x \quad \text { iff } \lim _{n \rightarrow+\infty}\left\|x_{n}-x\right\|=0
$$

Proposition 3.4. The following are equivalent:
i) C is closed
ii) for every sequence $\left(x_{n}\right)$ of elements in C such that there exists $x \in X$ with $\lim _{n} x_{n}=x$, there holds that $x \in C$.

Proof. Assume that C is closed and ii) is false. Then there exists $\left(x_{n}\right)$ of elements in C such that $\lim _{n} x_{n}=x \notin C$. This implies that there exists $r>0$ such that $B(x, r) \subseteq X \backslash C$. Therefore $x_{n} \notin B(x, r)$ for all n, which means that $\left\|x_{n}-x\right\| \geq r$ for all n, in contradiction with the fact that $\lim _{n} x_{n}=x$.

Assume that ii) holds and assume that C is not closed. So there exists $x \notin C$ such that for all $r>0$ there holds that $B(x, r) \cap C \neq \emptyset$. Let $x_{n} \in C$ such that $x_{n} \in B\left(x, \frac{1}{n}\right) \cap C$. So $\left\|x_{n}-x\right\|<\frac{1}{n}$ and then $\lim _{n} x_{n}=x$. But this would imply $x \in C$.

Definition 3.5 (Banach space).
A sequence $\left(x_{n}\right)_{n}$ in X is a Cauchy sequence if $\lim _{n, m}\left\|x_{n}-x_{m}\right\|=0$.
A normed space is called a Banach space if all the Cauchy sequences have limit in X.

Remark 3.6. Note that if $\left(x_{n}\right)_{n}$ is a sequence which converge to $x \in X$, then it is also a Cauchy sequence, since by triangular inequality $\left\|x_{n}-x_{m}\right\| \leq\left\|x_{n}-x\right\|+\left\|x-x_{m}\right\|$ and then $0 \leq \lim _{n, m \rightarrow+\infty}\left\|x_{n}-x_{m}\right\| \leq \lim _{m, n \rightarrow+\infty}\left\|x_{n}-x\right\|+\left\|x-x_{m}\right\|=0$.

The viceversa is not always true. Let's think e.g. of the case $X=\mathbb{Q}$ and the euclidean norm. Define $\left(x_{n}\right)$ as follows: $x_{0}=1, x_{1}=1,01, x_{2}=1,01001, x_{3}=1,010010001, x_{4}=$ 1,01001000100001 and so on, that is $x_{n}=1,1010010001 \ldots 10 \ldots_{n}^{n} 1$. It is easy to check that $x_{n} \in \mathbb{Q}$ for all n, that $x_{n} \rightarrow x$ (so $\left(x_{n}\right)_{n}$ is a Cauchy sequence, but this can also be checked directly) and that $x \notin \mathbb{Q}$. This implies that $(\mathbb{Q},|\cdot|)$ is not a Banach space.

An important theorem in Banach spaces (more generally in complete metric spaces) is the contraction lemma, or Banach-Caccioppoli theorem:
Theorem 3.7. Let $(X,\|\cdot\|)$ a Banach space and $F: X \rightarrow X$ such that there exists $0<a<1$ for which

$$
\|F(x)-F(y)\| \leq a\|x-y\| \quad \forall x, y \in X
$$

(F is a contraction) Then the map F admits a unique fixed point, that is a point such that $\bar{x}=F(\bar{x})$.
Proof. See problem 1 at the end of the chapter.

3.2 Bounded linear operators

Definition 3.8. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be two Banach space.
A linear operator is a map $T: X \rightarrow Y$ such that $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$ for all $\alpha, \beta \in \mathbb{R}, x, y \in X$.
A bounded operator is a map $T: X \rightarrow Y$ such that

$$
\|T\|=\sup _{\{x \in X\|x\| \leq 1\}}\|T x\|<+\infty
$$

If this quantity if finite, it is called the norm of T.
A continuous operator is a map $T: X \rightarrow Y$ such that

$$
\lim T x_{n}=T x \quad \text { for all sequences } x_{n} \text { such that } \lim _{n} x_{n}=x
$$

Proposition 3.9. A linear operator $T: X \rightarrow Y$ is continuous if and only if it is bounded.
Proof. Assume that T is bounded, then

$$
\left\|T x_{n}-T x\right\|=\left\|T\left(x_{n}-x\right)\right\|=\left\|x_{n}-x\right\| T\left(\frac{x_{n}-x}{\left\|x_{n}-x\right\|}\right) \leq\left\|x_{n}-x\right\|\|T\|
$$

Therefore if $\left\|x_{n}-x\right\| \rightarrow 0$, then also $\left\|T x_{n}-T x\right\| \rightarrow 0$.
Assume that T is continuous, and we want to prove that T is bounded. Assume by contradiction that it is not true. So for every $n \in \mathbb{N}$ there exists $x_{n} \in X$ such that $\left\|x_{n}\right\|=1$ and $\left\|T x_{n}\right\| \geq n$. Define $y_{n}=\frac{x_{n}}{n}$. Then $\left\|y_{n}\right\|=\frac{\left\|x_{n}\right\|}{n}=\frac{1}{n} \rightarrow 0$. This implies that $y_{n} \rightarrow 0$. Observe that by linearity $T y_{n} \stackrel{n}{=} \frac{1}{n} T x_{n}$ and then $\left\|T y_{n}\right\|=\frac{1}{n}\left\|T x_{n}\right\| \geq \frac{n}{n}=1$. Therefore $y_{n} \rightarrow 0$ but $T y_{n} \nrightarrow 0$, in contradiction with continuity.

Theorem 3.10. The set of all bounded linear operators between two Banach spaces X, Y, is a Banach space $\mathcal{B}(X, Y)$, with norm $\|T\|$ as defined above.
Proof. See [1, Theorem 2.12].
Example 3.11. Let $X=\mathbb{R}^{n}$ and $Y=\mathbb{R}^{m}$ both with the euclidean norm. Let $\mathbf{A} \in M_{m \times n}(\mathbb{R})$ be a $n \times m$ matrix. Then

$$
T x=\mathbf{A} x=\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)_{i=1, \ldots, m}
$$

is a bounded linear operator from \mathbb{R}^{n} to \mathbb{R}^{m}.

Theorem 3.12 (Uniform boundedness principle, or Banach-Steinhaus theorem). Let T_{n} be a sequence of bounded linear operators between the Banach spaces X and Y, that is $T_{n} \in \mathcal{B}(X, Y)$ for all n. Assume that for all $x \in X$ there exists $C_{x} \in \mathbb{R}$ such that $\sup _{n}\left\|T_{n} x\right\| \leq C_{x}$.

Then there exists $C \in \mathbb{R}$ such that $\left\|T_{n}\right\| \leq C$ for all n.
In particular this implies that if the sequence $T_{n} x$ is convergent for every $x \in X$, then $T x:=$ $\lim _{n} T_{n} x$ defines a bounded linear operator.
Proof. See [1, Theorem 4.1].

$3.3 L^{p}$ spaces

We consider the L^{p} spaces defined as follows
Definition 3.13 (L^{p} spaces). We define for $p \geq 1$,

$$
L^{p}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid f \text { is measurable and } \int_{\mathbb{R}^{n}}|f(x)|^{p} d x<+\infty\right\}
$$

Note that also functions in L^{p} which differ on sets of measure zero are identified.
If $A \in \mathcal{M}$, then we define

$$
L^{p}(A)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid f \text { is measurable and } \int_{\mathbb{R}^{n}}|f(x)|^{p} \chi_{A}(x)=\int_{A}|f(x)|^{p} d x<+\infty\right\}
$$

We define
$L^{\infty}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid f\right.$ is measurable and there exists $c>0$ such that $|f(x)| \leq c$ for almost every $\left.x\right\}$ and analogously
$L^{\infty}(A)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid f\right.$ is measurable and there exists $c>0$ such that $|f(x)| \leq c$ for almost every $\left.x \in A\right\}$.
Definition 3.14. Let $p>1$. Then the conjugate exponent of p is the number $q>1$ such that $1 / p+1 / q=1$. In particular the conjugate exponent of 2 is 2 .

We say that the conjugate exponent of 1 is $+\infty$.
Lemma 3.15 (Young inequality). Let p, q be conjugate exponents. Then $x y \leq x^{p} / p+y^{q} / q$ for all $x, y \geq 0$.
Proof. Fix $x>0$ and consider $\sup _{y \geq 0}\left(x y-y^{q} / q\right)$. First of all observe that the supremum is actually a maximum, since $\lim _{y \rightarrow+\infty} x y-y^{q} / q=-\infty$. Differentiating in y, we get that the unique point where the derivative is 0 is given by $y=x^{1 /(q-1)}$. This is the maximum. Therefore for all $y \geq 0, x y-y^{q} / q \leq x^{1+1 /(q-1)}-x^{q /(q-1)} / q=x^{p} / p$, since $p=q /(q-1)$.
Theorem 3.16 (Holder inequality). Let $O \subseteq \mathbb{R}^{n}$ be an open set (it can also be $O=\mathbb{R}^{n}$), $p \in$ $[1,+\infty]$ and q its conjugate exponent. Assume that $f \in L^{p}(O), g \in L^{q}(O)$. Then $f(x) g(x) \in L^{1}(O)$ and

$$
\int_{O}|f(x) g(x)| d x \leq\left(\int_{O}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{O}|g(x)|^{q} d x\right)^{1 / q}
$$

Proof. Let $\tilde{f}(y)=|f(y)|\left(\int_{O}|f(x)|^{p} d x\right)^{-1 / p}$ and $\tilde{g}(y)=|g(y)|\left(\int_{O}|g(x)|^{q} d x\right)^{-1 / q}$. We apply the Young inequality to $\tilde{f}(y)$ and $\tilde{g}(y)$ and we get

$$
\left.\left.|f(y) g(y)|\left(\int_{O} \mid f(x)\right)^{p} \mid d x\right)\left.^{-1 / p}\left(\int_{O} \mid g(x)\right)\right|^{q} d x\right)^{-1 / q} \leq \frac{1}{p} \frac{|f(y)|^{p}}{\int_{O}|f(x)|^{p} d x}+\frac{1}{q} \frac{|g(y)|^{q}}{\int_{O}|g(x)|^{q} d x}
$$

Integrating in O both sides we conclude

$$
\frac{\int_{O}|f(x) g(x)| d x}{\left.\left.\left(\int_{O} \mid f(x)\right)^{p} \mid d x\right)\left.^{1 / p}\left(\int_{O} \mid g(x)\right)\right|^{q} d x\right)^{1 / q}} \leq \frac{1}{p}+\frac{1}{q}=1
$$

Corollary 3.17 (Minkowski inequality). Let $f, g \in L^{p}(O)$, then

$$
\left(\int_{O}|f(x)+g(x)|^{p} d x\right)^{\frac{1}{p}} \leq\left(\int_{O}|f(x)|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{O}|g(x)|^{p} d x\right)^{\frac{1}{p}}
$$

Proof. For $p=1, \infty$, the inequality is straightforward. We consider the case $p \in(1,+\infty)$. First of all, we observe that if $f, g \in L^{p}$ the $f+g \in L^{p}$. This is due to the fact that

$$
\frac{|f(x)+g(x)|^{p}}{2^{p}}=\left|\frac{f(x)}{2}+\frac{g(x)}{2}\right|^{p} \leq \frac{|f(x)|^{p}}{2}+\frac{|g(x)|^{p}}{2}
$$

by the convexity of the function $r \mapsto r^{p}$ on $[0,+\infty)$ when $p \geq 1$. Now we observe that

$$
|f(x)+g(x)|^{p}=\left|f(x)+g(x)\left\|f(x)+\left.g(x)\right|^{p-1} \leq\left|f (x) \left\|f(x)+\left.g(x)\right|^{p-1}+|f(x) \| f(x)+g(x)|^{p-1}\right.\right.\right.\right.
$$ and that $|f(x)+g(x)|^{p-1} \in L^{q}$ where $q=\frac{p}{p-1}$ is the conjugate exponent of p. Moreover

$$
\begin{equation*}
\int_{O}\left(|f(x)+g(x)|^{p-1}\right)^{q} d x=\int_{O}|f(x)+g(x)|^{p} d x \tag{3.1}
\end{equation*}
$$

So by Holder inequality applied to f and $|f+g|^{p-1}$ we get

$$
\int_{O}|f(x)||f(x)+g(x)|^{p-1} d x \leq\left(\int_{O}|f(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{O}|f(x)+g(x)|^{p} d x\right)^{\frac{p-1}{p}}
$$

and analogously by Holder inequality applied to f and $|f+g|^{p-1}$ we get

$$
\int_{O}|g(x)||f(x)+g(x)|^{p-1} d x \leq\left(\int_{O}|g(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{O}|f(x)+g(x)|^{p} d x\right)^{\frac{p-1}{p}}
$$

Integrating (3.1) and using the previous inequalities we get

$$
\begin{aligned}
\int_{O}|f(x)+g(x)|^{p} d x \leq & \left(\int_{O}|f(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{O}|f(x)+g(x)|^{p} d x\right)^{\frac{p-1}{p}} \\
& +\left(\int_{O}|g(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{O}|f(x)+g(x)|^{p} d x\right)^{\frac{p-1}{p}} \\
= & \left(\int_{O}|f(x)+g(x)|^{p} d x\right)^{\frac{p-1}{p}}\left[\left(\int_{O}|f(x)|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{O}|g(x)|^{p} d x\right)^{\frac{1}{p}}\right]
\end{aligned}
$$

from which we deduce the statement by dividing both sides by $\left(\int_{O}|f(x)+g(x)|^{p} d x\right)^{\frac{p-1}{p}}$.
Theorem 3.18. Let $p \geq 1$.
The spaces $L^{p}(O)$ are Banach spaces, with norm given by $\left.\|f\|_{p}=\left(\int_{O} \mid f(x)\right)^{p} \mid d x\right)^{1 / p}$.
The space $L^{\infty}(O)$ is a Banach space with norm given by $\|f\|_{\infty}=\inf \{c>0 \mid \mathcal{L}\{x \mid f(x) \geq c\}=0\}$.
Proof. Proving that L^{p} is a vectorial space is an easy task only if $p=1,+\infty$, otherwise it is a consequence of Minkowski inequality (which also gives that $\|\cdot\|_{p}$ satisfies the triangular inequality), which is a consequence of the Holder inequality. For the proof see [2, Section 6.1].

A direct consequence of the Holder inequality is the following interpolation inequality.
Corollary 3.19 (Interpolation inequality). Let $O \subseteq \mathbb{R}^{n}$ be an open set (it can also be $O=\mathbb{R}^{n}$), $p, r \in[1,+\infty]$ such that $p<r$. Assume that $f \in L^{p}(O) \cap L^{r}(O)$. Then $f \in L^{s}(O)$ for every $s \in[p, r]$ and moreover

$$
\|f\|_{s}=\|f\|_{p}^{\alpha}\|f\|_{r}^{1-\alpha} \quad \text { where } \alpha \in[0,1] \text { is such that } \quad \frac{1}{s}=\frac{\alpha}{p}+\frac{1-\alpha}{r} .
$$

Proof. Take $s \in(p, r)$ and $\alpha \in(0,1)$ such that $\frac{1}{s}=\frac{\alpha}{p}+\frac{1-\alpha}{r}$. Since $1=\frac{\alpha s}{p}+\frac{(1-\alpha) s}{r}$ we deduce that $\frac{p}{\alpha s}>1$ and $\frac{r}{(1-\alpha) s}>1$ are conjugate exponents.

Since $f \in L^{p}$, we get that $|f|^{\alpha s} \in L^{\frac{p}{\alpha s}}$ and moreover since $f \in L^{r}$ then $f^{(1-\alpha) s} \in L^{\frac{r}{(1-\alpha) s}}$. Therefore by the Holder inequality we get that $|f|^{\alpha s}|f|^{(1-\alpha) s}=|f|^{s} \in L^{1}$, which implies that $f \in L^{s}(O)$ and moreover

$$
\|f\|_{s}^{s}=\int_{O}|f|^{s} d x \leq\left(\int_{\mathbb{R}}\left(|f|^{\alpha s}\right)^{\frac{p}{\alpha s}} d x\right)^{\frac{\alpha s}{p}}\left(\int_{\mathbb{R}}\left(|f|^{(1-\alpha) s}\right)^{\frac{r}{(1-\alpha) s}} d x\right)^{\frac{(1-\alpha) s}{r}}=\|f\|_{p}^{\alpha s}\|f\|_{r}^{(1-\alpha) s}
$$

Another consequence of the Holder inequality is the following:
Corollary 3.20. Let O be an open set with $\mathcal{L}(O)<+\infty$. Then $L^{p}(O) \subseteq L^{r}(O)$ for every $1 \leq r \leq p$, and moreover $\|f\|_{r} \leq\|f\|_{p} \mathcal{L}(O)^{\frac{p-r}{p r}}$.
Proof. Fix $p>1$ and $f \in L^{p}(O)$. We want to prove that $f \in L^{1}(O)$. Note that since $\mathcal{L}(O)<+\infty$, then $\chi_{O} \in L^{q}\left(\mathbb{R}^{n}\right)$ for every q, so in particular it is in $L^{q}(O)$ for q conjugate exponent of p. By Holder inequality we get

$$
\|f\|_{1} \leq\|f\|_{p} \mathcal{L}(O)^{1 / q}=\|f\|_{p} \mathcal{L}(O)^{\frac{p-1}{p}}
$$

which give the conclusion of the theorem for $r=1$. The case $r \in(1, p)$ is obtained just using the interpolation inequality, proved in the previous corollary: indeed $\frac{1}{r}=\frac{\alpha}{p}+1-\alpha$, with $\alpha=\frac{p(r-1)}{r(p-1)}$ and then

$$
\|f\|_{r} \leq\|f\|_{p}^{\alpha}\|f\|_{1}^{1-\alpha} \leq\|f\|_{p}^{\alpha}\|f\|_{p}^{1-\alpha} \mathcal{L}(O)^{\frac{p-1}{p}(1-\alpha)}=\|f\|_{p} \mathcal{L}(O)^{\frac{p-r}{p r}}
$$

Finally we present an important example of linear bounded operators from L^{p} to \mathbb{R}.
Example 3.21. Let $g \in L^{q}\left(\mathbb{R}^{n}\right)$ with $q \geq 1$. Consider the following operator $T: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$, where p is the conjugate exponent of q, defined as

$$
T f=\int_{\mathbb{R}^{n}} f(x) g(x) d x
$$

It is immediate to check that it is linear. Moreover, by Holder inequality we get, for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $\|f\|_{p} \leq 1$,

$$
|T f|=\left|\int_{\mathbb{R}^{n}} f(x) g(x) d x\right| \leq \int_{\mathbb{R}^{n}}|f(x) g(x)| d x \leq\|f\|_{p}\|g\|_{q} \leq\|g\|_{q} .
$$

Therefore T is a bounded operator, with norm $\|T\| \leq\|g\|_{q}$.
Define now $f_{g}(x)=|g(x)|^{q / p}\|g\|_{q}^{-q / p} \frac{g(x)}{|g(x)|}$. Then $f_{g} \in L^{p}\left(\mathbb{R}^{n}\right)$ and $\left\|f_{g}\right\|_{p}=\|g\|_{q}^{q / p}\|g\|_{q}^{-q / p}=1$. We compute, recalling that $q / p+1=q$

$$
T f_{g}=\|g\|_{q}^{q / p} \int_{\mathbb{R}^{n}}|g(x)|^{q / p+1} d x=\|g\|_{q}^{q / p} \int_{\mathbb{R}^{n}}|g(x)|^{q} d x=\|g\|_{q}^{q-q / p}=\|g\|_{q}
$$

Therefore $\|T\|=\|g\|_{q}$.

3.4 Spaces of random variables with finite moments

We fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and we consider the random variables $X: \Omega \rightarrow \mathbb{R}$. We introduce the spaces of random variables with finite p-moment (see definition in Section 2.7)

$$
M^{p}=\left\{X \text { random variable } \mathbb{E}\left(|X|^{p}\right)<+\infty\right\}
$$

ans we $\|X\|_{p}=\left(\mathbb{E}\left(|X|^{p}\right)\right)^{1 / p}$.
First of all we have the following Holder inequality and Minkowski inequality

Proposition 3.22. Let $X \in M^{p}$ and $Y \in M^{q}$, with q conjugate exponent of p, then

$$
\left.\mathbb{E}(|X Y|) \leq \mathbb{E}\left(|X|^{p}\right)\right)^{1 / p}\left(\mathbb{E}\left(|Y|^{q}\right)\right)^{1 / q}
$$

Moreover if $X, Z \in M^{p}$, then

$$
\left.\left.\left.\mathbb{E}\left(|X+Z|^{p}\right)\right)^{1 / p} \leq \mathbb{E}\left(|X|^{p}\right)\right)^{1 / p}+\mathbb{E}\left(|Z|^{p}\right)\right)^{1 / p}
$$

Proof. It is sufficient to apply the Young inequality to $\left.|X| \mathbb{E}\left(|X|^{p}\right)\right)^{-1 / p}$ and to $\left.|Y| \mathbb{E}\left(|Y|^{q}\right)\right)^{-1 / q}$ and proceed as for L^{p} spaces (instead of integrating in \mathcal{O} one needs to take the average of both side of the inequality). The proof of Minkowski also follows again as for the case of L^{p} spaces.

Theorem 3.23. The space M^{p} with the norm $\|X\|_{p}$ for $p \in[1,+\infty)$ is a Banach space.
We say that $X_{n} \rightarrow X$ in M^{1} if $\mathbb{E}\left(\left|X_{n}-X\right|\right) \rightarrow 0$, that is convergence is mean and $X_{n} \rightarrow X$ in $M^{2} M^{2}$ if $\mathbb{E}\left(\left(X_{n}-X\right)^{2}\right) \rightarrow 0$, that is convergence is the mean square convergence.

Similarly as for $L^{p}(O)$ spaces, where $\mathcal{L}(O)<+\infty$ (see Corollary 3.20), the spaces M^{p} are decreasing as we will show. First of all we recall the Jensen inequality:

Lemma 3.24 (Jensen's inequality). Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function, then for every random variable X

$$
\mathbb{E}(g(X)) \geq g(\mathbb{E}(X))
$$

Theorem 3.25. There holds that $M^{k} \subseteq M^{n}$ for every $1 \leq n \leq k$. Moreover if $X \in M^{k}$ then $\left(\mathbb{E}\left(|X|^{n}\right)\right)^{\frac{1}{n}} \leq\left(\mathbb{E}\left(|X|^{k}\right)\right)^{\frac{1}{k}}$ for all $n \leq k$.

Proof. Let $1 \leq n \leq k, g(x)=|x|^{\frac{k}{n}}$. Since $\frac{k}{n} \geq 1$, the function g is convex. Let $X \in M^{k}$ and we apply Jensen's inequality to the random variable $|X|^{n}$, observing that $g\left(|X|^{n}\right)=|X|^{k}$,

$$
\mathbb{E}\left(|X|^{k}\right)=\mathbb{E}\left(g\left(|X|^{n}\right)\right) \geq g\left(\mathbb{E}\left(|X|^{n}\right)\right)=\left(\mathbb{E}\left(|X|^{n}\right)\right)^{\frac{k}{n}}
$$

3.5 Modes of convergence and compactness theorems

Note that $f_{n} \rightarrow f$ in $L^{p}(O)$ means that $\lim _{n} \int_{O}\left|f_{n}(x)-f(x)\right|^{p} d x=0$. Moreover $f_{n} \rightarrow f$ in L^{∞} if $\lim _{n} \sup _{O}\left|f_{n}-f\right|=0$. The convergence in L^{1} is also called convergence in mean, and the convergence in L^{2} is called convergence in mean square.

Definition 3.26. $f_{n} \rightarrow f$ almost everywhere if $\lim _{n} f_{n}(x)=f(x)$ for almost every x.
It is not always true that convergence almost everywhere is sufficient for convergence in L^{p} as the following example shows.

Example 3.27. Let

$$
f_{n}(x)= \begin{cases}0 & x \geq \frac{1}{n} \\ n-n x & 0 \leq x \leq \frac{1}{n} \\ n+n x & -\frac{!}{n} \leq x \leq 0 \\ 0 & x \leq-\frac{1}{n}\end{cases}
$$

Then $\lim _{n} f_{n}(x)=0$ for almost every x, but $\int_{\mathbb{R}} f_{n}(x) d x=2 \neq 0$.
Theorem 3.28. Let $p \geq 1,\left(f_{n}\right)_{n}, f \in L^{p}(O)$ and assume that $f_{n} \rightarrow f$ almost everywhere.
If there exists $g \in L^{p}(O)$ such that $\left|f_{n}(x)\right| \leq g(x)$ for almost every x and every n then $\lim _{n} f_{n}=$ f in $L^{p}(O)$.

If $\lim _{n} f_{n}=f$ in $L^{p}(O)$, then up to passing to a subsequence $f_{n} \rightarrow f$ almost everywhere. If $\lim _{n} f_{n}=f$ in $L^{p}(O)$, then $f_{n} \rightarrow f$ in measure.

Proof. The first part is the Lebesgue dominated convergence theorem, see [2, Theorem 2.24].
The second part is proven in [2, Corollary 2.32].
The third part is a consequence of the Chebycheff inequality (see Problem ii). Indeed

$$
\forall \varepsilon>0 \quad \mathcal{L}\left(\left\{x \in \mathbb{R}^{n}| | f_{n}(x)-f(x) \mid>\varepsilon\right\}\right)^{\frac{1}{p}} \leq \frac{1}{\varepsilon}\left\|f_{n}-f\right\|_{p}
$$

By the Holder inequality we can multiply functions in L^{p} by functions in L^{q}. This gives another notion of convergence.

Definition 3.29 (Weak convergence). Let $1<p<+\infty$. Given $\left(f_{n}\right)_{n}, f \in L^{p}(O)$, we say that $f_{n} \rightharpoonup f$ (weakly) in $L^{p}(O)$ if for all $g \in L^{q}(O)$, with q the conjugate exponent of $p,(q=+\infty$ if $p=1$) there holds

$$
\lim _{n} \int_{O} f_{n}(x) g(x) d x=\int_{O} f(x) g(x) d x
$$

Given $\left(f_{n}\right)_{n}, f \in L^{\infty}(O)$, we say that $f_{n} \rightharpoonup^{\star} f$ (weakly star) in $L^{\infty}(O)$ if for all function $g \in$ $L^{1}(O)$, there holds

$$
\lim _{n} \int_{O} f_{n}(x) g(x) d x=\int_{O} f(x) g(x) d x
$$

Given $\left(f_{n}\right)_{n}, f \in L^{1}(O)$, we say that $f_{n} \rightharpoonup f$ (weakly) in $L^{1}(O)$ if for all continuous and bounded functions $g: O \rightarrow \mathbb{R}$, there holds

$$
\lim _{n} \int_{O} f_{n}(x) g(x) d x=\int_{O} f(x) g(x) d x
$$

If f_{n} are densities of continuous random variables X_{n}, this convergence is also called convergence in distribution of X_{n}.

Proposition 3.30. If f_{n} converge to f in L^{p} then it also converge weakly in L^{p}, whereas the viceversa is not true.

Proof. The statement is a consequence of Holder inequality: let $f_{n}, f \in L^{p}$ and $g \in L^{q}$ (for $p>1$) or g continuous and bounded (if $p=1$), then

$$
\left|\int_{O}\left(f_{n}(x)-f(x)\right) g(x) d x\right| \leq \int_{O} \mid f_{n}(x)-f\left(x| | g(x) \mid d x \leq\left\|f_{n}-f\right\|_{p}\|g\|_{q}\right.
$$

Therefore if $\left\|f_{n}-f\right\|_{p} \rightarrow 0$, then $\int_{O}\left(f_{n}(x)-f(x)\right) g(x) d x \rightarrow 0$.
The main examples of sequence of functions which are converging weakly but not strongly are rapidly oscillating functions.

Example 3.31. [Weak convergence of periodic functions] Let $f(x)$ be a continuous periodic function (e.g, $f(x)=\sin x)$ in \mathbb{R} with period T.

Define $f_{n}(x)=f(n x)$ (note that this is a periodic function with period T / n, so as $n \rightarrow+\infty$ this is more and more oscillating).

Then for every $O \subseteq \mathbb{R}^{n}$ borelian bounded set

$$
f_{n} \rightharpoonup \frac{1}{T} \int_{0}^{T} f(x) d x \quad \text { in } L^{p}(O) \text { for all } 1 \leq p<+\infty
$$

and moreover

$$
f_{n} \rightharpoonup^{\star} \frac{1}{T} \int_{0}^{T} f(x) d x \quad \text { in } L^{\infty}(O)
$$

For the proof see [1, Example 5.16].

Intuitively weak convergence is convergence of mean values, in the following sense.
Theorem 3.32 (Characterization of weak convergence). Let $f_{n} \in L^{p}(O)$ for $p \in(1,+\infty]$ such that there exists $C>0$ such that $\left\|f_{n}\right\|_{p} \leq C$ for all n. They are equivalent
(i) $f_{n} \rightharpoonup f$ (weakly) in $L^{p}(O)$ (or weakly star if $p=+\infty$)
(ii) for every Borel set $A \subseteq O$ with $|A|>0$ there holds

$$
\frac{1}{|A|} \int_{A} f_{n}(x) d x \rightarrow \frac{1}{|A|} \int_{A} f(x) d x
$$

Let $f_{n} \in L^{1}(O)$ such that there exists $C>0$ such that $\left\|f_{n}\right\|_{1} \leq C$ for all n. Then they are equivalent
(i) $f_{n} \rightharpoonup f$ in $L^{1}(O)$
(ii) for all open sets $A \subseteq O$ with $|A|>0$

$$
\lim _{n} \frac{1}{|A|} \int_{A} f_{n}(x) d x \geq \frac{1}{|A|} \int_{A} f(x) d x
$$

and for all compact sets $C \subseteq O$ with $|C|>0$

$$
\lim _{n} \frac{1}{|C|} \int_{A} f_{n}(x) d x \leq \frac{1}{|C|} \int_{C} f(x) d x
$$

We get the following important compactness result.
Theorem 3.33 (Compactness). Let $f_{n} \in L^{p}(O)$ for $p \in(1,+\infty]$ such that there exists $C>0$ such that $\left\|f_{n}\right\|_{p} \leq C$ for all n. Then up to passing to a subsequence $f_{n} \rightharpoonup f$ (weakly) in $L^{p}(O)$ (or weakly star if $p=+\infty$).

Let $f_{n} \in L^{1}(O)$ such that there exists $C>0$ such that $\left\|f_{n}\right\|_{1} \leq C$ for all n and moreover for all sequences $E_{k} \subseteq O$ such that $\chi_{E_{k}} \rightarrow 0$ in $L^{1}(O)$, there holds $\lim _{k} \sup _{n} \int_{E_{k}} f_{n}(x) d x \rightarrow 0\left(f_{n}\right.$ are equiintegrable). Then up to passing to a subsequence $f_{n} \rightharpoonup f$ (weakly) in $L^{1}(O)$.

Theorem 3.34 (Prokhorov's theorem). Let f_{n} are densities of continuous random variables X_{n} : $\Omega \rightarrow \mathbb{R}^{d}$, which are tight in the following sense: for every $\varepsilon>0$ there exists a compact set $K_{\varepsilon} \subseteq \mathbb{R}^{d}$ such that $\mathbb{P}\left\{\omega, X_{n}(\omega) \in K_{\varepsilon}\right\} \geq 1-\varepsilon$ for all n. Then, there exists f density of a continuous random variable X such that, up to a subsequence, $f_{n} \rightarrow f$ weakly (or equivalently $X_{n} \rightarrow X$ in distribution).

3.6 Problems

(i) Let $(X,\|\cdot\|)$ a Banach space and $F: X \rightarrow X$ such that there exists $0<a<1$ for which

$$
\|F(x)-F(y)\| \leq a\|x-y\| \quad \forall x, y \in X
$$

(F is a contraction)
(a) Show that the map F is continuous.
(b) Let $x_{0} \in X$. Define $x_{1}=F\left(x_{0}\right), x_{2}=F\left(x_{1}\right)$ and so on $x_{n}=F\left(x_{n-1}\right)$. Prove that

$$
\left\|x_{n}-x_{n+1}\right\| \leq a^{n}\left\|x_{0}-x_{1}\right\|
$$

Deduce that $\left(x_{n}\right)_{n}$ is a Cauchy sequence.
(c) Let $\bar{x}=\lim _{n} x_{n}$, where $\left(x_{n}\right)$ has been defined in the previous step. Show that $F(\bar{x})=\bar{x}$. So, \bar{x} is a fixed point of F.
(d) Show that the map F admits a unique fixed point, that is a point such that $\bar{x}=F(\bar{x})$.

This is called Banach-Caccioppoli theorem.
(ii) Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. Prove that

$$
\mathcal{L}\left(\left\{x \in \mathbb{R}^{n}| | f(x) \mid>\alpha\right\}\right)^{\frac{1}{p}} \leq \frac{1}{\alpha}\|f\|_{p} .
$$

This is called Chebycheff inequality.
(iii) Let $f \in L^{\infty}(O) \cap L^{p}(O)$ for some $p>1$. Our aim is to show that $\lim _{q \rightarrow+\infty}\|f\|_{q}=\|f\|_{\infty}$.
(a) Show that $f \in L^{q}(O)$ for every $q \geq p$.
(b) Prove that $\lim _{q \rightarrow+\infty}\|f\|_{q} \leq\|f\|_{\infty}$.
(c) By using the Chebycheff inequality prove that for every $a>0$ and every $q \geq p$

$$
a \mathcal{L}\left(\left\{x \in \mathbb{R}^{n}| | f(x) \mid>a\right\}\right)^{\frac{1}{q}} \leq\|f\|_{q}
$$

Observe that if $\mathcal{L}\left(\left\{x \in \mathbb{R}^{n}| | f(x) \mid>a\right\}\right) \neq 0$, then $a \leq \lim _{q \rightarrow+\infty}\|f\|_{q}$.
(d) Using the previous point show that $\lim _{q \rightarrow+\infty}\|f\|_{q} \geq\|f\|_{\infty}$ and therefore by point 2 , $\lim _{q \rightarrow+\infty}\|f\|_{q}=\|f\|_{\infty}$.
(iv) Prove that if $f \in L^{2}(-1,1)$ then $f \in L^{1}(-1,1)$ and moreover

$$
\|f\|_{1} \leq \sqrt{2}\|f\|_{2}
$$

Provide an example of a function $f \in L^{1}(-1,1)$ such that $f \notin L^{2}(-1,1)$.
(v) Let $f_{n} \in L^{p}(O)$ with $p>1$ such that $f_{n} \rightharpoonup f$ weakly in L^{p}. Show that there exists $C>0$ such that $\left\|f_{n}\right\|_{p} \leq C$ for all n.
(vi) Consider the following operator $T: L^{2}(0,2) \rightarrow L^{2}(0,2)$ defined as

$$
T f(x)=\int_{0}^{x} f(y) d y
$$

Show that this is a bounded continuous operator.
Hint Recall the Jensen inequality:

$$
\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)^{2} \leq \frac{1}{b-a} \int_{a}^{b} f(x)^{2} d x
$$

(vii) Let $O \subseteq \mathbb{R}^{n}$ be a open set, $f_{k}, f \in L^{p}(O)$, for all $k \in \mathbb{N}$.
(a) Show that if $f_{k} \rightarrow f$ (strongly) in $L^{p}(O)$ then $\lim _{k}\left\|f_{k}\right\|_{p}=\|f\|_{p}$.
(b) Show that if $f_{k} \rightharpoonup f$ (weakly) in $L^{p}(O)$ then $\liminf _{k}\left\|f_{k}\right\|_{p} \geq\|f\|_{p}$.
(viii) Let $O \subseteq \mathbb{R}^{n}$ be a open set, let $p \geq 1$ and $q=\frac{p}{p-1}$ its conjugate exponent.

Let $f_{k}, f \in L^{p}(O)$, for all $k \in \mathbb{N}, g_{k}, g \in L^{q}(O)$, for all $k \in \mathbb{N}$.
(a) Assume $f_{k} \rightarrow f$ (strongly) in $L^{p}(O)$ and $g_{k} \rightarrow g$ (strongly) in $L^{q}(O)$.

Show that $f_{k} g_{k} \rightarrow f g$ (strongly) in $L^{1}(O)$.
(b) Assume $f_{k} \rightarrow f$ (strongly) in $L^{p}(O)$ and $g_{k} \rightharpoonup g$ (weakly) in $L^{q}(O)$ (this implies in particular that $\left.\left\|g_{k}\right\|_{q} \leq M\right)$.
Show that $f_{k} g_{k} \rightarrow f g$ (strongly) in $L^{1}(O)$.
(ix) Let $O \subseteq \mathbb{R}^{n}$ be a open set, and $f_{k}, f \in L^{2}(O)$, for all $k \in \mathbb{N}$ such that $f_{k} \rightharpoonup f$ weakly in $L^{2}(O)$.
Show that if $\lim _{k}\left\|f_{k}\right\|_{2}=\|f\|_{2}$, then $f_{k} \rightarrow f$ strongly in $L^{2}(O)$.

4 Hilbert spaces

4.1 Hilbert spaces

Hilbert spaces are spaces where it is possible to define the notions of length and orthogonality, which allow to work with the elements geometrically, as if they were vectors in Euclidean space. First of all we recalls some basic definitions.

Definition 4.1. A set X is a vector space on \mathbb{R} (a real vector space) if it is a set equipped with two operations, vector addition (which allows to add two vectors $x, y \in X$ to obtain another vector $x+y \in X$) and scalar multiplication (which allows us to "scale" a vector $x \in X$ by a real number c to obtain a vector $c x \in X$). Moreover we require that X contains a neutral element for the vector addiction, that is an element $0 \in X$ such that $0+x=x$ for every $x \in X$ and $x-x=0$.
A scalar product on X is a function $(\cdot, \cdot): X \times X \rightarrow \mathbb{R}$ such that

- $(x, x) \geq 0$ for all x and $(x, x)=0$ iff $x=0$;
- it is symmetric $(x, y)=(y, x)$ for all $x, y \in X$;
- it is linear, that is $(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)$ for all $x, y, z \in X, \alpha, \beta \in \mathbb{R}$.

We associate to a scalar product a norm in this way $\|x\|=\sqrt{(x, x)}$.
Proposition 4.2. The function $\|\cdot\|: X \rightarrow[0,+\infty)$ defined as $\|x\|=\sqrt{(x, x)}$ is a norm. Moreover the scalar product is continuous, that is if $x_{n} \rightarrow x$ in X and $y \in X$, then $\left(x_{n}, y\right) \rightarrow(x, y)$ in \mathbb{R}.

Proof. Positivity and homogeneity are obvious. To prove the triangle inequality one first need to to prove the Cauchy Schwartz inequality $|(x, y)| \leq\|x\|\|y\|$. See [1, Theorem 5.1].

The continuity is an easy consequence of the Cauchy Schwartz inequality:

$$
\left|\left(x_{n}-x, y\right)\right| \leq\left\|x_{n}-x\right\|\|y\| .
$$

Definition 4.3 (Hilbert space). A space X with a scalar product which induces on X a norm such that X is a Banach space is called Hilbert space.

Proposition 4.4 (Parallelogram identity). For every $x, y \in H$, there holds

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

Proof. By definition and by linearity and symmetry of the scalar product $\|x+y\|^{2}=(x+y, x+y)=$ $(x, x)+2(x, y)+(y, y)=\|x\|^{2}+2(x, y)+\|y\|^{2}$, and $\|x-y\|^{2}=(x+y, x+y)=\|x\|^{2}-2(x, y)+\|y\|^{2}$. It is sufficient to sum.

Example 4.5. In \mathbb{R}^{n} we define the scalar product $(x, y)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$. The euclidean norm is the norm associated to this scalar product. So \mathbb{R}^{n} with this scalar product is a Hilbert space. This is the basic example of Hilbert space of finite dimension.

4.2 Orthogonality and projections in Hilbert spaces

Definition 4.6 (Orthogonal space). We say that $x, y \in X$ are orthogonal if $(x, y)=0$.
If $S \subseteq X$ is a subset of X, we define the orthogonal subspace

$$
S^{\perp}=\{x \in X \mid(x, s)=0 \forall s \in S\}
$$

This a vectorial subspace of X.

Theorem 4.7 (Orthogonal projection). Let $V \subseteq H$ be a closed subspace of a Hilbert space, $V \neq\{0\}$ and let $h \in H$.

Then there exists a unique element $v \in V$ at minimal distance from h, that is such that $\|h-v\|=\min _{w \in V}\|h-w\|$. Moreover there exists a unique element $s \in V^{\perp}$ such that $h=v+s$.

The map $\operatorname{Pr}_{V}: H \rightarrow V$ which associate $h \rightarrow v$ is called the orthogonal projection of H in V and it is a bounded linear operator of norm 1.
Proof. We consider the minimization problem $\min _{w \in V}\|h-w\|$ and we show that it admits a solution which is unique. Since $\|h-w\| \geq 0$ we get that $\inf _{w \in V}\|h-w\|=\delta \geq 0$. Let $v_{n} \in V$ such that $\delta \leq\left\|v_{n}-h\right\| \leq \delta+1 / n$. Then $\left(v_{n}\right)_{n}$ is a Cauchy sequence, since by parallelogram identity and linearity

$$
\left\|v_{n}-v_{m}\right\|^{2}=2\left\|v_{n}-h\right\|^{2}+2\left\|v_{m}-h\right\|^{2}-\left\|\left(v_{n}+v_{m}\right)-2 h\right\|^{2} \leq 2(\delta+1 / n)^{2}+2(\delta+1 / m)^{2}-4\left\|h-\left(v_{n}+v_{m}\right) / 2\right\|^{2} .
$$

We conclude by recalling that since $\left(v_{n}+v_{m}\right) / 2 \in V$ then $\left\|h-\left(v_{n}+v_{m}\right) / 2\right\| \geq \delta$,
$\left\|v_{n}-v_{m}\right\|^{2} \leq 2(\delta+1 / n)^{2}+2(\delta+1 / m)^{2}-4 \delta^{2}=4 \delta / n+4 \delta / m+1 / n^{2}+1 / m^{2} \rightarrow 0 \quad$ as $n, m \rightarrow+\infty$.
Since H is a Banach space there exists $v \in H$ such that $\lim _{n} v_{n}=v$ and since V is closed then $v \in V$. By continuity, we conclude that $\|v-h\|=\delta=\inf _{w \in V}\|h-w\| . v$ is the unique minimizer. Indeed if it were not the case, there would exists $v^{\prime} \in V$ with $\|v-h\|=\left\|v^{\prime}-h\right\|=\delta$. By parallelogram identity

$$
\left\|v-v^{\prime}\right\|^{2}=2\|v-h\|^{2}+2\left\|v^{\prime}-h\right\|^{2}-4\left\|\left(v+v^{\prime}\right) / 2-h\right\|^{2} \leq 2 \delta^{2}+2 \delta^{2}-4 \delta^{2}=0
$$

which implies $\left\|v-v^{\prime}\right\|=0$.
Let $w \in V$. We claim that $(h-v, w)=0$. Since v is the point at minimum distance, then the function $\lambda \rightarrow\|h-v+\lambda w\|^{2}$ has minimum in $\lambda=0$. Differentiating the function in λ it should be that the derivative in 0 is $0 . \frac{\|h-v+\lambda w\|^{2}}{d \lambda}=\frac{(h-v+\lambda w, h-v+\lambda w)}{d \lambda}=2(h-v, w)$. Therefore $(h-v, w)=0$. This means that $h-v \in V^{\perp}$.

Let $v=\operatorname{Pr}_{V}(h), v^{\prime}=\operatorname{Pr}_{V}\left(h^{\prime}\right)$ and let $\alpha, \beta \in \mathbb{R}$. Then $\alpha v+\beta v^{\prime} \in V$ and $\alpha v+\beta v^{\prime}-\alpha h-\beta h^{\prime} \in$ V^{\perp}. Therefore by uniqueness $\operatorname{Pr}_{V}\left(\alpha h+\beta h^{\prime}\right)=\alpha v+\beta v^{\prime}$. Then Pr_{V} is linear. Moreover since $\left(\operatorname{Pr}_{V} h-h, P r_{V} h\right)=0$,
$\|h\|^{2}=\left\|h-P r_{V} h+P r_{V} h\right\|^{2}=\left(h-P r_{V} h+P r_{V} h, h-P r_{V} h+P r_{V} h\right)=\left\|h-P r_{V} h\right\|^{2}+\left\|P r_{V} h\right\|^{2}$.
This implies that for all h with $\|h\| \leq 1,\left\|P r_{V} h\right\|^{2}=\|h\|^{2}-\left\|h-P r_{V} h\right\|^{2} \leq 1$. So $P r_{V}$ is bounded. Moreover if $h \in V$, then $P r_{V} h=h$. Therefore $\left\|P r_{V}\right\|=1$.

Definition 4.8 (Orthonormal set). A set $\left\{u_{i}, i \in I\right\}$ of elements in H is an orthonormal set if $\left\|u_{i}\right\|=1$ for all i and $\left(u_{i}, u_{j}\right)=0$ for all $i \neq j$.
Proposition 4.9. Let $\left\{u_{i}, i \in I\right\}$ be a orthonormal set. Then the following are equivalent

- if $\left(x, u_{i}\right)=0$ for all i, then $x=0$
- $\|x\|^{2}=\sum_{i}\left|\left(x, u_{i}\right)\right|^{2}$ for all $x \in H$,
- for all $x \in H, x=\sum_{i}\left(x, u_{i}\right) u_{i}$, (where the convergence is with respect to the norm of H).

An orthonormal set for which one of the previous conditions hold is called an orthonormal basis. Every Hilbert space admits a orthonormal basis.
Proof. See [2, Proposition 5.28].
Definition 4.10 (Separable space). H is separable if it admits a countable orthonormal basis.
Theorem 4.11 (Computation of the orthogonal projection). Let V be a closed subspace of H and let $\left\{v_{i}, i \in I\right\}$ be an orthonormal basis of V. Then for all $h \in H$,

$$
\operatorname{Pr}_{V}(h)=\sum_{i \in I}\left(h, v_{i}\right) v_{i}
$$

Proof. See [1, Theorem 5.10].

4.3 Hilbert space of random variables and conditional expectation

We fix a probability space $(\Omega, \mathbb{P}, \mathcal{F})$ and we define the space

$$
M^{2}=\left\{X:(\Omega, \mathbb{P}, \mathcal{F}) \rightarrow \mathbb{R} \mid X \text { random variable with } \mathbb{E}\left(X^{2}\right)<+\infty\right\}
$$

Recall that X is a random variable if $X^{-1}(A) \in \mathcal{F}$ for every $A \in \mathcal{B}$ (so for every A in the σ-algebra of Borel sets. Given X random variable, we define $\sigma(X) \subseteq \mathcal{F}$, that is the σ-algebra generated by X, as the minimal σ - algebra contained in \mathcal{F} which contains all the elements $X^{-1}(A)=\{\omega \in \Omega \mid X(\omega) \in A\}$ for every $A \in \mathcal{B}$. So it is the minimal σ-algebra which assures that X is measurable.

Note that if X is a constant random variable, so $X(\omega)=c$ for all $\omega \in \Omega$, then $X^{-1}(A)=\Omega$ if $c \in A$, and $X^{-1}(A)=\emptyset$ if $c \notin A$. So in this case $\sigma(X)=\{\emptyset, \Omega\}$, which is the minimal possible σ-algebra.

We define on M^{2} the scalar product

$$
(X, Y)=\mathbb{E}(X Y)
$$

and the induced norm is

$$
\|X\|=\sqrt{\mathbb{E}\left(X^{2}\right)}
$$

It is possible to prove that M^{2} with this norm and this scalar product is a Hilbert space. Observe that, as we did for L^{p} spaces, we are actually considering class of equivalence of random variables, since we are identifying two random variables X, Y such that $\mathbb{P}(\omega \mid X(\omega)=Y(\omega))=1$.

We consider a σ-algebra $\mathcal{G} \subseteq \mathcal{F}$, and consider the probability space $(\Omega, \mathbb{P}, \mathcal{G})$. On this space we may define the space

$$
M_{\mathcal{G}}^{2}=\left\{X:(\Omega, \mathbb{P}, \mathcal{G}) \rightarrow \mathbb{R} \mid X \text { random variable with } \mathbb{E}\left(X^{2}\right)<+\infty\right\}
$$

Note that $M_{\mathcal{G}}^{2}$ is a closed subspace of M^{2}.
Definition 4.12 (Conditional expectation). We define the conditional expectation of X given \mathcal{G} as the orthogonal projection of $X \in M^{2}$ in the space $M_{\mathcal{G}}^{2}$ as defined and characterized in Theorem 4.7 that is

$$
\mathbb{E}(X \mid \mathcal{G})=\operatorname{Pr}_{M_{\mathcal{G}}^{2}}(X)
$$

or equivalently $\mathbb{E}(X \mid \mathcal{G})$ is the unique random variable in $M_{\mathcal{G}}^{2}$ such that

$$
\mathbb{E}(X-\mathbb{E}(X \mid \mathcal{G}))^{2}=\min _{Z \in M_{\mathcal{G}}^{2}} \mathbb{E}(X-Z)^{2}
$$

In particular $\mathbb{E}(X \mid \mathcal{G})$ is the best predictor of X based on the information contained in \mathcal{G}. Note that $X-\mathbb{E}(X \mid \mathcal{G})$ is orthogonal to every element of $M_{\mathcal{G}}^{2}$ that is

$$
\mathbb{E}(X Y)=\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) Y) \quad \forall Y \in M_{\mathcal{G}}^{2}
$$

In particular, since constant random variables are in $M_{\mathcal{G}}^{2}$ for every \mathcal{G}, we get $\mathbb{E}(X)=\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))$.
Remark 4.13 (Conditioning with respect to a random variable X). A particular case of the previous definition is the following. Let us consider a random variable $X \in M^{2}$, and let $\mathcal{G}=\sigma(X)$ as before. It is possible to show that in this case every \mathcal{G} measurable random variable is a Borel function of X, which means that

$$
M_{\mathcal{G}}^{2}:=\{h(X), \text { for } h: \mathbb{R} \rightarrow \mathbb{R}, \text { borelian function }\}
$$

$h: \mathbb{R} \rightarrow \mathbb{R}$ is a Borel function if for all borelian set $B \subseteq \mathcal{B}(\mathbb{R})$, the set $h^{-1}(B):=\{x \in \mathbb{R} h(x) \in B\}$ is in the Borel σ-algebra (Note that this condition is slightly stronger than asking that h is measurable, since measurable functions satisfies $h^{-1}(B):=\{x \in \mathbb{R} h(x) \in B\} \in \mathcal{M}$, that is are
elements of the σ-algebra of measurable sets (given by sets which differs from Borel sets by subsets of sets of zero Lebesgue measure).

In this case $\mathbb{E}(Y \mid \sigma(X))=\mathbb{E}(Y \mid X)$ is the best predictor of Y given X. In particular $\mathbb{E}(Y \mid X)$ the unique Borel function $h(X)$ which minimizes $\mathbb{E}(Y-h(X))^{2}$:

$$
\mathbb{E}\left[(Y-\mathbb{E}(Y \mid X))^{2}\right]=\mathbb{E}\left[(Y-h(X))^{2}\right]=\min _{f: \mathbb{R} \rightarrow \mathbb{R}, \text { borelian }} \mathbb{E}\left[(Y-f(X))^{2}\right]
$$

and moreover

$$
\mathbb{E}(Y f(X))=\mathbb{E}(h(X) f(X)) \quad \forall f: \mathbb{R} \rightarrow \mathbb{R} . \text { borelian. }
$$

Note that solving this minimization problem can be very difficult, so in general we consider a reduced problem, adding some conditions on the functions f on which we are minimizing.

The simplest case is the case in which we consider the minimization problem among linear functions: that is

$$
\min _{f: \mathbb{R} \rightarrow \mathbb{R}, \text { linear }} \mathbb{E}\left[(Y-f(X))^{2}\right] .
$$

$h: \mathbb{R} \rightarrow \mathbb{R}$ is linear if and only if there exists $a, b \in \mathbb{R}$ such that $h(r)=a r+b$. So the problem reduced to a finite dimensional problem: given $X \in M^{2}$ we want to find for all $Y, a, b \in \mathbb{R}$ for which it is minimal $\mathbb{E}\left((Y-a-b X)^{2}\right)$. So, the linear least square estimator is given by

$$
L(Y \mid X)=a+b X
$$

where a, b are the optimal values which minimize $\mathbb{E}\left((Y-a-b X)^{2}\right)$. This problem can be restated exactly as a projection problem: we define S as the space generated by $X, 1$ in M^{2}, that is $S=\left\{Z=a X+b \in M^{2}, a \in \mathbb{R}, b \in \mathbb{R}\right\}$ and we want to find $\operatorname{Pr}_{S}(Y)$.

In order to solve the problem, first of all we choose an orthonormal basis of S. A basis of S is given by $\{1, X\}$. Observe that if $\mathbb{E}(X)=(X, 1) \neq 0$, we have that X and 1 are not orthogonal, so we substitute X with the element $X-\mathbb{E}(X)$ which is orthogonal to 1 . Moreover we have to normalize this element by choosing $c \in \mathbb{R}$ such that $c^{2} \mathbb{E}(X-\mathbb{E}(X))^{2}=1$. Since $\mathbb{E}(X-\mathbb{E}(X))^{2}=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}=\operatorname{Var}(X)$, it is sufficient to choose $c=\sqrt{\operatorname{Var} X}$. Therefore an orthonormal basis of S is given by $1, \frac{X-\mathbb{E}(X)}{\sqrt{\operatorname{Var}(X)}}$. Recalling Theorem 4.11, we get

$$
\operatorname{Pr}_{S}(Y)=(Y, 1) 1+\left(Y, \frac{X-\mathbb{E}(X)}{\sqrt{\operatorname{Var}(X)}}\right) \frac{X-\mathbb{E}(X)}{\sqrt{\operatorname{Var}(X)}}
$$

So the linear least square estimator coincides with

$$
L(Y \mid X)=\mathbb{E}(Y)+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}(X))
$$

Finally we compute the average error

$$
\begin{aligned}
& \mathbb{E}(Y-L(Y \mid X))^{2}=\operatorname{Var}(Y)+\frac{\operatorname{Cov}^{2}(X, Y)}{\operatorname{Var}^{2}(X)} \operatorname{Var} X-2 \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)} \operatorname{Cov}(X, Y) \\
&=\operatorname{Var} Y-\frac{\operatorname{Cov}^{2}(X, Y)}{\operatorname{Var}(X)}=\frac{\operatorname{Var}(Y) \operatorname{Var}(X)-\operatorname{Cov}^{2}(X Y)}{\operatorname{Var}(X)} .
\end{aligned}
$$

Remark 4.14 (Conditioning with respect to a constant random variable or with respect to a set). A very simple case to compute $\mathbb{E}(Y \mid \sigma(X))=\mathbb{E}(Y \mid X)$ is the case in which $X \equiv k$ (that is X is constant). In this case $\sigma(X)=\{\emptyset, \Omega)$ and the space

$$
M_{\mathcal{G}}^{2}:=\{\text { constant random variables }\} .
$$

So, $\mathbb{E}(Y \mid X)$ is the unique constant c such that

$$
\mathbb{E}\left[(Y-c)^{2}\right]=\min _{\lambda \in \mathbb{R}} \mathbb{E}\left[(Y-\lambda)^{2}\right]
$$

and moreover

$$
\lambda \mathbb{E}(Y)=\mathbb{E}(Y \lambda)=\mathbb{E}(c \lambda)=c \lambda \quad \forall \lambda \in \mathbb{R}
$$

It is immediate to verify that $c=\mathbb{E}(Y \mid \mathcal{G})=\mathbb{E}(Y)$.

4.4 The Hilbert spaces L^{2} and H^{1}

Let us fix an open set $O \subseteq \mathbb{R}^{d}$ and consider the Banach space $L^{2}(O)$ as defined in Definition 3.13. Note that by Holder inequality Theorem 3.16, if $f, g \in L^{2}(O)$, then $f g \in L^{1}(O)$ and then we may define a scalar product on $L^{2}(O)$ as follows:

$$
(f, g)=\int_{O} f(x) g(x) d x
$$

It is immediate to check that actually it is a scalar product and moreover that $\|f\|_{2}=(f, f)^{1 / 2}$. Therefore $L^{2}(O)$ is a Hilbert space.
Example 4.15 (Fourier serie). Let $L^{2}(-\pi, \pi)$. Then it is possible to show that an orthonormal basis of this space is given by $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos (n x)}{\sqrt{\pi}}, \frac{\sin (n x)}{\sqrt{\pi}}, n \in \mathbb{N}\right\}$. By Parseval theorem every function $f \in L^{2}(-\pi, \pi)$ can be written as

$$
f(x)=a_{0}+\sum_{n=1}^{+\infty} a_{n} \cos n x+\sum_{n=1}^{+\infty} b_{n} \sin n x
$$

where

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x .
$$

This is called the Fourier serie of f.
The equality holds in the sense that $\lim _{N}\left\|f-a_{0}-\sum_{n=1}^{N} a_{n} \cos n x-\sum_{n=1}^{N} b_{n} \sin n x\right\|_{2}=0$.
If f is continuous with continuous derivative, then the convergence holds also pointwise.
We introduce the notion of weak derivative for measurable functions (see [1, Section 8.1]).
Definition 4.16. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function then f has weak derivative given by a measurable function w if and only if for every $\phi \in C_{c}^{\infty}(\mathbb{R})$, there holds

$$
\int_{\mathbb{R}} f(x) \frac{d \phi(x)}{d x} d x=-\int_{\mathbb{R}} w(x) \phi(x) d x .
$$

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a measurable function then f has weak gradient given by a measurable function $w=\left(w_{1}, \ldots, w_{d}\right), w_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, if and only if for every $\phi \in C_{c}^{\infty}(\mathbb{R})$, there holds

$$
\int_{\mathbb{R}^{d}} f(x) \partial_{i} \phi(x) d x=-\int_{\mathbb{R}^{d}} w_{i}(x) \phi(x) d x
$$

It is possible to show that if the weak derivative (or weak gradient) exists, then it is unique. We will denote it as f^{\prime} (or $D f$) to be intended in weak sense.

Example 4.17. Obviously if f is also differentiable in the usual sense, then $D f=\nabla f$ (it is just an application of the integration by parts formula).

Let now fix $f(x)=|x|$ for $x \in \mathbb{R}$ and compute the weak derivative. Let us fix a function ϕ which is smooth, has compact support. Then applying the definition we get, using the integration by part formula,

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \phi(x) f^{\prime}(x) d x & =-\int_{-\infty}^{0} \phi^{\prime}(x)(-x) d x-\int_{0}^{+\infty} \phi^{\prime}(x) x d x \\
& =\int_{-\infty}^{0} \phi^{\prime}(x) x d x-\int_{0}^{+\infty} \phi^{\prime}(x) x d x \\
& =[x \phi(x)]_{-\infty}^{0}-\int_{-\infty}^{0} \phi(x) d x-[x \phi(x)]_{0}^{+\infty}+\int_{0}^{+\infty} \phi(x) d x \\
& =-\int_{-\infty}^{0} \phi(x) d x+\int_{0}^{+\infty} \phi(x) d x
\end{aligned}
$$

Therefore, the weak derivative of f is the Heavise function

$$
f^{\prime}(x)=H(x)= \begin{cases}1 & x>0 \\ -1 & x<0\end{cases}
$$

We may wonder if also this function admits a weak derivative $H^{\prime}(x)$. If this exists by definition there holds that for every smooth function with compact support

$$
\int_{\mathbb{R}} H^{\prime}(x) \phi(x) d x=-\int_{\mathbb{R}} \phi^{\prime}(x) H(x) d x=+\int_{-\infty}^{0} \phi^{\prime}(x) d x-\int_{0}^{+\infty} \phi^{\prime}(x) d x=\phi(0)+\phi(0)=2 \phi(0)
$$

where in the second equality we used the definition of H and then we used the fact that $\phi=0$ for $x \rightarrow+\infty,-\infty$.

Therefore

$$
\int_{\mathbb{R}} H^{\prime}(x) \phi(x) d x=2 \phi(0)
$$

for every smooth function for compact support. This means that $H^{\prime}(x)$ is an object which is zero everywhere except at zero, but its integral against a test function ϕ is nonzero. This contradicts our notion, that integrable functions can be changed on a set of measure zero without changing the integral. Indeed, H^{\prime} is not a function in the usual sense, so the Heaviside function has not weak derivative. We may say that H has a derivative in the sense of distribution (so the derivative of H is a measure), and we write $H^{\prime}(x)=2 \delta_{0}(x)$, where δ_{0} is the Dirac δ-distribution, which associate to every smooth function its value at 0 .

We introduce then the Sobolev space, for a given open set $O \subseteq \mathbb{R}^{d}$
$H^{1}(O)=\left\{f \in L^{2}(O) \mid f\right.$ admits a weak gradient $D f=\left(\partial_{1} f, \ldots, \partial_{d} f\right)$, with $w_{i} \in L^{2}(O)$ for all $\left.i\right\}$.
We put on H^{1} the following scalar product: for $f, g \in H^{1}(O)$,

$$
(f, g)=\int_{O}\left(f(x) g(x)+\sum_{i} \partial_{i} f(x) \partial_{i} g(x)\right) d x
$$

Note that it is well posed and it is a scalar product (since $\partial_{i} f, \partial_{i} g$ are in L^{2}, then we may use the Holder inequality to show that $\left.\partial_{i} f, \partial_{i} g \in L^{1}\right)$.

The norm associated with this scalar product is

$$
\left(\int_{\mathbb{R}^{d}}|f(x)|^{2}+|D f(x)|^{2} d x\right)^{1 / 2}
$$

it is easy to show that this norm is equivalent to the following one (which is the norm we are going to use:

$$
\|f\|_{H^{1}}=\|f\|_{L^{2}}+\|D f\|_{L^{2}}
$$

It is possible to show that the space H^{1} with this norm is a Banach space, so, we defined an Hilbert space (see [1, Thm 8.21]).

4.5 Bounded linear operators in Hilbert spaces

Let H be a Hilbert space. We consider linear bounded operators $T: H \rightarrow H$.
Definition 4.18 (Adjoint of an operator). Let $T: H \rightarrow H$ be a bounded linear operator. The adjoint of T is the operator $T^{*}: H \rightarrow H$ such that $(T h, k)=\left(h, T^{*} k\right)$ for all $h, k \in H . T$ is symmetric if $T=T^{*}$.

Proposition 4.19. Let T be a linear bounded symmetric operator. Then $\|T\|=\sup _{\|x\|=1}|(T x, x)|$.

Proof. By Cauchy Schwartz inequality we get

$$
|(T x, x)| \leq\|T x\|\|x\| \leq\|T\|\|x\|^{2}=\|T\| .
$$

On the other hand take $x \in H$ with $\|x\|=1$ and $T x \neq 0$ and define $y=T x /\|T x\|$. Then $\|y\|=1$ and by symmetry and linearity of the operator

$$
(T y, x)=\frac{1}{\|T x\|}(T(T x), x)=\frac{1}{\|T x\|}(T x, T x)=\|T x\|
$$

A simple computation gives that $4(T y, x)=(T(x+y), x+y)-(T(x-y), x-y)$, and then we get

$$
\begin{aligned}
4\|T x\|=4 \mid(T y, x)=(T(x+y), & x+y)-(T(x-y), x-y) \leq \sup _{\|z\|=1}|(T z, z)|\left(\|x+y\|^{2}+\|x-y\|^{2}\right) \\
& =\sup _{\|z\|=1}|(T z, z)|\left(2\|x\|^{2}+2\|y\|^{2}\right)
\end{aligned}
$$

where at the end we used the parallelogram identity. So we deduce, recalling that $\|x\|=1=\|y\|$ that $\|T x\| \leq \sup _{\|z\|=1}|(T z, z)|$. This gives the conclusion taking the supremum with respect to x.

Definition 4.20 (Compact operators). Let $T: H \rightarrow H$ be a linear bounded operator. T is compact if for every bounded sequence $\left(h_{n}\right)_{n}$, there exists a subsequence such that $\left(T h_{n}\right)_{n}$ has a limit, that is $\lim _{n} T h_{n}=v$.

Equivalently (it has to be proved though), an operator is compact if for every sequence $h_{n} \rightharpoonup h$ (h_{n} is weakly converging to h), there holds that $\lim _{n}\left\|T h_{n}-T h\right\|=0$, so $T h_{n}$ converge strongly to Th.

Definition 4.21 (Point spectrum (eigenvalues) of an operator). The point spectrum $\sigma_{p}(T)$ of a operator is given by the eigenvalues of T, that is by the elements $\lambda \in \mathbb{R}$ such that there exists $v \in H$ (called eigenvector) for which $T v=\lambda v$:

$$
\sigma_{p}(T):=\{\lambda \in \mathbb{R} \mid \exists v \in H, T v=\lambda v\}
$$

Given $\lambda \in \sigma_{p}(T)$, every element $v \in H$ such that $T v=\lambda v$ is called eigenvector relative to the eigenvalue λ.

The kernel of an operator is the subspace N of H composed by vectors $h \in H$ such that $T h=0$ (N is the space of eigenvectors relative to the eigenvalue 0).

Theorem 4.22 (Spectral theorem for compact symmetric operators). Let T be a symmetric compact operator on H, separable Hilbert space.

If H is infinite dimensional, then T is not invertible (even if the kernel of T can be 0).
There exist $x_{k} \in H, \lambda_{k} \in \mathbb{R}$, such that $\left\{x_{k}\right\}$ is an orthonormal basis of H and $T x_{k}=\lambda_{k} x_{k}$ (that is λ_{k} are eigenvalues of T with associated eigenvectors x_{k}) and the space $\left\{x \in H T x=\lambda_{k} x\right\}$ for every $\lambda_{k} \neq 0$ has finite dimension (so the multiplicity of every non zero eigenvalue is finite). Moreover the set of all the eigenvalues $\left\{\lambda_{k}\right\}$ of T is either finite or countable, and in this case $\lim _{k} \lambda_{k}=0$:

$$
\text { either } \sigma_{p}(T)=\left\{\lambda_{1}, \ldots, \lambda_{N}\right\} \quad \text { or } \sigma_{p}(T)=\left\{\lambda_{k}, k \in \mathbb{N}\right\} \text { and } \lim _{k \rightarrow+\infty} \lambda_{k}=0
$$

Finally, let

$$
m=\inf _{\{h \in H\|h\|=1\}}(T h, h) \quad M=\sup _{\{h \in H\|h\|=1\}}(T h, h) .
$$

Then $m, M \in \sigma_{p}(T)$ and $\sigma_{p}(T) \subseteq[m, M]$.
Proof. For the proof we refer to [1, Theorem 6.3, Lemma 6.5].

Remark 4.23. Let T be a symmetric compact operator and $\left\{\lambda_{k}\right\}$ the set of all eigenvalues of T. Let $V_{k}=\left\{x \in H, T x=\lambda_{k} x\right\}$ for every k, and P_{k} be the projection on V_{k}. Then

$$
T=\sum_{k} \lambda_{k} P_{k}
$$

Definition 4.24 (Hilbert-Schmidt operator). Let H be a separable. Hilbert space and T a compact symmetric operator. We say that T is an Hilbert Schmidt operator if

$$
\sum_{k} \lambda_{k}^{2}=\sum_{k}\left\|T v_{k}\right\|^{2}<+\infty
$$

where λ_{k} are the eigenvalues of T.
Actually it can be proved that if T is a Hilbert Schmidt operator, the value of the sum $\sum_{k}\left\|T v_{k}\right\|^{2}$ does not depend on the choice of the orthonormal basis v_{k}.

Proposition 4.25. Let H be a separable metric space with orthonormal basis u_{i} and \mathcal{H} be the space of all Hilbert Schmidt operators. Then this space with the norm

$$
\|T\|=\sum_{i}\left\|T u_{i}\right\|
$$

is a Hilbert space with scalar product given by

$$
(S, T)=\sum_{i}\left(S u_{i}, T u_{i}\right)
$$

Example 4.26. [Finite dimensional case] Let $H=\mathbb{R}^{n}$ and $T x=\mathbf{A} x$ for some $n \times n$ matrix \mathbf{A} with values in \mathbb{R}. The adjoint of T is $T^{*} x=\mathbf{A}^{T} x$, where \mathbf{A}^{T} is the traspose of the matrix \mathbf{A}. T is symmetric if and only if \mathbf{A} is symmetric. Moreover the eigenvalues of T are the eigenvalues of the matrix \mathbf{A}.

Finally the spectral theorem for compact symmetric operators says that if \mathbf{A} is a symmetric matrix, then it can be reduced to diagonal form by a orthogonal transformation.

Remark 4.27. Let T be a Hilbert-Schmidt operator, such that 1 is not an eigenvalue of T. Then for all $f \in H$, the equation

$$
h-T h=f
$$

admits a unique solution $h \in H$. Indeed, consider v_{k} an orthonormal basis of H composed by eigenvectors of T. Then we rewrite the equation as

$$
h-T h=\sum_{k}\left(h, v_{k}\right) v_{k}-\sum_{k}\left(h, v_{k}\right) \lambda_{k} v_{k}=\sum_{k}\left(1-\lambda_{k}\right)\left(h, v_{k}\right) v_{k}=f=\sum_{k}\left(f, v_{k}\right) v_{k} .
$$

Therefore the equation is satisfied if

$$
\left(1-\lambda_{k}\right)\left(h, v_{k}\right)=\left(f, v_{k}\right) \quad \text { that is }\left(h, v_{k}\right)=\frac{\left(f, v_{k}\right)}{1-\lambda_{k}}
$$

Then the solution h to the equation is given by

$$
h:=\sum_{k} \frac{\left(f, v_{k}\right)}{1-\lambda_{k}} v_{k} .
$$

4.6 Problems

(i) Let $X_{n}, Y_{n} \in \mathcal{H}$ such that $X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$. Show that

- $\mathbb{E}\left(X_{n}\right) \rightarrow \mathbb{E}(X)$,
- $\left(X_{n}, Y_{n}\right)=\mathbb{E}\left(X_{n} Y_{n}\right) \rightarrow \mathbb{E}(X Y)=(X, Y)$,
$-\operatorname{Cov}\left(X_{n}, Y_{n}\right)=\mathbb{E}\left(X_{n} Y_{n}\right)-\mathbb{E}\left(X_{n}\right) \mathbb{E}\left(Y_{n}\right) \rightarrow \operatorname{Cov}(X Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)$
$-\operatorname{Var}\left(X_{n}\right)=\operatorname{Cov}\left(X_{n}, X_{n}\right) \rightarrow \operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
(ii) Consider $H=L^{2}(-1,1)$.
(a) Let $V_{1}=\{a+b x \mid a, b \in \mathbb{R}, x \in(-1,1)\}$ (the subspace of polynomials of degree less than 1.) Find the orthogonal projection of x^{2} on V_{1}.
(b) Let $V_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}, x \in(-1,1)\right\}$ (the subspace of polynomials of degree less than 2). Find the orthogonal projection of x^{3} on V_{2}.
(iii) Consider $X, Y, Z \in \mathcal{H}$ and assume X, Z are not constant. Compute the least linear quadratic estimator $L(Y \mid X, Z)$. Show that $L(Y \mid X, Z)=L(Y \mid X)+L(Y \mid Z-L(Z \mid X))-\mathbb{E}(Y)$. (Hint: look at Remark ??).
(iv) Let $T: L^{2}(0.1) \rightarrow L^{2}(0,1)$ defined as $T f(x)=\int_{0}^{x} f(y) d y$.

Show that this is a compact operator and compute its adjoint.

References

[1] A. Bressan Lecture notes on Functional Analysis, with applications to Linear Partial Differential Equations Graduate Studies in Mathematics, vol 143, AMS, 2013.
[2] G. Folland Real Analysis: modern tecniques and their applications. Wiley 1999 (2nd ed).

A Solutions to problems Section 2

(i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone function. Show that f is Lebesgue measurable.

It is sufficient to show that for all $c \in \mathbb{R}$ the set $\{x \in \mathbb{R} \mid f(x)>c\}$ is measurable.
Assume that f is monotone increasing (if it is monotone decreasing the argument is analogous). Let $c \in \mathbb{R}$. If $f(x) \leq c$ for all $x \in \mathbb{R}$ then $\{x \in \mathbb{R} \mid f(x)>c\}$ is the empty set and we are done.

Assume now that there exists $\bar{x} \in \mathbb{R}$ such that $f(\bar{x})>c$. By monotonicity we get that $f(y)>c$ for all $y>\bar{x}$. We consider now the set $A_{c}=\{x \in \mathbb{R} \mid f(x)>c\}$. Our aim is to show that this is a measurable set.
We observed that by monotonicity, if $x \in A_{c}$, then $[x,+\infty) \subseteq A_{c}$. So, if A_{c} is not bounded from below, this implies that $A_{c}=\mathbb{R}$ and so we are done. Assume now that A_{c} is bounded from below and define $x_{c}=\inf A_{c}$. For all $x>x_{c}$ we get that $f(x)>c$ and $f(x) \leq c$ for all $x<x_{c}$. This implies that $A_{c}=\left(x_{c},+\infty\right)$ if $f\left(x_{c}\right) \leq c$, and $A_{c}=\left[x_{c},+\infty\right)$ if $f\left(x_{c}\right)>c$. In both cases, $A_{c} \in \mathcal{M}$.

Note that actually we get something more: for all c, we get that A_{c} is a Borel set, so the function f is Borel measurable.
(ii) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a Lebesgue measurable function and let $g: \mathbb{R}^{n} \rightarrow R$ such that $f(x)=g(x)$ for almost every $x \in \mathbb{R}^{n}$. Show that g is Lebesgue measurable.
Let $c \in \mathbb{R}$ and define $A_{c}=\{x \mid f(x)>c\}$ and $B_{c}=\{x \mid g(x)>c\}$. Then, by assumption $\left(A_{c} \backslash B_{c}\right) \cup\left(B_{c} \backslash A_{c}\right)$ has measure 0 . This implies that if $A_{c} \in \overline{\mathcal{M}}$ for all c, then $B_{c} \in \overline{\mathcal{M}}$ for all c, and so g is measurable.
(iii) Consider the right continuous increasing function on \mathbb{R}

$$
F(x)= \begin{cases}x & x<0 \\ x+1 & x \geq 0\end{cases}
$$

Which is the Borel measure associated to this function?
We define $\mu_{F}(a, b]=F(b)-F(a)$, and then we extend it to a measure on the Borel σ algebra. Given F as in the statement, we get that $\mu_{F}(a, b]=b-a$ if $a<b<0, \mu_{F}(a, b]=$ $b+1-(a+1)=b-a$ if $0 \leq a<b$, whereas if $a<0 \geq b$, then $\mu_{F}(a, b]=b+1-a=b-a+1$. Therefore $\mu_{F}=\mathcal{L}+\delta_{0}$.
(iv) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a positive function. Let $F(t)$ the repartition function of f. Recall that $\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{+\infty} F(t) d t$. Show that for all $p>1$

$$
\int_{\mathbb{R}^{n}}|f(x)|^{p} d x=p \int_{0}^{+\infty} t^{p-1} F(t) d t .
$$

So $f \in L^{p}\left(\mathbb{R}^{n}\right)$ if and only if $p \int_{0}^{+\infty} t^{p-1} F(t) d t<+\infty$.
We know that $\int_{\mathbb{R}^{n}}|f(x)|^{p} d x=\int_{0}^{+\infty} F_{p}(t) d t$, where F_{p} is the repartition function of $|f|^{p}$, that is

$$
F_{p}(t)=\mathcal{L}\left\{x \|\left. f(x)\right|^{p}>t\right\}=\mathcal{L}\left\{x \| f(x) \mid>t^{1 / p}\right\}=F\left(t^{1 / p}\right) .
$$

Therefore

$$
\int_{\mathbb{R}^{n}}|f(x)|^{p} d x=\int_{0}^{+\infty} F_{p}(t) d t=\int_{0}^{+\infty} F\left(t^{1 / p}\right) d t=\int_{0}^{+\infty} F(s) p s^{p-1} d s
$$

where the last equality comes from the change of variable $s^{p}=t$.
(v) Let

$$
f(x)= \begin{cases}\frac{1}{|x|} & |x|<1 \\ 0 & |x|>1\end{cases}
$$

For which p, is the function $f \in L^{p}\left(\mathbb{R}^{n}\right)$? For such p, compute $\|f\|_{p}$.
Observe that

$$
A(t)=\{x \mid f(x)>t\}= \begin{cases}\left\{x| | x \mid<t^{-1}\right\} & t>1 \\ \{x| | x \mid<1\} & 0<t \leq 1\end{cases}
$$

So in \mathbb{R}^{n}, we get that the repartition function is given by

$$
F(t):=\mathcal{L}(A(t))=\left\{\begin{array}{ll}
\mathcal{L}\left(B\left(0, t^{-1}\right)\right)=\mathcal{L}(B(0,1)) t^{-n} & t>1 \\
\mathcal{L}(B(0,1)) & 0<t \leq 1
\end{array} .\right.
$$

Therefore by the previous exercise

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|f(x)|^{p} d x=p \int_{0}^{+\infty} t^{p-1} F(t) d t=p \mathcal{L}(B(0,1))\left(\int_{0}^{1} t^{p-1} d t+\int_{1}^{+\infty} t^{p-1-n} d t\right)= \\
&= \begin{cases}p \mathcal{L}(B(0,1))\left(\frac{1}{p}+\frac{1}{n-p}\right)=\frac{n}{n-p} \mathcal{L}(B(0,1)) & p-n<0 \\
+\infty & p-n \geq 0\end{cases}
\end{aligned}
$$

Therefore $f \in L^{p}\left(\mathbb{R}^{n}\right)$ if and only if $p<n$ and $\|f\|_{p}=\left(\frac{n}{n-p} \mathcal{L}(B(0,1))\right)^{1 / p}$.
Finally we observe that $f \notin L^{\infty}\left(\mathbb{R}^{n}\right)$.
(vi) Let

$$
f(x)= \begin{cases}\log \left(\frac{1}{|x|}\right) & 0<|x|<1 \\ 0 & |x|=0\end{cases}
$$

Show that $f \in L^{1}(B(0,1))$.
Is it true that the function f satisfies $f \in L^{p}(B(0,1))$ for every $p \geq 1$?
Is it true that $f \in L^{\infty}(B(0,1))$?
Observe that $f \geq 0$ and for $t>0$,

$$
A(t)=\{x \mid f(x)>t\}=\left\{x| | x \mid<e^{-t}\right\} .
$$

So in \mathbb{R}^{n}, we get

$$
\mathcal{L}(A(t))=\mathcal{L}(B(0,1)) e^{-t n}
$$

Applying the definition we get

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{+\infty} \mathcal{L}(A(t)) d t=\mathcal{L}(B(0,1)) \int_{0}^{+\infty} e^{-t n} d t=\frac{\mathcal{L}(B(0,1))}{n}<\infty .
$$

So $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
Analogously it is possible to show that $f \in L^{p}\left(\mathbb{R}^{n}\right)$ since

$$
\int_{\mathbb{R}^{n}}|f(x)|^{p} d x=p \mathcal{L}(B(0,1)) \int_{0}^{+\infty} t^{p-1} e^{-t n} d t<\infty .
$$

Finally observe that $f \notin L^{\infty}\left(\mathbb{R}^{n}\right)$ since $\lim _{|x| \rightarrow 0} f(x)=+\infty$.
(vii) Let

$$
f(x)= \begin{cases}\frac{1}{|x|} & |x|>1 \\ 1 & |x| \leq 1\end{cases}
$$

For which p, is the function f in the space $L^{p}\left(\mathbb{R}^{n}\right)$?
According to the definition of $L^{p}\left(\mathbb{R}^{n}\right)$, we have to check for which p, the function $|f|^{p}$ is summable in \mathbb{R}^{n}.
Observe that

$$
A(t)=\left\{\left.x| | f(x)\right|^{p}>t\right\}= \begin{cases}\emptyset & t \geq 1 \\ \left\{x| | x \left\lvert\,<t^{-\frac{1}{p}}\right.\right\} & t<1\end{cases}
$$

So

$$
\mathcal{L}(A(t))= \begin{cases}0 & t \geq 1 \\ \mathcal{L}(B(0,1)) t^{-\frac{n}{p}} & t<1\end{cases}
$$

Applying the definition we get

$$
\begin{gathered}
\int_{\mathbb{R}^{n}}|f(x)|^{p} d x=\int_{0}^{+\infty} \mathcal{L}(A(t)) d t=\int_{0}^{1} \mathcal{L}(B(0,1)) t^{-\frac{n}{p}} d t=\left.\mathcal{L}(B(0,1)) \frac{1}{1-\frac{n}{p}} t^{1-\frac{n}{p}}\right|_{0} ^{1} \\
= \begin{cases}+\infty & p \leq n \\
\mathcal{L}(B(0,1)) \frac{p}{p-n} & p>n\end{cases}
\end{gathered}
$$

So the function $f \in L^{p}\left(\mathbb{R}^{n}\right)$ for $p>n$. Note that $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and $\|f\|_{\infty}=1$.

B Solutions to problems Section 3

(i) Let $(X,\|\cdot\|)$ a Banach space and $F: X \rightarrow X$ such that there exists $0<a<1$ for which

$$
\|F(x)-F(y)\| \leq a\|x-y\| \quad \forall x, y \in X
$$

(F is a contraction)
(a) Show that the map F is continuous.
(b) Let $x_{0} \in X$. Define $x_{1}=F\left(x_{0}\right), x_{2}=F\left(x_{1}\right)$ and so on $x_{n}=F\left(x_{n-1}\right)$. Prove that

$$
\left\|x_{n}-x_{n+1}\right\| \leq a^{n}\left\|x_{0}-x_{1}\right\| .
$$

Deduce that $\left(x_{n}\right)_{n}$ is a Cauchy sequence.
(c) Let $\bar{x}=\lim _{n} x_{n}$, where $\left(x_{n}\right)$ has been defined in the previous step. Show that $F(\bar{x})=\bar{x}$. So, \bar{x} is a fixed point of F.
(d) Show that the map F admits a unique fixed point, that is a point such that $\bar{x}=F(\bar{x})$.

This is called Banach-Caccioppoli theorem.
(a) Let $\left(x_{n}\right)$ be a sequence in X which is converging to x. Then $0 \leq\left\|F\left(x_{n}\right)-F(x)\right\| \leq$ $a\left\|x_{n}-x\right\|$, and so $\lim _{n \rightarrow+\infty} F\left(x_{n}\right)=F(x)$ since $\lim _{n \rightarrow+\infty} x_{n}=x$.
(b) By the property of the function F and the definition of the we get that

$$
\begin{gathered}
\left\|x_{n+1}-x_{n}\right\|=\left\|F\left(x_{n}\right)-F\left(x_{n-1}\right)\right\| \leq a\left\|x_{n}-x_{n-1}\right\|= \\
=a\left\|F\left(x_{n-1}\right)-F\left(x_{n-2}\right)\right\| \leq a^{2}\left\|x_{n-1}-x_{n-2}\right\| \leq \ldots \leq a^{n}\left\|x_{1}-x_{0}\right\| .
\end{gathered}
$$

Let $n>m$. Then, by using the triangular inequality, we get

$$
\left\|x_{n}-x_{m}\right\| \leq\left\|x_{n}-x_{n-1}\right\|+\left\|x_{n-1}-x_{n-2}\right\|+\cdots+\left\|x_{m+1}-x_{m}\right\|
$$

By using the previous inequality and recalling that $\sum_{i=0}^{n} a^{i}=\frac{1-a^{n+1}}{1-a}$, we get

$$
\left.\left\|x_{n}-x_{m}\right\| \leq\left(a^{n}+a^{n-1}+\cdots+a^{m}\right)\left\|x_{0}-x_{1}\right\| \leq=\frac{a^{m+1}-a^{n+1}}{1-a} \right\rvert\, x_{0}-x_{1} \|
$$

Since $0<a<1$, we get that $a^{n+1}, a^{m+1} \rightarrow 0$ as $n, m \rightarrow+\infty$. So in particular the previous inequality implies that $\left(x_{n}\right)$ is a Cauchy sequence.
(c) Since $\left(x_{n}\right)$ is a Cauchy sequence, and the space is complete, it is converging to some point x. Using the continuity of F we have that $\lim _{n} F\left(x_{n}\right)=F(x)$. But we recall that $\lim _{n} F\left(x_{n}\right)=\lim _{n} x_{n-1}=x$. So $F(x)=x$.
(d) Let x, z such that $F(x)=x$ and $F(z)=z$. The by the property of F, and recalling that $a<1$,

$$
\|x-z\|=\|F(x)-F(z)\| \leq a\|x-z\|<\|x-z\|
$$

This is not possible unless $\|x-z\|=0$, which implies $z=x$.
(ii) Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. Prove that

$$
\mathcal{L}\left(\left\{x \in \mathbb{R}^{n}| | f(x) \mid>\alpha\right\}\right)^{\frac{1}{p}} \leq \frac{1}{\alpha}\|f\|_{p}
$$

This is called Chebycheff inequality.
Let $A_{\alpha}=\left\{x \in \mathbb{R}^{n}| | f(x) \mid>\alpha\right\}$. Then $\mathbb{R}^{n}=A_{\alpha} \cap\left(\mathbb{R}^{n} \backslash A_{\alpha}\right)$. So we compute, recalling definitions,

$$
\|f\|_{p}^{p}=\int_{\mathbb{R}^{n}}|f(x)|^{p} d x=\int_{A_{\alpha}}|f(x)|^{p} d x+\int_{\mathbb{R}^{n} \backslash A_{\alpha}}|f(x)|^{p} d x \geq \int_{A_{\alpha}}|f(x)|^{p} d x
$$

since $|f|^{p} \geq 0$. Now if $x \in A_{\alpha}$, then $|f(x)|^{p} \geq \alpha^{p}$. Therefore in the previous inequality we get

$$
\|f\|_{p}^{p} \geq \int_{A_{\alpha}}|f(x)|^{p} d x \geq \alpha^{p} \int_{A_{\alpha}} d x=\alpha^{p} \mathcal{L}\left(A_{\alpha}\right)
$$

This gives the desired inequality,

$$
\mathcal{L}\left(A_{\alpha}\right) \leq\left(\frac{\|f\|_{p}}{\alpha}\right)^{p}
$$

after extracting the p rooth.
(iii) Let $f \in L^{\infty}(O) \cap L^{p}(O)$ for some $p>1$.
(a) Show that $f \in L^{q}(O)$ for every $q \geq p$.
(b) Prove that $\lim _{q \rightarrow+\infty}\|f\|_{q} \leq\|f\|_{\infty}$.
(c) By using the Chebycheff inequality prove that for every $a>0$ and every $q \geq p$

$$
a \mathcal{L}\left(\left\{x \in \mathbb{R}^{n}|f(x)|>a\right\}\right)^{\frac{1}{q}} \leq\|f\|_{q}
$$

Observe that if $\mathcal{L}\left(\left\{x \in \mathbb{R}^{n}| | f(x) \mid>a\right\}\right) \neq 0$, then $a \leq \lim _{q \rightarrow+\infty}\|f\|_{q}$.
(d) Using the previous point show that $\lim _{q \rightarrow+\infty}\|f\|_{q} \geq\|f\|_{\infty}$ and therefore by point 2 , $\lim _{q \rightarrow+\infty}\|f\|_{q}=\|f\|_{\infty}$
(a) Since $f \in L^{\infty}$, we get that $|f(x)| \leq\|f\|_{\infty}$ for almost every x. Take $q>p$ and observe that $|f(x)|^{q}=|f(x)|^{p}|f(x)|^{q-p} \leq|f(x)|^{p}\|f\|_{\infty}^{q-p}$ for a.e. x. This implies that

$$
\int_{O}|f(x)|^{q} d x \leq \int_{O}|f(x)|^{p}\|f\|_{\infty}^{q-p} d x=\|f\|_{\infty}^{q-p} \int_{O}|f(x)|^{p} d x<\infty
$$

and so $f \in L^{q}\left(\mathbb{R}^{n}\right)$.
(b) By the previous inequality we get

$$
\|f\|_{q}^{q}=\int_{O}|f(x)|^{q} d x \leq\|f\|_{\infty}^{q-p}\|f\|_{p}^{p}
$$

We extract the q - rooth of both terms and we get

$$
\left[\|f\|_{q} \leq\|f\|_{\infty}^{1-\frac{p}{q}}\|f\|_{p}^{\frac{p}{q}}\right.
$$

So taking the limit as $q \rightarrow+\infty$ (recalling the p is fixed!) we get $\lim _{q \rightarrow+\infty}\|f\|_{q} \leq\|f\|_{\infty}$.
(c) It is just Chebycheff inequality. If $\mathcal{L}\left(\left\{x \in \mathbb{R}^{n}| | f(x) \mid>a\right\} \mid\right) \neq 0$, then sending $q \rightarrow$ $+\infty$, we conclude.
(d) By previous inequality we get

$$
\|f\|_{q} \geq\left(\|f\|_{\infty}-\varepsilon\right)\left|A_{\varepsilon}\right|^{\frac{1}{q}},
$$

where $A_{\varepsilon}=\left\{x \in \mathbb{R}^{n}| | f(x) \mid>\|f\|_{\infty}-\varepsilon\right\}$. Now, by definition of $\|f\|_{\infty}$, we get that for every $\varepsilon>0, \mathcal{L}\left(A_{\varepsilon}\right)>0$ (otherwise if $\mathcal{L}\left(A_{\varepsilon}\right)=0$, then the right L^{∞} norm should be $\left.\|f\|_{\infty}-\varepsilon ..\right)$ This implies that for every $\varepsilon>0$ fixed $\lim _{q \rightarrow+\infty} \mathcal{L}\left(A_{\varepsilon}\right)^{\frac{1}{q}}=1$. Taking the limit in the previous inequality then we have

$$
\lim _{q \rightarrow+\infty}\|f\|_{q} \geq\|f\|_{\infty}-\varepsilon
$$

Now taking the limit $\varepsilon \rightarrow 0$, we obtain the desired inequality $\lim _{q \rightarrow+\infty}\|f\|_{q} \geq\|f\|_{\infty}$, which, together with 2 gives the conclusion.
(iv) Prove that if $f \in L^{2}(-1,1)$ then $f \in L^{1}(-1,1)$ and moreover

$$
\|f\|_{1} \leq \sqrt{2}\|f\|_{2}
$$

Provide an example of a function $f \in L^{1}(-1,1)$ such that $f \notin L^{2}(-1,1)$.
Since $\chi_{(-1,1)} \in L^{2}(-1,1)$, then by Holder inequality $f=f \chi_{(-1,1)} \in L^{1}(-1,1)$. Moreover

$$
\|f\|_{1} \leq\|f\|_{2}\left(\int_{-1}^{1} d x\right)^{\frac{1}{2}}=\sqrt{2}\|f\|_{2}
$$

The function $f(x)=\frac{1}{\sqrt{|x|}}$ is in $L^{1}(-1,1)$ but not in $L^{2}(-1,1)$.
(v) Let $f_{n} \in L^{p}(O)$ such that $f_{n} \rightharpoonup f$ weakly in L^{p} for $p>1$. Show that there exists $C>0$ such that $\left\|f_{n}\right\|_{p} \leq C$.
Let q be the adjoint of p. Define the operator $T_{n}: L^{q}(O) \rightarrow \mathbb{R}$ defined as $T_{n} g=\int_{O} f_{n}(x) g(x) d x$ and $T g=\int_{O} f(x) g(x) d x$. For all n, by Holder inequality this is a linear bounded operator with norm $\left\|T_{n}\right\|=\left\|f_{n}\right\|_{p}$. Observe that since $f_{n} \rightharpoonup f$, we have that for all $g \in L^{q}$, there holds $T_{n} g \rightarrow T g$, so in particular for all $g \in L^{q}$ there exists $C_{g}>0$ such that $\left\|T_{n} g\right\| \leq C_{g}$. We conclude by the uniform boundedness principle.
(vi) Consider the following operator $T: L^{2}(0,2) \rightarrow L^{2}(0,2)$ defined as

$$
T f(x)=\int_{0}^{x} f(y) d y
$$

Show that this is a bounded continuous operator.
First of all T is linear by linearity of the integral.
Note that, by Jensen, and changing the order of integration (observe that $0<y<x<2$) we get

$$
\begin{gathered}
\|T f\|_{2}^{2}=\int_{0}^{2}\left(\int_{0}^{2} \chi_{(0, x)}(y) f(y) d y\right)^{2} d x \leq \int_{0}^{2} 2 \int_{0}^{2} \chi_{(0, x)}(y)|f(y)|^{2} d y=2 \int_{0}^{2} \int_{0}^{x}|f(y)|^{2} d y \\
=2 \int_{0}^{2} \int_{y}^{2}|f(y)|^{2} d x d y=2 \int_{0}^{2}(2-y)|f(y)|^{2} d y \leq 4\|f\|_{2}^{2}
\end{gathered}
$$

where the last inequality comes from the fact that $(2-y) \leq 2$ for $y \in(0,2)$. Therefore

$$
\sup _{\{\|f\| \leq 1\}}\|T f\|_{2} \leq \sup _{\{\|f\| \leq 1\}} 2\|f\|_{2} \leq 2
$$

(vii) Let $O \subseteq \mathbb{R}^{n}$ be a open set, $f_{k}, f \in L^{p}(O)$, for all $k \in \mathbb{N}$.
(a) Show that if $f_{k} \rightarrow f$ (strongly) in $L^{p}(O)$ then $\lim _{k}\left\|f_{k}\right\|_{p}=\|f\|_{p}$.
(b) Show that if $f_{k} \rightharpoonup f$ (weakly) in $L^{p}(O)$ then $\liminf _{k}\left\|f_{k}\right\|_{p} \geq\|f\|_{p}$.
(a) By triangle inequality we get that

$$
-\left\|f_{k}-f\right\|_{p} \leq\left\|f_{k}\right\|_{p}-\|f\|_{p} \leq\left\|f_{k}-f\right\|_{p}
$$

from which we conclude passing to the limit.
(b) We define the function

$$
\operatorname{sign} f(x)= \begin{cases}\frac{f(x)}{|f(x)|} & f(x) \neq 0 \\ 0 & f(x)=0\end{cases}
$$

Note that $f(x) \operatorname{sign} f(x)=|f(x)|$. Let $g(x)=|f(x)|^{p-1} \operatorname{sign} f(x)$. Then $g \in L^{q}(O)$ for $q=\frac{p}{p-1}$, and $\|g\|_{q}=\|f\|_{p}^{\frac{p}{q}}$. Finaly note that $g(x) f(x)=|f(x)|^{p}$. Then, by weak convergence and Holder inequality, we get that

$$
\begin{aligned}
\|f\|_{p}=\int_{O} g(x) f(x) d x=\lim _{k} \int_{O} f_{k}(x) g(x) & d x \\
& \leq \liminf _{k}\left\|f_{k}\right\|_{p}\|g\|_{q}=\liminf _{k}\left\|f_{k}\right\|_{p}\|f\|_{p}^{\frac{q}{p}}
\end{aligned}
$$

which gives the conclusion.
(viii) Let $O \subseteq \mathbb{R}^{n}$ be a open set, let $p \geq 1$ and $q=\frac{p}{p-1}$, its conjugate exponent.

Let $f_{k}, f \in L^{p}(O)$, for all $k \in \mathbb{N}, g_{k}, g \in L^{q}(O)$, for all $k \in \mathbb{N}$.
(a) Assume $f_{k} \rightarrow f$ (strongly) in $L^{p}(O)$ and $g_{k} \rightarrow g$ (strongly) in $L^{q}(O)$. Show that $f_{k} g_{k} \rightarrow f g$ (strongly) in $L^{1}(O)$.
(b) Assume $f_{k} \rightarrow f$ (strongly) in $L^{p}(O)$ and $g_{k} \rightharpoonup g$ (weakly) in $L^{q}(O)$ (this implies in particular that $\left.\left\|g_{k}\right\|_{q} \leq M\right)$.
Show that $f_{k} g_{k} \rightarrow f g$ (strongly) in $L^{1}(O)$.
(a) We have to prove that $\int_{O}\left|f_{k}(x) g_{k}(x)-f(x) g(x)\right| d x \rightarrow 0$ as $k \rightarrow+\infty$. We observe that, by Holder inequality,

$$
\begin{align*}
\int_{O}\left|f_{k}(x) g_{k}(x)-f(x) g(x)\right| d x=\int_{O} \mid f(x) & \left(g_{k}(x)-g(x)\right)+\left(f_{k}(x)-f(x)\right) g_{k}(x) \mid d x \\
\leq \int_{O}\left|f(x) \| g_{k}(x)-g(x)\right| d x & +\int_{O}\left|f_{k}(x)-f(x) \| g_{k}(x)\right| d x \\
\leq & \left\|g_{k}-g\right\|_{q}\|f\|_{p}+\left\|f_{k}-f\right\|_{p}\left\|g_{k}\right\|_{q} . \quad(\mathrm{B} \tag{B.1}
\end{align*}
$$

Sending $k \rightarrow+\infty$, and recalling that $\lim _{k}\left\|g_{k}\right\|_{q}=\|g\|_{q}$, we get the conclusion.
(b) Arguing as in (B.1), we get

$$
\begin{aligned}
& \int_{O}\left|f_{k}(x) g_{k}(x)-f(x) g(x)\right| d x \leq \int_{O} \mid f(x)\left\|g_{k}(x)-g(x)\left|d x+\int_{O}\right| f_{k}(x)-f(x)\right\| g_{k}(x) \mid d x \\
& \leq \int_{O}\left|f(x)\left\|g_{k}(x)-g(x) \mid d x+\right\| f_{k}-f\left\|_{p}\right\| g_{k} \|_{q}\right.
\end{aligned}
$$

Note that $\int_{O}|f(x)|\left|g_{k}(x)-g(x)\right| d x \rightarrow 0$ by weak convergence of g_{k} to g, whereas $\left\|f_{k}-f\right\|_{p} \rightarrow 0$ by strong convergence of f_{k} to f. Moreover recall that there exists $M>0$ such that $\left\|g_{k}\right\|_{q} \leq M$. So, we conclude, sending $k \rightarrow+\infty$ that $\int_{O} \mid f_{k}(x) g_{k}(x)-$ $f(x) g(x) \mid d x \rightarrow 0$.
(ix) Let $O \subseteq \mathbb{R}^{n}$ be a open set, and $f_{k}, f \in L^{2}(O)$, for all $k \in \mathbb{N}$ such that $f_{k} \rightharpoonup f$ weakly in $L^{2}(O)$.
Show that if $\lim _{k}\left\|f_{k}\right\|_{2}=\|f\|_{2}$, then $f_{k} \rightarrow f$ strongly in $L^{2}(O)$.
We compute

$$
\begin{aligned}
\left\|f_{k}-f\right\|_{2}^{2}=\int_{O}\left|f_{k}(x)-f(x)\right|^{2} d x=\int_{O}\left|f_{k}\right|^{2}-2 \int_{O} & f_{k}(x) f(x) d x+\int_{O}|f(x)|^{2} d x \\
& =\left\|f_{k}\right\|_{2}^{2}-2 \int_{O} f_{k}(x) f(x) d x+\|f\|_{2}^{2}
\end{aligned}
$$

Note that by weak convergence, since $f \in L^{2}(O)$ we get that $\lim _{k} \int_{O} f_{k}(x) f(x) d x=\int_{O}|f(x)|^{2} d x=$ $\|f\|_{2}^{2}$ and by assumption $\lim _{k}\left\|f_{k}\right\|_{2}^{2}=\|f\|_{2}^{2}$. Therefore, passing to the limit above we get

$$
\lim _{k}\left\|f_{k}-f\right\|_{2}^{2}=\|f\|_{2}^{2}-2\|f\|_{2}^{2}+\|f\|_{2}^{2}=0
$$

C Solutions to problems Section 4

(i) $\quad-\mathbb{E}\left(X_{n}\right)=\left(X_{n}, 1\right) \rightarrow(X, 1)=\mathbb{E}(X)$, by continuity of the scalar product (as a consequence of Cauchy Schwartz inequality).
$-\left(X_{n}, Y_{n}\right)=\left(X_{n}-X, Y_{n}-Y\right)+\left(X, Y_{n}\right)+\left(X_{n}, Y\right)-(X, Y)$. We conclude observing that $\left(X_{n}-X, Y_{n}-Y\right) \rightarrow 0,\left(X_{n}, Y\right) \rightarrow(X, Y)$ and $\left(X, Y_{n}\right) \rightarrow(X, Y)$.

- the convergence of covariance and variance are immediate consequences of the first two items.
(ii) Consider $H=L^{2}(-1,1)$.
(a) Let $V_{1}=\{a+b x \mid a, b \in \mathbb{R}, x \in(-1,1)\}$ (the subspace of polynomials of degree less than 1.) Find the orthogonal projection of x^{2} on V_{1}.
(b) Let $V_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}, x \in(-1,1)\right\}$ (the subspace of polynomials of degree less than 2). Find the orthogonal projection of x^{3} on V_{2}.
(a) We look for an orthonormal basis of V_{1}. A basis of V_{1} is given by $1, x$. Note that $(x, 1)=\int_{-1}^{1} x d x=0$, so 1 and x are orthogonal. We have to normalize them. We compute $\int_{-1}^{1} d x=2$ and $\int_{-1}^{1}|x|^{2} d x=\frac{2}{3}$. Therefore an orthonormal basis of V_{1} is given by $\left(\frac{1}{\sqrt{2}}, \frac{\sqrt{3} x}{\sqrt{2}}\right)$. By the theorem on orthogonal projection we have that

$$
P_{V_{1}}\left(x^{2}\right)=a_{0} \frac{1}{\sqrt{2}}+a_{1} \frac{\sqrt{3} x}{\sqrt{2}}
$$

where $a_{0}=\left(x^{2}, \frac{1}{\sqrt{2}}\right)$ and $a_{1}=\left(x^{2}, \frac{\sqrt{3} x}{\sqrt{2}}\right)$. We compute

$$
a_{0}=\left(x^{2}, \frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}} \int_{-1}^{1} x^{2} d x=\frac{2}{3 \sqrt{2}} \quad a_{1}=\left(x^{2}, \frac{\sqrt{3} x}{\sqrt{2}}\right)=\frac{\sqrt{3}}{\sqrt{2}} \int_{-1}^{1} x^{3} d x=0
$$

Therefore

$$
P_{V_{1}}\left(x^{2}\right)=\frac{2}{3 \sqrt{2}} \frac{1}{\sqrt{2}}=\frac{1}{3} .
$$

Another way to compute the orthogonal projection is just using the definition: we have to find the point in V_{1} with minimal distance from x^{2}. Every point in V_{1} is defined as $a+b x$ for some a, b, so we have to solve the minimization problem

$$
\begin{gathered}
\min _{a, b \in \mathbb{R}}\left\|x^{2}-a-b x\right\|^{2}=\min _{a, b} \int_{-1}^{1}\left|x^{2}-a-b x\right|^{2} d x \\
=\min _{a, b} \int_{-1}^{1}\left(x^{4}+a^{2}+b^{2} x^{2}-2 a x^{2}-2 b x^{3}+2 a b x\right) d x=\min _{a, b}\left(\frac{1}{5}+2 a^{2}+\frac{b^{2}}{3}-\frac{2}{3} a\right) .
\end{gathered}
$$

The minimum is $1 / 5$ and there are two minimum couples of points: $a=\frac{1}{3}, b=0$ and $a=0, b=0$. Therefore the projection is $1 / 3+0 x=1 / 3$.
(b) The previous point implies that $x^{2}-\frac{1}{3} \in V_{1}^{\perp}$. We have to find a orthonormal basis of V_{2}. In order to have three generators which are orthogonal, we consider $1, x, x^{2}-\frac{1}{3}$. Moreover we normalize them to have norm 1. We compute

$$
\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\frac{2}{5}+\frac{2}{9}-\frac{4}{9}=\frac{2}{5}-\frac{2}{9}=\frac{8}{45} .
$$

So an orthonormal basis of V_{2} is given by $\left(\frac{1}{\sqrt{2}}, \frac{\sqrt{3} x}{\sqrt{2}}, \frac{\sqrt{45}}{\sqrt{8}}\left(x^{2}-\frac{1}{3}\right)\right.$. Again by theorem on orthogonal projections we have

$$
P_{V_{2}}\left(x^{3}\right)=a_{0} \frac{1}{\sqrt{2}}+a_{1} \frac{\sqrt{3} x}{\sqrt{2}}+a_{2} \frac{\sqrt{45}}{\sqrt{8}}\left(x^{2}-\frac{1}{3}\right)=\left(t^{3}, \frac{\sqrt{3} t}{\sqrt{2}}\right) \frac{\sqrt{3} x}{\sqrt{2}}
$$

where $a_{0}=\left(x^{3}, \frac{1}{\sqrt{2}}\right), a_{1}=\left(x^{3}, \frac{\sqrt{3} x}{\sqrt{2}}\right), a_{2}=\left(x^{3}, \frac{\sqrt{45}}{\sqrt{8}}\left(x^{2}-\frac{1}{3}\right)\right)$. It is easy to check that $a_{0}=0=a_{2}$. We compute

$$
a_{1}=\left(x^{3}, \frac{\sqrt{3} x}{\sqrt{2}}\right)=\frac{\sqrt{3}}{\sqrt{2}} \int_{-1}^{1} x^{4} d t=\frac{\sqrt{3}}{\sqrt{2}} \frac{2}{5}
$$

Therefore

$$
P_{V_{2}}\left(x^{3}\right)=\frac{\sqrt{3}}{\sqrt{2}} \frac{2}{5} \frac{\sqrt{3} x}{\sqrt{2}}=\frac{3}{5} x .
$$

(iii) Recalling Remark ?? we have that

$$
L(Y \mid X, Z)=\operatorname{Pr}_{S}(Y)=a+b X+c Z
$$

where S is the space with basis $1, X, Z$.
Observe that by the same argument $L(Z \mid X)=\operatorname{Pr}_{T}(Z)$ where T is the space with a basis given by $1, X$. In particular by Theorem 4.7 we have that $Z-L(Z \mid X) \in T^{\perp}$ and arguing as in Remark ?? $L(Z \mid X)=\mathbb{E}(Z)+\frac{\operatorname{Cov}(X, Z)}{\operatorname{Var}(X)}(X-\mathbb{E}(X))$.
An orthonormal basis of S can be therefore obtained by considering an orthonormal basis of T, which is given by $1, \frac{X-\mathbb{E}(X)}{\sqrt{\operatorname{Var}(X)}}$ as proved in Remark ?? and then adding the element $k(Z-L(Z \mid X))$ where k is such that $\mathbb{E}\left(k(Z-L(Z \mid X))^{2}=1\right.$. Since $\mathbb{E}\left((Z-L(Z \mid X))^{2}=\right.$ $\frac{\operatorname{Var}(Z) \operatorname{Var}(X)-\operatorname{Cov}^{2}(X, Z)}{\operatorname{Var}(X)}$ as proved in Remark ??, we get that $k=\frac{\sqrt{\operatorname{Var} X}}{\sqrt{\operatorname{Var}(Z) \operatorname{Var}(X)-\operatorname{Cov}^{2}(X, Z)}}$. So, as in Remark ??,

$$
\begin{aligned}
L(Y \mid X, Z)= & \left.\mathbb{E}(Y)+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}(X))\right) \\
& +\frac{\operatorname{Var}(X) \operatorname{Cov}(Z, Y)-\operatorname{Cov}(X, Z) \operatorname{Cov}(X, Y)}{\operatorname{Var}(Z) \operatorname{Var}(X)-\operatorname{Cov}^{2}(X, Z)}(Z-L(Z \mid X)) \\
= & \mathbb{E}(Y) \\
& \left.+\frac{\operatorname{Var}(Z) \operatorname{Cov}(X, Y)-\operatorname{Cov}(Z, Y) \operatorname{Cov}(X, Z)}{\operatorname{Var}(Z) \operatorname{Var}(X)-\operatorname{Cov}^{2}(X, Z)}(X-\mathbb{E}(X))\right) \\
& +\frac{\operatorname{Var}(X) \operatorname{Cov}(Z, Y)-\operatorname{Cov}(X, Z) \operatorname{Cov}(X, Y)}{\operatorname{Var}(Z) \operatorname{Var}(X)-\operatorname{Cov}^{2}(X, Z)}(Z-\mathbb{E}(Z))
\end{aligned}
$$

Observe that

$$
\left.\mathbb{E}(Y)+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}(X))\right)=L(Y \mid X)
$$

and moreover

$$
\mathbb{E}(Y)+\frac{\operatorname{Var}(X) \operatorname{Cov}(Z, Y)-\operatorname{Cov}(X, Z) \operatorname{Cov}(X, Y)}{\operatorname{Var}(Z) \operatorname{Var}(X)-\operatorname{Cov}(X, Z)}(Z-L(Z \mid X))=L(Y \mid Z-L(Z \mid X))
$$

This conclude the proof.
(iv) Let $T: L^{2}(0.1) \rightarrow L^{2}(0,1)$ defined as $T f(x)=\int_{0}^{x} f(y) d y$.

Show that this is a compact operator and compute its adjoint.
To prove that it is compact we have to show that if f_{n} converge weakly to f, that is $\lim _{n} \int_{0}^{1} f_{n}(x) g(x) d x=\int_{0}^{1} f(x) g(x) d x$ for all g, then $\left\|T f_{n}-T f\right\|_{2} \rightarrow 0$, We compute, reasoning as above,

$$
\left\|T f_{n}-T f\right\|_{2}^{2}=\int_{0}^{1}\left(\int_{0}^{1} \chi_{(0, x)}(y)\left(f_{n}(y)-f(y)\right) d y\right)^{2} d x
$$

Now $F_{n}(x)=\left(\int_{0}^{1} \chi_{(0, x)}(y)\left(f_{n}(y)-f(y)\right) d y\right)^{2}$ is a function such that $\lim _{n} F_{n}(x)=0$ for all x (by weak convergence, since $\chi_{(0, x)} \in L^{2}$). Moreover by Jensen inequality $F_{n}(x) \leq \int_{0}^{x} \mid f_{n}(y)-$ $\left.f(y)\right|^{2} d y \leq\left\|f_{n}-f\right\|_{2}^{2} \leq\left(\left\|f_{n}\right\|_{2}+\|f\|_{2}\right)^{2}$. Recall that since f_{n} converge weakly then there exists C such that $\left\|f_{n}\right\|_{2} \leq C$ (see Problem v)). This implies that $0 \leq F_{n}(x) \leq 2 C^{2}$. Since constant functions are element in $L^{2}(0,1)$, we conclude by Lebsegue dominated convergence that $\lim _{n}\left\|T f_{n}-T f\right\|_{2}^{2}=0$.

To compute the adjoint we recall that $(T f, g)=\left(f, T^{*} g\right)$ and so we compute, changing the order of integration

$$
(T f, g)=\int_{0}^{1} \int_{0}^{x} f(y) g(x) d y d x=\int_{0}^{1} \int_{y}^{1} g(x) d x f(y) d y
$$

Therefore $T^{*} g(x)=\int_{x}^{1} g(y) d y$.

