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Perron method for the Dirichlet problem.

We approach the question of existence of solution u ∈ C∞(Ω) ∩ C(Ω) of the Dirichlet problem in
an open bounded set Ω ⊆ Rn {

−∆u = 0 x ∈ Ω

u = g x ∈ ∂Ω
(1)

where g ∈ C(∂Ω). Observe that by the weak maximum principle, if a solution of this problem
exists, it is unique.

Subharmonic functions

We prove the following characterization of subharmonic functions.

Proposition 1. Let u ∈ C(Ω). Then the following are equivalent:

(i) for all x ∈ Ω and B(x, r) ⊂⊂ Ω

u(x) ≤
 
B(x,r)

u(y)dy

(i.e. u is subharmonic),

(ii) for all B ⊂⊂ Ω and for all h : B → R which satisfies{
−∆h = 0 x ∈ B

h ≥ u x ∈ ∂B,

one has h(x) ≥ u(x) for all x ∈ B

(iii) for all x ∈ Ω and B(x, r) ⊂⊂ Ω

u(x) ≤
 
∂B(x,r)

u(y)dS(y),

(iv) for all x ∈ Ω and for all ϕ ∈ C2(Ω) such that u − ϕ has a local maximum in x, then
−∆ϕ(x) ≤ 0.

Proof. (i) → (ii). u− h is a subharmonic function in B such that u− h ≤ 0 in ∂B. We conclude
by weak Maximum Principle.

(ii) → (iii). Let x ∈ Ω and B(x, r) ⊂⊂ Ω and take h the solution to{
−∆h = 0 y ∈ B(x, r)

h = u y ∈ ∂B(x, r),
.

Then by the Poisson integral formula (or by the property of spherical mean for harmonic functions)
h(x) =

ffl
∂B(x,r)

h(y)dS(y) =
ffl
∂B(x,r)

h(y)dS(y) . Moreover by (ii), h(x) ≥ u(x), so we conclude.

(iii) → (i). Let x ∈ Ω and B(x, r) ⊂⊂ Ω. Then, by the formula of integral over spheres and by
(iii), ˆ

B(x,r)

u(y)dy =

ˆ r

0

ˆ
∂B(x,s)

u(y)dS(y)ds ≥
ˆ r

0

u(x)nωns
n−1ds = u(x)ωnr

n
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which gives the conclusion.

(iii) → (iv). Let x ∈ Ω, ϕ ∈ C2(Ω) and B(x, r) ⊆ Ω such that u(y) − ϕ(y) ≤ u(x) − ϕ(x) for all
y ∈ B(x, r). Since the inequality holds for every y ∈ B(x, r) we get, by (iii), that for all s ∈ (0, r)

u(x)− ϕ(x) ≥
 
∂B(x,s)

u(y)dS(y)−
 
∂B(x,s)

ϕ(y)dS(y) ≥ u(x)−
 
∂B(x,s)

ϕ(y)dS(y)

We define for s ∈ (0, r)

ψ(s) =

 
∂B(x,s)

ϕ(y)dS(y) =

 
∂B(0,1)

ϕ(x+ sz)dS(z).

We compute, using the divergence theorem,

ψ′(s) =

 
∂B(0,1)

Dϕ(x+ sz) · zdS(z) = 1

nωnsn−1

ˆ
B(x,s)

∆ϕ(y)dy =
s

n

 
B(x,s)

∆ϕ(y)dy.

By Lebesgue theorem lims→0+ ψ(s) = ϕ(x) so

ϕ(x) = ψ(0) ≤ ψ(s) ∀s ∈ (0, r). (2)

Assume now by contradiction that (iv) is not verified, then there exists δ > 0 such that
∆ϕ(x) < −2δ < 0. By continuity there exists s > 0 such that ∆ϕ(y) < −δ for all y ∈ B(x, s).
This gives that ψ′(t) < −δt/n for all t ≤ s, so ψ(t) > ψ(s) for all t ∈ (0, s) and then, integrating

in t ∈ (0, s), ψ(s)− ψ(0) < − δs2

2n < 0 which contradicts condition (2).

(iv) → (iii). Assume by contradiction that (iii) is not verified. So there exists x ∈ Ω and there
exists r > 0 such that

u(x) >

 
∂B(x,r)

u(y)dS(y).

Fix c > 0 sufficiently small such that

u(x)−
 
∂B(x,r)

u(y)dS(y) > cr2. (3)

Let U ∈ C2(B(x, r)) ∩ C(B(x, r)) to be the unique solution to the Dirichlet problem{
−∆U = 0 B(x, r)

U(y) = u(y) y ∈ ∂B(x, r).

Then, U(y) = u(y) on ∂B(x, r) and (by Poisson integral formula) U(x) =
ffl
∂B(x,r)

u(y)dS(y).

Define ϕ(y) = U(y) + c(r2 − |y − x|2). Then u(y) − ϕ(y) = 0 if y ∈ ∂B(x, r), ϕ ∈ C2(B(x, r)
and u(x)−ϕ(x) = u(x)−U(x)− cr2 > 0 by the choice of c in (3). Then max

B(x,r)
u(y)−ϕ(y) > 0

and there exists a point z ∈ B(x, r) (the important thing is that z is in the interior of B(x, r)!)
such that u(z)− ϕ(z) = max

B(x,r)
u(y)− ϕ(y)

By (iv) this implies that −∆ϕ(z) ≤ 0, but ∆ϕ(z) = ∆U(z)− c∆(|z − x|2) = 0− 2cn < 0, and
so we reached a contradiciton.

Definition (Harmonic lifting). Let u be a subharmonic function in Ω and B ⊂⊂ Ω. Then the
harmonic lifting of u in B is the function U which coincides with u in Ω \B and in B solves the
Dirichlet problem {

−∆U = 0 x ∈ B

U = u x ∈ ∂B.
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Remark. By weak maximum principle, it is immediate to show that u ≤ U in Ω.

Remark. LetU be the harmonic lifting of u in B, then U is a subharmonic function.
It is sufficient to show that U satisfies property (ii) in Proposition 1. Let B′ ⊂⊂ Ω and h be

a function {
−∆h = 0 x ∈ B′

h ≥ U x ∈ ∂B′.

If B′ ∩ B = ∅, then it is true that h ≥ u = U since u is subharmonic. For the same reason, if
B′ ∩ B ̸= ∅, in B′ \ (B′ ∩ B), h ≥ u = U . In B′ ∩ B, h,U are both harmonic, and moreover on
∂(B′ ∩B), h ≥ U . So we conclude by weak maximum principle.

Perron solution: existence result

Let Ω be a bounded open set and g ∈ L∞(∂Ω). Define

Sg = {v ∈ C(Ω) | v subharmonic in Ω, v(x) ≤ g(x), x ∈ ∂Ω}.

Remark. The set Sg is not empty and bounded from above.
In fact the constant function inf∂Ω g is in Sg. Moreover by weak maximum principle for all

v ∈ Sg we get v ≤ sup∂Ω g.

Theorem 1. Let Ω be an open and bounded set and g ∈ L∞(∂Ω). Then the function

Hg(x) = sup
v∈Sg

v(x)

is harmonic in Ω.

Proof. Fix x ∈ Ω. We want to show that Hg is harmonic in x.
Let vn be a sequence in Sg such that vn(x) → Hg(x).
Without loss of generality we can assume that vn is equibounded. Indeed, if it is not the case

we consider the sequence ṽn = max(vn, inf∂Ω g). Note that ṽn ∈ Sg, ṽn is equibounded (since
inf∂Ω g ≤ ṽn ≤ sup∂Ω g) and ṽn(x) → Hg(x) (since vn(x) ≤ ṽn(x) ≤ Hg(x)).

So vn is an equibounded sequence in Sg with vn(x) → Hg(x). We fix r > 0 such that
B(x, r) ⊂⊂ Ω and consider for every n the harmonic lifting Vn of vn in B(x, r). Then Vn ∈ Sg, Vn
is equibounded (by weak maximum principle and the fact that vn is equibounded) and Vn(x) →
Hg(x). By Ascoli Arzelà theorem for harmonic functions, eventually passing to a subsequence
(that we still denote with Vn) we get that Vn → V uniformly in B(x, ρ) for every ρ < r. Moreover,
V is harmonic in B(x, r), V (y) ≤ Hg(y) for every y ∈ B(x, r) and finally V (x) = Hg(x).

We claim now that there exists ρ < r such that V (y) = Hg(y) for every y ∈ B(x, ρ). If it is
true, we are done, since then Hg is harmonic in x.

We assume that the claim is not true, so for every ρ we find z ∈ B(x, ρ) such that V (z) < Hg(z).
We prove that this leads to a contradiction.

Take a sequence wn ∈ Sg such that wn(z) → Hg(z). As above, we can assume wlog that wn

is equibounded. Moreover we can also assume that wn ≥ Vn for every n. Indeed, if it is not the
case we consider the sequence w̃n = max(wn, Vn). Note that w̃n ∈ Sg, ṽn is equibounded (since
wn and Vn are equibounded) and w̃n(z) → Hg(z) (since wn(z) ≤ w̃n(z) ≤ Hg(z)).

For every n we consider the harmonic lifting Wn of wn in B(x, ρ). Then Wn ∈ Sg, Wn is
equibounded, Vn(y) ≤ Wn(y) (in particular Vn(x) ≤ Wn(x) ≤ Hg(x)). By Ascoli Arzelà theorem
for harmonic function, eventually passing to a subsequence (that we still denote with Wn) we
get that Wn → W uniformly in B(x, ρ′) for every ρ′ < ρ. Moreover, W is harmonic in B(x, ρ),
V (y) ≤W (y) for every y ∈ B(x, ρ), W (x) = Hg(x) = V (x) and W (z) = Hg(z) > V (z).

So, V,W are two harmonic functions in B(x, ρ) such that V −W ≤ 0, and V (x)−W (x) = 0.
This implies by strong maximum principle that V ≡W in B(x, ρ), in contradiction with the fact
that W (z) > V (z).
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Perron method: study of the boundary behaviour

In theorem 1, we proved that for every bounded function g, there exists a harmonic function
Hg ∈ C∞(Ω) which solves {

−∆Hg = 0 x ∈ Ω

Hg ≥ g x ∈ ∂Ω.

Now, we assume that g ∈ C(∂Ω) and we wonder under which conditions Hg is the solution of
the Dirichlet problem (1), in particular under which conditions we can prove that, for all x0 ∈ ∂Ω,

lim
x→x0, x∈Ω

Hg(x) = g(x0). (4)

Indeed if we prove this identity, we get that Hg ∈ C∞(Ω) ∩ C(Ω) and coincides with g on the
boundary of Ω.

Remark. Observe that in general we cannot expect that (4) holds true for every Ω bounded.
Consider the following example. Let Ω = {x ∈ R2 | 0 < |x| < 1} and g ∈ C(∂Ω) defined as

follows: g(x) = 0 for |x| = 1, g(0) = 1. Then in this case Hg ≡ 0 (and in particular it is not a
solution of the Dirichlet problem with boundary data g since Hg(0) = 0 ̸= 1).

In fact, 0 ∈ Sg, so Hg(x) ≥ 0 for every x ∈ Ω.
Let v ∈ Sg. So by weak maximum principle v(x) < 1 for every x ∈ Ω. Fix δ > 0 and

ε = ε(δ) ∈ (0, 1) such that −δ log(ε) > 1. Consider now the function wδ(x) = −δ log |x|. This
is harmonic in ε < |x| < 1, moreover wδ(x) = 0 if |x| = 1 and wδ(x) = −δ log ε > 1 if |x| = ε.
This implies by weak maximum principle that v(x) ≤ wδ(x) for every ε ≤ |x| ≤ 1. Moreover
wδ(x) > 1 ≥ v(x) also for every |x| ≤ ε. Then wδ(x) ≥ v(x) for every 0 < |x| ≤ 1 and every
v ∈ Sg, which implies that Hg(x) ≤ −δ log |x| for every 0 < |x| ≤ 1, and every δ > 0, which gives
the conclusion letting δ → 0.

The continuity assumption (4) on the boundary is connected with the geometric properties of
the boundary through the concept of barrier.

Definition (Regular points). Let x0 ∈ ∂Ω. Then x0 is a regular point (with respect to the
Laplacian), if there exists a (local) barrier at x0.

Definition (Local barrier). Let x0 ∈ ∂Ω. Then w is a local barrier at x0 if there exists a
neighbourhood U of x0 such that w ∈ C(Ω ∩ U) and

(i) w is superharmonic in Ω ∩ U ,

(ii) w(x0) = 0 and w(x) > 0 for every x ∈ Ω ∩ U \ {x0}.

Remark. A barrier w in x0, is a local barrier, with U = Rn. Given a local barrier in x0, it is
always possible to construct a barrier in x0 as follows. Let r > 0 such that B(x0, r) ⊂⊂ U and
m = inf(U\B(x0,r))∩Ω w > 0. Define

w(x) =

{
min(m,w(x)) x ∈ B(x0, r) ∩ Ω

m elsewhere.

Then w is a barrier in x0 (check it).

Theorem 2. [Wiener theorem] Let Ω be an open bounded set, g ∈ L∞(∂Ω). Let x0 ∈ ∂Ω.
If x0 is regular (with respect to the Laplacian) and g is continuous in x0, then (4) holds in x0.

Proof. Let w be a barrier in x0. Fix ε > 0, then there exists δ > 0 such that for all y ∈ ∂Ω with
|y−x0| ≤ δ, g(y)− g(x0)| ≤ ε. Let M = ∥g∥∞ and fix k > 0 such that kw(y) > 2M for all y ∈ ∂Ω
with |y − x0| > δ.

Consider the function u(x) = ϕ(x0)−ε−kw(x). Then this function is subharmonic in Ω (since
w is superharmonic). Moreover, if y ∈ ∂Ω with |y − x0| ≤ δ, u(y) ≤ ϕ(x0) − ε ≤ ϕ(x0) and if
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y ∈ ∂Ω with |y − x0| > δ, u(y) ≤ ϕ(x0) − ε − 2M ≤ ϕ(y). So u ∈ Sg and then Hg(x) ≥ u(x) for
every x ∈ Ω.

Consider the function v(x) = ϕ(x0) + ε + kw(x). Then v is superharmonic in Ω. Moreover,
if y ∈ ∂Ω with |y − x0| ≤ δ, v(y) ≥ ϕ(x0) + ε ≥ ϕ(x0) and if y ∈ ∂Ω with |y − x0| > δ,
v(y) ≥ ϕ(x0) + ε+ 2M ≥ ϕ(y). So by weak maximum principle v(x) ≥ u(x) for every u ∈ Sg and
then Hg(x) ≤ v(x) for every x ∈ Ω.

Therefore we proved that

ϕ(x0)− ε− kw(x) ≤ Hg(x) ≤ ϕ(x0) + ε+ kw(x) ∀x ∈ Ω.

We let x→ x0 and we get the conclusion.

From theorem 1 and theorem 2 we get the following result:

Corollary 1. For every g ∈ C(∂Ω), the Dirichlet problem (1) admits a unique solution u ∈
C∞(Ω) ∩ C(Ω) iff all the boundary points of Ω are regular.

Proof. If g is continuous and all the points of the boundary are regular, then Hg is a solution of
(1), and it is unique by weak maximu principle.

If (1) admits a solution for every continuous boundary data, take x0 ∈ ∂Ω and the solution u
to (1) with g(x) = |x− x0|. Then the solution u to (1) is a barrier in x0.

Regular boundary points

It remains open the question: for which domains Ω all the boundary points are regular? Sufficient
conditions for this property to hold can be stated in terms of local geometric (for n > 2) or
topological (for n = 2) properties of the boundary.

We mention some of these conditions.

Definition. Let Ω be a open set of Rn. Ω has the exterior ball property if at every point x ∈ ∂Ω,
there exists y ∈ Rn \ Ω and r > 0 such that B(y, r) ⊂ Rn \ Ω, B(y, r) ∩ Ω = {x}.

Remark. Observe that if Ω is convex, then the exterior ball condition is satisfied, due to the Hahn
Banach separation theorem. Indeed at every point of ∂Ω it is possible to construct an hyperplane
passing through that point and such that Ω is entirely contained in one of the two half spaces in
which the space is divided by the hyperplane.

Observe that Ω of class C1 is not sufficient to assure that the exterior ball condition is satisfied.
E.g consider Ω = {(x1, x2) ∈ R2 | x2 > x21 log |x1|}. Then Ω is of class C1 but in (0, 0) the exterior
ball condition is not satisfied. Indeed to prove this, let f(x) = x2 log |x| and g(x) =

√
r2 − x2 − r,

for r > 0 to be fixed. Note that f(0) = g(0) = 0. If the exterior ball condition were satisfied in
(0, 0), then there would exist r > 0 such that f(x) > g(x) for every x ∈ (−r, r), x ̸= 0. But this is
not the case, since f ′(x) < g′(x) for x→ 0+ and f ′(x) > g′(x) for x→ 0−.

If Ω is of class C2, then it satisfies the exterior ball condition (also the interior ball condition).
Let x ∈ ∂Ω. Up to a suitable choice of coordinates, we can assume that x = 0 and that the
exterior normal at Ω in 0 is en = (0, . . . , 0, 1). Let r > 0 and f ∈ C2(Rn−1,R), such that
Ω ∩ B(0, r) = {xn < f(x1, . . . , xn−1)}. Note that f(0) = 0, and that Df(0) = 0. By Taylor
theorem, |f(x)| ≤ M(x21 + · · · + x2n−1) for some M and x in a neighbourhood of 0. Let y = δen,
δ > 0 (note that y ∈ Rn \ Ω). We show that we can choose δ > 0 sufficiently small such that
B(y, δ) ⊂ Rn \ Ω, B(y, r) ∩ Ω = {0}. If x ∈ B(y, δ), x ̸= 0, then |x− y|2 = |x|2 − 2δxn + δ2 ≤ δ2.
So |x|2 − 2δxn ≤ 0. Then f(x1, . . . , xn−1) ≤M |x|2 ≤ 2Mδxn < xn if δ < 1

2M , which implies that
x ∈ Rn \ Ω.

Proposition 2. Let Ω be a bounded open set and x0 ∈ ∂Ω such that in x0 it is satisfied the
exterior ball condition: there exists y0 ∈ Rn \ Ω and r0 > 0 such that B(y0, r0) ∩ Ω = {x0}. Then
x0 is regular (with respect to the Laplacian).
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Proof. A barrier in x0 is the function

w(x) =

{
1

rn−2
0

− 1
|x−y0|n−2 n > 2

log |x−y0|
r0

n = 2.

Proposition 3. Let Ω ⊆ R2 be a bounded open set with 0 ∈ ∂Ω and consider the polar coordinates
r, θ with origin 0. Suppose there exists a neighbourhood U of 0 such that in Ω ∩ U a single valued
branch of θ is defined. Then 0 is regular.

Proof. A barrier in 0 is the function

w(ρ, θ) = − log r

(log r)2 + θ2
.

Note that w is the real part of the complex function − 1
log(z) .

Remark. Similarly, a point on the boundary of Ω ⊂ R2 is regular if it is accessible from the
complement of Ω by a simple arc. The same is not true in general for n ≥ 3 (for more details, see
the example due to Lebesgue ([DiBenedetto, PDEs, chapter 2, section 7.2].

Proposition 4. Let Ω be a bounded open set and x0 ∈ ∂Ω such that in x0 it is satisfied the
exterior cone condition: there exists a cone C with int C ̸= ∅ and a neighbourhood U of x0 such
that such that (x0 + C) ∩ U ⊂ Rn \ Ω. Then x0 is regular (with respect to the Laplacian).

We recall the definition of cone.

Definition (Cone). C ⊆ Rn is a (convex) cone if for every x, y ∈ C then x+ y ∈ C and λx ∈ C
for every λ > 0.

Observe C ⊆ R2 is a convex circular cone iff there exists α ∈ (0, 2π) (called the opening angle)
such that, up to a suitable change of coordinates,

C = {x ∈ R2 | arg x ∈ (−α, α)}

where arg x is the argument of x (arctan(x2/x1)). A similar representation formula holds for
spherical cones in Rn (using spherical coordinates).

Remark. It is possible to prove that if Ω is of class C1, then at every boundary point of Ω it is
satisfied the exterior cone condition (and also the interior cone condition).

Actually, in order to the (exterior and interior) cone condition to be satisfied it is sufficient that
the boundary of Ω is Lipschitz. This means that at every x ∈ ∂Ω there exists a neighbourhood
U of x, a open bounded set D ⊆ Rn−1 and a Lipschitz function ϕ : D → R such that (up to a
suitable orthogonal transformation of coordinates)

∂Ω ∩ U = {(x, ϕ(x)) |x ∈ D}.

Proof. We prove the statement only in dimension 2 (the proof in dimension n ≥ 3 is completely
analogous, only a bit more involved).

Fix x0 ∈ ∂Ω and first of all observe that we can reduce to the case of spherical cone (with
opening angle α). Moreover, up to a translation, we can assume x0 = 0. Consider the function

w(ρ, θ) = ρλ cos(λθ)

with λ > 0 to be fixed. Put w(0) = 0.
The Laplacian in polar coordinates reads as follows (exercise)

uρρ +
1

ρ
uρ +

1

ρ2
uθθ.

Then −∆w(x) = 0 for every x ̸= 0. So in particular w is harmonic in Ω, and w(0) = 0.
Finally if we choose λ = π

2α , then the function −ρλ cos(λθ) is a barrier at x0, since it is
harmonic in Ω, it is zero in 0 and it is positive on points with argument θ ∈ (α, 2π − α) .
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