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An application in population genetics.

We refer to the paper by Aronson and Weinberger Multidimensional nonlinear diffusion
arising in population genetics, Advances in Mathematics 30, pag 33-76, 1978.

Let consider a population of diploid individuals in a habitat Ω. Assume that the gene in specific
chromosome pair appears in 2 allelic forms a,A. Then the population is divided in 3 types: one
with genotype aa or AA (homozygotes) and one with genotype aA (heterozygotes). Moreover we
assume that the death rate in the population depends on the genotype, and we define 3 positive
constants τ1, τ2, τ3 ∈ (0, 1), which are the death rates respectively of type aa, aA and AA. We
can assume without loss of generality that one type of homozigotes has death rate bigger than the
other, so we assume

τ1 ≥ τ3.

Let
ρ1(x, t)= density of the population with genotype aa at place x at time t,
ρ2(x, t)= density of the population with genotype aA,
ρ3(x, t)= density of the population with genotype AA.

Assume that the growth rate of the population is constant, say r > 0, and that the population
is spreading in the habitat Ω with diffusion constant 1. Let ρ(x, t) = ρ1(x, t) + ρ2(x, t) + ρ3(x, t)
the total density. Under our assumptions, the densities satisfy the following system
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Define

u(x, t) =
ρ3 + 1

2ρ
2

ρ

be the relative density of allele A at place x at time t. Under appropriate assumptions (in particular
assuming that |τ1− τ2|+ |τ2− τ3|+ |τ3− τ1| is small), it is possible to justify the fact that u solves
the following semilinear problem

ut −∆u = F (u) x ∈ Ω× (0,+∞)

u(x, 0) = u0(x) x ∈ Ω

u(x, t) = 0 x ∈ ∂Ω, t > 0

where
F (u) = u(1− u)[(τ1 − τ2)− (τ1 + τ3 − 2τ2)u].

The initial distribution is u0(x) ∈ C(Ω), with

0 ≤ u0(x) ≤ 1 ∀x ∈ Ω

(since it is a density).
The euristic argument for this derivation can be found in the paper by Fischer (1937) and in

previous papers by Aronson and Weinberger.
First of all observe that 0, 1 are equilibria of the system, and moreover 0 ≤ u0 ≤ 1. So by

comparison principle, we obtain that

0 ≤ u(x, t) ≤ 1 ∀(x, t) ∈ Ω× [0,+∞).

We consider 3 different cases.
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Heterozygote intermediate Assume that τ3 ≤ τ2 < τ1.

Under this case, note that F (s) > 0 for all s ∈ (0, 1), F ′(0) > 0 and F ′(1) < 0. In this
case the state 1 is stable, whereas 0 is unstable. More precisely, we get that for every initial
distribution u0 such that u0 ̸≡ 0, then

lim
t→+∞

u(x, t) = 1

uniformly, with exponential rate depending on F ′(1).

In this case, we expect that in large time allele a will disappear.

Heterozygote superior Assume that τ2 < τ3 ≤ τ1.

In this case

c :=
τ1 − τ2

(τ1 − τ2) + (τ3 − τ2)
∈ (0, 1)

is another equilibrium of the system in [0, 1] besides 0, 1. Moreover F (s) > 0 for every
s ∈ (0, c), F (s) < 0 for every s ∈ (c, 1), F ′(0) > 0, F ′(1) > 0, F ′(c) < 0. So c is the only
stable equilibrium and that for every initial distribution u0 such that u0 ̸≡ 0, u0 ̸≡ 1, then

lim
t→+∞

|u(x, t)− c| = 0

uniformly, with exponential rate depending on F ′(c).

In this case, we expect that in large time, the distribution of allele A is constant (given by
c) and then also the distribution of allele a is constant (given by 1− c).

Heterozygote inferior Assume that τ3 ≤ τ1 < τ2.

Also in this case there is another equilibrium of the system, which the same as above

c :=
τ2 − τ1

(τ2 − τ1) + (τ2 − τ3)
∈ (0, 1).

Differently from the previous case, we get F (s) < 0 for every s ∈ (0, c), F (s) > 0 for every
s ∈ (c, 1), F ′(0) < 0, F ′(1) < 0, F ′(c) > 0. In this case 0, 1 are two stable equilibria and c is
unstable. If the initial distribution u0 is such that u0 ̸≡ c, and u0(x) ≤ c for every x, then

lim
t→+∞

u(x, t) = 0

uniformly, with exponential rate depending on F ′(0).

If the initial distribution u0 is such that u0 ̸≡ c, and u0(x) ≥ c for every x, then

lim
t→+∞

u(x, t) = 1

uniformly, with exponential rate depending on F ′(1).

This means that, if the initial distribution of allele A is under a given threshold (c), then we
expect that in large time allele A will disappear. On the other hand, if allele s is above the
same threshold (c), then we expect that in large time allele a will disappear.

The latest case, the case of heterozygote inferior, is the most interesting one. In this case, we
have 2 stable equilibria and one unstable equilibrium. The next point will be to study which one
between the two stable equilibria is more attractive.
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