SCHEDULE.

- thursday October 19, 14.30-17.30,
- thursday October 26, 14.30-17.30,
- thursday November 2, 14.30-17.30,
- thursday November 9, 14.30-17.30,
- thursday November 16, 14.30-17.30,
- thursday November 23, 14.30-17.30,
- thursday November 30, 14.30-17.30,
- thursday December 7, 14.30-17.30,
- Final exam (written exam): to be fixed (either in the week 18-22 December or in the week 8-12 January.

PRELIMINARY PROGRAM.

Measure theory and integration.

- Definition of σ-algebras, definition of measures, measure spaces. Completion of a σ-algebra.
- Borel σ - algebras and Borel measures. Characterization of σ-finite Borel measures on \mathbb{R} in terms of the cumulative distribution function, the Lebesgue measure on \mathbb{R}.
- Measurable functions, in particular Lebesgue measurable functions and random variables. Definition of the Lebesgue integral.
- Singular measures with respect to the Lebesgue measure. Absolutely continuous measure with respect to Lebesgue measure. Density of an absolutely continuous measure. The Lebesgue-Radon-Nikodym decomposition. Distribution of random variables (discrete and continuous).

Hilbert and Banach spaces.

- L^{p} spaces and spaces of random variables with finite p-moment. Definition of Banach spaces, norms, metric structure induced by the norm. Young inequality, Hölder inequality, Minkowski inequality, with applications, e.g. boundedness of moments of a random variable.
- Bounded linear operators.
- Hilbert spaces, theorem of orthogonal projection and conditional expectation. Orthonormal basis of a Hilbert space, computation of the orthogonal projection. Linear least square estimator.
- Bounded linear operators in a Hilbert space, adjoint of an operator, eigenvalues, spectrum. Spectral theorem for compact symmetric operators, Hilbert-Schimdt operators.

Textbook.

- Lecture notes by the teacher (and references therein).
- G. B. Folland Real Analysis: modern tecniques and their applications. Wiley 1999 (2nd ed)

