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Maximum principle for parabolic operators: an application
to semilinear equations

Let Ω ⊂ Rn be a open set , T > 0 and ut + Lu a parabolic operator for which weak maximum
principle holds (e.g we can think of ut −∆u).

We want to study some qualitative properties of solutions to the semilinear Cauchy Dirichlet
problem

(C)


ut + Lu = F (u) (x, t) ∈ Ω× (0,+∞)

u(x, t) = g(x, t) x ∈ ∂Ω t ∈ (0,+∞)

u(x, 0) = u0(x) x ∈ Ω.

The operator is ut +L(u)−F (u), which is semilinear, so in general we cannot expect to apply all
the theory developed for linear operators.

We will assume the following condition on the reaction term F .

Assumption 1. Let F : R → R be a locally Lipschitz continuous function, i.e. for every K
compact of R there exists LK > 0 such that

|F (a)− F (b)| ≤ LK |a− b| ∀a, b ∈ K.

Comparison priciple

Proposition 1 (Comparison principle). Let u, v ∈ C2,1(ΩT ) ∩ C(ΩT ) such that ut + Lu ≤ F (u)
and vt + Lv ≥ F (v) in ΩT .

Then if u ≤ v on ∂⋆ΩT , u ≤ v in ΩT .

Proof. Define CT = maxΩT
(|u|+|v|) (this exists finite since u, v are continuous and ΩT is compact).

Define now

cT (x, t) =

{
F (u(x,t)−F (v(x,t))

u(x,t)−v(x,t) (x, t) ∈ ΩT u(x, t) ̸= v(x, t)

0 (x, t) ∈ ΩT u(x, t) = v(x, t).
(1)

Note that, since F is Lipschitz in the compact set [−CT ,+CT ], then cT (x, t) is bounded (and its
sup norm is given by the Lipschitz constant of F in [−CT ,+CT ]).

Define w = u − v. It satisfies wt + Lw ≤ F (u) − F (v) = cT (x, t)w, so in particular w is a
subsolution of the linear equation wt+Lw−cTw ≤ 0 with w ≤ 0 on ∂⋆ΩT . So, by weak comparison
principle, we obtain w ≤ 0 in ΩT .

Theorem 1 (Uniqueness). Let f ∈ C(Ω × (0,+∞)), g ∈ C(∂Ω × (0,+∞)) and u0 ∈ C(Ω), such
that g(x, 0) = u0(x). There the problem (C) admits at most one solution u ∈ C2(Ω × (0,+∞) ∩
C(Ω× [0,+∞)).

Proof. Let u1, u2 two solutions. Fix T > 0 and consider the problem in ΩT . Then w = u1 − u2

satisfies wt + Lw = c(x, t)w, where cT is defined as in (1). By comparison principle we get that
u1 = u2 in ΩT and conclude by arbitrariness of T > 0.

Stability properties of equilibria.

We consider the Cauchy Dirichlet problem in Ω× (0,+∞)

(RD)


ut + Lu = F (u) (x, t) ∈ Ω× (0,+∞)

u(x, 0) = u0(x) x ∈ Ω

u(x, t) = 0 (x, t) ∈ ∂Ω× (0,+∞).
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Definition. A value u ∈ R such that F (u) = 0 is called an equilibrium (or a stationary solution )
of the system. Indeed the constant function u(x, t) ≡ u is a solution to the equation ut+Lu = F (u).

We start with a simple observation.

Proposition 2. Assume that F ∈ C1(R) and

F (s)s < 0 ∀s ̸= 0.

This in particular impies that 0 is an equilibrium. Then, if u solves (RD) then

lim
t→+∞

u(x, t) = 0 uniformly in Ω.

If moreover
F ′(0) = −α < 0,

then for every 0 < β < α there exists Cβ > 0 such that

|u(x, t) ≤ Cβe
−βt

for every x ∈ Ω and t > 0.

Proof. Consider the ordinary differential equation

U ′ = F (U).

Then if U(t) solve this ODE, then it is also a solution (independent of x) to ut + Lu = F (u).
Consider the Cauchy problem {

U ′(t) = F (U(t)) t > 0

U(0) = ∥u0∥∞.
(2)

This Cauchy problem admits a unique solution U , moreover U ′(t) < 0 for every t > 0, 0 < U(t) ≤
∥u0∥∞ and limt→+∞ U(t) = 0. Moreover U(t) is also a solution to Ut + LU = F (U) with U ≥ u0

for every x ∈ Ω, and U > 0. So by comparison principle, if u(x, t) is the solution to (RD),

u(x, t) ≤ U(t) ∀x ∈ Ω, t ≥ 0. (3)

Analogously we consider the solution V (t) to the Cauchy problem (2) with initial data −∥u0∥∞.
Reasoning as before, V ′(t) > 0 for every t > 0, −∥u0∥∞ ≤ V (t) < 0 and limt→+∞ V (t) = 0. Again
by comparison we get

u(x, t) ≥ V (t) ∀x ∈ Ω, t ≥ 0. (4)

(3) and (4) give the conclusion.
Assume now that F ′(0) = −α < 0. Fix 0 < β < α = |F ′(0)| and take C = C(β) such that

F (s) ≤ −βs ∀s ∈ [0, C].

Take U solution to (2) with initial data ∥u0∥∞ and fix T = T (C) = T (β) ≥ 0 such that U(T ) ≤ C
(recall that U is monotonically decreasing to 0, starting from ∥u∥∞. So, for every t ≥ T , U(t) ≤ C
and moreover F (U(t)) ≤ −βU(t).

So, by a comparison argument for solutions to Cauchy problems,

U(t) ≤ CeβT e−βt ∀t ≥ T.

Eventually taking a bigger constant C = C(∥u0∥∞, β), we obtain that

U(t) ≤ Ce−βt ∀t ≥ 0.

So, again by comparions principle, we can rewrite inequality (3) as follows: for every β < |F ′(0)|
there exists a constant C(∥u0∥∞, β) such that

u(x, t) ≤ Ce−βt ∀x ∈ Ω, t ≥ 0.

As for the inequality (4) we argue analogously.
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Definition. Let u ∈ R be a equilibrium. u is stable (with respect to uniform convergence) if there
exists δ > 0 such that for every u0 ∈ C(Ω) with

|u0(x)− u| ≤ δ ∀x ∈ Ω

then the solution u to (RD) satisfies

|u(x, t)− u| → 0 as t → +∞, uniformly in Ω.

An equilibrium u is unstable (with respect to uniform convergence) if for every δ > 0 there
exists tδ > 0 such that for every u0 ∈ C(Ω) with

|u0(x)− u| ≤ δ ∀x ∈ Ω

then the solution u to (RD) satisfies

sup
x∈Ω

|u(x, t)− u| ≥ δ if t ≥ tδ.

Proposition 2 gives a sufficient condition for an equilibrium to be stable, as we see in the
following proposition.

Proposition 3. Let u be an equilibrium, such that F ′(u) < 0. Then there exists δ > 0 such that
for every β < |F ′(u)|, there exists C = C(β, δ) for which if |u0−u| ≤ δ, the solution to (RD) with
initial datum u0 satisfies

|u(x, t)− u| ≤ Ce−βt ∀t > 0.

In particular u is a stable equilibrium (actually it is exponentially asymptotically stable).

Proof. The proof is a simply adaptation of the arguments in the proof of Proposition 2, once one
observes the following.

Let δ > 0 such that F (s) < 0 for every s ∈ (u, u + δ) and F (s) > 0 for every s ∈ (u − δ, u).
Consider the solution U to (2) with initial data u + δ. Then, by uniqueness of solutions to the
Cauchy problem, U ′(t) < 0, U(t) ∈ [u, u+ δ] for every t ≥ 0 and limt→+∞ U = u. Analogously, if
V is a solution to (2) with initial datum u − δ, then V ′(t) > 0, V (t) ∈ [u − δ, u] for every t ≥ 0
and limt→+∞ V = u. So, by comparison, |u(x, t)− u| → 0 uniformly in Ω as t → +∞.

To get the exponential decay estimates, we proceed in a similar way.

Remark. Repeating exactly the same arguments in the previous proof, it is possible to prove that
if u is an equilibrium with F ′(u) > 0, then it is unstable (with respect to uniform convergence).
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