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Abstract. We present an approach for learning an anisotropic RBF kernel in a
game theoretical setting where the value of the game is the degree of separation
between positive and negative training examples. The method extends a previ-
ously proposed method (KOMD) to perform feature re-weighting and distance
metric learning in a kernel-based classification setting. Experiments on several
benchmark datasets demonstrate that our method generally outperforms state-
of-the-art distance metric learning methods, including the Large Margin Nearest
Neighbor Classification family of methods.

1 Introduction

Kernel machines have gained great popularity in the last decades. Their fortune is
greatly due to the possibility to plug general kernels into them. The kernel function
represents a priori knowledge about similarities between pairs of examples in a domain.

The most popular kernel is undoubtedly the RBF kernel, which is a general pur-
pose kernel that is based on the Euclidean distance between examples. Similarly to the
Euclidean distance, the RBF kernel gives an equal weight to different features and the
strength of this weight depends on a single external parameter that needs to be tuned
against validation data. However, it is well known that different features typically have
unequal impact and importance in solving a given classification task.

This issue has motivated several feature selection methods to select or weight dif-
ferent features in different ways. While feature selection is generally very difficult to
perform with nonlinear kernels, one can learn the metric directly from data more easily.
This task is known as distance metric learning (DML). For example, many researchers
(see [1], [2], [3], [4]) have proposed a number of algorithms for the optimization of the
Mahalanobis distance. Specifically, they replace the common Euclidean metric with the
more powerful distance (xi − xj)

>M(xi − xj) and try to learn the combination ma-
trix M. The learned distance in DML is typically optimized for (and used in) a nearest
neighbors setting. Given the high number of free parameters to learn together with the
fact that these methods are used with nearest neighbors, these approaches can be prone
to overfitting, in particular when the training sample is small.

Recently, there have been also attempts to learn the kernel directly from data. In this
setting, called kernel learning (KL), one looks for a kernel matrix which maximizes a
measure of agreement between training labels and the similarity induced by the learned
kernel matrix. This has been done either by optimizing with respect to the notion of
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alignment ([5],[6]) or minimizing the value of the dual of the objective function of the
SVM constructed on the kernel itself ([7]).

In this paper, we propose to combine ideas from DML and KL. Specifically, we
focus on the family of anisotropic RBF kernels, that is kernels in the form K(xi,xj) =
exp(−(xi − xj)

TM(xi − xj)) where M = diag(β) is the diagonal matrix created
using the vector β ∈ Rm of parameters (one value for each feature) to learn. This
form generalizes the RBF kernel for which we have β = β01 being β0 the external
RBF shape parameter and 1 the vector with all entries equal to 1. The method proposed
extends a recent kernel based algorithm, namely the Kernel Optimization of Margin
Distribution (KOMD) method, to learn an anisotropic RBF from data. We maintain the
same game theoretical setting where two players compete and the value of the game
consists of the separation between positive and negative training data.

Definitions and Notation. We consider a classification problem with training exam-
ples {(x1, yi), . . . , (xl, yl)}, and test examples {(xl+1, yl+1), . . . , (xL, yL)}, xi ∈ Rm,
yi ∈ {−1,+1}. We use X ∈ RL×m to denote the matrix where examples are arranged
in rows and y ∈ RL is the vector of labels. The matrix K ∈ RL×L denotes the com-
plete kernel matrix containing the kernel values of each data pair. Further, we indicate
with an hat, like for example X̂ ∈ Rl×m, ŷ ∈ Rl, and K̂ ∈ Rl×l, the submatrices
(or subvectors) obtained considering training examples only. We let R+ the set of non-
negative real numbers. Given a training set, we consider the domain Γ of probability
distributions γ ∈ Rl+ defined over the sets of positive and negative examples. More
formally, Γ = {γ ∈ Rl+ |

∑
i∈⊕ γ

(i) = 1,
∑
i∈	 γ

(i) = 1}, where ⊕ and 	 are the
sets of the indices of positive and negative examples respectively. Finally, we define the
submatrix of positive (negative) examples of the matrix X̂ as X̂+ (X̂−).

2 Distance Metric Learning

Distance metric learning (DML) methods try to learn the best metric for a specific
input space and dataset. The performance of a learning algorithm (nearest-neighbors
classifiers, kernel algorithms etc.) mostly depends on the metric used. Many DML al-
gorithms have been proposed. All of them try to find a positive semi-definite (PSD)
matrix M ∈ Rm×m such that the induced metric dM(xi,xj) = (xi − xj)

>M(xi − xj)
is optimal for the task at hand. For example, the Euclidian distance is a special case
where M = I. There are three principal families of DML algorithms [8]: eigenvector
methods, convex optimization and neighborhood component analysis.

In the eigenvector methods, the matrix M is parameterized by the product of a real
valued matrix with its transposed, namely M = L>L, in order to maintain the matrix
positive semi-definite. In this case, the matrix M is called Mahalanobis metric. These
methods use the covariance matrix to optimize the linear transformation xi → Lxi
that projects the training inputs. Finding the optimal projection is the task of eigenvec-
tor methods with a constraint that defines L as a projection matrix: LL> = I. These
algorithms don’t use the training labels and then they are totally unsupervised.

Convex optimization algorithms represent another family of DML algorithms. It
is possible to formulate a DML as a convex optimization problem over the cone of
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correct matrices M. This cone is the cone of positive semi-definite matrices, namely
M = {M ∈ Rm×m : ∀τ ∈ eig(M), τ ≥ 0}. Algorithms in this family are supervised
and optimal positive semi-definite matrix M is obtained optimizing the square root of
the Mahalanobis metric and enforcing the SDP constraint M � 0. There are also online
versions of convex optimization algorithms for DML, like POLA [3] for example.

Another family of algorithms for DML is called neighborhood component analysis.
In [2], for example, the authors try to learn a Mahalanobis metric from the expected
leave-one-out classification error. In this case they use a stochastic variant of k-nearest
neighbor with Mahalanobis metric. This algorithm has an objective function that is
not convex and can suffer from local minima. Metric Learning by Collapsing Classes
(MLCC) [1] is an evolution of the above mentioned method that can be formulated by
a convex problem but with the hypothesis that the examples in each class have only one
mode. Another important algorithm in this family is the Large Margin Nearest Neighbor
Classification (LMNNC) [8] that learns a Mahalanobis distance metric with a k-nearest
neighbor by semi-definite programming and also in this case we have the semi-positive
constraint for M in the optimization problem. Finally, a generalization of the LMNNC
is the Gradient Boosted LMNNC (GB-LMNNC) [9] that learns a non-linear transfor-
mation directly in the function space. Specifically, it extends the Mahalanobis metric
between two examples (e.g.: ‖Lxi − Lxj‖2) by using a non linear transformation φ to
define the new Euclidian distance ‖φ(xi)− φ(xj)‖2. Given the non linearity of φ, GB-
LMNNC uses the gradient boosted regression tree in order to change the metric (GBRT)
[10]. So, the algorithm learns and combines an ensemble of multivariate regression trees
(that are weak learners) using gradient boosting that minimizes the original LMNN ob-
jective function in the function space.

3 The KOMD Algorithm

The KOMD [11] algorithm is a kernel machine that optimizes the margin distribution
in a game theoretic setting allowing the user to specify a trade-off between the minimal
and the average value of the margin over the training set. Specifically, the classification
task is posed as a two-player zero-sum game. The classification task requires to learn a
unitary norm vector w such that w>(φ(xp)−φ(xn)) > 0 for most of positive-negative
instance pairs in the training data. The scenario of the game consists of one player
that choose the vector of unitary norm w and the other that picks pairs of positive-
negative examples according to distributions γ+ and γ− over the positive and negative
examples, respectively. The value of the game is the expected margin obtained, that is
w>(φ(xp)−φ(xn)),xp ∼ γ+,xn ∼ γ−. The first player wants to maximize this value
while the second one wants to minimize it. This setting generalizes the hard SVM and
can be solved efficiently by optimizing a simple regularized and linearly constrained
convex function defined on variables γ, namely,

min
γ∈Γ

(1− λ)γ>YK̂Yγ︸ ︷︷ ︸
Q(γ)

+λγ>γ︸︷︷︸
R(γ)

.

with Y = diag(ŷ). The regularization parameter λ has two critical points: λ = 0 and
λ = 1. When λ = 0, the solution is the hard SVM. In fact, let γ∗ ∈ Γ the vector
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that minimizes Q(γ), value of Q(γ∗) in this case is the squared distance between the
convex hull enclosing positive points φ(xp),xp ∈ X̂+, and the convex hull enclosing
negative points φ(xn),xn ∈ X̂−, in the features space induced by the kernel K. When
λ = 1 the optimal solution is analytically defined by the vector of uniform distribu-
tions over positive and negative examples, that is, γ(i)unif = 1/|X̂+| when yi = +1, and

γ
(i)
unif = 1/|X̂−| when yi = −1. In this case, the optimal objective value is the squared

distance from the positive and negative centroids in feature space. The external param-
eter λ ∈ (0, 1) allows to select the correct trade-off between the two extreme cases
above. Clearly, a correct selection of this parameter is fundamental if we are interested
in finding the best performance for a classification task and this is usually made by val-
idating on training data. In Figure 1 an example of the solutions found by the above
algorithm for a toy problem varying the value of λ is depicted.

Fig. 1. KOMD solutions found using different λ in a simple toy classification problem.

4 Extending the game to features

In this paper, we propose to extend the game illustrated in Section 3 by considering
an additional player which selects the kernel matrix K from the family of anisotropic
(Gaussian) Radial Basis Function kernel (RBF). The RBF kernel is defined by

K(xi,xj) = exp(−β0‖xi − xj‖22) = exp(−(xi − xj)
>β0I(xi − xj))

where β0 ∈ R+ is an external parameter. The RBF kernel can also be seen as using
the trivial metric M = β0I = diag(β0, ..., β0). In the anisotropic RBF we have a
generalized metric M = diag(β(1), ..., β(m)) and we can write the anisotropic RBF as:

Kβ(xi,xj) =

m∏
r=1

exp(−β(r)(x
(r)
i − x

(r)
j )2), β ∈ Rm+
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where x
(r)
i is the rth feature of the ith example and β(r) ∈ R+.

This new formulation has a greater number of degrees of freedom than the classical
RBF kernel. A useful observation is that Kβ(·, ·) can be seen as a element-wise product
of kernels evaluated on a single feature. More formally:

Kβ =

m⊗
r=1

Kβ(r)

with Kβ(r) the RBF kernel defined on the rth feature only with parameter β(r). From
this point of view, finding the best parameters for an anisotropic RBF is a DML prob-
lem and we need to optimize the kernel representation by finding a trade-off between
the components of β.

We are now interested in an extension of the game presented in a previous section.
For this, we define an additional player that sets the parameters of the anisotropic RBF.
This player will prefer uncorrelated features so to avoid redundancies. For this reason
we define a redundancy (or correlation matrix) C among the features f1, ..., fm, defined
using an RBF kernel with parameter τ and normalized with respect to the number of
features. Basically, each feature is considered as an example in order to generate the
correlation matrix C ∈ Rm×m+ such that:

Cij = exp(− τ
m
‖fi − fj‖22) ∀i, j = 1, ...,m.

Finally, we propose to use the following regularized optimization problem as objec-
tive for the player β:

max
β∈Rm+

Q(β,γ)− µC(β) (1)

where Q(β,γ) = γ>YK(β)Yγ and C(β) = 1
2β

tCβ.
Note that, the proposed type of regularizer differs significantly from the usual trace

regularizer used in kernel learning. In our opinion, the trace regularizer does not fit the
notion of complexity in terms of the space of functions that can be generated using
a kernel. For example, all RBF kernels have the same trace independently from the
RBF parameter weighting the distance between examples, while the complexity of the
resulting kernels can be dramatically different. On the other side, the correlation of the
features on the parameters β that we propose, well fits the idea that good features are
more useful if they represent different points of view of the examples.

Summarizing, the extended game we propose has valueQ(β,γ) and the two players
individually aim at optimizing their strategies according to the following optimization
problems:

Pγ : minγ∈Γ (1− λ)Q(β,γ) + λ||γ||2 (2)
Pβ : maxβ∈Rd+ Q(β,γ)− µC(β) (3)
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In the following, we give the simple alternating algorithm we used to solve the
multi-objective problem given above.

(0) Find the best β0 and λ with KOMD validation;
for t=1,...,T do

(1) Set β = βt−1 and generate a solution γt optimizing the problem
described in Eq. 2;
(2) Set γ = γt and generate a solution βt optimizing the problem described
in Eq. 3;

end
Algorithm 1: ARBF algorithm

4.1 Gradient based optimization for Pβ

The function Q(β) in Eq. 3 has the rth component of the gradient equal to:

∂Q(β)
∂β(r)

= −
∑
i,j

yiyjγ
(i)γ(j)Kβ(xi,xj)(x

(r)
i − x

(r)
j )2 = −γ>Y(Dr ⊗Kβ)Yγ

where Dr ∈ Rn×n is the simmetric matrix of pairwise squared differences of the rth

feature, that is, Dr(i, j) = (x
(r)
i − x

(r)
j )2. Then, the partial derivative of Eq. 3 with

respect to β(r) will be:
∂Q(β)
∂β(r)

− µCrβ,

where Cr is the rth row of C.

4.2 Reducing the problem Pβ to an unconstrained optimization problem

It is well known that solving a constrained optimization problem with gradient based
optimization techniques is particularly difficult. For this, we reduced the problem to an
unconstrained one by performing a simple change of variables, that is β(r) = e−α

(r)

.
Computing the gradient with respect to variables α(r) we obtain

∂Q(α)
∂α(r)

=
∂Q(β)
∂β(r)

∂β(r)(α)

∂α(r)
= (γ>Y(Dr ⊗Kβ)Yγ)e

−α(r)

∂C(α)
∂α(r)

=
∂C(β)
∂β(r)

∂β(r)(α)

∂α(r)
= Crβe−α

(r)

which leads to the following update

β(r) ← e
−α(r)−µ( ∂Q(α)

∂α(r)
− ∂C(α)

∂α(r)
)
= β(r)∆β(r)

where we set ∆β(r) = e
−µ( ∂Q(α)

∂α(r)
− ∂C(α)

∂α(r)
).

The simple update above leads to an easy update for the kernel as in the following,

Kβ ← Kβ ⊗ exp((1−∆β(r))Dr)

where exp(M) denotes the element-wise exponential of a matrix M.
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5 Experiments and Results
We have performed the evaluation of our algorithm against six benchmark datasets
of varying size, typology and complexity, and we have compared our performances
with the same experiments performed using other techniques. The datasets used are
splice, ionosphere, and diabet from UCI; german, australian and heart from Statlog
(obtained from LIBSVM website1). The datasets have all the features scaled to the
interval [−1, 1]. For each dataset, we constructed several splits containing 70% of the
examples for the training set, 10% of the examples for the validation set and used the
remaining 20% of the examples as the test set.

We compared our algorithm ARBF at different number of steps T , against the fol-
lowing baselines and state-of-the-art techniques:

– KOMD: in this case, model selection has been used to find the best parameters
λ ∈ {0, 0.1, 0.5, 0.9} and β0 ∈ {0.01, 0.1, 0.5, 1.0}. A KOMD with standard RBF
(shape parameter β0) has been trained.

– K-Raw: this is kNN without learning any new metric, with validation and model
selection to find the best k.

– K-LMNN and K-GB-LMNN: we used the implementation made by the authors2

and we performed a model selection in order to find the best k for kNN.

Concerning our method, KOMD validation has been used to obtain the initial pa-
rameters (β0 and λ, see Algorithm 1). The parameters µ ∈ {1, 10, 100} and τ ∈
{1, 10, 100, 1000} as been selected by model selection. For each technique a ranking
over the examples in the test set is obtained (a function from the test set to R). The Area
Under Curve (AUC) metric is used to measure the performance of such a ranking func-
tion. AUC represents an estimation of the probability that a rank of a positive example
is bigger than a rank of a negative one (both picked randomly). We evaluated AUC
metric for each data set with different techniques and we have obtained the results in
Table 1 (using T = 20 and T = 50, called respectively ARBF20 and ARBF50) and the
convergence curves in Figure 2 with the AUC values for each iteration of our algorithm
up to T = 150.

Data set (Ne,Nf ) KOMD K-Raw K-LMNN K-GB-LMNN ARBF20 ARBF50

australian (690,14) 93.2±1.5 79.2±4.8 79.1±5.3 92.4±9.2 93.8±2.1 94.1±1.6

german (1000,24) 79.5±2.2 66.3±2.6 65.5±3.0 78.9±5.6 80.5±4.1 80.7±2.5

splice (1000,60) 93.7±1.5 68.1±4.7 79.7±3.5 95.1±2.8 94.2±1.5 95.1±1.4

heart (270,13) 90.6±3.4 76.6±9.5 74.1±11.2 92.6±7.5 91.1±6.0 93.8±3.7

diabet (768,8) 84.0±1.9 72.0±5.5 70.9±5.8 86.3±4.6 86.9±3.2 87.1±3.1

ionosphere (351,34) 97.5±1.4 88.4±3.8 89.3±4.3 97.3±3.8 97.7±3.5 98.0±3.5

Table 1. AUC % (average±std) obtained against 6 datasets with Ne examples and Nf features.

According to these results, our method obtains the best performance in all the six
datasets and significantly improve on the baseline (KOMD) and other state-of-the-art
techniques.

1 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
2 http://www.cse.wustl.edu/˜kilian/code/code

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.cse.wustl.edu/~kilian/code/code
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Fig. 2. AUC % values for each iteration of ARBF compared to the KOMD baseline (red dots).

6 Conclusions
We have presented a principled method to learn the parameters of a Anisotropic RBF
kernel. We extended an existing kernel based method, namely KOMD, following the
same game theoretical ideas used for learning the classifier to learn the kernel. The
obtained results seems very promising as most of the times our methods improve the
performance of the baseline significantly.
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