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Abstract Recent literature has shown the merits of having deep representations
in the context of neural networks. An emerging challenge in kernel learning is
the definition of similar deep representations. In this paper, we propose a general
methodology to define a hierarchy of base kernels with increasing expressiveness
and combine them via Multiple Kernel Learning (MKL) with the aim to gener-
ate overall deeper kernels. As a leading example, this methodology is applied to
learning the kernel in the space of Dot-Product Polynomials (DPPs), that is a
positive combination of homogeneous polynomial kernels (HPKs). We show theo-
retical properties about the expressiveness of HPKs that make their combination
empirically very effective. This can also be seen as learning the coefficients of the
Maclaurin expansion of any definite positive dot product kernel thus making our
proposed method generally applicable. We empirically show the merits of our ap-
proach comparing the effectiveness of the kernel generated by our method against
baseline kernels (including homogeneous and non homogeneous polynomials, RBF,
etc...) and against another hierarchical approach on several benchmark datasets.

1 Introduction

Kernel methods have become a standard paradigm in machine learning and applied
in a multitude of different learning tasks. Their fortune is mainly due their ability
to perform well on different domains provided that ad-hoc kernels tailored to that
domain can be designed. Given the crucial importance of the kernel adopted for the
performance of a kernel machine, researchers are investigating on the automatic
learning of kernels, also known as kernel learning.

Multiple Kernel Learning (MKL) is one of the most popular paradigms to
learn a kernel (see [10] for a recent survey) which has been adopted already in
many real world applications, including [4,25,23,8,24,5]. The main goal of MKL
is to alleviate the user’s effort on designing a good kernel for a given problem.
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The kernel generated by a MKL method is a combination of base kernel functions
k0, ..., kR. In the simplest case, it consists of a linear and non-negative combination
of base kernels, that is,

kη(x, z) =
R∑
r=0

ηrkr(x, z) =
R∑
r=0

ηr〈φφφr(x),φφφr(z)〉, ηr ≥ 0,

thus basically performing a re-weighting of groups of features in a compounded
feature space φφφ(x) = (φφφ0(x), . . . ,φφφR(x)). Note that, doing MKL on such features
can be seen as non-linear feature weighting. For this, often some regularization
enforcing sparsity of the parameters η is also provided.

MKL algorithms are supported by several theoretical results bounding the
difference between the true error and the empirical margin error (i.e. estimation
error). These bounds limit the Empirical Rademacher Complexity (ERC) of the
combination of kernels [7,13,6]. However, empirical studies on MKL are giving
conflicting outcomes concerning the real effectiveness of MKL. For example, doing
better than the simple average (or sum) of base kernels seems surprisingly chal-
lenging [22]. This can be due to two main reasons: (i) standard MKL algorithms
are typically applied with base kernels which are not so dissimilar to each other
and (ii) the combined shallow kernels do not have structural differences, e.g. they
have the same degree of abstraction, thus producing shallow representations.

Up to now, MKL research has been mainly focused on the learning of the com-
bination weights. In this work, we take a different perspective of the MKL problem
investigating on principled ways to design base kernels such to make their super-
vised combination really effective. Specifically, aiming at building deeper kernels,
a hierarchy of features of different degrees of abstraction is considered. Features
at the top of the hierarchy will be more general and less expressive features, while
features at the bottom of the hierarchy will be more specific and expressive fea-
tures. Features are then grouped based on a general-to-specific ordering (their level
in the hierarchy) and base kernels built according to this grouping, in a way that
the supervised MKL algorithm can detect the most effective level of abstraction
for any given task. Similarly to the hierarchical kernel learning (HKL) approach
in [2], features that can be embedded in a DAG will be considered.

As a further contribution of this paper, we give a characterization of the speci-
ficity of a representation (kernel function). Intuitively, more general representations
correspond to kernels constructed on simpler features (e.g. the single variable xi),
at the top layers of the DAG, while, more specific representations correspond to
kernels defined on elaborated features (e.g. high degree product of variables

∏
j xj),

at the bottom layers of the DAG. The characterization is based on the spectral
ratio of the kernel matrices obtained in the target representation. We also prove
relationships between the spectral ratio of a kernel matrix with its rank, with the
radius of the Minimum Enclosing Ball (MEB) of examples in feature space, and
with the ERC of linear functions using that representation.

Although the idea presented above is quite general and applicable in many
different contexts which include ANOVA kernels, kernels for structures, and con-
volution kernels in general, here we exemplify the approach focusing on features
which are a special kind of monomials (that is products of powers of variables with
non-negative integer exponents, possibly multiplied by a constant). See Figure 2
for an example. In this case, base kernels will consist of Homogeneous Polyno-
mial Kernels (HPK) of different degree and their combination to a Dot-Product
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Polynomial (DPP) with form K(x, z) =
∑R
s=0 as(x · z)s. Exploiting the result in

[18] that any dot-product kernel of the form K(x, z) = f(x · z) can be seen as a
DPP, K(x, z) =

∑+∞
s=0 as(x · z)s, it turns out that proposing a method to learn

the coefficients of a general DPP means giving a method that virtually can learn
any dot-product kernel, including RBF and non-homogeneous polynomials.

A related but different idea is exploited in deep neural networks. for example
defining families of neural networks with polynomial activation functions, as it is
done in [16]. In this approach the polynomial features are learned as non-linear
combinations of the original variables.

Similarly, another example is described in [15], where the authors present an
efficient deep learning algorithm (with polynomial computational time). The lay-
ers of this deep architecture are created one-by-one and the final predictors of
this algorithm are polynomial functions over the input space. Specifically, they
create higher-and-higher levels of representation of the data generating a good
approximation of all the possible values obtained by using polynomial functions
with bounded degree over the training set. The final linear combination (in the
output layer) is a combination of sets of the polynomial functions that depend on
the coefficient of the previous layers.

We can easily note that the feature space on which these methods work is
completely different from ours. In our case, the hierarchy of features intrinsic in
the polynomial kernels is used. This allows us to apply the results of this paper to
other kernel functions besides the dot-product kernels and polynomials, including
most of the kernels for structures.

Summarizing, the paper contribution is three-fold:

– We propose a simple to compute qualitative measure of expressiveness of a
kernel defined in terms of the trace (or nuclear) and Frobenius norms of the
kernel matrix generated using that kernel and we show connections with the
rank of the matrix, with the radius of the MEB, and with the ERC of linear
functions defined in that feature space;

– We propose a MKL based approach to learn the coefficients of general DPPs
and we support the proposal by showing empirically that this approach out-
performs the baselines, including RBF, homogeneous and non-homogeneous
polynomials (often significantly) against several benchmark datasets in terms
of classification performance. Interestingly, the method is very robust to over-
fitting even when many base HPK are used, which permits to spare the tedious
step of validation of the kernel hyper-parameters;

– Finally, we present empirical evidence that building base kernels exploiting the
structure of the features and their dependencies, makes the combined kernel
improve upon alternatives which do not exploit the same structure. In particu-
lar, a comparison with the HKL approach [2,11] on the same DPP learning task
shows the advantages of our method in terms of effectiveness and efficiency.
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2 Notation, Background and Related Work

In this section, we present the notation and briefly discuss some background and
related work useful for the comprehension of the remainder of the paper.

Throughout the paper we consider a binary classification problem with training
examples {(x1, y1), . . . , (xL, yL)} , xi ∈ Rm, ||xi||2 = 1, yi ∈ {−1,+1}. X ∈ RL×m
will denote the matrix where examples are arranged in rows and y ∈ RL the
corresponding vector of labels. The symbol IL will indicate the L × L identity
matrix and 1L the L-dimensional vector with all entries equal to 1. A generic
entry of a matrix M will be indicated by Mi,j and M:,j corresponds to the j-th
column vector of the matrix. When not differently indicated, the norm || · || will
refer to the 2-norm of vectors, while || · ||F and || · ||T will refer to the Frobenius
and trace matrix norms, respectively. B(0,1) will denote the unitary ball centered
in the origin. Finally, R+ will denote the set of non-negative reals.

2.1 EasyMKL

EasyMKL [1] is a recent MKL algorithm able to combine sets of base kernels by
solving a simple quadratic problem. Besides its proved empirical effectiveness, a
clear advantage of EasyMKL compared to other MKL methods is its high scal-
ability with respect to the number of kernels to be combined. Specifically, its
computational complexity is constant in memory and linear in time.

EasyMKL finds the coefficients η that maximize the margin on the training
set, where the margin is computed as the distance between the convex hulls of
positive and negative examples. In particular, the general problem EasyMKL tries
to optimize is the following:

max
η:||η||=1

min
γ∈Γ

γ>Y(
R∑
s=0

ηsKs)Yγ + Λ||γ||2.

where Ks is the kernel matrix obtained applying the s-th kernel function ks on
training pairs, Y is a diagonal matrix with training labels on the diagonal, and
Λ is a regularization hyper-parameter. The domain Γ represents two probability
distributions over the set of positive and negative examples of the training set,
that is Γ = {γ ∈ RL+ |

∑
yi=+1 γi = 1,

∑
yi=−1 γi = 1}. At the solution, the

first term of the objective function represents the obtained margin, that is the
(squared) distance between a point in the convex hull of positive examples and a
point in the convex hull of negative examples, in the compounded feature space.

The problem above is a min-max problem that can be reduced to a simple
quadratic problem with a technical derivation described in [1]. Specifically, let γ∗

be the unique solution of the following quadratic optimization problem:

γ∗ = arg min
γ∈Γ

γ>YK̄Yγ + Λ||γ||22, (1)

where K̄ =
∑R
s=0 Ks is the simple sum of base kernels evaluated on training data,

then the optimal vector of weights η∗ has a simple analytic solution:

η∗ =
d(γ∗)

||d(γ∗)||2
, (2)
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where the components of d(γ∗) are ds(γ
∗) = γ∗>YKsYγ∗, s ∈ {0, . . . , R}. Note

that, the s-th entry of the vector d(γ∗) represents the contribution given by the
s-th kernel to the distance between the representative points in the convex hulls.

In the following, with no loss in generality, we consider coefficients of unitary
1-norm (i.e. re-scaled such that ||η∗||1 = 1) and normalized base kernels. Finally,
the output kernel will be computed by kMKL(x, z) =

∑R
s=0 η

∗
sks(x, z) which, in

this case, it can be easily shown to be a normalized kernel as well.

2.2 Hierarchical Kernel Learning

Hierarchical Kernel Learning (HKL) [2] is a generalization of the MKL framework.
The idea is to design a hierarchy over the given base kernels/features. In particular,
base kernels are embedded in a DAG each one defined on a single feature. An
`1/`2 block-norm regularization is then added in a way to induce a group sparsity
pattern. This implies that the prediction function will involve very few kernels.
Also, the condition of the kernels being strictly positive, makes this hierarchical
penalization inducing a strong sparsity pattern [11], that is if a kernel/feature ks
is not selected, then none of the kernels associated with its descendants in the
DAG are selected. Also, the weight ηs assigned to a kernel associated to a specific
DAG node is always greater than the weight of the kernels associated with its
descendants, basically giving a bias toward more general features. Interestingly,
even if the DAG is exponentially large, the proposed HKL optimization algorithm
is able to work with polynomial complexity.

As noted in [11], the sparsity pattern enforced by HKL can lead to the selection
of many redundant features, namely the ones at the top of the DAG. For this, in
the same work, a variant of the HKL, called generalized HKL (gHKL), is presented
that partially overcomes this problem. The gHKL framework has a more flexible
kernel selection pattern by using a `1/`p regularizer, with p ∈ (1, 2], and maintains
the polynomial complexity of the original method.

As stated in the original paper, this generic regularizer enables the gHKL
formulation to be employed in the Rule Ensemble Learning (REL) where the goal
is to construct an ensemble of conjunctive propositional rules. From this point of
view, the task of gHKL is slightly different from ours (i.e. classification).

2.3 Dot-product Polynomial Kernels

A generalized polynomial kernel can be built on the top of any other valid base
kernel as in k(x, z) = p(k0(x, z)), where the base kernel k0 is a valid kernel and
p : R −→ R is a polynomial function with non-negative coefficients, that is p(x) =∑d
s=0 asx

s, as ≥ 0. In this paper, we focus on Dot-Product Polynomials (using
the acronym DPP) which is the class of generalized polynomial kernels where the
simple dot product is used as base kernel, that is k(x, z) = p(x · z).

A well known result from harmonic theory [18,12] gives us an interesting con-
nection between DPP and general non-linear dot-product kernels.

Theorem 1 [12] A function f : R → R defines a positive definite kernel k :
B(0, 1)×B(0, 1)→ R as k : (x, z)→ f(x·z) iff f is an analytic function admitting
a Maclaurin expansion with non-negative coefficients, f(x) =

∑∞
s=0 asx

s, as ≥ 0.
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Kernel Definition DPP coefficients as

Polynomial (KD,c) (x · z + c)D
(D
s

)
cD−s,∀s ∈ {0, . . . , D}

RBF (Kγ
RBF ) e−γ||x−z||2 e−2γ (2γ)2s

s!
, ∀s

Rational
Quadratic

1− ‖x−z‖22
‖x−z‖22+c

(
−

2
∏s

j=1 2+(j−1)

(2+c)s+1 +

∏s
j=1 2+(j−1)

(2+c)s

)
1
s!
, ∀s

Cauchy (1 +
‖x−z‖22

γ
)−1 s!!

3s+1γs
1
s!
, ∀s

Table 1: Classical dot-product kernels formulated as DPPs with coefficients as (the
symbol !! denotes the semifactorial of a number).

The theorem above guarantees that any dot product kernel of the form k(x, z) =
f(x · z), x and z defined in the unitary ball, can be characterized by its Maclau-
rin expansion with non-negative coefficients, that is a DPP in the form k(x, z) =∑∞
s=0 as(x · z)s (some examples of vector dot-product kernels and their DPP co-

efficients are presented in Table 1). On the other hand, any choice of non negative
coefficients of a DPP induces a valid kernel. In this paper, we exploit this second
implication proposing a method for the supervised learning of DPP coefficients.

3 Learning the kernel from a hierarchy of features

In this section, the principal idea of the paper is described. Similarly to the HKL
approach of Section 2.2, we also consider a hierarchical set of features which can
be mapped into a DAG. However, differently from HKL, we propose to group the
features layer-wise, that is a different kernel ks is built for each layer of the DAG.
Kernels defined on bottom layers of the DAG will be more expressive leading to
sparser kernel matrices, while kernels defined on top layers will be broader and
their kernel matrices denser. In this way a hierarchy of representations of different
levels of abstraction is created similarly to what happens in deep learning.

We will give a more formal definition of a measure of expressiveness for a
kernel in Section 3.1. Generally speaking, we expect that the kernel expressiveness
will increase going toward lower layers of the DAG. We also show the connection
between our measure of expressiveness with the ERC and the rank of the kernel
matrices induced by the kernel function.

Note that the procedure described above to construct base kernels is com-
pletely unsupervised and can be considered a sort of pre-training. The rationale of
this construction is that too general or too specific features tend not to be useful
in general. In particular, too general features are likely to be unable to discrimi-
nate since they tend to emphasize similarities between examples, while, using too
specific features only, diversity is emphasized instead as examples are represented
in such a way that distances are the same for every pair. It is important to note
here that there is a difference between expressiveness of a kernel (which does not
depend from the concept to learn) and informativeness of a kernel (which says
how good the features of the kernel are on discriminating a given concept). Our
intuition here is that different tasks defined on a same set of examples may need
of feature spaces of different expressiveness. Given a binary task, these different
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representations are aggregated using a maximum margin based MKL algorithm,
for example EasyMKL, as presented in Section 3.2.

3.1 Complexity and expressiveness of kernel functions

Now, we propose a methodology to compare different representations on the ba-
sis of the complexity of the hypotheses space induced by the associated kernel
function. Representations inducing lower complexity hypotheses will correspond
to more abstract or general representations.

Kernel learning methods typically impose some regularization over the com-
bined kernels to limit their expressiveness with the hope to limit over-fitting of the
hypotheses constructed using that kernels. In the simplest case, the trace of the
produced kernel can be used. However, the trace might not be the best choice of a
measure of expressiveness for a kernel. For example, the identity matrix IL ∈ RL×L
and the constant matrix 1L1>L ∈ RL×L have the same trace but it is clear that
the associated kernel functions have different expressiveness. In the first case, the
examples are orthogonal in feature space and the expressiveness is maximal while,
in the second case, they overlap and the expressiveness is minimal.

The expressiveness of a kernel function, that is the number of dichotomies that
can be realized by a linear separator in that feature space, is more captured by the
rank of the kernel matrices it produces. This can be motivated in several ways. A
quite intuitive one can be given using the following theorem.

Theorem 2 Let K ∈ RL×L be a kernel matrix over a set of L examples. Let
rank(K) be the rank of K. Then, there exists at least one subset of examples of
size rank(K) that can be shattered by a linear function.

Proof Let be given a diagonal matrix Y ∈ {−1,+1}L×L of binary labels for the
examples (i.e. a diagonal matrix with labels on the diagonal), then we can see that
the squared distance between the convex hulls of positive and the convex hull of
negative examples can be written as ρ2 = minγ∈Γ γ>YKYγ where Γ = {γ ∈
RL+ |

∑
yi=+1 γi = 1,

∑
yi=−1 γi = 1}. If the kernel matrix has maximal rank L,

then using the Courant-Fisher theorem (see [19]) we have that γ>YKYγ
||Yγ||2 ≥ λL > 0

where λL is the minimum eigenvalue, for any γ ∈ Γ . Let L+ and L− be the
number of positive and negative examples, then we have γ>YKYγ ≥ λL||Yγ||2 ≥
(L−1

+ + L−1
− )λL > 0 for any γ ∈ Γ . This implies ρ2 > 0 (the set can be linearly

separated using that feature space) for any possible labeling of the examples, that
is any choice of the matrix Y. Now, suppose rank(K) < L, then it will exist a
minor of K of order rank(K) with maximal rank and this corresponds to select a
subset of k examples which can be linearly shattered. ut

In this section we propose a new, simple to compute, expressiveness measure
for kernel matrices, namely the spectral ratio. Next, we will show that this measure
is strongly related to the rank of the matrix, to the radius of the MEB, and to the
ERC of the hypotheses space associated with that representation.

The spectral ratio (SR) for a positive semi-definite matrix K is defined as the
ratio between the 1-norm and the 2-norm of its eigenvalues, or equivalently, as the
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ratio between its trace norm ||K||T and its Frobenius norm ||K||F :

C(K) =

∑L
i=1 λi√∑L
i=1 λ

2
i

=
||K||T
||K||F

=

∑
iKii√∑
ij K2

ij

. (3)

Note that, compared to the rank of a matrix, the above measure has the advantage
that it does not require the decomposition of the matrix.

An equivalent standardized version of the spectral ratio with values in [0, 1]
can also be defined as follows:

C̄(K) =
C(K)− 1√
L− 1

∈ [0, 1]. (4)

A plethora of different measures from other fields also exploit the trace and
the rank of a matrix in its formulation. For example, in the multilinear algebra
regularizers [17], the rank is used to control the degree of freedom of the final
model, or in quantum information theory [21] where the, so called, trace-distance
is fundamental to discriminate between two different states of a system.

Now, we are ready to give a qualitative measure of expressiveness of kernel
functions, in terms of specificity and generality as it follows:

Definition 1 Let be given ki, kj , two kernel functions. We say that ki is more
general (or less expressive) than kj (ki ≥G kj) or equivalently that kj is more
specific (or more expressive) than ki (kj ≤G ki) whenever for any possible dataset

X, we have C(K(i)
X ) ≤ C(K(j)

X ) with K
(i)
X the kernel matrix evaluated on data X

using the kernel function ki.

3.1.1 Connection between SR and the rank of a kernel matrix

The (squared) spectral ratio can be seen as an (efficient) strict approximation of
the rank of a matrix. In fact, using a result of [20], namely:

||K||F ≤ ||K||T ≤
√

rank(K)||K||F ,

we can easily derive the following strict bounds:

1 ≤ C(K) ≤
√

rank(K).

The spectral ratio C(K) has the following additional nice properties:

– the identity matrix IL having rank equal to L has the maximal spectral ratio
with C(IL) =

√
L and C̄(IL) = 1;

– the kernel K = 1L1>L having rank equal to 1 has the minimal spectral ratio
with C(1L1>L ) = 1 and C̄(1L1>L ) = 0;

– it is invariant to multiplication with a positive scalar as C(αK) = C(K),∀α > 0.
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3.1.2 Connection between SR and ERC

The spectral ratio can also be related to the ERC. In order to show this, we
consider the set of vectors with fixed 1-norm

Ψ = {ααα ∈ RL s.t. ‖ααα‖1 = 1}. (5)

Then, we focus on the class of linear functions with bounded norm FB = {xj →∑L
i=1 αiKi,j : αααTKααα ≤ B2,ααα ∈ Ψ} ⊆ {xj → w · φφφ(xj) : ‖w‖2 ≤ B} where φφφ is

a feature mapping associated to the kernel K. It is well known that the following
result bounding the complexity of FB holds:

Theorem 3 ([19], Theorem 4.12). Given a kernel matrix K, evaluated over a set
of points X , the ERC of the class FB satisfies

R̂(FB) ≤ 2B

L

√
||K||T . (6)

Equation 6 gives a bound on the ERC dependent on the trace of the kernel.
Now, we can observe that, for a general kernel K, the value of αααTKααα can be

bounded by the Frobenius norm of K, that is:

Proposition 1 Let K be a kernel matrix in RL×L with eigenvalues λ1 ≥ · · · ≥
λL ≥ 0, then

∀ααα ∈ Ψ, αααTKααα ≤ λ1 ≤ ‖K‖F . (7)

Proof We can exploit the spectral decomposition of the matrix and rewriteαααTKααα =∑L
i=1 λi(ααα

Tui)
2, where ui is the eigenvector with eigenvalue λi. Then, it is easy to

see that: (αααTui)
2 = cos(θααα,ui)

2‖ααα‖22, where θααα,ui is the angle between the vector
ααα and the eigenvector ui. Using the properties of the norms (‖ααα‖22 ≤ ‖ααα‖21 = 1)
and the fact that the eigenvectors ui are an orthonormal base, we can obtain the
final result:

αααTKααα ≤
L∑
i=i

λi cos(θααα,ui)
2‖ααα‖21 ≤ λ1 ≤

√√√√ L∑
i=1

λ2i = ‖K‖F .

ut

Finally, we are ready to prove the following theorem that gives us a connection
between the spectral ratio of a kernel matrix and the complexity of the induced
hypotheses space:

Theorem 4 Given a kernel K evaluated over a set of points X , the ERC R̂ of

the class of functions F = {xj →
∑L
i=1 αi

Ki,j

‖K‖F ,ααα ∈ Ψ} satisfies

R̂(F) ≤ 2

L

√
C(K). (8)

Proof Applying Theorem 3 to the matrix K
||K||F we can derive

R̂(FB) ≤ 2B

L

√∥∥∥∥ K

‖K‖F

∥∥∥∥
T

=
2B

L

√
C(K).

The result is then obtained by using Proposition 1 and setting B = 1. ut



10 Michele Donini, Fabio Aiolli

3.1.3 Connection between SR and the radius of the MEB

The subject of this section is to show that the SR, and hence the degree of sparsity
of the kernel matrices, are related to the radius of the Minimum Enclosing Ball
(MEB). Given a dataset embedded in a feature space, the MEB is a the smallest
hypersphere containing all the data. We can show that the radius increases with
the SR of a kernel. In fact, see for example [19], when considering a normalized
kernel K ∈ RL×L, the radius of the MEB of the examples in feature space can be
computed by r∗(K) = 1 − minααα∈Aααα

>Kααα, where A = {ααα ∈ RL+,
∑
i αi = 1}. A

nice approximation of the radius can be computed as r̃(K) = 1− k̄ where k̄ is the
average of the entries in the matrix K. This much simpler formula is exact in the
two extreme cases, as r̃(1L1>L ) = r∗(1L1>L ) = 0 and r̃(IL) = r∗(IL) = 1− 1/L. In
general, the approximation is a lower bound of the radius, that is r̃(K) ≤ r∗(K),
since r̃(K) can be obtained using a sub-optimal ααα = 1

L1L. In Figure 1, the value
of the MEB radius and the average approximation has been plotted for kernels of
increasing expressiveness over two different datasets of example.

This result confirms that the SR can be used as a measure of the (intrinsic)
complexity of the feature space. At the end of Section 3.2, a result linking the
radius of the MEB with the leave-one-out error of the proposed algorithm will
be given. In other words, limiting the SR of the combined kernels, and hence the
radius of the MEB, while maximizing the margin on labeled data, gives a principled
strategy to pursue to learn effectively.
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Fig. 1: The values of the radius of the minimum enclosing ball of patterns in
feature space and its average kernel value approximation are reported for kernels
of increasing expressiveness over two different datasets (Heart and Splice). It is
interesting to note how the radius nicely increases with the SR of the kernel matrix.

3.2 EasyMKL for learning over a hierarchy of feature spaces

In this section, the general approach proposed in this paper is summarized and its
generalization ability is briefly discussed.
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Given a hierarchical set of features F (see Figure 2 for an example of polynomial
features)1, the approach proposed in this paper consists of the following steps:

Learning over a hierarchy of feature spaces: the algorithm

1. Consider a partition of the features

P = {F0, . . . , FR}, Fi ∩ Fj = ∅,
R⋃
s=0

Fs = F

and construct normalized kernels k0, .., kR associated to those sets of fea-
tures in such a way to obtain a set of kernels of increasing expressiveness,
that is k0 ≥G k1 ≥G · · · ≥G kR;

2. Apply EasyMKL on kernels {k0, · · · , kR} to learn the coefficients ηηη ∈
RR+1

+ such that
∑R
s=0 ηs = 1 and define kMKL(x, z) =

∑R
s=0 ηsks(x, z).

Note that, the rationale of our method is quite different from the one of HKL.
In that case, the combination weights are determined in such a way that kernels
higher in the hierarchy get higher weights. As we already discussed, this may not
be always the best choice. As we will see in the experimental part (see Section 5.4),
higher margin kernels are often obtained combining base kernels with intermediate
expressiveness. In particular, when the supervised task is simple and labeled data
can be more easily separated, then it is expected that more general base kernels
will get large weights from the MKL algorithm and the converse should happen
when the task turns out to be particularly difficult. In Section 5.5 we dedicated a
set of experiments to a detailed analysis of this particular situation.

Finally, we briefly discuss about the generalization ability of the method. In
particular, we can use the result presented in Section 3.1.3 to give a radius-margin
bound on the generalization error of the general method described above. Specifi-
cally, since the base kernels have increasing sparsity and expressiveness, then the
radius of the enclosing ball is proved to increase. Then, let rηηη be the MEB radius
of the produced kernel kMKL, then it can be proved that rηηη ≤ maxs(rs) = rR
where rs is the radius of the MEB of the examples when the s-th feature space (ks)
is used [9]. Hence, looking for the EasyMKL solution ηηη maximizing the margin ρηηη
can be understood as trying to minimize the radius-margin bound of the expected
leave-one-out error, namely 1

Lr
2
R/ρ

2
ηηη.

4 Learning the kernel in the space of DPPs

As we have seen in Section 2.3, any choice of non negative coefficients of a DPP
gives a valid kernel. In particular, under mild condition, any dot-product kernel
k(x, z) = f(x · z) can be decomposed as a (possibly infinite) non negative combi-

1 Note that, besides the running example of monomials used in this paper, other possibilities
are available, including ANOVA features, subtrees of different length for trees, substrings of
different length for strings, etc.
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nation of homogeneous polynomial kernels (HPK), that is:

k(x, z) = f(x · z) =
∞∑
s=0

asks(x, z)

where ks(x · z) = (x · z)s. Here we propose to learn the DPP weights using the
EasyMKL algorithm. In this section, we will show that the base HPKs of the
combination have increasing expressiveness and hence the proposed solution is an
instance of the general methodology proposed in Section 3.

4.1 Structure of Homogeneous Polynomial Kernels

It is well known that the feature space of a d-degree HPK corresponds to all
possible monomials of degree d, that is φj(x) =

∏d
i=1 xji where j ∈ {1, . . . ,m}d

enumerates all possible d-combinations with repetitions from m variables, that is
ji ∈ {1, . . . ,m}. Note that, there is a clear dependence between features of higher
order HPKs and features of lower order HPKs.

For example, the value of the feature x1x4x5x9 in the 4-degree HPK gives us
some information about the values of the features x1, x4, x5 and x9 in the 1-
degree HPK and viceversa. An illustration of this kind of dependencies is depicted
in Figure 2. In general, we expect that the higher the order of the HPK, the sparser
the kernel matrix produced. We will prove this is true at least when the HPKs
are normalized. Specifically, the following theorem shows that the exponent d of
a HPK of the form K(x, z) = (x · z)d induces an order of expressiveness in the
kernel functions.

Proposition 2 For any choice D ∈ N, the family of kernels KD = {k0, . . . , kD},
with kd(x, z) = ( x·z

||x||||z|| )
d the d-degree normalized homogeneous polynomial kernel,

has monotonically increasing expressiveness, that is ki ≥G kj when i ≤ j.

Proof Let i, j be two indexes such that 0 ≤ i < j ≤ D, we need to prove that

C(K(i)
X ) ≤ C(K(j)

X ) for any dataset X of any size L. Since the kernels are normal-

ized, then ||K(i)
X ||T = L, and all we need to prove is that ||K(i)

X ||F ≥ ||K
(j)
X ||F or

equivalently ||K(i)
X ||

2
F ≥ ||K

(j)
X ||

2
F which is easy to show, as:

||K(i)
X ||

2
F =

L,L∑
i,j

(
xi · xj
||xi||||xj ||

)2i

≥
L,L∑
i,j

(
xi · xj
||xi||||xj ||

)2j

= ||K(j)
X ||

2
F

where we used the fact that
∣∣∣ xi·xj

||xi||||xj ||

∣∣∣ ≤ 1 and zi ≥ zj when i < j and |z| ≤ 1.

ut

Note that, as far as we are concerned with normalized HPK, the Frobenius
norm of the combination kernel KMKL =

∑D
s=0 ηsKs is

||
D∑
s=0

ηsKs||2F =

D,D∑
s=0,t=0

ηsηtCs,t, where Cs,t =

L,L∑
i=0,j=0

ks(xi,xj)kt(xi,xj).

It means that the Frobenius norm of the computed kernel is a convex combination
of values Cs,t with weights ηsηt. Interestingly, the matrix C is a sort of correlation
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x1x4x5x9

x1x4x5 x1x4x9 x1x5x9 x4x5x9

x1x4 x1x5 x1x9 x4x5 x4x9 x5x9

x1 x4 x5 x9

4-degree

3-degree

2-degree

1-degree

Fig. 2: Example of dependencies between features. The arrows represent the de-
pendencies between features of different degrees. The nodes in red, starting from
the top, represent the diffusion of the zeros (i.e. the sparsity): if the value of x4
is zero then the value of all the dependent features is also zero. Conversely, if the
value of the feature x1x4x5x9 is different from zero then all the features in the
given graph must have values different from zero.

matrix between base kernels, containing the squared Frobenius norms of individual
kernels in the diagonal. It is easy to see that ||KD||F ≤ ||KMKL||F ≤ ||K0||F holds
for any setting of the parameters ηηη.

5 Experimental Work

In this section we present the extensive experimental work we have done. First of
all, we demonstrate empirically that KD as defined in Section 4.1 is effectively a
good choice in practice as family of base kernels in MKL showing state-of-the-art
classification performances on several UCI datasets (Section 5.1) and the large
MNIST handwritten multi-classification task (Section 5.8) compared to common
baselines. Second, we show the importance of the structure of the feature partition
KD comparing it with possible alternatives, namely the random partition (Section
5.2) and the partition used by the HKL method (Section 5.7). Third, we offer a
deeper analysis reporting the spectral ratio (Section 5.3) and a study of the weights
returned by EasyMKL when treating increasingly noisy tasks (Section 5.4 and
Section 5.5). Finally, an analysis of the computational complexity of our method
compared to the traditional SVM with the RBF kernel is presented (Section 5.6).
Our implementation of EasyMKL is available at https://github.com/jmikko/

EasyMKL. Further details about the datasets are summarized in Table 2.



14 Michele Donini, Fabio Aiolli

Data set Source Features Examples

Haberman UCI [3] 3 306
Liver UCI 6 345
Diabetes UCI 8 768
Abalone UCI 8 4177
Australian UCI 14 690
Pendigits UCI 16 4000
Heart UCI 22 267
German Statlog 24 1000
Ionosphere UCI 34 351
Splice UCI 60 1000
Sonar UCI 60 208
MNIST [14] 784 70000
Colon UCI 2000 62
Gisette NIPS 5000 4000

Table 2: Datasets information: name, source, number of features and number of
examples.

5.1 MKL for learning DPP on UCI datasets

In this section we describe the experiments we performed to test the accuracy in
terms of AUC of the kernel generated by learning the coefficients of a dot-product
polynomial using KD = {k0, . . . , kD} as base HPKs as defined in Section 4.1, and
varying the value of D. This method is indicated with KMKL in the following.

The AUC results are obtained using a stratified nested 10-fold cross validation.
Specifically we used the following procedure:

– Each dataset is divided in 10 folds f1, . . . , f10 respecting the distribution of the
labels, where fi contains the list of indexes of the examples in the i-th fold;

– One fold fj is selected as test set;
– The remaining nine out of ten folds vj =

⋃10
i=1,i6=j fi are then used as validation

set for the choice of the hyper-parameters. In particular, another 10-fold cross
validation over vj is performed;

– The set vj is selected as training set to generate a model (using the validated
hyper-parameters);

– The test fold fj is used as test set to evaluate the performance of the model;
– The reported results are the averages (with standard deviations) obtained re-

peating the steps above over all the 10 possible test sets fj (i.e. for each j in
{1, . . . , 10}).

For each D, we compared our algorithm against other DPP fixed weighting rules:

– KD: the weight ηD is set to 1 (and all the other weights are set to 0);
– Ksum: the weight is set uniformly over the base kernels, that is ηs = 1

D+1 for
s ∈ {0, 1, . . . , D} (as pointed before, this is generally a strong baseline);

– KD,c: the weights are assigned using the polynomial kernel rule (see Table 1):

ηs ∝

(
D

s

)
cD−s, s ∈ {0, . . . , D}. (9)
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In this case, the value c is selected optimistically as the one from the set
{0.5, 1, 2, 3} which obtained the best AUC on the test set.

– Kγ
RBF : the weights are assigned according to the truncated RBF rule (see

Table 1):

ηs ∝
(2γ)2s

s!
, s ∈ {0, . . . , D}. (10)

Again, the value for γ is selected optimistically as the one from the set {2i :
i ∈ {−5,−4, . . . , 0, 1}} which obtained the best AUC on the test set.

Note that, the results depicted in the following for KD,c and Kγ
RBF are optimistic

estimates of the real performance because of the selection a posteriori of the best
parameters c and γ, respectively.

In all the cases above, we performed a stratified nested 10-fold cross validation
to select the optimal EasyMKL parameter Λ from the set of values { v

1−v : v ∈
{0.0, 0.1, . . . , 0.9, 1.0}}.

The AUC results of these experiments are reported in Figures 3, 4 and 5 for
all datasets. As the reader can see from the figure, our method consistently and
significantly outperforms both the single base kernel solution KD and the average
solution Ksum, especially for high polynomial degrees where KD and Ksum tend
to overfit. Moreover, our solution is at least comparable and often better than the
optimistic AUC performances of KD,c and Kγ

RBF weighting rules.

5.2 Is the deep structure important?

In this section, we show empirically that the structure present in HPKs is indeed
useful in order to obtain good results using our MKL approach. With this aim,

we built two alternative sets of base kernel matrices QD = {K(Q)
0 , . . . ,K

(Q)
D }

and RD = {K(R)
0 , . . . ,K

(R)
D }. Specifically, we considered the same set of features

(monomials with degrees less or equal to D) for both families of base kernels,
but the features are assigned to base kernels in a different way. When generating
QD, the features are assigned to the kernels according to the degree rule, that is

features of degree d are assigned to the kernel K
(Q)
d . On the other hand, when

generating RD, the features are assigned randomly to one of its base kernels.
It is well known that the number of possible combinations with repetition of

d ∈ {0, . . . , D} features, picked from a set of m variables, is equal to Nd = md.
This fact can be exploited to define a distribution over the D+ 1 degrees, that is:

π(d) =
Nd∑D
j=0Nj

, d ∈ {0, . . . , D}. (11)

Algorithm 1 gives an effective procedure to generate families of D + 1 base
kernels using monomials of degrees less or equal to a given D. Basically, the al-
gorithm draws a random feature from the feature space, using Eq. 11 to draw its
degree and then draws uniformly at random among all monomials of that degree.
After that, the feature is assigned to a base kernel selected by the function S which
is a parameter of the algorithm. Specifically, the algorithm will be invoked with
S(d) = d for the family QD and with S(d) = random(0, . . . , D) for the family RD.
Finally, all the base kernels generated will be normalized.
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Fig. 3: AUC with standard deviation for different values of D. Our proposed
solution KMKL (solid red line) has been compared against the baselines KD and
Ksum and the optimistic AUC results of KD,c and Kγ

RBF where a posteriori
optimal c ∈ {0.5, 1, 2, 3} and optimal γ ∈ {2i : i = −5,−4, . . . , 1} have been
selected, respectively.
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Fig. 4: AUC with standard deviation for different values of D. Our proposed
solution KMKL (solid red line) has been compared against the baselines KD and
Ksum and the optimistic AUC results of KD,c and Kγ

RBF where a posteriori
optimal c ∈ {0.5, 1, 2, 3} and optimal γ ∈ {2i : i = −5,−4, . . . , 1} have been
selected, respectively.
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Fig. 5: AUC with standard deviation for different values of D. Our proposed
solution KMKL (solid red line) has been compared against the baselines KD and
Ksum and the optimistic AUC results of KD,c and Kγ

RBF where a posteriori
optimal c ∈ {0.5, 1, 2, 3} and optimal γ ∈ {2i : i = −5,−4, . . . , 1} have been
selected, respectively.

We generated families QD and RD for different values of D, with number of
steps fixed to 50, 000 for two different datasets. The stratified nested 10-fold cross
validation results for Abalone and Ionosphere datasets are reported in Figure 6.

These results seem to confirm the importance of the deep structure imposed
in QD to obtain good results with EasyMKL. Interestingly, we noticed that the
weights assigned by EasyMKL when the family RD was used were almost uniform
thus generating a solution near to the one of the average kernel Ksum.

5.3 Analysis of the spectral ratio

Here, the study we have performed about the spectral ratio of KMKL, KD and
Ksum on the benchmark datasets is presented. Figure 7 summarizes these results
for six benchmark datasets. Interestingly, for all the values of D, KMKL have
shown a spectral ratio trapped between the spectral ratio of KD and the one of
Ksum. While the first fact was theoretically expected, the second can be surpris-
ing. Considering the discussion we made in Section 4.1, this can be due to the very
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Algorithm 1 Random generation of a family of base kernels.
The symbol

⊙
stands for the entry-wise multiplication among vectors of the same

dimension.
Require: X, D, steps,S : {0, . . . , D} → {0, . . . , D}
Ensure: A kernel family KD = {K0, . . . ,KD}.

for s = 0 to D do
Ks = O

end for
for i = 1 to steps do

pick d ∈ {0, . . . , D} according to the distribution π(d) (see Eq. 11)
if d = 0 then

H = 11>

else
set L a list of d random values in [1, . . . ,m] (with replica)
z =

⊙
j∈L X:,j

H = z · zT
end if
set s = S(d) ∈ {0, . . . , D} (apply the selector)
Ks = Ks + H

end for
for s = 0 to D do

Normalize the kernel matrix Ks

end for
return {K0, . . . ,KD}
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Fig. 6: Nested 10-fold AUC with standard deviation using EasyMKL with QD and
RD with different values of D.

low SR (high Frobenius norm) of low degree polynomial kernels which strongly in-
fluences the final SR of the Ksum kernel. These results also confirm the theoretical
finding about the monotonicity of the spectral ratio for base kernels in KD.

5.4 Analysis of the weights assigned to the base kernels

Here, we present an analysis of the weights assigned by EasyMKL to the base
kernels in the family KD for different values of D. Figure 8 reports the histograms
for the weights for D ∈ {3, 5, 10} and on two datasets: Heart and Splice. Note
that these results show how the optimal distribution of the weights, learned by
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Fig. 7: Spectral ratio for different values of D. Our proposed solution KMKL (solid
red line) has been compared to the baselines KD and Ksum.
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Fig. 8: The assigned weights ηi by using EasyMKL for the weak kernels in the
families KD for D = 10 of Heart and Splice datasets.

EasyMKL, is not the trivial choice of a single kernel but instead it is a combination
of different kernels with similar expressiveness. In Heart, the weights are anti-
correlated with respect to the degree of the base kernels. However, this behavior is
rarely observed, in fact, for the Splice dataset, most of the total weight is shared
among base kernels of degree in the range [1, 5].

5.5 Catching the task complexity

In this section, we present experiments we have performed to demonstrate that,
when base kernels of increasing expressiveness are given, then the weights com-
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Fig. 9: The value of the function W with respect to the different solutions ηηη of
EasyMKL by using K10 as family of base kernels, for different percentages of
swapped labels (i.e. noise).

puted by EasyMKL change increasing the complexity of the task giving more and
more weight to more specific kernels.

For this, we generated a toy problem similar to the Madelon dataset used
by Guyon2. To generate it, the same scikit-learn implementation for Python has
been used. The task of the toy problem was a balanced binary classification task
with 500 examples and 2 features. One of the features is informative, while the
other is uncorrelated with the labels. The examples of different classes are initially
arranged in two different clusters in the original space and then projected into the
unit sphere (data was not linearly separable).

Starting from the original toy problem, noise is introduced in the task by
swapping a fixed percentage of labels (randomly selected with replica). Then,
models are trained by learning the coefficients of a DPP using KD as base HPKs
(D = 10). The hyper-parameter Λ has been fixed to 0.01 in this case.

We then observed how the center-of-mass of the list of assigned weights ηηη =
{η0, . . . , ηD} changed when increasing the complexity of the task. In particular,
the center-of-mass is computed byW(ηηη) = 1

D

∑D
s=0 s ηs. This value is 0 whenever

η0 = 1 and ηj = 0, ∀j > 0 and 1 whenever ηD = 1 and ηj = 0, ∀j = 1, . . . , D−1.
W is higher if the weights are assigned to the most specific kernels.

The average values W(ηηη) for 10 repetitions of this experiment are reported in
Figure 9, for percentages of noise in {10i : i = 0, . . . , 10} (left) and {0, . . . , 10}
(right). As expected, the increasing value of W with respect to the percentage of
noise confirms that our method is able to catch the complexity of the problem and
to distribute the weights to the base kernels consistently.

5.6 Analysis of the computational complexity

In this section we present an analysis of the computational complexity of our
method (with K10, K20 and K30 as families of base kernels), compared to the

2 http://clopinet.com/isabelle/Projects/NIPS2003/Slides/NIPS2003-Datasets.pdf



22 Michele Donini, Fabio Aiolli

SVM with the Gaussian kernel3. The theoretical analysis of the complexity of
EasyMKL, presented in [1], shows that EasyMKL has a linear increase of the
computational complexity with respect to the number of base kernels. In fact, the
optimization problem presented in Equation 1 has the same complexity of the
standard SVM.

The difference in complexity between the two approaches is the evaluation of
the base kernels and the computation of the weights, using the closed formula:

ηs = d(γγγ∗)
‖d(γγγ∗)‖ ∀s = 1, . . . , D (see Section 2.1).

This difference in complexity can be reduced evaluating the HPKs incremen-
tally, noticing that if kd is the HPK of degree d, then:

kd+1(x, z) = kd(x, z)k1(x, z) ∀d = 1, . . . , D − 1. (12)

Concerning the time in seconds, we performed an experiment using three
benchmark datasets: Heart, Ionosphere and Splice. We trained the models us-
ing the same experimental framework presented in Section 5.1. The training times
of the outer cross-validation cycle have been collected and divided for the number
of repetitions. The computational times are evaluated using a CPU Intel Core i7-
3632QM @ 2.20GHz. Finally, it is important to point out that using our method we
are able to avoid the validation of the parameter γ of the Gaussian RBF kernel. For
example, if the validation involves V = 10 different values of the hyper-parameter
γ, then a fair comparison can be made by multiplying the Kγ

RBF column by 10.

Training Time (average) in seconds

Dataset Kγ
RBF Our method K10 Our method K20 Our method K30

Heart 0.016× V 0.129 0.158 0.165

Ionosphere 0.034× V 0.243 0.276 0.341

Splice 0.139× V 2.092 2.400 2.882

Table 3: Computational time required by our method with three different families
of base kernels (K10, K20 and K30) compared to the standard SVM with the
Gaussian kernel using a validation set of parameters with cardinality V. The time
is expressed in seconds and is the average of the training performed using a 10-fold
cross-validation. It is important to highlight that in our method we are able to
avoid the validation of the parameter γ of the Gaussian RBF kernel.

The results are summarized in Table 3. From these results we can notice that
the complexity of our method is only one order of magnitude larger with respect
to the simple SVM with a Gaussian kernel with fixed γ (i.e. with V=1). The
difference is slightly higher when we use a larger amount of base kernels. As we
noticed in the previous experimental results, 30 HPKs contain a sufficient level of
complexity in order to learn effectively all the proposed tasks.

3 For these experiments, the scikit-learn implementation of SVM at http://scikit-learn.
org/stable/modules/svm.html has been used
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Dataset KMKL gHKL1.1 gHKL1.5 gHKL2.0

Haberman 0.716±0.014 0.617±0.166 0.518±0.110 0.556±0.070

Liver 0.689±0.056 0.565±0.109 0.583±0.110 0.623±0.038

Diabetes 0.842±0.027 0.636±0.118 0.733±0.058 0.766±0.046

Australian 0.924±0.081 0.923±0.101 0.918±0.049 0.920±0.045

Table 4: Nested 10-fold AUC±std using EasyMKL (KMKL) with K10 as base
family compared to gHKLρ with ρ ∈ {1.1, 1.5, 2.0}.

5.7 A comparison with the Generalized Hierarchical Kernel Learning

In this set of experiments, the performance of the proposed method and the gHKL
method presented in Section 2.2 are compared on a subset of UCI datasets. Unfor-
tunately, gHKL is quite computational demanding and could only cope with very
small datasets with few features. In these experiments, we used the implementation
of the gHKLρ algorithm provided by the authors4.

We performed a 10-fold cross validation for the AUC evaluation, tuning the pa-
rameter C of the SVM for gHKLρ [11] with a 3-fold cross validation selecting C in

{10i : i = −3, . . . , 3}. The same procedure has been repeated for ρ ∈ {1.1, 1.5, 2.0}.
The number of base kernels is fixed to 2m, where m is the number of features, as
in the original paper [11]. It is important to point out that, with ρ = 2 the HKL
formulation of Bach [2] is obtained.

For our algorithm, we fixed D = 10 (i.e. the family of base kernels is K10) and
validated the parameter Λ of EasyMKL by using the same methodology (3-fold
cross validation) with Λ ∈ { v

1−v : v ∈ {0.0, 0.1, . . . , 0.9, 1.0}}.
In Table 4, the AUC results are presented. From these results, we can note

how our solution (KMKL) outperforms the gHKLρ method in this task.

5.8 Experiments on the MNIST dataset

In this section we report on the performance of our method on the MNIST dataset
[14]. The MNIST dataset of handwritten digits is a real-world benchmark dataset
and it is widely used to evaluate the classification performance of pattern recog-
nition algorithms. Digits are size-normalized and centered in a fixed-size image.

In our experiments, we have generated the family of base kernels KD using
different values of D, and considered two different tasks. Firstly, the even-odd
task, where the goal was to correctly discriminate between even and odd digits.
Specifically, even digits (0, 2, 4, 6, 8) have been selected as positives and odd dig-
its (1, 3, 5, 7, 9) as negatives. The second task is the typical multi-class task of
recognizing the label of a given handwritten digit.

For the even-odd task, we used EasyMKL obtaining new kernels KMKL as
combination of the base kernels in the families, one for each value of the param-
eter D. The single homogeneous polynomial kernels KD and the average kernels
Ksum are our baselines. Finally, the parameter D has been selected from the set
{1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40}. We exploited the selected kernels (KMKL,
KD and Ksum) for each value of D using a standard SVM. The best parameter

4 http://www.cse.iitb.ac.in/~pratik.j/ghkl/
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Fig. 10: Classification Error % of EasyMKL with KD (KMKL) compared to KD

and Ksum using different values of D.

C of the SVM has been selected from the set {2n : n = 0, 1, 2, 3, 4}. A comparison
of classification errors is depicted in Figure 10 for the even-odd task.

These results confirm the effectiveness in accuracy of our method. However,
the average kernel Ksum represents a strong baseline in this case maintaining a
good performance even when adding a large number of base kernels (i.e. all the
HPKs KD with D > 10).

For the experimental setting of the multi-class task an all-pairs approach has
been used to cope with multi-class classification. In particular, 45 binary tasks,
one for each possible pair of classes has been created. When a test example needs
to be classified, each classifier is considered as a voter, and it votes for the class it
predicts. Finally, the class with the highest number of votes is the predicted class
of the algorithm.

The following steps have been performed to train the final model:

– Generation of the family of base HPK KD, with D = 8;
– Run of one EasyMKL for each binary task to learn a different kernel for each

task ( Λ = 0.01
1−0.01 );

– Training of the 45 binary SVM models using the kernels computed above (fixing
C = 4.0).

In Table 5, the results of our experiments are summarized. In some cases, data
has been deskwed in order to follow the current state-of-the-art results concerning
SVMs (see [14]).

Also in this case, our methodology is able to create a model that outperforms
the SVM with the optimal RBF kernel in terms of classification performance.
Moreover, using deskewing, our method improves further its performance with an
error of 0.8% (i.e. 80 erroneous digit classifications over 10, 000).

6 Conclusion and Future Work

Starting from a new perspective of the MKL problem, we have investigated on
principled ways to design base kernels such to make their supervised combination
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RBF [14] Our
Polynomial
deskewed [14]

Best SVM
deskewed [14]

Our
deskewed

Classification
Error %

1.4% 0.9% 1.1% 1.0% 0.8%

Table 5: Classification Error % of our method (Our) with and without data deskew-
ing, with respect to the state-of-the-art results using the SVM with different ker-
nels: RBF and Polynomial with optimal degree (i.e. 4). Moreover, we compared
our results with respect to the best SVM result in literature (i.e. using the reduced
set SVM with a polynomial kernel of degree 5).

really effective. Specifically, a hierarchy of features of different level of abstrac-
tion is considered. As a leading example of this methodology, a MKL approach
is proposed to learn the kernel in the space of Dot-Product Polynomials (DPP),
that is a positive combination of Homogeneous Polynomial Kernels (HPKs). We
have given a deep theoretical analysis and empirically shown the merits of our
approach comparing the effectiveness of the generated kernel against baseline ker-
nels (including homogeneous and non homogeneous polynomials, RBF, etc...) and
against the Hierarchical Kernel Learning (HKL) approach on many benchmark
UCI/Statlog datasets and the large MNIST dataset. A deep experimental analysis
has been also presented to get more insight of the method.
In the future, we want to investigate on extensions of the same methodology to
general convolution kernels where the same type of hierarchy among features exist.
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