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Abstract.

The suitability of the well known kernels for trees, and tesser known Self-
Organizing Map for Structures for categorization taskstomcsured data is inves-
tigated in this paper. Itis shown that a suitable combimatibthe two approaches,
by defining new kernels on the activation map of a Self-OrgjagiMap for Struc-
tures, can result in a system that is significantly more ateufior categorization
tasks on structured data. The effectiveness of the propagprbach is demon-
strated experimentally on a relatively large corpus of XMtnfiatted data.

1 Introduction

Graphs provide very versatile means to represent infoamatin fact, there are nu-
merous applications where a graph structured representatidata forms an essential
element for a given task. For example, the search enginehéoworld Wide Web
require the knowledge of the structure of the Web in ordeutafion effectively, or in
molecular chemistry the structural composition of atoni@rents must be respected
since it is related to molecule’s properties.

Traditional methods in machine learning deal with vectanisrmation. Thus, pre-
processing is required to encode graph structured inféomaty a vector. However, a
pre-processor is always task specific and needs to be suitesigned for any new task.
The pre-processing of information can also result in the tdsome information which
may be important for a given task.

Recent developments in Machine Learning produced mettaquisde of processing
graph structured information directly. For example, thérdion of kernels for struc-
tured domains (e.g. [1]) allows a better exploitation afistural information. Advances
in artificial neural networks produced both supervised.(2h and unsupervised (e.g.
[3]) models that process graph structured information.sTdaper addresses the suit-
ability of kernels for structures [1] and Self-Organisingps for Structured Data [4]
for classification tasks involving structures. It will beosim that each of these two ap-
proaches have some significant drawbacks but that the caidirof these approaches
can result in a system that is superior to both.

One problem of kernel for structures, such as the well knoulnti®e kernel (ST)
[5] and Subset tree kernel (SST) [6], already recognizegpiieations to Natural Lan-
guage Processing, is that in the case of large structuresiang symbols, the feature
space implicitly defined by these kernels is very sparsdfiffact, it will be shown that
the classification performance of the Self-Organizing Miapstructured data (SOM-
SD) can be significantly higher than the ones of ST and SSTekeim many real world



applications. We believe that this is mainly due to the abdf SOM-SD to compress
structural information, thus avoiding the sparsity problsuffered by the tree kernels.
However, the compression property of SOM-SD together withunsupervised nature
of the model, may lead to the loss of relevant informatiortliercategorization task.

This paper studies kernels defined on SOM-SD activatiortsidle benefit from
the spatial reduction of the SOM-SD, try to recover “topatadf’ information (i.e.,
structural similarity) not exploited by this technique.

The experiments performed show that such new kernels aestabimprove the
overall categorization performance, thus demonstragitigast in principle, that neither
tree kernels, nor SOM-SD, are able to retain all the relewdotmation. This means
that more effort is needed to try to close this gap, which fihy@a@ach proposed in this
paper already contributed in part to fill in.

This paper is organized as follows: A brief description ofriads for structured
domains and SOM-SD is given in Section 2 and Section 3 reispéctThe kernel for
SOM-SD is proposed in Section 4, and experimental findingpegsented in Section 5.
Conclusions are drawn in Section 6.

2 Kernel for Trees

Kernel algorithms, such as the Support Vector Machine (SM#&Quire the definition

of a kernel function, i.e. a similarity function between amp elements of a domain.
In the following two of the most popular tree kernels, whiclil e used as (strong)
baseline kernels in this paper, are introduced. In padica kernel for trees can be
defined by considering subset trees (SST) as proposed intj§lapnsidering matching
subtrees (ST) as proposed in [5].

The SST kernel is based on counting matching subtrees betmeeinput trees.
Given an input tred’, leth,(7") be the number of times a subtreeccurs inT" (heres
ranges over all possible subtrees of a dataset).

The SST kernel can be efficiently calculated by a recursieequure defined as:
K(Ty,T3) = ZtieTl Zt2eT2 Zgnzl hs(t1)hs(t2) = ZtleTl Zt2eT2 C(ty,t2), where
C(t1,t2) = Z’S”:l hs(t1)hs(t2) can be recursively computed according to the follow-
ing rules:i) if the production$att, andt, are differentthei®(t,, t) = 0; ii) if the pro-
ductions at; andt, are the same, arigd andt, have only leaf children (i.e. they are pre-
terminals symbols) the@'(¢1,t2) = A, iii) if the productions at; andt, are the same,

andt; andt, are not pre-terminals, theii(t,t2) = A H;.‘i(fl)(lJrC(chj [t1], ch;[t2])),
wherenc(t1) is the number of children af andch;|t] Is thej-th child of nodet, and
A > 0 is a weighting parameter whose purpose is to reduce the ndiuef larger sub-
trees [6].

The ST kernel counts the number of shared full subtrees anteabtained by substi-

tuting ruleiii) for the SST withC((t1,22) = A[[}2 1) C(chy[t1], chy]ta)).

3 The SOM for data structures

The SOM-SD extends the Self Organizing Map (SOM) approativy8allowing to
process structured input in the form of directed acyclipbs where each vertex of

1A production is defined as the label of a node plus the labelsciated to its children.



the graph can have a label (e.g., a real valued vector). Tid-SD can be understood

as the recursive application of a standard SOM where thet isparoperly coded to
take into consideration the structural information. Théwoek input for SOM-SD

is a vectorx, representing the information of a vertexof the input graph and it is
built through the concatenation of the data lakelvhich may be attached to and

the coordinates of the mapping, on the same network, of ctultesy ., of v so
thatx, = [v,y.nq]]. The vectors are made constant in size by assuming a maximum
outdegree of any vertex in the dataset. For vertices with less thahildren, padding
with a default coordinate, typically the “impossible” cdarate (-1,-1), is applied. As
aresult, thex arek = p + 20 dimensional vectors, whegeis the dimension of the data
label and the constagtrefers to the number of dimensions of the map. The codebook
vectorsm = [m'?*! m°"] are of the same dimension.

In order to account for the coding of both data label and stiratinformation in the
same input item, the winning neuron is selected by using &ffreddEuclidean distance,
i.e.r = argmin; ||y (v—ml®) 4115 (y cppo) —mE") | where the constant; influences
the contribution of the data label component to the Euclid#iatance, ang- controls
the influence of the children’s coordinates to the Eucliddiatance. In order to obtain
unique value pairs fqr; andus itis commonly assumeds = 1— 1, 1 € [0, 1]. The
difficulty of this approach is the estimation of good valuesthe parameters;. Using
large values fop, increases the mapping precision according to structui@idrimation
but neglects the importance of the information providedigydata labels. Setting large
values foru, increases the focus on the data label but reduces the SOl Riity
to represent structural information, and reduces the acguwith which information
is passed on to parent nodes. The SOM-SD is trained simtiatlye traditional SOM
with the exception of a modified distance measure (as showwegband the fact that
the network inpuk, needs to be updated according to possible changes ir) during
training.

4 Activation Mask Kernel

Here we show how novel tree kernels can be defined on the agiSOM-SD map.
The basic idea is to represent each node of a tree into thatati map (feature space)
of a SOM-SD and then define a kernel which computes the dougtaal this space.

Let ne.[m] denote the set of neurons (SOM-SD map nodes) irtheighbourhood of
the neuronm, i.e. {m/|A,., < €}, whereA is the topological distance defined on
the two dimensional map. An interesting measure of sintjldretween two subtrees
which takes into account the topology induced by the SOM-8Dlme defined as the
cardinality of the intersection of theneighbours of the neurons mostly activated by
those subtrees. Let*(¢1) andm*(¢2) be the coordinates of the winning neurons for
the root nodes of subtreésandt,, respectively, and

I (t1,t2) =ne[m*(t1)] N ne[m™(t2)] (1)



be the set of nodes shared by the twoeighbours, then a similarity measure between
treesT; andTy can be defined by the function:

DT, To) = Y Y ety b)) 2)
t1€T1 t2€T>
Alternative functions which emphasize the alignment betwthe activation profiles
of two subtrees can be considered instead of the strictse¢tion. For example, it
is possible to weight differently matching regions depegdin the distance from the
activated neurons:

K(T1,To)= ) Yo Qclm,m*(41))Qc(m,m*(t2)) ©)

t1€T1,ta€T2 mel(t1,t2)

whereQ.(m,m’) is inversely proportional to the distangs,,,,,, between map nodes
m andm’ andQ.(m,m’) = 0 when the nodes are not in theneighbourhood of each
other, i.e.A,,,,v > €. As an exampleQ).(m,m’) can be defined as

€—7]Amm/ .I: A , <
Qe(m,m/) — { € I mm’ > €

0 otherwise
where0 < n < 1is a parameter determining how much the distance influerees t
neighbourhood activation. Note that (2) can be obtaineah ft4) setting; = 0.
The similarity functionK (71, T%) is a kernel for any choice af.(m,m’). A way
to demonstrate this is to show that there exists a funetisoch that for every’, 7o
o(Ty) - ¢(Tz) = K. (T1,T3), i.e. K. can be expressed as a dot product in a feature
space induced by. Let us define a feature space which has the same dimension as
the map produced by the SOM-SD. Letx o be the size of the rectangular grid of
the map, therd(T') € R™*°. Now, given a tre€l’, we define the masR/ € R"*°
where every element af/ is associated to a node of the map. Métbe initially set to
the null vector. The feature vector is then constructed bymating the best-matching
map nodemn*(t) for each subtre¢ € T when presented to the SOM-SD. Then, the
entries of M associated to neighbours within radiuef m*(¢) are updated according
to M, = M,, + Q.(m,m*(t)); finally, the feature vectop(T") will be defined as
o(T) = [My,...,M,x,]. Atthis point is is easy to check that for a given tfEe
My (T) = 3 cr Qe(m, m*(t)) wheret runs over all possible subtreestf and we
can check that the kernel is obtained by performing the dudyet in feature space, i.e.

(4)

M(Ty)-M(Ty) = ZM (T1) M (T3)
= Z Z Qc(m,m*(t1)) Z Qc(m,m*(t2))
m t1 €Ty t2€T>

Z ZQE(m’m*(tl))Qe(mvm*(tQ))

t1€T1,ta€Ty m

S Qulmom (12)Qu(m.m (1)) = Ko(Ty, T)

ti1,t2 mel.(t1,t2)

where the third derivation is justified by the fact tliat(m, m*(t)) = 0 whenevem is
not in thee-neighbourhood ofn*(¢).



5 Experiments and Results

Performances of the different methods are evaluated by usirlatively large set of
XML formatted documents which were made available as pat@fNEX Initiative?.
Specifically the corpusnt db- s- 0) consists 0f9, 640 documents containing XML
tags only, i.e. no further textual information availabldl @documents have one out of
11 possible target valug377 dataset documents are marked as being the training set,
1447 as being the validation set and all remaining documents fomtest set. A tree
structure is extracted for each of the documents in the dalgsfollowing the general
XML structure within the documents. The dataset is compo$é84, 191 nodes (sub-
trees) with maximum out-degrée418. A pre-processing step was performed on the
dataset in order to reduce its dimensionality. First, reggmbaequences of tags within
the same level of a structure were collapsed. A further dgioenreduction has been
achieved by collapsing simple sub-structures which hawetbperty of a data sequence
into a single node. The pre-processing step reduced thenmiaxiout-degree t82,
and the total number of nodes 184, 359. SVM-based multiclass classification of the
dataset was obtained by using the one-against-all methiost 1A binary classifiers,
each devoted to recognize a single class, were trained. fhieetil -class classification
was chosen to be the prediction of the 1-class classifier wghest confidence. Best
parameters were selected comparing classification peaiacemon the validation set.
The same parameter setting was then used to train a muticlassifier on the union
of the training and validation sets. The resulting classifias then evaluated on the
test set. In order to have a baseline, the SVM with ST and S&Telewas applied to
the dataset. Best ST performance has an error raté.®7%. It was obtained setting
A (see Section 2) td.1 and setting the usualparameter of the SVM t@0. Best SST
performance id1.21% (¢ = 10 and\ = 0.1).

The maps used for this study were created by the SOMS-SD &iatul 9 different
maps were built with the aim of spanning as much as possiklspace of SOM-SD
parameters and therefore getting insights on the depepdétie final results from the
maps. However, due to SOM-SD training times and the numbgauameters involved,
a comprehensive investigation was not feasible. Map 9 igtlaet reproduction of the
best SOM-SD map for this dataset [9].

After the training phase each map was evaluated on the tesithea k-nn proce-
dure withk = 1. Table 1 reports the classification performance of each mimpice
that the worst classification errdr.06%, is significantly above the baselinkl(21%).
Experiments proceeded by testing the activation mask ke¢Ad) defined in Section 4.

Map 1 2 3 4 5 6 7 8 9
Error rate(%) {11.69 14.01 14.06 11.44 12.23 7.30 9.28 6.14 6.10

Table 1: Classification error of the SOM-SD maps.

First, a new dataset in which each sample was transformedsrdctivation mask, was
created. This process was repeated for each map and forediffealues of (see

2http://xmimining.lip6.fr
Shttp://ww.uow.edu.au/ markus/apods/software.html



eq. 1). Table 2 summarizes the results obtained. In theseriexgnts the use of the
Activation Mask kernel always improved the classificati@fprmance. Moreover the
low standard deviation of the AM kernels suggests that therawement is quite in-
dependent with respect to the SOM-SD used. A reasonableitpahfor selecting the
neighbourhood size for the AM is to select thigest performing (together with all other
parameters) on the validation set. In our experimentsdiisrtique would have led to a
mean error rate of 5.82% with standard deviation of 0.77 ctviwiould place amongst
the best with respect to the approaches listed in Table 2.

ST | SST| SOM-SD AM | AM | AM | AM | AM

e=1|e=2le=3e=4| =5
Mean error(%) (11.27 11.21 10.25 | 5.84| 5.69| 5.91| 5.92| 5.99
Std. Deviation - - 3.16 | 0.78| 0.67| 0.88| 0.87| 0.75

Table 2: Mean classification error and standard deviati@r all maps for the Sub-
tree kernel, Subset Tree kernel, SOM-SD and Activation Maskel with different
neighbourhood sizes.

6 Conclusion

When facing datasets with large structures and many syntheleature space implici-
tly defined by Subset and SubTree kernels are sparse, tidisdea poor classification
performance. The SOM-SD is a method for dimensionality céida which is “topol-
ogy” preserving. In this paper a new class of kernels defim8®M-SD activations is
studied. Experiments have shown that the new kernels inedsoth the SOM-SD and
tree kernels classification performances.
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