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Abstract.
The suitability of the well known kernels for trees, and the lesser known Self-
Organizing Map for Structures for categorization tasks on structured data is inves-
tigated in this paper. It is shown that a suitable combination of the two approaches,
by defining new kernels on the activation map of a Self-Organizing Map for Struc-
tures, can result in a system that is significantly more accurate for categorization
tasks on structured data. The effectiveness of the proposedapproach is demon-
strated experimentally on a relatively large corpus of XML formatted data.

1 Introduction

Graphs provide very versatile means to represent information. In fact, there are nu-
merous applications where a graph structured representation of data forms an essential
element for a given task. For example, the search engines forthe World Wide Web
require the knowledge of the structure of the Web in order to function effectively, or in
molecular chemistry the structural composition of atomic elements must be respected
since it is related to molecule’s properties.

Traditional methods in machine learning deal with vectorial information. Thus, pre-
processing is required to encode graph structured information by a vector. However, a
pre-processor is always task specific and needs to be suitably designed for any new task.
The pre-processing of information can also result in the loss of some information which
may be important for a given task.

Recent developments in Machine Learning produced methods capable of processing
graph structured information directly. For example, the definition of kernels for struc-
tured domains (e.g. [1]) allows a better exploitation of structural information. Advances
in artificial neural networks produced both supervised (e.g. [2]) and unsupervised (e.g.
[3]) models that process graph structured information. This paper addresses the suit-
ability of kernels for structures [1] and Self-Organising Maps for Structured Data [4]
for classification tasks involving structures. It will be shown that each of these two ap-
proaches have some significant drawbacks but that the combination of these approaches
can result in a system that is superior to both.

One problem of kernel for structures, such as the well known Subtree kernel (ST)
[5] and Subset tree kernel (SST) [6], already recognized in applications to Natural Lan-
guage Processing, is that in the case of large structures andmany symbols, the feature
space implicitly defined by these kernels is very sparse [7].In fact, it will be shown that
the classification performance of the Self-Organizing Mapsfor structured data (SOM-
SD) can be significantly higher than the ones of ST and SST kernels in many real world



applications. We believe that this is mainly due to the ability of SOM-SD to compress
structural information, thus avoiding the sparsity problem suffered by the tree kernels.
However, the compression property of SOM-SD together with the unsupervised nature
of the model, may lead to the loss of relevant information forthe categorization task.

This paper studies kernels defined on SOM-SD activations that, while benefit from
the spatial reduction of the SOM-SD, try to recover “topological” information (i.e.,
structural similarity) not exploited by this technique.

The experiments performed show that such new kernels are able to improve the
overall categorization performance, thus demonstrating,at least in principle, that neither
tree kernels, nor SOM-SD, are able to retain all the relevantinformation. This means
that more effort is needed to try to close this gap, which the approach proposed in this
paper already contributed in part to fill in.

This paper is organized as follows: A brief description of kernels for structured
domains and SOM-SD is given in Section 2 and Section 3 respectively. The kernel for
SOM-SD is proposed in Section 4, and experimental findings are presented in Section 5.
Conclusions are drawn in Section 6.

2 Kernel for Trees
Kernel algorithms, such as the Support Vector Machine (SVM), require the definition
of a kernel function, i.e. a similarity function between anytwo elements of a domain.
In the following two of the most popular tree kernels, which will be used as (strong)
baseline kernels in this paper, are introduced. In particular, a kernel for trees can be
defined by considering subset trees (SST) as proposed in [6] or by considering matching
subtrees (ST) as proposed in [5].

The SST kernel is based on counting matching subtrees between two input trees.
Given an input treeT , let hs(T ) be the number of times a subtrees occurs inT (heres

ranges over all possible subtrees of a dataset).
The SST kernel can be efficiently calculated by a recursive procedure defined as:

K(T1, T2) =
∑

ti∈T1

∑

t2∈T2

∑m

s=1 hs(t1)hs(t2) =
∑

t1∈T1

∑

t2∈T2
C(t1, t2), where

C(t1, t2) =
∑m

s=1 hs(t1)hs(t2) can be recursively computed according to the follow-
ing rules:i) if the productions1 att1 andt2 are different thenC(t1, t2) = 0; ii) if the pro-
ductions att1 andt2 are the same, andt1 andt2 have only leaf children (i.e. they are pre-
terminals symbols) thenC(t1, t2) = λ; iii) if the productions att1 andt2 are the same,
andt1 andt2 are not pre-terminals, thenC(t1, t2) = λ

∏nc(t1)
j=1 (1+C(chj [t1], chj [t2])),

wherenc(t1) is the number of children oft1 andchj[t] is thej-th child of nodet, and
λ > 0 is a weighting parameter whose purpose is to reduce the influence of larger sub-
trees [6].
The ST kernel counts the number of shared full subtrees and can be obtained by substi-
tuting ruleiii) for the SST withC(t1, t2) = λ

∏nc(t1)
j=1 C(chj [t1], chj[t2]).

3 The SOM for data structures
The SOM-SD extends the Self Organizing Map (SOM) approach [8] by allowing to
process structured input in the form of directed acyclic graphs, where each vertex of

1A production is defined as the label of a node plus the labels associated to its children.



the graph can have a label (e.g., a real valued vector). The SOM-SD can be understood
as the recursive application of a standard SOM where the input is properly coded to
take into consideration the structural information. The network input for SOM-SD
is a vectorxv representing the information of a vertexv of the input graph and it is
built through the concatenation of the data labelv which may be attached tov and
the coordinates of the mapping, on the same network, of childnodesych[v] of v so
thatxv = [v,ych[v]]. The vectors are made constant in size by assuming a maximum
outdegreeo of any vertex in the dataset. For vertices with less thano children, padding
with a default coordinate, typically the “impossible” coordinate (-1,-1), is applied. As
a result, thex arek = p + 2o dimensional vectors, wherep is the dimension of the data
label and the constant2 refers to the number of dimensions of the map. The codebook
vectorsm ≡ [mlabel,mch] are of the same dimension.

In order to account for the coding of both data label and structural information in the
same input item, the winning neuron is selected by using a modified Euclidean distance,
i.e. r = argmini ‖µ1(v−m

label
i )+µ2(ych[v]−m

ch
i )‖ where the constantµ1 influences

the contribution of the data label component to the Euclidean distance, andµ2 controls
the influence of the children’s coordinates to the Euclideandistance. In order to obtain
unique value pairs forµ1 andµ2 it is commonly assumedµ2 = 1−µ1, µ1 ∈ [0, 1]. The
difficulty of this approach is the estimation of good values for the parametersµi. Using
large values forµ2 increases the mapping precision according to structural information
but neglects the importance of the information provided by the data labels. Setting large
values forµ1 increases the focus on the data label but reduces the SOM-SD’s ability
to represent structural information, and reduces the accuracy with which information
is passed on to parent nodes. The SOM-SD is trained similarlyto the traditional SOM
with the exception of a modified distance measure (as shown above), and the fact that
the network inputxv needs to be updated according to possible changes inych[v] during
training.

4 Activation Mask Kernel

Here we show how novel tree kernels can be defined on the basis of a SOM-SD map.
The basic idea is to represent each node of a tree into the activation map (feature space)
of a SOM-SD and then define a kernel which computes the dot product in this space.
Let neǫ[m] denote the set of neurons (SOM-SD map nodes) in theǫ-neighbourhood of
the neuronm, i.e. {m′|∆m′m ≤ ǫ}, where∆ is the topological distance defined on
the two dimensional map. An interesting measure of similarity between two subtrees
which takes into account the topology induced by the SOM-SD can be defined as the
cardinality of the intersection of theǫ-neighbours of the neurons mostly activated by
those subtrees. Letm∗(t1) andm∗(t2) be the coordinates of the winning neurons for
the root nodes of subtreest1 andt2, respectively, and

Iǫ(t1, t2) = neǫ[m
∗(t1)] ∩ neǫ[m

∗(t2)] (1)



be the set of nodes shared by the twoǫ-neighbours, then a similarity measure between
treesT1 andT2 can be defined by the function:

K(I)
ǫ (T1, T2) =

∑

t1∈T1

∑

t2∈T2

|Iǫ(t1, t2)|. (2)

Alternative functions which emphasize the alignment between the activation profiles
of two subtrees can be considered instead of the strict intersection. For example, it
is possible to weight differently matching regions depending on the distance from the
activated neurons:

Kǫ(T1, T2) =
∑

t1∈T1,t2∈T2

∑

m∈Iǫ(t1,t2)

Qǫ(m, m∗(t1))Qǫ(m, m∗(t2)) (3)

whereQǫ(m, m′) is inversely proportional to the distance∆mm′ between map nodes
m andm′ andQǫ(m, m′) = 0 when the nodes are not in theǫ-neighbourhood of each
other, i.e.∆mm′ > ǫ. As an example,Qǫ(m, m′) can be defined as

Qǫ(m, m′) =

{

ǫ−η∆
mm′

ǫ
if ∆mm′ ≤ ǫ

0 otherwise
(4)

where0 ≤ η ≤ 1 is a parameter determining how much the distance influences the
neighbourhood activation. Note that (2) can be obtained from (4) settingη = 0.
The similarity functionKǫ(T1, T2) is a kernel for any choice ofQǫ(m, m′). A way
to demonstrate this is to show that there exists a functionφ such that for everyT1, T2

φ(T1) · φ(T2) = Kǫ(T1, T2), i.e. Kǫ can be expressed as a dot product in a feature
space induced byφ. Let us define a feature space which has the same dimension as
the map produced by the SOM-SD. Letn × o be the size of the rectangular grid of
the map, thenφ(T ) ∈ ℜn×o. Now, given a treeT , we define the maskM ∈ ℜn×o

where every element ofM is associated to a node of the map. LetM be initially set to
the null vector. The feature vector is then constructed by computing the best-matching
map nodem∗(t) for each subtreet ∈ T when presented to the SOM-SD. Then, the
entries ofM associated to neighbours within radiusǫ of m∗(t) are updated according
to Mm = Mm + Qǫ(m, m∗(t)); finally, the feature vectorφ(T ) will be defined as
φ(T ) = [M1, . . . , Mn×o]. At this point is is easy to check that for a given treeT ,
Mm(T ) =

∑

t∈T Qǫ(m, m∗(t)) wheret runs over all possible subtrees ofT , and we
can check that the kernel is obtained by performing the dot product in feature space, i.e.

M(T1) · M(T2) =
∑

m

Mm(T1)Mm(T2)

=
∑

m

∑

t1∈T1

Qǫ(m, m∗(t1))
∑

t2∈T2

Qǫ(m, m∗(t2))

=
∑

t1∈T1,t2∈T2

∑

m

Qǫ(m, m∗(t1))Qǫ(m, m∗(t2))

=
∑

t1,t2

∑

m∈Iǫ(t1,t2)

Qǫ(m, m∗(t1))Qǫ(m, m∗(t2)) = Kǫ(T1, T2)

where the third derivation is justified by the fact thatQǫ(m, m∗(t)) = 0 wheneverm is
not in theǫ-neighbourhood ofm∗(t).



5 Experiments and Results

Performances of the different methods are evaluated by using a relatively large set of
XML formatted documents which were made available as part ofthe INEX Initiative2.
Specifically the corpus (m-db-s-0) consists of9, 640 documents containing XML
tags only, i.e. no further textual information available. All documents have one out of
11 possible target value.3377 dataset documents are marked as being the training set,
1447 as being the validation set and all remaining documents formthe test set. A tree
structure is extracted for each of the documents in the dataset by following the general
XML structure within the documents. The dataset is composedof 684, 191 nodes (sub-
trees) with maximum out-degree6, 418. A pre-processing step was performed on the
dataset in order to reduce its dimensionality. First, repeated sequences of tags within
the same level of a structure were collapsed. A further dimension reduction has been
achieved by collapsing simple sub-structures which have the property of a data sequence
into a single node. The pre-processing step reduced the maximum out-degree to32,
and the total number of nodes to124, 359. SVM-based multiclass classification of the
dataset was obtained by using the one-against-all method. First 11 binary classifiers,
each devoted to recognize a single class, were trained. Thenthe 11-class classification
was chosen to be the prediction of the 1-class classifier withhighest confidence. Best
parameters were selected comparing classification performance on the validation set.
The same parameter setting was then used to train a multiclass classifier on the union
of the training and validation sets. The resulting classifier was then evaluated on the
test set. In order to have a baseline, the SVM with ST and SST kernels was applied to
the dataset. Best ST performance has an error rate of11.27%. It was obtained setting
λ (see Section 2) to1.1 and setting the usualc parameter of the SVM to10. Best SST
performance is11.21% (c = 10 andλ = 0.1).
The maps used for this study were created by the SOMS-SD Simulator3. 9 different
maps were built with the aim of spanning as much as possible the space of SOM-SD
parameters and therefore getting insights on the dependency of the final results from the
maps. However, due to SOM-SD training times and the number ofparameters involved,
a comprehensive investigation was not feasible. Map 9 is theexact reproduction of the
best SOM-SD map for this dataset [9].

After the training phase each map was evaluated on the test set with a k-nn proce-
dure withk = 1. Table 1 reports the classification performance of each map.Notice
that the worst classification error,14.06%, is significantly above the baseline (11.21%).
Experiments proceeded by testing the activation mask kernels (AM) defined in Section 4.

Map 1 2 3 4 5 6 7 8 9
Error rate(%) 11.69 14.01 14.06 11.46 12.23 7.30 9.28 6.14 6.10

Table 1: Classification error of the SOM-SD maps.

First, a new dataset in which each sample was transformed into its activation mask, was
created. This process was repeated for each map and for different values ofǫ (see

2http://xmlmining.lip6.fr
3http://www.uow.edu.au/˜markus/apods/software.html



eq. 1). Table 2 summarizes the results obtained. In these experiments the use of the
Activation Mask kernel always improved the classification performance. Moreover the
low standard deviation of the AM kernels suggests that the improvement is quite in-
dependent with respect to the SOM-SD used. A reasonable technique for selecting the
neighbourhood size for the AM is to select theǫ best performing (together with all other
parameters) on the validation set. In our experiments this technique would have led to a
mean error rate of 5.82% with standard deviation of 0.77, which would place amongst
the best with respect to the approaches listed in Table 2.

ST SST SOM-SD AM AM AM AM AM
ǫ = 1 ǫ = 2 ǫ = 3 ǫ = 4 ǫ = 5

Mean error(%) 11.27 11.21 10.25 5.84 5.69 5.91 5.92 5.99
Std. Deviation - - 3.16 0.78 0.67 0.88 0.87 0.75

Table 2: Mean classification error and standard deviation over all maps for the Sub-
tree kernel, Subset Tree kernel, SOM-SD and Activation Maskkernel with different
neighbourhood sizes.

6 Conclusion

When facing datasets with large structures and many symbols, the feature space implici-
tly defined by Subset and SubTree kernels are sparse, thus leading to poor classification
performance. The SOM-SD is a method for dimensionality reduction which is “topol-
ogy” preserving. In this paper a new class of kernels defined on SOM-SD activations is
studied. Experiments have shown that the new kernels improve both the SOM-SD and
tree kernels classification performances.
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