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Abstract. Graph kernels are widely adopted in real-world applications
that involve learning on graph data. Different graph kernels have been pro-
posed in literature, but no theoretical comparison among them is present.
In this paper we provide a formal definition for the expressiveness of a
graph kernel by means of the Rademacher Complexity, and analyze the
differences among some state-of-the-art graph kernels. Results on real
world datasets confirm some known properties of graph kernels, showing
that the Rademacher Complexity is indeed a suitable measure for this
analysis.

1 Introduction

Among the different machine learning techniques applicable to structured do-
mains, kernel methods are a well established solution because they can be defined
directly on structured data. This relieves the user from the definition of a vec-
torial representation of the data, a time consuming and task-specific operation.
When it comes to deal with graphs, several instances of graph kernels have been
presented in literature. A recent advance in the field are fast kernels (near-linear
time) that allow for an explicit, sparse feature space representation that can be
successfully applied to big graph datasets [1, 2]. Each kernel considers as fea-
tures different small substructures of the original graph. Empirical comparisons
among different kernels can be found in literature [3, 4] but, with few exceptions
[5], no theoretical comparison is present. Moreover, usually kernels depend on
one or more user-specified parameters, that control the resulting computational
complexity, and change the induced hypothesis space. The selection of an ap-
propriate kernel (and kernel parameters) can be a critical phase for achieving
satisfying predictive performance on a specific task. In particular, different ker-
nels induce different hypothesis spaces. The learning process (defined by the
learning algorithm), based on empirical observations (examples), aims to select
the hypothesis in these spaces, with the smallest generalization error, namely
the error on previously unseen observations [6]. The asymptotic analysis of the
learning process, via a bound on the generalisation error, has been thoroughly
investigated in the past [7, 6]. However, as the number of samples is limited
in practice, finite sample analysis by means of complexity measure of the hy-
pothesis space was proposed, and represented a fundamental advance in the field
[6, 8, 9, 10, 11].
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In the context of graph kernels, the expressiveness of a kernel is defined as
its ability to distinguish between non-isomorphic examples. In [12] it is shown
that complete graph kernels (kernels that map each non-isomorphic graph in a
different point in the feature space) are hard to compute. Thus, the kernels that
we consider (and the ones that are used in practice) are not complete, but it is
difficult to characterize their expressiveness, even in a relative way. If the non-
zero features generated by different kernels are independent to each other, then
it is easy to see that the more non-zero features a kernel generates, the more
it is able to discriminate between examples, and so the more it is expressive.
However, this is not the case with structural features, where there are strong
dependency relationships among them, i.e. a feature can be non-zero only if
some specific features are too. In this case, there is no easy way to assess how
expressive a kernel is.

In this paper, we propose a theoretically grounded and efficiently computable
notion of expressiveness which is based on the Rademacher Complexity (RC),
a powerful notion of complexity of an hypothesis space. We use it to measure
the expressiveness of different graph kernels, and we try to understand the main
differences among them, as a first step in the process of defining a rationale
behind the kernel selection that goes beyond the empirical error estimation on
a subset of the available data.

2 Graph Kernels

Let us start this section with some definitions and notations. A kernel function
k : X ×X → R is a symmetric positive semi-definite function that corresponds to
a dot product in a Reproducing kernel Hilbert Space (RKHS), i.e. there exists
a φ : X → V, where V is an Hilbert space, such that k(x, x′) = 〈φ(x), φ(x′)〉.
Note that the input space X can be any space. In particular, in this paper we
will focus on the space of graphs. A graph is a tuple G = (VG, EG, LG), where
VG = {1, . . . , n} is the set of vertices, EG = {(i, j)|i, j ∈ VG} is the set of edges
(with |EG| = m), and LG : VG → Σ is a function mapping each vertex to a
discrete label in a fixed alphabet Σ. A graph is undirected if (i, j) ∈ Eg ⇒
(j, i) ∈ EG, otherwise it is directed. ρ is the maximum out-degree (or number of
outgoing edges) of a node in a graph, i.e. maxi∈V |{(i, j) : (i, j) ∈ E}|. A path
is a sequence of vertices v1 · ·vn where (vi, vi+1) ∈ EG. A cycle is a path where
v1 = vn. A tree is a directed acyclic graph where one vertex has no incoming
edge.

Among the different graph kernels available in literature, in this paper we
focus on the ones that are considered state-of-the-art from both the predictive
power and computational complexity points of view. Weisfeiler-Lehman (WL)
graph kernels [4] are based on the recursive WL color refinement procedure.
The principal member of this family, the Fast Subtree WL kernel, in an efficient
way (O(m)), maps a graph in a RKHS where each feature represents a subtree-
walk pattern (subtrees where vertices can appear multiple times). The value
associated to a feature is the frequency of the particular subtree-walk in the input
graph. WL kernel is computed in an iterative fashion, that stops after h (user-
specified parameter) iterations. The number of non-zero features associated to



a graph is at most nh. The Ordered Decomposition DAGs kernel framework
(ODD) [5] considers as non-zero features in the RKHS the trees that appear as
subtrees of the input graphs. It exploits the shortest-path (up to length h) DAG
decompositions starting from each node in the graph to generate DAG structures,
and then extracts tree features from them. Each tree-feature is weighted as
f ·λdim, where f is the frequency of the feature, dim its dimension (the number
of vertices in the tree) and λ > 0 a weighting parameter. The time complexity
of the main representative of this family, ODDSTh

, is, under mild conditions,
O(n log n), and the number of generated features for a graph is at most nρh.
The Neighborhood Subgraph Pairwise Distance kernel (NSPDK) [3] considers
as features pairs of small-sized subgraphs (up to radius h) that appear in an
input graph at a (shortest-path) distance of at most d. The number of features

generated by this kernel is hnρd

2 , that lies between hn and hn2

2 . Note that WL
is very close to a degenerate case of NSPDK, where d = 0.

3 Rademacher Complexity of RKHS

We consider the conventional binary classification problem [6]: based on a ran-
dom observation of X ∈ X , one has to estimate y ∈ Y = {±1} by choosing a suit-
able hypothesis h : X → Y, in a set of possible ones H. A learning algorithm se-
lects h ∈ H by exploiting a set of labeled samples Dn = {(x1, y1) , · · · , (xn, yn)}.
Examples in Dn are sampled i.i.d. according to the distribution µ over X × Y.
The generalisation error L(h) = Eµ`(h(x), y) associated to an hypothesis h ∈ H
is defined through a loss function `(h(x), y) : Y × Y → [0, 1]. Since we are
dealing with binary classification problems ` usually counts the number of mis-
classified samples `H(h(x), y) = [h(x) 6= y]. As µ is unknown, L(h) cannot be
explicitly computed, thus we have to resort to its empirical estimator, namely

the empirical error L̂n(h) = 1/n
∑n
i=1 ` (h (xi) , yi). Note that L̂n(h) is a bi-

ased estimator, since the data used for selecting the model and for computing
the empirical error coincide. We estimate this bias by studying the discrep-
ancy between the generalisation error and the empirical error. For this purpose

the Global RC, defined as R̂n(H) = Eσ suph∈H 2/n
∑n
i=1 σi` (h (xi) , yi) where

σ = [σ1| · · · |σn] are n {±1}–valued i.i.d. Rademacher random variables for
which P(σi = +1) = P(σi = −1) = 1/2, can be exploited [8, 9]:

Theorem 1 ([8, 9]). Let us consider a space of functions H. Then ∀h ∈ H,
the generalisation error can be upper-bounded with probability (1 − 2e−x). In

particular L(h) ≤ L̂n(h) + R̂n(H) + 3
√
x/2n.

More recently a local version of the RC, the Local RC, has been developed
[11, 10] in order to discard those functions that will never be selected during
the learning phase. Unfortunately its computation results in an NP-Hard prob-
lem [8, 10, 11]. Instead, if H is a RKHS, computing the RC can be done ef-
ficiently. Let us consider that h ∈ H can be expressed as h(x) = w · φ(x),
where φ : X → RD and ‖w‖2 ≤ W 2; besides, let us exploit a ρ-admissible
loss function: |`(h1(x), y) − `(h2(x), y)| ≤ ρ|h1(x) − h2(x)|. Consequently, let
us show how to compute the RC of this space. Let us consider the following

matrix Φ = [φ(x1)| · · · |φ(xn)]
T

and vector y = [y1| · · · |yn]
T

. Consequently we



can state that:

R̂n(H) = Eσ suph∈H
2
n

∑n
i=1 σi` (h (xi) , yi) ≤ Eσ suph∈H

2ρ
n

∑n
i=1 σih (xi)

= Eσ sup‖w‖≤W
2ρ
n

∑n
i=1 σiw · φ(xi) = 2ρW

n Eσ ‖
∑n
i=1 σiw · φ(xi)|

= 2ρW
n Eσ

√
σTΦΦTσ ≤ 2ρW

n

√
EσσTΦΦTσ = 2ρW

n

√∑n
i=1 φ(xi)Tφ(xi). (1)

Note that the quantity of Eq. (1) can be easily computed from the data. If, for
example, w∗C is the solution of a Support Vector Machine [13] with b = 0 [14] for
a particular value of its hyperparameter C over Dn, we have basically minimised
the convex upper-bound of `H in the space H defined by W = ‖w∗C‖ and σ = 1.

Moreover, let us consider the domain Γ of vectors γ ∈ Rn+ such that Γ =
{γ ∈ Rn+ :

∑
i:yi=+1 γi = 1,

∑
i:yi=−1 γi = 1}. Given two generic points

in the convex hulls of positive and negative examples in feature space, spec-
ified by a vector γ ∈ Γ, then their squared distance can be computed by:
‖
∑
i:yi=+1 γiφ(xi)−

∑
i:yi=−1 γiφ(xi)‖2 = γTY ΦΦTY γ where Y = diag(y). It

follows that the minimum distance between the convex hulls of positive and
negative examples can be lower bounded as follows [15]:

minγ∈Γ γ
TY ΦΦTY γ ≥ 2

n min{λ1, · · · , λn} = 2/nλmin, (2)

where λ1, · · · , λn are the eigenvalues of the matrix ΦΦT . Similarly, we can give
an upper bound to the maximum distance of training examples which depends
on the maximal eigenvalue, that is [15]:

maxγ∈Γ γ
TY ΦΦTY γ ≤ max{λ1, · · · , λn} = λmax. (3)

In order to compare two kernels defined by φ1 and φ2 through the RC of Eq. (1),
we will normalize it in this way: without loss of generality [10] we set W = 1,
then we divide by the difference between the maximum distance of training
examples and the minimum distance between the convex hulls of positive and
negative examples, finally we remove the constant factors ρ and n. Consequently
the Normalised RC of a kernel defined by φ can be introduced as:

N̂(φ) =
∑n
i=1 φ(xi)

Tφ(xi)/(λmax − 2/nλmin). (4)

This quantity is able to measure how much expressive is a kernel defined by φ1

with respect to another one defined by φ2, since we have scaled the eigenvalues
with respect to the geometry of the space and removed the constant factors.

Moreover N̂(φ) is theoretically grounded by its connection with the generalisa-
tion error of a linear separator in the space defined by φ.

Dataset/kernel AIDS CAS CPDB NCI1
max min max min max min max min

NSPDK 7.9 1.5 8.3 1.6 9.6 1.8 6.8 1.3
WL 1.7 1.1 2.0 1.2 2.7 1.4 1.5 1.1
ODDST 58.9 1 5.6 1 4.6 1.1 30.1 1

Table 1: Maximum and minimum N̂ achieved by different kernels.



4 Experimental results

In this section, we analyze the Normalised RC defined in Eq. (4) of three state-
of-the-art graph kernels, presented in Section 2, on the AIDS, CAS, CPDB
and NCI1 datasets (see [5] for a detailed description). The datasets represent
chemical compounds as graphs, where each node corresponds to an atom, and
edges encode the bonds between them.

Table 1 reports the maximum and minimum value of Eq. (4) for each ker-
nel/dataset combination. The WL kernel is the one with the smaller associated

feature space. Its maximum N̂ values are the smallest ones, indicating that it
is the least expressive among the considered kernels. In the same Table 1, it is
possible to see that for two out of four datasets (CAS and CPDB), the NSPDK

kernel achieves the highest N̂ values, while in the other two its expressiveness

remains consistent. On the other hand, ODDST is able to achieve very high N̂
values on AIDS and NCI1 datasets.

Let us now try to understand how the kernel parameters influence the N̂

values of the resulting kernels. Figure 1 shows the highest N̂ values that it
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Fig. 1: N̂ as a function of the h parameter for kernels and datasets.
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Fig. 2: N̂ of the NSPDK kernel for different values of h and d, and datasets.

is possible to achieve fixing the h parameter of the considered kernels, on two
datasets (for the other two datasets the situation is similar, thus the plots are
omitted for lack of space). WL shows the slowest-growing complexity. NSPDK
grows consistently in both the datasets. On AIDS, the complexity of ODDST

kernel grows exponentially in h. Figure 2 shows in more detail the behavior
of NSPDK kernel as a function of the two parameters h and d. The growth
in complexity is linear with respect to both the parameters. Figure 3 refers
to ODDST kernel. In this case, the kernel complexity grows non-linearly with
the λ parameter. It is interesting to point out that different kernels may reach
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Fig. 3: N̂ of the ODDST kernel for different values of h and λ, and datasets.

the same complexity with different h parameters. In that case, a user (or an
algorithm for parameter or kernel selection) aims to pick the kernel/parameter
combination that is more efficient to compute.

5 Conclusions and future works

We presented in this paper a principled way to measure the expressiveness of
graph kernels. The measure is based on the (Global) Rademacher complexity.
This measure can, in future, be applied to perform kernel/parameters selection.
Moreover, more complex measures based on the local Rademacher complexity
will be explored.
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