
Efficient Top-N Recommendation for Very Large Scale
Binary Rated Datasets

Fabio Aiolli
University of Padova, Italy
aiolli@math.unipd.it

ABSTRACT
We present a simple and scalable algorithm for top-N recommen-
dation able to deal with very large datasets and (binary rated) im-
plicit feedback. We focus on memory-based collaborative filtering
algorithms similar to the well known neighboor based technique
for explicit feedback. The major difference, that makes the algo-
rithm particularly scalable, is that it uses positive feedback only
and no explicit computation of the complete (user-by-user or item-
by-item) similarity matrix needs to be performed.
The study of the proposed algorithm has been conducted on data
from the Million Songs Dataset (MSD) challenge whose task was
to suggest a set of songs (out of more than 380k available songs)
to more than 100k users given half of the user listening history and
complete listening history of other 1 million people.
In particular, we investigate on the entire recommendation pipeline,
starting from the definition of suitable similarity and scoring func-
tions and suggestions on how to aggregate multiple ranking strate-
gies to define the overall recommendation. The technique we are
proposing extends and improves the one that already won the MSD
challenge last year.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval

General Terms
Algorithms

Keywords
Collaborative Filtering, Top-N Recommendation, Implicit Feed-
back, Million Song Dataset Challenge

1. INTRODUCTION
Recommender systems are common tools to improve customer ex-
perience in e-commerce applications. These systems typically use
the history of their interaction with the users to improve future rec-
ommendations. Different kinds of interactions can be tracked. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys’13, October 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2409-0/13/10 ...$15.00.
http://dx.doi.org/10.1145/2507157.2507189

example, users can be required to leave an explicit feedback (a vote,
a rate, or any degree of satisfaction) for the available items. In con-
trast, the system can autonomously keep track of user behaviors,
for instance by keeping the history of user purchases, browsing ac-
tivity of the users, etc. This second case is usually referred to as
implicit feedback. Web Retrieval literature is plenty of works deal-
ing with the implicit feedback problem while less effort has been
devoted so far to recommendation settings (see [7, 15, 11]).

The Million Song Dataset Challenge [10] was a large scale, mu-
sic recommendation challenge, where the task is to predict which
songs a user will listen to, provided the listening history of a user.
The challenge was based on the Million Song Dataset (MSD), a
freely-available collection of meta data for one million of contem-
porary songs (e.g. song titles, artists, year of publication, and much
more) [4]. About one hundred and fifty teams participated to the
challenge. The subset of data actually used in the challenge was
the so called Taste Profile Subset that consists of more than 48 mil-
lion triplets (user,song,count) gathered from user listening histo-
ries. Data consists of about 1.2 million users and covers more than
380,000 songs in MSD. The user-item matrix is very sparse as the
fraction of non-zero entries (a.k.a. density) is only 0.01%.

The task of the challenge was to recommend the most appropriate
songs for a user given half of her listening history and the complete
history of another 1 million users. Thus, the challenge focused
on the ordering of the songs on the basis of the relevance for a
given user (top-N recommendation), and this makes the particular
problem different from the more classical problem of predicting
rates a user will give to unseen items [6, 13]. For example, popular
tasks like Netflix [3] and Movielens fall in this last case. A second
important characteristic of the MSD problem is that we do not have
explicit or direct feedback about what users like and how much
they like it (implicit feedback). In fact, we only have information
of the form “user u listened to song i” without any knowledge about
whether user u actually liked song i or not. A third important aspect
of the MSD data is the presence of meta data concerning songs
including title, artist, year of publication, etc. An interesting open
question then was whether this additional information could help
or not. Finally, given the huge size of the datasets involved, time
and memory efficiency of the method used turned out to be another
very important issue in the challenge.

The most popular technique adopted in recommender systems is
Collaborative Filtering (CF) where the matrix of rates users have
previously assigned to the items is used to discover other users with
similar behaviors as the active user (i.e. the user for which we want

to make the prediction). Current CF approaches can be grouped in
the two classes of neighborhood and model-based methods.

The main intuition in neighborhood-based methods is that, if other
users, similar to the active user, already purchased a certain item,
then it is likely that the active user will like that item as well. Simi-
larly, knowing that a set of items are often purchased together (they
are similar in some sense), then, if the active user has bought one
of them, probably he/she will be interested to the other too. Both
views have been effectively adopted in recent literature for explicit
feedback settings.

In this paper, we demonstrate that the choice of the right prediction
technique or similarity measure is not all that we need to obtain a
good recommender. Here, we propose a flexible pipeline of steps
each one with its own (small) set of parameters to tune for the spe-
cific domain. Moreover, we show that, although the item-based
view has turned out more useful to win the MSD competition, the
user-based view also brings useful and diverse information that can
be aggregated to boost the performance of the recommendation.

In Section 2, collaborative filtering is described and proposed as
a first approach to solve the problem of MSD. In particular, we
briefly discuss the most popular state-of-the-art techniques: model
based and memory based CF methods. In Section 3, we propose
the asymmetric cosine similarity, a parameterized similarity func-
tion that can be adapted to different applicative domains. Further-
more, the notion of locality is taken in account. In Section 4 a new
memory based CF approach is presented which is particularly suit-
able to tasks with implicit feedback. Finally, in Section 5, empirical
results of the proposed techniques are presented and discussed.

2. CF AND THE MILLION SONG DATASET
Collaborative Filtering (CF) techniques use a database in the form
of a user-item matrix R of preferences. A typical CF setting con-
sists of a set U of n users, a set I of m items, and a user-item
matrixR = {rui} ∈ Rn×m represents how much user u likes item
i. In this paper, we assume binary ratings rui ∈ {0, 1} as this was
the setting of the MSD challenge1. In the MSD setting, an entry
rui = 1 represents the fact that user u have listened to the song i.
In the following, we refer to terms item or song interchangeably.
The MSD challenge task can be properly described as a top-N rec-
ommendation task, that is, for any active user u, we want to identify
a list of N (N = 500 in the challenge) items Iu ⊆ I she/he will
like the most. Clearly, this set must be disjoint with the set of items
already rated (purchased, or listened to) by the active user.

2.1 Model-based Collaborative Filtering
Model-based CF techniques construct a model of the information
contained in the matrix R. There are many proposed techniques
of this type, including Bayesian models, Clustering models, Latent
Factor models, and Classification/Regression models, just to name
a few.

In more recent literature about CF, Matrix Factorization (MF) tech-
niques [9] have become a very popular and effective choice to im-
plement the CF idea. In this kind of models one tries to learn an em-
bedding of both users and items into a smaller dimensional space.
1Note that in this definition we are neglecting the information given
by the count attribute of the triplets indicating how many times the
song has been listened to by a user. However, the organizers of the
challenge have warned us on the fact that this attribute is likely to
be unreliable and absolutely not correlated with likings.

More formally, one needs to find two matrices X ∈ Rk×n and
Y ∈ Rk×m such thatR ≈ X>Y , in such a way to minimize a loss
over training data. A common choice for this loss is the root mean
square error (RMSE).

Despite MF is recognized to be a state-of-the-art technique in CF,
we note that it has some drawbacks that made it impractical and un-
successful for the MSD task. First of all, training the corresponding
model is computationally honerous and this fact is crucial when the
size of the matrixR is very large as in the MSD case. Second, since
MF is tipically modelled as a regression problem, then it seems un-
suitable for implicit feedback tasks and some modifications to the
original technique are needed [7]. In the MSD, for example, we
have binary values of relevance and the value 0 cannot properly be
considered as unrelevant since the no-action on an item can be due
to many other reasons beyond not liking it (the user can be unaware
of the existence of the song, for example). Third, MF techniques
typically solve the associated minimization problem by using gra-
dient descent algorithms which do not guarantee the convergence to
a global minimum and, it is well known, the rate of convergence is
quite low when near to local minima. Finally, matrix factorization
based baselines provided by the organizers at the beginning of the
challenge, and final results by other team entries, have confirmed
quite poor results of MF based algorithms for this particular task,
thus supporting our previous claims.

2.2 Memory-based Collaborative Filtering
In Memory-based Collaborative Filtering (MBCF) the entire user-
item matrix is used to generate a prediction. In this case, there is not
a real training of the model. Instead, a priori knowledge about typ-
ical behaviours of a user is exploited to some extent. Given a new
user for which we want to obtain the prediction, the set of items to
suggest are computed looking at “similar” users. This strategy is
typically referred to as user-based recommendation. Alternatively,
in the item-based recommendation strategy, one computes the most
similar items for the items that have been already rated by the ac-
tive user, and then prefer those items to form the final recommen-
dation. There are many different proposal on how to combine the
information provided by similar users/items (see [13] for a good
survey). However, most of them are tailored to classical recom-
mendation systems and they are not promptly compliant with the
implicit feedback setting. More importantly, computing the neirest
neighbors requires the computation of similarities for every pair of
users or songs. This is simply infeasible in our domain given the
huge size of the datasets involved.

In principle, the MBCF strategy can be used to do prediction for
the implicit feedback setting as well and this can be done in the
following very general ways.

In the user-based type of recommendation, the scoring function, on
the basis of which the recommendation is made, is computed by

r̂Uui =
∑
v∈U

wuvrvi =
∑
v∈U(i)

wuv, (1)

that is, the score obtained on an item for a target user is proportional
to the similarities between the target user u and other users v that
have rated before the item i (v ∈ U(i)). This score will be higher
for items which are often rated by similar users.

On the other hand, within a item-based type of recommendation [5,
12], the target item i is associated with a score

r̂Iui =
∑
j∈I

wijruj =
∑

j∈I(u)

wij , (2)

and hence, the score is proportional to the similarities between item
i and other items already purchased by the user u (j ∈ I(u)).

2.3 MF and MBCF unified
We end the section by noticing that, in both user-based and item-
based MBCF, the user and item contributions are decomposed, that
is, we can write

r̂Uui = x>u yi, with xu,yi ∈ Rn,

and

r̂Iui = x>u yi, with xu,yi ∈ Rm.

In other words, similarly to the MF case, we are implicitly defining
an embedding for users and items. This embedding is performed
onto an m-dimensional space in user based recommendation sys-
tems (k = m) or performed onto an n-dimensional space in item
based recommendation systems (k = m).

3. SIMILARITIES FOR CF
The cosine similarity is undoubtely the most popular measure of
correlation between two vectors. An important characteristic of
this similarity measure is that it is symmetric and this feature can be
important for certain applications. However, in our opinion, there
are cases where the simmetry of the similarity measure does not
match exactly the features of a domain. As we will see in the fol-
lowing, asymmetries are very common in CF applications. Now,
we generalize the cosine similarity and suggest a nice probabilistic
interpretation for binary valued vectors.

3.1 Asymmetric Cosine (asymC) Similarity
Consider three sets A,B, C such that |C| = q and assume two re-
lations exist, namely RA ⊂ A × C, and RB ⊂ B × C. Now, let
a ∈ A and b ∈ B, we can define binary q-dimensional vector rep-
resentations (a ∈ {0, 1}q,b ∈ {0, 1}q), for a and b respectively,
on the basis of the corresponding relation. Specifically, each posi-
tion in a and b corresponds to a specific element c ∈ C and it is set
to 1 whenever (a, c) ∈ RA, and (b, c) ∈ RB, respectively.

Now, we can formally define the conditional probabilities P (a|b),
that is, the probability that given c ∈ C such that (b, c) ∈ RB , then
(a, c) ∈ RA also holds. Similarly, we can define P (b|a). These
probabilities can be computed with simple vector operations:

P (a|b) =
a>b

b>b
and P (b|a) =

a>b

a>a

where a>b computes the number of times (a, c) ∈ RA and (b, c) ∈
RB co-occur. Similarly, a>a = ||a||2 and b>b = ||b||2 computes
the number of times (a, c) ∈ RA occurs, and the number of times
(b, c) ∈ RB occurs, respectively.

Nicely, with the definition above, the cosine similarity function can
be seen as a product of the square roots of the two conditional prob-
abilities:

S1/2(a, b) := cos(a,b) =
a>b

||a|| · ||b|| = P (a|b)
1
2P (b|a)

1
2 (3)

The idea behind the asymmetric cosine similarity is to give asym-
metric weights to the conditional probabilities in the formula above:

Sα(a, b) = P (a|b)αP (b|a)1−α =
a>b

||a||2α||b||2(1−α)

where 0 ≤ α ≤ 1.

Using the notation of sets, and setting R(x) = {c ∈ C|(x, c) ∈
R}, then we can simply write:

Sα(a, b) =
|RA(a) ∩RB(b)|
|RA(a)|α|RB(b)|1−α

Finally, note that eq. (3) still holds for real valued (non binary)
vector representations. Clearly, in this case, the strict probabilistic
interpretation cannot be applied but we can still consider P (a|b)
as a function indicating how much information we can get from
knowing (b, c) ∈ RB in order to predict whether (a, c) ∈ RA.

3.2 User-based and Song-based similarity
Cosine and Pearson’s are standard measures of correlation in CF
applications. To the best of our knowledge not much has been done
until now to adapt these similarities to given problems. Our opin-
ion is that it cannot exist a single similarity measure that can fit all
possible domains where collaborative filtering is used. To bridge
this gap and try to fit different problems, we consider a paramet-
ric family of similarities obtained by instanciating the asymmetric
cosine both for the user-based and item-based setting.

MSD data have not relevance grades since the ratings are binary
values. This is a first simplification that, as we have seen, we can
exploit in the definition of the similarity functions. In the case of
binary rates the cosine similarity can be computed as in the follow-
ing. Let I(u) be the set of items rated by a generic user u, then the
cosine similarity between two users u, v is defined by

wuv = S1/2(u, v) =
|I(u) ∩ I(v)|
|I(u)| 12 |I(v)| 12

and, similarly for items, by setting U(i) the set of users which have
rated item i, we obtain:

wij = S1/2(i, j) =
|U(i) ∩ U(j)|
|U(i)| 12 |U(j)| 12

.

Note that, especially for the item case, we are more interested in
computing how likely it is that an item will be appreciated by a
user when we already know that the same user likes another item.
It is clear that this definition is not symmetric. For example, say
we know that a user already listened to the U2’s song “Party Girl“
which we know is not so popular. Then, probably that user is a
fan of U2 and we can easily predict that she/he would also like
something far more popular by U2, like “Sunday Bloody Sunday“
for instance. Clearly, the opposite is not true.

As an extreme alternative to the cosine similarity, we can resort to
the conditional probability measure which can be estimated with
the following formulas:

wuv = S1(u, v) = P (u|v) =
|I(u) ∩ I(v)|
|I(v)|

and

wij = S1(i, j) = P (i|j) =
|U(i) ∩ U(j)|
|U(j)|

Previous works (see [8] for example) pointed out that the condi-
tional probability measure of similarity, P (i|j), has the limitation
that items which are purchased frequently tend to have higher val-
ues not because of their co-occurrence frequency but instead be-
cause of their popularity. As we have seen, this might not always
be a limitation in a recommendation setting like ours. Experimental
results in this paper will confirm that, emphasizing asymmetrically
one of the conditionals, will help in general.

In the following of the paper we will use the parametric general-
ization of the above similarity measures called asymmetric cosine
similarity. The parametrization on α permits ad-hoc optimizations
of the similarity function for the domain of interest. In our case,
this is done by validating on available data.

Summarizing, we have:

wuv = Sα(u, v) =
|I(u) ∩ I(v)|
|I(u)|α|I(v)|1−α (4)

wij = Sα(i, j) =
|U(i) ∩ U(j)|
|U(i)|α|U(j)|1−α (5)

where α ∈ [0, 1] is a parameter to tune.

Note that, this similarity function generalizes the one given in [5]
where a similar parameterization is also proposed for the item-
based case with strictly empirical motivations. Here, we give a
formal justification of the rescaling factor they used by defining the
similarity as an asymmetric product of conditional probabilities.

3.3 Locality of the Scoring Function
In Section 2.2 we have seen how the final recommendation is com-
puted by a scoring function that combines the scores obtained using
individual users or items. So, it is important to determine how much
each individual scoring component influences the overall scoring.
MBCF algorithms typically approach this problem by restricting
the computation to neirest neighbors. Alternatively, we propose to
use a monothonic not decreasing function f(w) on the weights to
emphasize/deemphasize similarity contributions in such a way to
adjust the locality of the scoring function, that is how many, and
how much of, nearest users/items really matter in the computation.
As we will see, a correct setting of this function turned out to be
very useful with the challenge data.

In particular, we use the exponential family of functions, that is
f(w) = wq where q ∈ N. The effect of this exponentiation in
both the eq. (1) and eq. (2) is the following: when q is high, smaller
weights drop to zero while higher ones are (relatively) emphasized;
at the other extreme, when q = 0, the aggregation is performed by
simply adding up the ratings. We can note that, in the user-based
type of scoring function, this corresponds to take the popularity of
an item as its score, while, in the case of item-based type of scoring
function, this would turn out in a constant for all items (the number
of ratings made by the active user).

4. RECOMMENDATION
In this section, we describe a novel recommendation technique based
on the asymmetric cosine combination between user and item em-
beddings. Furthermore, we describe additional techniques, like cal-
ibration and aggregation, to improve the final recommendation.

4.1 Asymmetric Cosine based CF
In Section 2.3 it is shown how the scoring function of a memory-
based model can be formulated as r̂ui = x>u yi, where xu and
yi are appropriate representations of users and items, respectively.
To increase the flexibility of the prediction further we can resort
again to the asymmetric cosine similarity defined in Section 3.1
and replace the scoring function with the following:

r̂ui = Sβ(u, i) =
x>u yi

||xu||2β ||yi||2(1−β)
(6)

One can easily note that, when β = 1, the order induced by this
scoring function over different songs is the same as the one induced
by the standard scoring function because the two scoring functions
are basically the same up to a (positive) constant. Since we are
focusing on top-N recommendation and we are only interested to
the ranking among songs, then we can consider that above as a
generalization of the standard memory-based CF scoring function.

Now, we can analyze a little more in depth this new scoring func-
tion for the user-based and item-based prediction cases.

User-based prediction. In this case, the embedding is per-
formed in Rn, the space of users, according to:

x(v)
u = wuv and ||xu||2 = ||wu||2

y
(v)
i = rvi and ||yi||2 = |U(i)|

and the user-based scoring function consists of:

r̂ui =

∑
v∈U(i) wuv

||wu||2β |U(i)|(1−β)
∝

∑
v∈U(i) wuv

|U(i)|(1−β)

Item-based prediction. In this case, the embedding is performed
in Rm, the space of items, according to:

x(j)
u = ruj and ||xu||2 = |I(u)|

y
(j)
i = wij and ||yi||2 = ||wi||2

and the item-based scoring function consists of:

r̂ui =

∑
j∈I(u) wij

|I(u)|β ||wi||2(1−β)
∝

∑
j∈I(u) wij

||wi||2(1−β)

Note that, in the item case, the normalization is defined in terms of
the weight norms whose computation requires the computation of
the weightswij for every j ∈ I and this is quite inefficient. Then, a
further step of preprocessing where this norm is estimated for each
item i is needed in this case. In our implementation, this step is
implemented by drawing items j from a subsample of items.

4.2 Calibration
The focus of the present work is on very large datasets. For this,
until now, we have proposed memory and time efficient algorithms
that avoid any time and space consuming model training. However,
simple statistics from a dataset can still be estimated efficiently and
can potentially result useful for recommending.

In this section, we present a simple technique to learn a basic model
for songs. The model is trained using positive feedback only hence
resulting quite efficient given the sparsity of data. Basically, the

idea is to calibrate the obtained scores for each item by comparing
them to the average score on positive user-item pairs.

For each song the mean, and maximum, value of the scoring func-
tion obtained for positive pairs is estimated from data. More for-
mally, let R the relation for which we want to compute the statis-
tics. Then, we define the positive feedback mean and positive feed-
back maximum as in the following:

mi ≈ E(u,i)∈R[r̂ui] and Mi ≈ max
(u,i)∈R

[r̂ui]

For the MSD data, for example, these statistics are estimated by
taking r̂ui values for a sample of training users such that i ∈ I(u).
So, we need to estimate the average value of the scoring obtained
by the same song for user that listened to it.

Now, let be given 0 < θ < 1 , then the calibrated scoring function
is defined as a simple piece-wise linear function:

r̂′ui = C(r̂ui) =

r̂ui
mi
θ if r̂ui ≤ mi

θ + r̂ui−mi
Mi−mi

(1− θ) if mi < r̂ui ≤Mi

1 otherwise

In our experiments we used θ = 0.5.

4.3 Aggregation
There are many sources of information available regarding songs.
For example, it could be useful to consider the additional meta-
data which are also available and to construct alternative rankings
based on that. In the following, we propose three simple strate-
gies. We assume we have a distribution of probability pk, such that∑
k pk = 1 that determines the weight to give to the predictor k to

form the aggregated prediction. In our approach the best pk values
are simply determined by validation on training data.

4.3.1 Stochastic Aggregation
Different recommendation strategies are usually individually pre-
cision oriented, meaning that each strategy is able to correctly rec-
ommend a few of the correct songs with high confidence but, other
songs which the user likes, cannot be suggested by that particu-
lar ranker. Hopefully, if the rankers are diverse, then the rankers
can recommend different songs. If this is the case, a possible solu-
tion is to predict a final recommendation that contains all the songs
for which the single strategies are more confident. The stochastic
aggregation strategy used in the challenge can be described in the
following way. We assume we are provided with the list of songs,
not yet rated by the active user, given in order of confidence, for
all the basic strategies. On each step, the recommender randomly
choose one of the lists according to a probability distribution pk
over the predictors and recommends the best scored item of the list
which has not yet been inserted in the current recommendation.

4.3.2 Linear Aggregation
Another very simple aggregation rule is here presented were the
scores given by different predictors are simply averaged. Clearly,
in this case, the scores should be comparable. When they are not,
we can assume the scores r̂(k)ui are proportional to the probability of
observing item i given the user u as estimated by the k-th predic-
tor. In this case, item scores of each predictor can be normalized in
such a way that ||r̂(k)u ||1 =

∑
i r̂

(k)
ui = 1.

Data Statistics min max ave median
users per song 0 110479 125.794 13
songs per user 10 4400 47.45681 27

4.3.3 Borda Aggregation
The last aggregation method we propose is a slight variant of the
well known Borda Count method. In this case, each item i gets
a score

∑
k pk ∗ (|I| − qk(i) + 1) where qk(i) ∈ [1, |I|] is the

position of item i in the list produced by ranker k.

4.4 Optimizations
The computational complexity of the technique proposed mainly
depends on the number of weight computations. In the item-based
strategy, for each test user, the number of weights to compute is
proportional to Ī|I| where Ī = Eu[|I(u)|] where the expectation
is taken over visible songs of test users.

In the user-based strategy, for each test user, the number of weights
to compute is proportional to Ū |I| where Ū = Ei[|U(i)|] where
the expectation is taken over available songs. However, in this sec-
ond case, we can compute all the |U| weights for a user u and, the
contribution of each weight wuv accumulated on the item scores
when the item is in I(v). This strategy empirically reduced the
time required by a factor of 12 on MSD data.

5. EXPERIMENTS AND RESULTS
In the MSD challenge we have: i) the full listening history for about
1M users, ii) half of the listening history for 110K users (10K val-
idation set, 100K test set), and we have to predict the missing half.
We use a "home-made" random validation subset (HV) of the orig-
inal training data of about 900K users of training (HVtr, with full
listening history). The remaining 100K user’s histories has been
split in two halves (HVvi the visible one, HVhi the hidden one).

The experiments presented in this section are based on this HV
data and compare different similarities and different approaches.
The baseline is represented by the simple popularity based method
which recommends the most popular songs not yet listened to by
the user. Besides the baseline, we report experiments on both the
user-based and song-based scoring functions, and an example of the
application of ranking aggregation. Given the size of the datasets
involved we do not stress on the significance of the presented re-
sults. This is confirmed by the fact that the presented results do not
differ significantly from the results obtained over the indipendent
set of users used as the test set in the challenge.

In the following results, when not explicitely indicated, we assume
β = 1 in eq. (6) thus obtaining the standard scoring function for
memory-based CF.

5.1 Taste Profile Subset Stats
For completeness we report some statistics about the original chal-
lenge training data. In particular, the following table shows the
minimum, maximum, and average, number of users per song and
songs per user. The median value is also reported.

We can see that the large majority of songs have only few users
which have listened to it (less than 13 users for half of the songs)
and the large majority of users have listened to few songs (less than
27 for half of the users). These characteristics of the dataset make
the top-N recommendation task quite challenging.

5.2 Truncated Mean Average Precision
Conformingly to the challenge, we used the truncated mAP (mean
average precision) as the evaluation metric [10]. Let y denote a
ranking over items, where y(p) = i means that item i is ranked at
position p. The mAP metric emphasizes the top recommendations.
For any k ≤ N , the precision at k (πk) is defined as the proportion
of correct recommendations within the top-k of the predicted rank-
ing (assuming the ranking y does not contain the visible songs),

πk(u, y) =
1

k

k∑
p=1

ruy(p)

For each user the (truncated) average precision is the average pre-
cision at each recall point:

AP (u, y) =
1

Nu

N∑
p=1

πk(u, y)ruy(p)

where Nu is the smaller between N and the number of user u’s
positively associated songs. Finally, the average of AP (u, yu)’s
over all users gives the mean average precision (mAP).

5.3 Results on MSD data
The result obtained on the HV data with the baseline (recommen-
dation by popularity) is presented in Table 1(a). With this strategy,
each song i simply gets a score proportional to the number of users
|U(i)| which have listened to it.

Effect of locality (q). In Table 1, we report on experiments that
show the effect of the locality parameter q for different strategies:
item based and user based, using conditional probability (α = 0)
and the cosine version (α = 0.5). As we can see, beside the case IS
with cosine similarity (Table 1c), a correct setting of the parameter
q drammatically improves the effectiveness on HV data. We can
clearly see that the best performance is reached with the conditional
probability on an item based strategy (Table 1b).

Effect of using Asymmetric Cosine (α). In Figure 1, results
obtained fixing the parameter q and varying the parameter α for
both user and item-based recommendation strategies are given. In
the item-based case, the results improve when setting a non-trivial
α. In fact, the best result has been obtained for α = 0.15.

Effect of Asymmetric Prediction (β). In Table 2 we report
the results of user-based AsymC memory-based collaborative filter-
ing algorithm of Section 4.1 with α = 0.5. Interestingly, as we can
see from the table, the best parameter β always improves (some-
times dramatically) the baseline (β = 1, results in Table 1(e)).

Effect of Calibration. To test the effect of calibration in item-
based recommandation we started with the best parameter setting
for uncalibrated recommendation (α = 0.15, q = 3,mAP@500 =
0.177322) and calibrated using the technique depicted in Section
4.2. The calibration in fact improve the result, obtaining an inter-
esting mAP@500 = 0.181084 (the best result obtained for this
dataset so far).
Concerning the effect of calibration on user-based recommenda-
tion we started again with the best setting for uncalibrated user-
based recommendation (α = 0.5, q = 4, β = 0.7,mAP@500 =

Baseline mAP@500
Recommendation by Popularity 0.02262

(a)

IS (α = 0) mAP@500
q=1 0.12224
q=2 0.16581
q=3 0.17144
q=4 0.17004
q=5 0.16830

(b)

IS (α = 1
2

) mAP@500
q=1 0.16439
q=2 0.16214
q=3 0.15587
q=4 0.15021
q=5 0.14621

(c)

US (α = 0) mAP@500
q=1 0.08030
q=2 0.10747
q=3 0.12479
q=4 0.13298
q=5 0.13400
q=6 0.13187
q=7 0.12878

(d)

US (α = 1
2

) mAP@500
q=1 0.07679
q=2 0.10436
q=3 0.12532
q=4 0.13779
q=5 0.14355
q=6 0.14487
q=7 0.14352

(e)

Table 1: Results obtained by the baseline, item-based (IS) and user-
based (US) CF methods varying the locality parameter (exponent
q) of the similarity function.

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

 0 0.1 0.2 0.3 0.4 0.5

m
A

P
@

50
0

α

(a) IS with 0 ≤ α ≤ 0.5, q = 3, best-mAP@500:
0.177322(α = 0.15)

 0.13

 0.132

 0.134

 0.136

 0.138

 0.14

 0.142

 0.144

 0 0.2 0.4 0.6 0.8 1

m
A

P
@

50
0

α

(b) US with 0 ≤ α ≤ 1, q = 5, best-mAP@500:
0.143551(α = 0.6)

Figure 1: Results obtained by item-based (IS) and user-based (US)
CF methods varying the α parameter.

US (α = 1
2

) Best β mAP@500
q=1 0.3 0.14890
q=2 0.5 0.15801
q=3 0.6 0.16132
q=4 0.7 0.16229
q=5 0.8 0.16152
q=6 0.9 0.15975
q=7 0.9 0.15658

(a)

Table 2: User-based AsymC MBCF (α = 0.5). Results obtained
varying the parameter q and selecting the best parameter β.

(IS, α = 0.15, q = 3) (US, α = 0.3, q = 5) mAP@500
0.0 1.0 0.14098
0.1 0.9 0.14813
0.2 0.8 0.15559
0.3 0.7 0.16248
0.4 0.6 0.16859
0.5 0.5 0.17362
0.6 0.4 0.17684
0.7 0.3 0.17870
0.8 0.2 0.17896
0.9 0.1 0.17813
1.0 0.0 0.17732

(a)

Table 3: Results obtained aggregating the rankings of two different
strategies, item-based (IS, α = 0.15, q = 3) and user-based (US,
α = 0.3, q = 5), by Stochastic Aggregation as discussed in Sec-
tion 5.3, with different combinations. The (0.8, 0.2) combination
corresponds exactly to the winning configuration used in the MSD
challenge (see Figure 2).

0.16229) and calibrated using the technique described in Section
4.2 obtaining a mAP@500 = 0.16487.

Stochastic Aggregation. Concerning the stochastic aggrega-
tion we report results obtained using the exact configuration that
allowed us to win the MSD challenge (see Figure 2). In particular,
in Table 3, two rankers are combined, and their recommendation
aggregated, by using the stochastic algorithm described in Section
4.3.1. In order to maximize the diversity of the two rankers, we
aggregated an item-based ranker and a user-based ranker. We can
see that the combination improves the performance with respect to
the individual rankers on validation data.

Linear Aggregation. In Table 4 we report on results obtained
by linearly combining the best performing uncalibrated item-based
ranker (α = 0.15, q = 3, β = 1) with the best performing uncal-
ibrated user-based ranker (α = 0.5, q = 4, β = 0.7) varying the
combination parameters. The aggregation is performed according
to the algorithm given in Section 4.3.2.

5.4 Comparison with other approaches
We end this section by comparing our with other approaches that
have been used in the challenge. Best ranked teams all used vari-
ants of memory based CF, besides the 5-th ranked team that used
the Absorption algorithm by YouTube [2] which is a graph based

IS(α = 0.15, q = 3) US(α = 0.5, q = 4,β = 0.7) mAP@500
0.5 0.5 0.18014
0.6 0.4 0.18042
0.7 0.3 0.18074
0.8 0.2 0.18092
0.9 0.1 0.17853
1.0 0.0 0.17732

(a)

Table 4: Results obtained aggregating the rankings of two differ-
ent strategies, item-based (IS, α = 0.15, q = 3) and user-based
(US, α = 0.3, q = 5) AsymC MBCF (β = 0.7), with different
combinations.

Figure 2: Screenshot of the final MSD challenge leaderboard.

method that performs a random walk on the rating graph to prop-
agate preferences information over the graph. The team placed
second used an approach similar to ours to get 17 user-item joint
features to use in a learning-to-rank method (RankNet) [14]. On
the other side, matrix factorization based techniques showed a very
poor performance on this task and people working on that faced
serious memory and time efficiency problems. Finally, some teams
tried to inject meta data information in the prediction process with
scarse results. In our opinion, this can be due to the fact that there is
a lot of implicit information contained in the user’s history and this
is much more than explicit information one can get from metadata.
We conclude that meta data information can be more effectively
used in a cold start setting.

5.5 Results on MovieLens Data
To demonstrate the generality of the approach, we present results
on a different dataset, MovieLens1M2. This dataset originally con-
sists of more than 1 million of ratings for 3, 883 movies and 6, 040
users. The dataset has been made suitable to implicit feedback by
considering the 226, 310 5-stars ratings as positive feedback and
ignoring all the other available ratings, thus obtaining a density of
0.01. Similarly to the MSD dataset, data have been split in a 90%
training users and 10% test users. Test user histories has been split
again in two halves (visible and hidden). Finally, the task consists
on predicting 5-stars movies in the hidden half using 5-stars movies
in the visible half and complete history of training users.

2http://www.grouplens.org/node/73

Baseline Best Parameters mAP@500
User-based kNN k = 100 0.18318

(a)

No Ranker Best Parameters mAP@500
1 IS α = 0.6, q = 1 0.18146
2 IS (β = 0.8) α = 0.55, q = 1 0.18297
3 US α = 0.6, q = 6 0.18549
4 US (β = 0.8) α = 0.55, q = 5 0.18984

(b)

Aggregated Best (pi, pu) mAP@500
1 + 3 (Borda) (0.4,0.6) 0.19008
2 + 4 (Borda) (0.2,0.8) 0.19554
1 + 3 (Stochastic) (0.5,0.5) 0.19015
2 + 4 (Stochastic) (0.1,0.9) 0.19052

(c)

Table 5: MovieLens1M results. (a) Best results obtained with the
kNN baseline, (b) best results obtained with single rankers (not ag-
gregated), (c) best results obtained with aggregated rankers

Results are presented in Table 5. Specifically, in Table 5(a) the best
result obtained with the user-based kNN baseline is reported. In
this case, the score of an user-item pair (u, i) is

r̂ui =

∑
v∈Nu

wuvrvi∑
v∈Nu

wuv

where Nu is the set of k nearest neighbors of user u according
to the similarity wuv . Note that, in this case, differently from the
proposed approach, the similarity has to be computed for the en-
tire set of users. This clearly requires far more computational ef-
forts and would be unfeasible for the MSD task. In Table 5(b) the
results obtained using symmetric and asymmetric, item and user-
based scoring functions are reported. From the table it is clear that
user-based rankers are better than item-based ones and asymmetric
scoring is beneficial in both the cases. Finally, in Table 5(c) results
obtained by aggregation are presented confirming that aggregating
item-based and user-based rankers always improves significantly
the recommendation performance.

6. CONCLUSION
In this paper we have presented an efficient memory-based CF tech-
nique suitable for very large recommendation problems with im-
plicit feedback. The proposed technique extends the one we used
to win the MSD challenge 3 (see also [1]). The main contribu-
tions of the paper are: a novel scoring function for memory based
CF that results particularly effective (and efficient) on implicit rat-
ing settings and a new asymmetric similarity measure that can be
adapted to the problem at hand that seems to work very well for CF
problems. In the near future we want to investigate on the possi-
bility of using metadata information to boost the performance and
in a more solid way to aggregate multiple predictions. Finally, it
would be interesting to generalize the method to other types of rec-
ommendation, including explicit feedback and non binary ratings.

3The MSD challenge has been organized by the Computer Audi-
tion Lab at UC San Diego and LabROSA at Columbia University,
and hosted at www.kaggle.com

7. ACKNOWLEDGMENTS
This work was supported by the Italian Ministry of Education, Uni-
versity, and Research (MIUR) under Project PRIN 2009LNP494_005.
Many thanks to Marta Aduasio for helping us with the experiments.

8. REFERENCES
[1] F. Aiolli. A preliminary study on a recommender system for

the million songs dataset challenge. In IIR, pages 73–83,
2013.

[2] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik,
S. Kumar, D. Ravichandran, and M. Aly. Video suggestion
and discovery for youtube: taking random walks through the
view graph. In Proceedings of the 17th international
conference on World Wide Web, WWW ’08, pages 895–904,
New York, NY, USA, 2008. ACM.

[3] J. Bennett, S. Lanning, and N. Netflix. The netflix prize. In In
KDD Cup and Workshop in conjunction with KDD, 2007.

[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere.
The million song dataset. In Proceedings of the 12th
International Conference on Music Information Retrieval
(ISMIR 2011), 2011.

[5] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, 2004.

[6] C. Desrosiers and G. Karypis. A comprehensive survey of
neighborhood-based recommendation methods. In
Recommender Systems Handbook, pages 107–144. 2011.

[7] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In ICDM, pages 263–272, 2008.

[8] G. Karypis. Evaluation of item-based top-n recommendation
algorithms. In CIKM, pages 247–254, 2001.

[9] Y. Koren and R. M. Bell. Advances in collaborative filtering.
In Recommender Systems Handbook, pages 145–186. 2011.

[10] B. McFee, T. Bertin-Mahieux, D. P. Ellis, and G. R.
Lanckriet. The million song dataset challenge. In
Proceedings of the 21st international conference companion
on World Wide Web, WWW ’12 Companion, pages 909–916,
New York, NY, USA, 2012. ACM.

[11] V. C. Ostuni, T. Di Noia, E. Di Sciascio, and R. Mirizzi.
Top-n recommendations from implicit feedback leveraging
linked open data. In 7th ACM Conference on Recommender
Systems (RecSys 2013). ACM, ACM Press, 2013.

[12] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW, pages 285–295, 2001.

[13] X. Su and T. M. Khoshgoftaar. A survey of collaborative
filtering techniques. Advances in Artificial Intelligence, Jan.
2009.

[14] M. Volkovs and R. Zemel. Collaborative ranking with 17
parameters. In P. Bartlett, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 2303–2311. 2012.

[15] J. Wang, A. P. de Vries, and M. J. T. Reinders. A user-item
relevance model for log-based collaborative filtering. In
M. Lalmas, A. MacFarlane, S. M. RÃijger, A. Tombros,
T. Tsikrika, and A. Yavlinsky, editors, ECIR, volume 3936 of
Lecture Notes in Computer Science, pages 37–48. Springer,
2006.

