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Abstract. In this paper the preliminary study we are conducting on
the Million Songs Dataset (MSD) challenge is described. The task
of the competition is to suggest a set of songs to a user given half
of its listening history and complete listening history of other 1 mil-
lion people. We focus on memory-based collaborative filtering ap-
proaches since they are able to deal with large datasets in an efficient
and effective way. In particular, we investigated on i) defining suit-
able similarity functions, ii) studying the effect of the locality of the
collaborative scoring function, and iii) aggregating multiple ranking
strategies to define the overall recommendation. Using these tech-
niques we are in the top positions according to the current standing
of the competition leaderboard (at the moment of this writing the
challenge has about 150 registered teams).

1 Introduction
The Million Song Dataset Challenge [5] is a large scale, music rec-
ommendation challenge, where the task is to predict which songs
a user will listen to, provided the listening history of the user. The
challenge is based on the Million Song Dataset (MSD), a freely-
available collection of meta data for one million of contemporary
songs (e.g. song titles, artists, year of publication, audio features,
and much more) [2]. About one hundred and fifty teams are cur-
rently participating to the challenge. The subset of data actually used
in the challenge is the so called Taste Profile Subset that consists of
more than 48 million triplets (user,song,count) gathered from user
listening histories. Data consists of about 1.2 million users and cov-
ers more than 380,000 songs in MSD. The user-item matrix is very
sparse as the fraction of non-zero entries (the density) is only 0.01%.

Collaborative Filtering (CF) is a technology which uses the items
by user matrix to discover other users with similar tastes as the active
user for which we want to make the prediction. The intuition is that
if other users, similar to the active user, already purchased a certain
item, then it is likely that the active user will like that item as well.
A similar (dual) consideration can be made by changing the point of
view. If we know that a set of items are often purchased together (they
are similar in some sense), then, if the active user has bought one of
them, probably he/she will be interested to the other as well. The first
view is the one that is prevalent in recent CF literature. In this paper,
we show that the second view turned out more useful when used for
the MSD competition.

In Section 2 collaborative filtering is described and proposed as a
first approach to solve the problem of MSD. In the same section three
different views of the memory-based CF task are proposed that mo-
tivated the different algorithms of the section. In Section 3 empirical
results of the proposed techniques are presented and discussed.

1 University of Padova, Italy, email: aiolli@math.unipd.it

2 A CF approach to the MSD task
Collaborative filtering techniques use a database in the form of a
user-item matrix R of preferences. In a typical CF scenario a set
U of n users and a set I of m items exist and the entries of
R = {rui} ∈ Rn×m represent how much user u likes item i. In
this paper, we assume rui ∈ {0, 1} as this is the setting of the MSD
challenge. Entries rui represent the fact that user u have listened to
(or would like to listen to) the song i. In the following we refer to
items or songs interchangeably. The MSD challenge task is more
properly described as a top-τ recommendation task. Specifically, we
want to identify a list of τ (τ = 500 in the challenge) items Iu ⊆ I
that active user u will like the most. Clearly, this set must be disjoint
with the set of items already rated (purchased, or listened to) by the
active user.

2.1 Memory-based CF
In memory-based CF algorithms the entire user-item matrix is used
to generate a prediction. Generally, given a new user for which we
want to obtain the prediction, the set of items to suggest are com-
puted looking at similar users. This strategy is typically referred to
as user-based recommendation. Alternatively, in the item-based rec-
ommendation strategy, one computes the most similar items for the
items that have been already purchased by the active user, and then
aggregates those items to form the final recommendation. There are
many different proposal on how to aggregate the information pro-
vided by similar users/items (see [7] for a good survey). We focus
on the simple weighted sum strategy. A deeper analysis of this sim-
ple strategy allows us to highlight an interesting duality that exists
between user-based and item-based recommendation algorithms.

In the user-based type of recommendation, the scoring function,
on the basis of which the recommendation is made, is computed by

hUui =
∑
v∈U

f(wuv)rvi =
∑
v∈U(i)

f(wuv),

that is, the score obtained on an item for a target user is proportional
to the similarities between the target user u and other users v that
have purchased the item i (v ∈ U(i)). This score will be higher for
items which are often rated by similar users.

On the other hand, within a item-based type of recommendation
[3, 6], the target item i is associated with a score

hSui =
∑
j∈I

f(wij)ruj =
∑

j∈I(u)

f(wij),

and hence, the score is proportional to the similarities between item
i and other items already purchased by the user u (j ∈ I(u)).



The function f(w) can be assumed monotonic not decreasing and
its role is to emphasize/deemphasize similarity contributions in such
a way to adjust the locality of the scoring function, that is how many
of the nearest users/items really matter in the computation. As we
will see, a correct setting of this function turned out to be very useful
with the challenge data.

Interestingly, in both cases, we can decompose the user and item
contributions in a linear way, that is, we can write hUui = w>u ri,
wu ∈ Rn, and hSui = w>i ru, wi ∈ Rm. In other words, we are
defining an embedding for users (in user based recommendation sys-
tems) and for items (in item based recommendation systems). In the
specific case above, this corresponds to choose the particular vector
ri as the vector with n entries in {0, 1}, where r(i)u = rui. Similarly,
for the representation of users in item-based scoring, we choose ru
as the vector with m entries in {0, 1}, such that r(u)i = rui. One
of the main contributions of this paper is to explore how we can set
the vectors wi and wu in a principled way. However, it is simple to
imagine how we can try to learn the weight vectors from data. In fact,
this recommendation task can also be seen as a multilabel classifica-
tion problem where songs represent the labels and users represent the
examples. We have performed preliminary experiments in this sense
using the preference learning approach described in [1]. The results
are promising but the problem in this case is the computational re-
quirements of a model-based paradigm like this. For this reason we
decided to postpone a further analysis of this setting to future works.

Finally, an alternative and useful way to see at the duality be-
tween user-based and item-based recommendation is the following
that highlight a clear connection between this task and link predic-
tion. Specifically, we can think of the user-item matrixR = {rui} as
a bipartite graph where the set of nodes isN = U∪I, and there exist
only edges from u ∈ U to i ∈ I whenever rui = 1. Now, the user
based recommendation strategy corresponds to the intuition that if a
user tends to link to the same set of items as the active users, then,
this gives us some evidence that can exist a link between the active
user and the item i. Dually, in item-based recommendation, the in-
tuition is that, if the active user links to one out of two items which
tend to be linked by the same users, then, we can infer that the active
user will probably link the other item as well.

2.2 User-based and Song-based similarity

A large part of CF literature in the last decade deals with the problem
of defining a good similarity measure. A common opinion is that it
cannot exist a single similarity measure that can fit all possible do-
mains where collaborative filtering is used. In this section, we try to
define a parametric family of user-based and item-based similarities
that can fit different problems.

In the challenge, we have not relevance grades since the ratings
are binary values. This is a first simplification we can exploit in the
definition of similarity functions. The similarity function that is com-
monly used in this case, both for the user-based case and the item-
based case, is the cosine similarity. In the case of binary grades the
cosine similarity can be simplified as in the following. Let I(u) be
the set of items rated by a generic user u, then the cosine similarity
between two users u, v is defined by

wuv =
|I(u) ∩ I(v)|
|I(u)| 12 |I(v)| 12

and, similarly for items, by setting U(i) the set of users which have

rated item i, we have:

wij =
|U(i) ∩ U(j)|
|U(i)| 12 |U(j)| 12

.

The cosine similarity has the nice property to be symmetric but,
as we show in the experimental section, it might not be the better
choice. In fact, especially for the item case, we are more interested in
computing how likely it is that an item will be liked by a user when
we already know that the same user likes another item. It is clear that
this definition is not symmetric. As an alternative to the cosine simi-
larity and, we think, a more well founded way of computing weights
wij in this case, is by resorting to the conditional probability measure
which can be estimated with the following formulas:

wuv = P (u|v) = |I(u) ∩ I(v)||I(v)|

and

wij = P (i|j) = |U(i) ∩ U(j)||U(j)|
Previous works (see [4] for example) pointed out that the condi-

tional probability measure of similarity, P (i|j), has the limitation
that items which are purchased frequently tend to have higher values
not because of their co-occurrence frequency but instead because of
their popularity. In our opinion, this might not be a limitation in a
recommendation setting. Perhaps, this could be an undesired feature
when we want to cluster items. In fact, this correlation measure has
not to be thought of as a real similarity measure. As we will see,
experimental results seem to confirm this hypothesis, at least in the
item-item similarity case.

Now, we are able to propose a parametric generalization of the
above similarity measures. This parameterization permits us ad-hoc
optimizations of the similarity function for the domain of interest.
For example, this can be done by validating on available data.

In particular, we propose to use the following combination of con-
ditional probabilities:

wuv = P (v|u)αP (u|v)1−α wij = P (j|i)αP (i|j)1−α (1)

where α ∈ [0, 1] is a parameter to tune. As above, we estimate the
probabilities by resorting to the frequencies in the data and derive the
following:

wuv =
|I(u) ∩ I(v)|
|I(u)|α|I(v)|1−α wij =

|U(i) ∩ U(j)|
|U(i)|α|U(j)|1−α . (2)

It is easy to note that the standard similarity based on the condi-
tional probability P (u|v) (resp. P (i|j)) is obtained setting α = 0,
the other inverted conditional P (v|u) (resp. P (j|i)) is obtained set-
ting α = 1, and, finally, the cosine similarity case is obtained when
α = 1

2
. This analysis also suggests an interesting (and novel, to our

knowledge) interpretation of the cosine similarity on the basis of con-
ditionals.

2.3 Locality of the Scoring Function
In Section 2 we have seen that, in memory based CF, the final recom-
mendation is computed by a scoring function which aggregates the
scores obtained using individual users or items. So, it is important to
determine how much each individual scoring component influences
the overall scoring. This is the role of the function f(w). In the fol-
lowing experiments we use the exponential family of functions, that
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is f(w) = wq where q ∈ N. The effect of this exponentiation is the
following. When q is high, smaller weights drop to zero while higher
ones are (relatively) emphasized. At the other extreme, when q = 0,
the aggregation is performed by simply adding up the ratings. We can
note that, in the user-based type of scoring function, this corresponds
to take the popularity of an item as its score, while, in the case of
item-based type of scoring function, this would turn out in a constant
for all items (the number of rating made by the active user).

2.4 Ranking Aggregation

There are many sources of information available regarding songs.
For example, it could be useful to consider the additional meta-data
which are also available and to construct alternative rankings based
on that. It is always difficult to determine a single strategy which
is able to correctly rank the songs. An alternative is to use multi-
ple strategies, generate multiple rankings, and finally combine those
rankings. Typically, these different strategies are individually preci-
sion oriented, meaning that each strategy is able to correctly recom-
mend a few of the correct songs with high confidence but, it may
be that, other songs which the user likes, cannot be suggested by
that particular ranker. Hopefully, if the rankers are different, then the
rankers can recommend different songs. If this is the case, a possi-
ble solution is to predict a final recommendation that contains all the
songs for which the single strategies are more confident. A stochastic
version of this aggregation strategy can be described in the follow-
ing way. We assume we are provided with the list of songs not yet
rated by the active user in order of confidence for all the available
strategies. On each step, the recommender randomly choose one of
the lists according to a probability distribution pi over the predictors
and recommends the best scored item of the list which has not yet
been inserted in the current recommendation.

3 Experiments and Results

In the MSD challenge we have: i) the full listening history for about
1M users, ii) half of the listening history for 110K users (10K val-
idation set, 100K test set), and we have to predict the missing half.
Further, we also prepared a ”home-made” validation subset (HV) of
the original training data of about 900K users of training (HVtr, with
full listening history). The remaining 100K user’s histories has been
split in two halves (HVvi the visible one, HVhi the hidden one).

The experiments presented in this section are based on this HV
data and compare different similarities and different approaches. The
baseline is represented by the simple popularity based method which
recommends the most popular songs not yet listened to by the user.
Besides the baseline, we report experiments on both the user-based
and song-based scoring functions, and an example of the application
of ranking aggregation.

3.1 Taste Profile Subset Stats

For completeness, in this section, we report some statistics about the
original training data. In particular, the following table shows the
minimum, maximum, and average, number of users per song and
songs per user. The median value is also reported.

. min max ave median
users per song 1 110479 125.794 13
songs per user 10 4400 47.45681 27

We can see that the large majority of songs have only few users
which listened to it (less than 13 users for half of the songs) and the
large majority of users have listened to few songs (less than 27 for
half of the users). These characteristics of the dataset make the top-τ
recommendation task quite challenging.

3.2 Truncated Mean Average Precision
Conformingly to the challenge, we used the truncated mAP (mean
average precision) as the evaluation metric. Let y denote a ranking
over items, where y(p) = i means that item i is ranked at position
p. The mAP metric emphasizes the top recommendations. For any
k ≤ τ , the precision at k (πk) is defined as the proportion of correct
recommendations within the top-k of the predicted ranking (assum-
ing the ranking y does not contain the visible songs),

πk(u, y) =
1

k

k∑
p=1

ruy(p)

For each user the (truncated) average precision is the average pre-
cision at each recall point:

AP (u, y) =
1

τu

τ∑
p=1

πk(u, y)ruy(p)

where τu is the smaller between τ and the number of user u’s posi-
tively associated songs.

The average of AP (u, yu)’s over all users gives the mean average
precision (mAP).

3.3 Results
The result obtained on the HV data with the baseline (recommenda-
tion by popularity) is presented in Table 1. With this strategy, each
song i simply gets a score proportional to the number of users |U(i)|
which listened to the song.

Baseline (Recommendation by Popularity) 0.02262

Table 1: mAP@500 obtained by the baseline method (song popular-
ity) on HV data.

In Table 2, we report on experiments which show the effect of
the locality parameter q for different strategies: item based and user
based (both conditional probability and cosine versions). As we can
see, beside the case IS with cosine similarity (Table 2b), a correct
setting of the parameter q drammatically improves the effectiveness
on HV data. We can clearly see that the best performance is reached
with the conditional probability on an item based strategy (Table 2a).

In Figure 1, we present results obtained fixing the parameter q
and varying the parameter α for both user-based and item-based
recommendation strategies. We see that, in the item-based case, the
results improve when setting a non-trivial α. The best result has
been obtained for α = 0.15.

Finally, in Table 3, two of the best performing rankers are com-
bined, and their recommendation aggregated, as described in Sec-
tion 2.4. In particular, in order to maximize the diversity of the
two rankers, we aggregated an item-based ranker with a user-based
ranker. We can see that the combined performance improves further
on validation data.
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IS (α = 0) mAP@500
q=1 0.12224
q=2 0.16581
q=3 0.17144
q=4 0.17004
q=5 0.16830

(a)

IS (α = 1
2

) mAP@500
q=1 0.16439
q=2 0.16214
q=3 0.15587
q=4 0.15021
q=5 0.14621

(b)

US (α = 0) mAP@500
q=1 0.08030
q=2 0.10747
q=3 0.12479
q=4 0.13298
q=5 0.13400
q=6 0.13187
q=7 0.12878

(c)

US (α = 1
2

) mAP@500
q=1 0.07679
q=2 0.10436
q=3 0.12532
q=4 0.13779
q=5 0.14355
q=6 0.14487
q=7 0.14352

(d)

Table 2: Results obtained by item-based (IS) and user-based (US) CF
methods varying the locality parameter (exponent q) of the similarity
function.
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Figure 1: Results obtained by item-based (IS) and user-based (US)
CF methods varying the α parameter.

(IS, α = 0.15, q = 3) (US, α = 0.3, q = 5) mAP@500
0.0 1.0 0.14098
0.1 0.9 0.14813
0.2 0.8 0.15559
0.3 0.7 0.16248
0.4 0.6 0.16859
0.5 0.5 0.17362
0.6 0.4 0.17684
0.7 0.3 0.17870
0.8 0.2 0.17896
0.9 0.1 0.17813
1.0 0.0 0.17732

(a)

Table 3: Results obtained aggregating the rankings of two different
strategies, item-based (IS, α = 0.15, q = 3) and user-based (US,
α = 0.3, q = 5), with different combinations.
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