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Abstract

Many interesting multiclass problems can be cast in the general frame-
work of label ranking defined on a given set of classes. The evaluation
for such a ranking is generally given in terms of the number ofviolated
order constraints between classes. In this paper, we propose thePrefer-
ence Learning Modelas a unifying framework to model and solve a large
class of multiclass problems in a large margin perspective.In addition,
an original kernel-based method is proposed and evaluated on a ranking
dataset with state-of-the-art results.

1 Introduction

The presence of multiple classes in a learning domain introduces interesting tasks besides
the one to select the most appropriate class for an object, the well-known (single-label)
multiclass problem. Many others, including learning rankings, multi-label classification,
hierarchical classification and ordinal regression, just to name a few, have not yet been
sufficiently studied even though they should not be considered less important. One of the
major problems when dealing with this large set of differentsettings is the lack of a single
universal theory encompassing all of them.

In this paper we focus on multiclass problems where labels are given as partial order con-
straints over the classes. Tasks naturally falling into this family includecategory ranking,
which is the task to infer full orders over the classes,binary category ranking, which is
the task to infer orders such that a given subset of classes are top-ranked, and any general
(q-label) classification problem.

Recently, efforts have been made in the direction to unify different ranking problems. In
particular, in [5, 7] two frameworks have been proposed which aim at inducing a label
ranking function from examples. Similarly, here we consider labels coded into sets of pref-
erence constraints, expressed aspreference graphsover the set of classes. The multiclass
problem is then reduced to learning a good set ofscoring functionsable to correctly rank the
classes according to the constraints which are associated to the label of the examples. Each
preference graph disagreeing with the obtained ranking function will count as an error.

The primary contribution of this work is to try to make a further step towards the unifica-
tion of different multiclass settings, and different models to solve them, by proposing the
Preference Learning Model, a very general framework to model and study several kinds of
multiclass problems. In addition, a kernel-based method particularly suited for this setting
is proposed and evaluated in a binary category ranking task with very promising results.



The Multiclass Setting Let Ω be a set of classes, we consider a multiclass setting where
data are supposed to be sampled according to a probability distributionD overX × Y,
X ⊆ R

d and an hypothesis space of functionsF = {fΘ : X × Ω → R} with parameters
Θ. Moreover, a cost functionc(x, y|Θ) defines the cost suffered by a given hypothesis on
a patternx ∈ X having labely ∈ Y. A multiclass learning algorithm searches for a set of
parametersΘ∗ such to minimize thetrue cost, that is the expected value of the cost accord-
ing to the true distribution of data, i.e.Rt[Θ] = E(x,y)∼D[c(x, y|Θ)]. The distributionD
is typically unknown, while it is available a training setS = {(x1, y1), . . . , (xn, yn)} with
examples drawni.i.d. fromD. An empirical approximation of the true cost, also referred
to as theempirical cost, is defined byRe[Θ,S] = 1

n

∑n
i=1 c(xi, yi|Θ).

2 The Preference Learning Model

In this section, starting from the general multiclass setting described above, we propose a
general technique to solve a large family of multiclass settings. The basic idea is to ”code”
labels of the original multiclass problem as sets of rankingconstraints given as preference
graphs. Then, we introduce thePreference Learning Model(PLM) for the induction of
optimal scoring functions that uses those constraints as supervision.

In the case of ranking-based multiclass settings, labels are given as partial orders over
the classes (see [1] for a detailed taxonomy of multiclass learning problems). Moreover,
as observed in [5], ranking problems can be generalized by considering labels given as
preference graphs over a set of classesΩ = {ω1, . . . , ωm}, and trying to find a consistent
ranking functionfR : X → Π(Ω) whereΠ(Ω) is the set of permutations overΩ. More
formally, considering a setΩ, apreference graphor ”p-graph” overΩ is a directed graph
v = (N,A) whereN ⊆ Ω is the set of nodes andA is the set of arcs of the graph accessed
by the functionA(v). An arca ∈ A is associated with its starting nodeωs = ωs(a) and
its ending nodeωe = ωe(a) and represents the information that the classωs is preferred to,
and should be ranked higher than,ωe. The set of p-graphs overΩ will be denoted byG(Ω).

Let be given a set of scoring functionsf : X ×Ω→ R with parametersΘ working as pre-
dictors of the relevance of the associated class to given instances. A definition of a ranking
function naturally follows by taking the permutation of elements inΩ corresponding to the
sorting of the values of these functions, i.e.fR(x|Θ) = argsortω∈Ωf(x, ω|Θ). We say
that a preference arca = (ωs, ωe) is consistent with a ranking hypothesisfR(x|Θ), and
we writea v fR(x|Θ), whenf(x, ωs|Θ) ≥ f(x, ωe|Θ) holds. Generalizing to graphs, a
p-graphg is said to be consistent with an hypothesisfR(x|Θ), and we writeg v fR(x|Θ),
if every arc compounding it is consistent, i.e.g v fR(x|Θ)⇔ ∀a ∈ A(g), a v fR(x|Θ).

The PLM Mapping Let us start by considering the way a multiclass problem is trans-
formed into a PLM problem. As seen before, to evaluate the quality of a ranking func-
tion fR(x|Θ) is necessary to specify the nature of a cost functionc(x, y|Θ). Specifi-
cally, we consider cost definitions corresponding to associate penalties whenever uncor-
rect decisions are made (e.g. a classification error for classification problems or wrong
ordering for ranking problems). To this end, as in [5], we consider a label mapping
G : y 7→ {g1(y), . . . , gqy

(y)} where a set of subgraphsgi(y) ∈ G(Ω) are associated
to each labely ∈ Y. The total cost suffered by a ranking hypothesisfR on the example
x ∈ X labeledy ∈ Y is the number of p-graphs inG(y) not consistent with the ranking, i.e.
c(x, y|Θ) =

∑qy

j=1[[gj(y) 6v f(x|Θ)]], where[[b]] is 1 if the conditionb holds,0 otherwise.
Let us describe three particular mappings proposed in [5] that seem worthwhile of note:(i)
The identity mapping, denoted byGI , where the label is mapped on itself and every incon-
sistent graph will have a unitary cost,(ii) thedisagreement mapping, denoted byGd, where
a simple (single-preference) subgraph is built for each arcin A(y), and(iii) thedomination
mapping, denoted byGD, where for each nodeωr in y a subgraph consisting ofωr plus
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Figure 1: Examples of label mappings for 2-label classification (a-c) and ranking (d-f).

the nodes of its outgoing set is built. To clarify, in Figure 1a set of mapping examples
are proposed. ConsideringΩ = {1, 2, 3, 4, 5}, in Figure 1-(a) the labely = [1, 2|3, 4, 5]
for a 2-label classification setting is given. In particular, this corresponds to the mapping
G(y) = GI(y) = y where a single wrong ranking of a class makes the predictor topay a
unit of cost. Similarly, in Figure 1-(b) the label mappingG(y) = GD(y) is presented for
the same problem. Another variant is presented in Figure 1-(c) where the label mapping
G(y) = Gd(y) is used and the target classes are independently evaluated and their errors
cumulated. Note that all these graphs are subgraphs of the original label in 1-(a). As an
additional example we consider the three cases depicted in the right hand side of Figure 1
that refer to a ranking problem with three classesΩ = {1, 2, 3}. In Figure 1-(d) the label
y = [1|2|3] is given. As before, this also corresponds to the label mappingG(y) = GI(y).
Two alternative cost definitions can be obtained by using thep-graphs (sets of basic pref-
erences actually) depicted in Figure 1-(e) and 1-(f). Note that the cost functions in these
cases are different. For example, assumefR(x|Θ) = [3|1|2], the p-graph in (e) induces a
costc(x, yb|Θ) = 2 while the p-graph in (f) induces a costc(x, yc|Θ) = 1.

The PLM Setting Once the label mappingG is fixed, the preference constraints of
the original multiclass problem can be arranged into a set ofpreference constraints.
Specifically, we consider the setV(S) =

⋃

(xi,yi)∈S V(xi, yi) where V(x, y) =

{(x, gj(y))}j∈{1,..,qy} and each pair(x, g) ∈ X × G(Ω) is a preference constraint. Note
that the same instance can be replicated inV(S). This can happen, for example, when
multiple ranking constraints are associated to the same example of the original multiclass
problem. Because of this, in the following, we prefer to use adifferent notation for the
instances in preference constraints to avoid confusion with training examples.

Notions defined for the standard classification setting are easily extended to PLM. For a
preference constraint(v, g) ∈ V, theconstraint errorincurred by the ranking hypothesis
fR(v|Θ) is given byδ(v, g|Θ) = [[g 6v fR(v|Θ)]]. The empirical cost is then defined
as the cost over the whole constraint set, i.e.Re[Θ,V] =

∑N
i=1 δ(vi, gi|Θ). In addition,

we define themargin of an hypothesis on a patternv for a preference arca = (ωs, ωe),
expressing how well the preference is satisfied, as the difference between the scores of
the two linked nodes, i.e.ρA(v, a|Θ) = f(v, ωs|Θ) − f(v, ωe|Θ). The margin for a p-
graph constraint(v, g) is then defined as the minimum of the margin of the compounding
preferences,ρG(v, g|Θ) = mina∈A(g) ρA(v, a|Θ), and gives a measure of how well the
hypothesis fulfills a given preference constraint. Note that, consistently with the classifica-
tion setting, the margin is greater than0 if and only if g v fR(v|Θ).

Learning in PLM In the PLM we try to learn a ”simple” hypothesis able to minimize the
empirical cost of the original multiclass problem or equivalently to satisfy the constraints in
V(S) as much as possible. The learning setting of the PLM can be reduced to the following
scheme. Given a setV of pairs(vi, gi) ∈ X × G(Ω), i ∈ {1, . . . , N}, N =

∑n
i=1 qyi

,
find a set of parameters for the ranking functionfR(v|Θ) able to minimize a combination
of a regularization and an empirical loss term,Θ̂ = arg minΘ{Re[Θ,V] + µR(Θ)} with
µ a given constant. However, since the direct minimization ofthis functional is hard due
to the non continuous form of the empirical error term, we usean upper-bound on the true
empirical error. To this end, let be defined a monotonically decreasing loss functionL such



thatL(ρ) ≥ 0 andL(0) = 1, then by defining a margin-based loss

LC(v, g|Θ) = L (ρG(v, g|Θ)) = max
a∈A(g)

L (ρA(v, a|Θ)) (1)

for a p-graph constraint(v, g) ∈ V and recalling the margin definition, the condition
δ(v, g|Θ) ≤ LC(v, g|Θ) always holds thus obtainingRe[Θ,V] ≤

∑N
i=1 LC(vi, gi|Θ).

The problem of learning with multiple classes (up to constant factors) is then reduced to a
minimization of a (possibly regularized) loss functional

Θ̂ = arg min
Θ
{L(V|Θ) + µR(Θ)} (2)

whereL(V|Θ) =
∑N

i=1 maxa∈A(gi) L(f(vi, ωs(a)|Θ)− f(vi, ωe(a)|Θ)).

Method L(ρ)

β-margin Perceptron [1− β−1ρ]+
Logistic Regression log2(1 + exp(−ρ))
Soft margin [1− ρ]+
Mod. Least Square [1− ρ]2+
Exponential exp(−ρ)

Many different choices can be made for
the functionL(·). Some well known
examples are the ones given in the ta-
ble at the left. Note that, if the function
L(·) is convex with respect to the para-
metersΘ, the minimization of the func-
tional in Eq. (2) will result quite easy
given a convex regularization term.

The only difficulty in this case is represented by themax term. A shortcoming to this
problem would consist in upper-bounding themax with the sum operator, though this
would probably lead to a quite row approximation of the indicator function when consid-
ering p-graphs with many arcs. It can be shown that a number ofrelated works, e.g. [5, 7],
after minor modifications, can be seen as PLM instances when using thesum approxima-
tion. Interestingly, PLM highlights that this approximation in fact corresponds to a change
on the label mapping obtained by decomposing a complex preference graph into a set of
binary preferences and thus changing the cost definition we are indeed minimizing. In this
case, using eitherGD or Gd is not going to make any difference at all.

Multiclass Prediction through PLM A multiclass prediction is a functionH : X → Y
mapping instances to their associated label. Let be given a label mapping defined as
G(y) = {g1(y), . . . , gqy

(y)}. Then, the PLM multiclass prediction is given as the la-
bel whose induced preference constraints mostly agree withthe current hypothesis, i.e.
H(x) = arg miny L(V(x, y)|Θ) whereV(x, y) = {(x, gj(y))}j∈{1,..,qy}. It can be shown
that many of the most effective methods used for learning with multiple classes, including
output coding (ECOC, OvA, OvO), boosting, least squares methods and all the methods in
[10, 3, 7, 5] fit into the PLM setting. This issue is better discussed in [1].

3 Preference Learning with Kernel Machines

In this section, we focus on a particular setting of the PLM framework consisting of
a multivariate embeddingh : X → R

s of linear functions parameterized by a set
of vectorsWk ∈ R

d, k ∈ {1, . . . , s} accommodated in a matrixW ∈ R
s×d, i.e.

h(x) = [h1(x), . . . , hs(x)] = [〈W1,x〉, . . . , 〈Ws,x〉]. Furthermore, we consider the set
of classesΩ = {ω1, . . . , ωm} andM ∈ R

m×s a matrix of codes of lengths with as many
rows as classes. This matrix has the same role as the coding matrix in multiclass coding,
e.g. in ECOC. Finally, the scoring function for a given classis computed as the dot product
between the embedding function and the class code vector

f(x, ωr|W,M) = 〈h(x),Mr〉 =
s

∑

k=1

Mrk〈Wk,x〉 (3)



Now, we are able to describe a kernel-based method for the effective solution of the PLM
problem. In particular, we present the problem formulationand the associated optimization
method for the task of learning the embedding function givenfixed codes for the classes
(embeddingproblem). Another worthwhile task consists in the optimization of the codes
for the classes when the embedding function is kept fixed (codingproblem), or even to
perform a combination of the two (see for example [8]). A deeper study of the embedding-
coding version of PLM and a set of examples can be found in [1].

PLM Kesler’s Construction As a first step, we generalize the Kesler’s Construction
originally defined for single-label classification (see [6]) to the PLM setting, thus showing
that the embedding problem can be formulated as a binary classification problem in a higher
dimensional space when new variables are appropriately defined. Specifically, consider
the vectory(a) = (Mωs(a) −Mωe(a)) ∈ R

s defined for every preference arc in a given
preference constraint, that isa = (ωs, ωe) ∈ A(g). For every instancevi and preference
(ωs, ωe), the preference conditionρA(vi, a) ≥ 0 can be rewritten as

ρA(vi, a) = f(vi, ωs)− f(vi, ωe) = 〈y(a),h(vi)〉 =
∑s

k=1 yk(a)〈Wk,vi〉
=

∑s
k=1〈Wk, yk(a)vi〉 =

∑s
k=1〈Wk, [za

i ]sk〉 = 〈W, za
i 〉 ≥ 0

(4)
where[·]sk denotes thek-th chunk of a s-chunks vector,W ∈ R

s·d is the vector obtained by
sequentially arranging the vectorsWk, andza

i = y(a)⊗ vi ∈ R
s·d is the embedded vector

made of thes chunks defined by[za
i ]sk = yk(a)vi, k ∈ {1, . . . , s}. From this derivation it

turns out that each preference of a constraint in the setV can be viewed as an example of
dimensions · d in a binary classification problem. Each pair(vi, gi) ∈ V then generates
a number of examples in this extended binary problem equal tothe number of arcs of the
p-graphgi for a total of

∑N
i=1 |A(gi)| examples. In particular, the setZ = {za

i } is linearly
separable in the higher dimensional problem if and only if there exists a consistent solution
for the original PLM problem. Very similar considerations,omitted for space reasons,
could be given for the coding problem as well.

The Kernel Preference Learning Optimization As pointed out before, the central task
in PLM is to learn scoring functions in such a way to be as much as possible consistent
with the set of constraints inV. This is done by finding a set of parameters minimizing a
loss function that is an upper-bound on the empirical error function. For the embedding
problem, instantiating the problem (2), and choosing the2-norm of the parameters as regu-
larizer, we obtainŴ = arg minW

1
N

∑N
i=1 LC(vi, gi|W,M) + µ||W ||2 where, according

to Eq.(1), the loss for each preference constraint is computed as the maximum between the
losses of all the associated preferences, that isLi = maxa∈A(gi) L(〈W, za

i 〉).

When the constraint set inV contains basic preferences only (that is p-graphs consisting of
a single arcai = A(gi)), the optimization problem can be simplified into the minimization
of a standard functional combining a loss function with a regularization term. Specifically,
all the losses presented before can be used and, for many of them, it is possible to give a
kernel-based solution. See [11] for a set of examples of lossfunctions and the formulation
of the associated problem with kernels.

The Kernel Preference Learning Machine For the general case of p-graphs possibly
containing multiple arcs, we propose a kernel-based method(hereafter referred to asKernel
Preference Learning Machineor KPLM for brevity) for PLM optimization which adopts
the lossmax in Eq. (2). Borrowing the idea of soft-margin [9], for each preference arc, a
linear loss is used giving an upper bound on the indicator function loss. Specifically, we
use the SVM-like soft margin lossL(ρ) = [1− ρ]+.

Summarizing, we require a set of small norm predictors that fulfill the soft constraints of



the problem. These requirements can be expressed by the following quadratic problem

minW,ξ
1
2 ||W||

2 + C
∑N

i ξi

subject to:

{

〈W, za
i 〉 ≥ 1− ξi, i ∈ {1, .., N}, a ∈ A(gi)

ξi ≥ 0, i ∈ {1, .., N}
(5)

Note that differently from the SVM formulation for the binary classification setting, here
the slack variablesξi are associated to multiple examples, one for each preference arc in
the p-graph. Moreover, the optimal value of theξi corresponds to the loss value as defined
by Li. As it is easily verifiable, this problem is convex and it can be solved in the usual
way by resorting to the optimization of the Wolfe dual problem. Specifically, we have to
find the saddle point (minimization w.r.t. to the primal variables{W, ξ} and maximization
w.r.t. the dual variables{α, λ}) of the following Lagrangian:

Q(W, ξ, α, λ) = 1
2 ||W||

2 + C
∑N

i ξi +
∑N

i

∑

a∈A(gi)
αa

i (1− ξi − 〈W, za
i 〉)

−
∑N

i λiξi, s.t.αa
i , λi ≥ 0

(6)
By differentiating the Lagrangian with respect to the primal variables and imposing the
optimality conditions we obtain the set of constraints thatthe variables have to fulfill in
order to be an optimal solution

∂Q
∂W

= W −
∑N

i

∑

a∈A(gi)
αa

i z
a
i = 0⇔W =

∑N
i

∑

a∈A(gi)
αa

i z
a
i

∂Q
∂ξi

= C −
∑

a∈A(gi)
αa

i − λi = 0⇔
∑

a∈A(gi)
αa

i ≤ C (7)

Substituting conditions (7) in (6) and omitting constants that do not change the solution,
the problem can be restated as

maxα

∑

i,a αa
i −

1
2

∑s
k

∑

i,ai

∑

j,aj
yk(ai)yk(aj)α

ai

i α
aj

j 〈vi,vj〉

subject to:

{

αa
i ≥ 0, i ∈ {1, .., N}, a ∈ A(gi)

∑

a αa
i ≤ C, i ∈ {1, .., N}

(8)

SinceWk =
∑

i,a yk(a)αa
i vi =

∑

i,a[Mωs(a) −Mωe(a)]
s
kαa

i vi, k = 1, .., s, we obtain
hk(x) = 〈Wk,x〉 =

∑

i,a[Mωs(a)−Mωe(a)]
s
kαa

i 〈vi,x〉. Note that any kernelk(·, ·) can be
substituted in place of the linear dot product〈, 〉 to allow for non-linear decision functions.

Embedding Optimization The problem in (8) recalls the one obtained for single-label
multiclass SVM [1, 2] and, in fact, its optimization can be performed in a similar way.
Assuming a number of arcs for each preference constraint equal to q, the dual problem in
(8) involvesN · q variables leading to a very large scale problem. However, itcan be noted
that the independence of constraints among the different preference constraints allows for
the separation of the variables inN disjoints sets ofq variables each.

The algorithm we propose for the optimization of the overallproblem consists in iteratively
selecting a preference constraint from the constraints set(a p-graph) and then optimizing
with respect to the variables associated with it, that is onefor each arc of the p-graph. From
the convexity of the problem and the separation of the variables, since on each iteration we
optimize on a different subset of variables, this guarantees that the optimal solution for the
Lagrangian will be found when no new selections can lead to improvements.

The graph to optimize at each step is selected on the basis of an heuristic selection strategy.
Let the preference constraint(vi, gi) ∈ V be selected at a given iteration, to enforce the
constraint

∑

a∈A(gi)
αa

i +λi = C, λi ≥ 0, two elements from the set of variables{αa
i |a ∈

A(gi)} ∪ {λi} will be optimized in pairs while keeping the solution insidethe feasible
regionαa

i ≥ 0. In particular, letχ1 andχ2 be the two selected variables, we restrict the



updates to the formχ1 ← χ1−ν andχ2 ← χ2+ν with optimal choices forν. The variables
which most violate the constraints are iteratively selected until they reach optimality KKT
conditions. For this, we have devised a KKT-based procedurewhich is able to select these
variables in time linear with the number of classes. For space reasons we omit the details
and we do not consider at all any implementation issue. Details and optimized versions of
this basic algorithm can be found in [1].

Generalization of KPLM As a first immediate result we can give an upper-bound on the
leave-one-out error by utilizing the sparsity of a KPLM solution, namelyLOO ≤ |V |/N ,
whereV = {i ∈ {1, . . . , N}|maxa∈A(gi) αa

i > 0} is the set of support vectors. Another
interesting result about the generalization ability of a KPLM is in the following theorem.

Theorem 1 Consider a KPLM hypothesisΘ = (W,M) with
∑s

r=1 ||Wr||
2 = 1 and

||Mr||
2 ≤ RM such thatmin(v,g)∈V ρG(v, g|Θ) ≥ γ. Then, for any probability distri-

butionD onX ×Y with support in a ball of radiusRX around the origin, with probability
1− δ overn random examplesS, the following bound for the true cost holds

Rt[Θ] ≤
2QA

n

(

64R2

γ2
log

enγ

8R2
log

32n

γ2
+ log

4

δ

)

where∀y ∈ Y, qy ≤ Q, |A(gr(y))| ≤ A, r ∈ {1, . . . , qy} andR = 2RMRX .

Proof. Similar to that of Theorem4.11 in [7] when noting that the size of examples inZ
are upper-bounded byR = 2RMRX .

4 Experiments

Experimental Setting We performed experiments on the ‘ModApte” split of Reuters-
21578 dataset. We selected the10 most popular categories thus obtaining a reduced set
of 6,490 training documents and a set of 2,545 test documents. The corpus was then pre-
processed by discarding numbers and punctuation and converting letters to lowercase. We
used a stop-list to remove very frequent words and stemming has been performed by means
of Porter’s stemmer. Term weights are calculated accordingto thetf/idf function. Term se-
lection was not considered thus obtaining a set of 28,006 distinct features.

We evaluated our framework on the binary category ranking task induced by the original
multi-label classification task, thus requiring rankings having target classes of the original
multi-label problem on top. Five different well-known costfunctions have been used. Let
x be an instance having ranking labely. IErr is the cost function indicating a non-perfect
ranking and corresponds to the identity mapping in Figure 1-(a). DErr is the cost defined
as the number of relevant classes uncorrectly ranked by the algorithm and corresponds to
the domination mapping in Figure 1-(b).dErr is the cost obtained counting the number of
uncorrect rankings and corresponds to the disagreement mapping in Figure 1-(c). Other two
well-known Information Retrieval (IR) based cost functions have been used. TheOneErr
cost function that is1 whenever the top ranked class is not a relevant class and the average

precision cost function, which isAvgP = 1
|y|

∑

r∈y
|{r′∈y:rank(x,r′)≤rank(x,r)}|

rank(x,r)
.

Results The model evaluation has been performed by comparing three different label
mappings for KPLM and the baseline MMP algorithm [4], a variant of the Perceptron
algorithm for ranking problems, with respect to the above-mentioned ranking losses. We
used the configuration which gave the best results in the experiments reported in [4]. KPLM
has been implemented settings = m and the standard basis vectorser ∈ R

m as codes
associated to the classes. A linear kernelk(x,y) = (〈x,y〉+1) was used. Model selection
for the KPLM has been performed by means of a 5-fold cross validation for different values



of the parameterC. The optimal parameters have been chosen as the ones minimizing the
mean of the values of the loss (the one used for training) overthe different folders. In Table
1 we report the obtained results. It is clear that KPLM definitely outperforms the MMP
method. This is probably due to the use of margins in KPLM. Moreover, using identity and
domination mappings seems to lead to models that outperformthe ones obtained by using
the disagreement mapping. Interestingly, this also happens when comparing with respect
to its own corresponding cost. This can be due to a looser approximation (as a sum of
approximations) of the true cost function. The same trend was confirmed by another set of
experiments on artificial datasets that we are not able to report here due to space limitations.

Method IErr % DErr % dErr % OneErr % AvgP %
MMP 5.07 4.92 0.89 4.28 97.49
KPLM (GI) 3.77 3.66 0.55 3.10 98.25
KPLM (GD) 3.81 3.59 0.54 3.14 98.24
KPLM (Gd) 4.12 4.13 0.66 3.58 97.99

Table 1: Comparisons of ranking performance for different methods using different loss
functions according to different evaluation metrics. Bestresults are shown in bold.

5 Conclusions and Future Work

We have presented a common framework for the analysis of general multiclass problems
and proposed a kernel-based method as an instance of this setting which has shown very
good results on a binary category ranking task. Promising directions of research, that we
are currently pursuing, include experimenting with codingoptimization and considering to
extend the current setting to on-line learning, interdependent labels (e.g. hierarchical or any
other structured classification), ordinal regression problems, and classification with costs.
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