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Abstract

Many interesting multiclass problems can be cast in the géfiame-
work of label ranking defined on a given set of classes. Theuatian
for such a ranking is generally given in terms of the numberialaited
order constraints between classes. In this paper, we peaphe®refer-
ence Learning Modeds a unifying framework to model and solve a large
class of multiclass problems in a large margin perspectiveaddition,

an original kernel-based method is proposed and evaluatedranking
dataset with state-of-the-art results.

1 Introduction

The presence of multiple classes in a learning domain iotresl interesting tasks besides
the one to select the most appropriate class for an objextwéll-known §ingle-labe)
multiclass problem. Many others, including learning raugis, multi-label classification,
hierarchical classification and ordinal regression, joshame a few, have not yet been
sufficiently studied even though they should not be considiégss important. One of the
major problems when dealing with this large set of differsettings is the lack of a single
universal theory encompassing all of them.

In this paper we focus on multiclass problems where labelgen as partial order con-
straints over the classes. Tasks naturally falling inte thimily includecategory ranking
which is the task to infer full orders over the clasdeimary category rankingwhich is
the task to infer orders such that a given subset of classe®piranked, and any general
(g-label) classification problem.

Recently, efforts have been made in the direction to unifiedint ranking problems. In
particular, in [5, 7] two frameworks have been proposed Wlidm at inducing a label
ranking function from examples. Similarly, here we consldbels coded into sets of pref-
erence constraints, expressedoeeference graphsver the set of classes. The multiclass
problem is then reduced to learning a good sebofing functiongble to correctly rank the
classes according to the constraints which are associatkd tabel of the examples. Each
preference graph disagreeing with the obtained rankingtiom will count as an error.

The primary contribution of this work is to try to make a fuethstep towards the unifica-
tion of different multiclass settings, and different maits solve them, by proposing the
Preference Learning Modeh very general framework to model and study several kinds of
multiclass problems. In addition, a kernel-based methotgogarly suited for this setting

is proposed and evaluated in a binary category ranking tétbkwaery promising results.



TheMulticlass Setting Let 2 be a set of classes, we consider a multiclass setting where
data are supposed to be sampled according to a probabsitybdition D over X' x Y,

X C R% and an hypothesis space of functigis= {fe : X x Q — R} with parameters

©. Moreover, a cost function(x, y|©) defines the cost suffered by a given hypothesis on
a patternx € X having labely € ). A multiclass learning algorithm searches for a set of
parameter®* such to minimize thérue cost that is the expected value of the cost accord-
ing to the true distribution of data, i.€2;[0] = E(x ,)~plc(x,y|©)]. The distributionD

is typically unknown, while it is available a training s&t= {(x1,v1), ..., (Xn, yn)} With
examples drawn.i.d. from D. An empirical approximation of the true cost, also referred
to as theempirical costis defined byR.[©,S] = 2 37" | ¢(x;, 4:|©).

2 ThePreference Learning Model

In this section, starting from the general multiclass sgttlescribed above, we propose a
general technique to solve a large family of multiclassrsgét The basic idea is to "code”
labels of the original multiclass problem as sets of rankiogstraints given as preference
graphs. Then, we introduce tireference Learning Mod€PLM) for the induction of
optimal scoring functions that uses those constraints persision.

In the case of ranking-based multiclass settings, lab&sgasen as partial orders over
the classes (see [1] for a detailed taxonomy of multiclaamiag problems). Moreover,
as observed in [5], ranking problems can be generalized bgidering labels given as
preference graphs over a set of clas@es {w1,...,wn,}, and trying to find a consistent
ranking functionfr : X — II(Q) whereIl(Q) is the set of permutations ovér. More
formally, considering a se&?, apreference graplor "p-graph” overQ2 is a directed graph

v = (N, A) whereN C Q is the set of nodes andl is the set of arcs of the graph accessed
by the functionA(v). An arca € A is associated with its starting nodg = w,(a) and

its ending nodes. = w.(a) and represents the information that the class preferred to,
and should be ranked higher than, The set of p-graphs ové€r will be denoted byG(2).

Let be given a set of scoring functiofis X x  — R with parameter® working as pre-
dictors of the relevance of the associated class to givearines. A definition of a ranking
function naturally follows by taking the permutation of elents inQ2 corresponding to the
sorting of the values of these functions, i.gz(x|©) = argsort,., f(x,w|©). We say
that a preference arc = (w;,w,) is consistent with a ranking hypothesig (x|©), and
we writea C fr(x|0), whenf(x,ws|0) > f(x,w.|©) holds. Generalizing to graphs, a
p-graphyg is said to be consistent with an hypothegigx|0), and we writegy C fr(x|O),

if every arc compounding it is consistent, i€C fr(x|0) < Va € A(g),a C fr(x]O).

The PLM Mapping Let us start by considering the way a multiclass problemasdy
formed into a PLM problem. As seen before, to evaluate thditguz a ranking func-
tion fr(x|©) is necessary to specify the nature of a cost functitn y|©). Specifi-
cally, we consider cost definitions corresponding to asgeqgbienalties whenever uncor-
rect decisions are made (e.g. a classification error fosifieation problems or wrong
ordering for ranking problems). To this end, as in [5], we sidar a label mapping
G:yw— {n1(y),.-.,94,(y)} where a set of subgraphg(y) € G(2) are associated
to each label; € ). The total cost suffered by a ranking hypothegison the example
x € X labeledy € Y is the number of p-graphs #(y) not consistent with the ranking, i.e.
c(x,y|0) = ;?y:l[[gj(y) Z f(x/©)], where[b] is 1 if the conditiond holds,0 otherwise.
Let us describe three particular mappings proposed in f]sbem worthwhile of notdi)
Theidentity mappingdenoted byg;, where the label is mapped on itself and every incon-
sistent graph will have a unitary co$i) thedisagreement mappindenoted byg,;, where

a simple (single-preference) subgraph is built for eactirary), and(iii) thedomination
mapping denoted bygp, where for each node, in y a subgraph consisting af. plus
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Figure 1: Examples of label mappings for 2-label classificafa-c) and ranking (d-f).

the nodes of its outgoing set is built. To clarify, in Figure ket of mapping examples
are proposed. Considerity = {1,2, 3,4, 5}, in Figure 1-(a) the labe)} = [1,2|3,4, 5]
for a 2-label classification setting is given. In particulduis corresponds to the mapping
G(y) = Gr(y) = y where a single wrong ranking of a class makes the predictpayoa
unit of cost. Similarly, in Figure 1-(b) the label mappiggy) = Gp(y) is presented for
the same problem. Another variant is presented in Figur® ¥iere the label mapping
G(y) = Ga(y) is used and the target classes are independently evaluadettieir errors
cumulated. Note that all these graphs are subgraphs of ihi@airlabel in 1-(a). As an
additional example we consider the three cases depictdeirnight hand side of Figure 1
that refer to a ranking problem with three clas€es- {1, 2, 3}. In Figure 1-(d) the label
y = [1|2]3] is given. As before, this also corresponds to the label rmap®iy) = G (y).
Two alternative cost definitions can be obtained by usingptigeaphs (sets of basic pref-
erences actually) depicted in Figure 1-(e) and 1-(f). Nbtd the cost functions in these
cases are different. For example, assufpéx|®) = [3|1|2], the p-graph in (e) induces a
coste(x, yp|©) = 2 while the p-graph in (f) induces a casix, y.|©) = 1.

The PLM Setting Once the label mapping is fixed, the preference constraints of
the original multiclass problem can be arranged into a sepreference constraints.
Specifically, we consider the sét(S) = Uy, ,,)es V(xi,y:;) where V(x,y) =
{(x,95(¥))}jeq1,...q,y @nd each paifx, g) € X x G(Q) is a preference constraint. Note
that the same instance can be replicated{§). This can happen, for example, when
multiple ranking constraints are associated to the sammbesof the original multiclass
problem. Because of this, in the following, we prefer to usdiferent notation for the
instances in preference constraints to avoid confusiohn trdgtining examples.

Notions defined for the standard classification setting as#lyeextended to PLM. For a
preference constrairiy, g) € V, the constraint errorincurred by the ranking hypothesis
fr(v|O©) is given byd(v,g|®) = [g £ fr(v|©®)]. The empirical cost is then defined
as the cost over the whole constraint set, [0, V] = vazl 0(vs, 9:1©). In addition,
we define themargin of an hypothesis on a pattesnfor a preference are = (ws, we),
expressing how well the preference is satisfied, as therdifte between the scores of
the two linked nodes, i.eps(v,a|®) = f(v,ws|®) — f(v,w.|O). The margin for a p-
graph constraintv, g) is then defined as the minimum of the margin of the compounding
preferencespq (v, g|©) = min,e () pa(v,a|©), and gives a measure of how well the
hypothesis fulfills a given preference constraint. Note, tbansistently with the classifica-
tion setting, the margin is greater théuf and only if g C fr(v|©).

Learningin PLM Inthe PLM we try to learn a "simple” hypothesis able to miraeathe
empirical cost of the original multiclass problem or eqlevdly to satisfy the constraints in
V(S) as much as possible. The learning setting of the PLM can heeeto the following
scheme. Given a sét of pairs(v;,g;) € X x G(Q),i € {1,...,N}, N = > | qy.,
find a set of parameters for the ranking functjff(v|©) able to minimize a combination
of a regularization and an empirical loss tetth= arg mine{ R.[©, V] + uR(O)} with

1 a given constant. However, since the direct minimizatiothaf functional is hard due
to the non continuous form of the empirical error term, we ais@pper-bound on the true
empirical error. To this end, let be defined a monotonicadlgrdasing loss functioh such



thatL(p) > 0 andL(0) = 1, then by defining a margin-based loss

Le(v,910) = L (pa(v,g10)) = Jnax L(pa(v,al®)) )
for a p-graph constraintv,g) € V and recalling the margin definition, the condition
8(v,9|®) < Lo(v, g|©) always holds thus obtaining, [0, V] < 3=~ | Le(vi, g:]©).

The problem of learning with multiple classes (up to constactors) is then reduced to a
minimization of a (possibly regularized) loss functional

O = arg m(_i)n{ﬁ(W@) + uR(0)} 2

whereL(V|0) = Zfil maXaea(g,) L(f(Vi,ws(a)|©) — f(vi,we(a)|©)).

Many different choices can be made for

| Method \ L(p) | the functionL(-). Some well known
B-margin Perceptron [1 — 3= 1p], examples are the ones given in the ta-
Logistic Regression | log, (1 + exp(—p)) ble at the left. Note that, if the function
Soft margin 1—ply L(-) is convex with respect to the para-
Mod. Least Square | [1 — p|%. meterso, the minimization of the func-
Exponential exp(—p) tional in Eq. (2) will result quite easy

given a convex regularization term.
The only difficulty in this case is represented by thex term. A shortcoming to this
problem would consist in upper-bounding thexx with the sum operator, though this
would probably lead to a quite row approximation of the iradie function when consid-
ering p-graphs with many arcs. It can be shown that a numbedated works, e.g. [5, 7],
after minor modifications, can be seen as PLM instances whiag thesum approxima-
tion. Interestingly, PLM highlights that this approxinmaiiin fact corresponds to a change
on the label mapping obtained by decomposing a complex narete graph into a set of
binary preferences and thus changing the cost definitionrev@deed minimizing. In this
case, using eith&jp or G, is not going to make any difference at all.

Multiclass Prediction through PLM A multiclass prediction is a functiofl : X — Y
mapping instances to their associated label. Let be givesbel Imapping defined as
G(y) =1{91(y),...,94,(y)}. Then, the PLM multiclass prediction is given as the la-
bel whose induced preference constraints mostly agree thttrcurrent hypothesis, i.e.
H(x) = argmin, L(V(x,y)|0©) whereV(x,y) = {(x,9;(y))}je{1,...q,}- It can be shown
that many of the most effective methods used for learning witlltiple classes, including
output coding (ECOC, OvVA, OvO), boosting, least squarehots and all the methods in
[10, 3, 7, 5] fit into the PLM setting. This issue is better dissed in [1].

3 Preference Learning with Kernel Machines

In this section, we focus on a particular setting of the PLMnfework consisting of
a multivariate embeddingy : X — R® of linear functions parameterized by a set

of vectorsW,, € R k € {1,...,s} accommodated in a matri/ € R**9, ie.
h(x) = [hi(x),...,hs(x)] = [(W1,x),..., (W, x)]. Furthermore, we consider the set
of classes? = {w1,...,w,} andM € R™*5 a matrix of codes of length with as many

rows as classes. This matrix has the same role as the codimix manulticlass coding,
e.g. in ECOC. Finally, the scoring function for a given clessomputed as the dot product
between the embedding function and the class code vector

FO6,wp[W, M) = (h(x), My) = > My (Wi, x) ®)
k=1



Now, we are able to describe a kernel-based method for teet®# solution of the PLM
problem. In particular, we present the problem formulatiod the associated optimization
method for the task of learning the embedding function gifireed codes for the classes
(embeddingoroblem). Another worthwhile task consists in the optirticaa of the codes
for the classes when the embedding function is kept fixedliog problem), or even to
perform a combination of the two (see for example [8]). A dwegtudy of the embedding-
coding version of PLM and a set of examples can be found in [1].

PLM Keder's Construction As a first step, we generalize the Kesler's Construction
originally defined for single-label classification (se€)[@] the PLM setting, thus showing
that the embedding problem can be formulated as a binarsifitzgion problem in a higher
dimensional space when new variables are appropriatelypetefi Specifically, consider
the vectory(a) = (M., (o) — M., (a)) € R® defined for every preference arc in a given
preference constraint, thatis= (w,,w.) € A(g). For every instance, and preference
(ws,we), the preference conditiony (v;,a) > 0 can be rewritten as

pa(vi,a) = [(vi,ws) = f(vi,we) = (y(a),h(v;)) = > =1 Yk(a) (Wi, vi)
= ZZ=1<Wk7yk(a)vi> = Zk 1<Wka[za]> = <W,z;‘>20 @

where[-]; denotes thé-th chunk of a s-chunks vectdW € R*? is the vector obtained by
sequentially arranging the vectdig,, andz¢ = y(a) ® v; € R*?is the embedded vector
made of thes chunks defined byz¢]; = yi(a)v;, k € {1,...,s}. From this derivation it
turns out that each preference of a constraint in thé&’sein be viewed as an example of
dimensions - d in a binary classification problem. Each péir;, g;) € V then generates
a number of examples in this extended binary problem equhletmumber of arcs of the
p-graphg; for a total of " | |A(g;)| examples. In particular, the s&t= {z¢} is linearly
separable in the higher dimensional problem if and onlyaféhexists a consistent solution
for the original PLM problem. Very similar consideratiormnitted for space reasons,
could be given for the coding problem as well.

TheKernel Preference Learning Optimization As pointed out before, the central task
in PLM is to learn scoring functions in such a way to be as mugpassible consistent
with the set of constraints il. This is done by finding a set of parameters minimizing a
loss function that is an upper-bound on the empirical emocfion. For the embedding
problem, instantiating the problem (2), and choosing2tm®rm of the parameters as regu-
larizer, we obtaif¥ = argminw + I | Le(vi, gi|[W, M) + u||W||? where, according

to Eq.(1), the loss for each preference constraint is coetpas the maximum between the
losses of all the associated preferences, thaf is max,c 4(4,) L((W, z})).

When the constraint set W contains basic preferences only (that is p-graphs congisfi
asingle ara,; = A(g;)), the optimization problem can be simplified into the mirgation
of a standard functional combining a loss function with autagzation term. Specifically,
all the losses presented before can be used and, for mangrof this possible to give a
kernel-based solution. See [11] for a set of examples offlosstions and the formulation
of the associated problem with kernels.

The Kernel Preference Learning Machine For the general case of p-graphs possibly
containing multiple arcs, we propose a kernel-based mdthergafter referred to &&ernel
Preference Learning Machiner KPLM for brevity) for PLM optimization which adopts
the lossmaxin Eq. (2). Borrowing the idea of soft-margin [9], for eaclefarence arc, a
linear loss is used giving an upper bound on the indicatoctfan loss. Specifically, we
use the SVM-like soft margin los5(p) = [1 — p]4+.

Summarizing, we require a set of small norm predictors thldillfthe soft constraints of



the problem. These requirements can be expressed by theifodl quadratic problem

minw ¢ 3[[W|?+C ¥ ¢
<W7Z;',l> Z 1_§i? 1€ {1a--7N}>aeA<gi> (5)

subject to:{ ¢ >0, ie{l,.,N}

Note that differently from the SVM formulation for the biryaclassification setting, here
the slack variableg; are associated to multiple examples, one for each preferaircin
the p-graph. Moreover, the optimal value of fhecorresponds to the loss value as defined
by L;. As it is easily verifiable, this problem is convex and it candwmlved in the usual
way by resorting to the optimization of the Wolfe dual prahleSpecifically, we have to
find the saddle point (minimization w.r.t. to the primal edies{ W, £} and maximization
w.r.t. the dual variable$a, A}) of the following Lagrangian:

QW, &) = FIWIP+CEY &+ a1 =& — (W, 2))
— va /\zfza s.t. Oz?, A >0
(6)
By differentiating the Lagrangian with respect to the priariables and imposing the
optimality conditions we obtain the set of constraints tiat variables have to fulfill in
order to be an optimal solution

o) N a,a __ _ N a,,a
ﬁ = W-3 ZaEA(gi) atzl =06 W =737 ZaeA(g,;) o 'Z;
o6, C - ZaeA(gi) af =i =0 ZaeA(g,i) af <C ()

Substituting conditions (7) in (6) and omitting constartattdo not change the solution,
the problem can be restated as

maXe ELa of — % ZZ Zi,al Ejgaj yk(ai)yk(aj)@?ia?j (i, vj)
af >0, ie{l,..,N},a € A(g;) (8)
a? <C, ie{l,..,N}

i

subject to:

SinceW;, = Ei,a yr(a)adv; = Zi,a[Mws(a) — ]Vlwc(a)]Za?vi, k = 1,..,s, we obtain
hi(x) = (Wi, x) = >, [My, () — Mo, ()]305 (vi, x). Note that any kerndi(-, -) can be
substituted in place of the linear dot prodygt to allow for non-linear decision functions.

Embedding Optimization The problem in (8) recalls the one obtained for single-label
multiclass SVM [1, 2] and, in fact, its optimization can befpemed in a similar way.
Assuming a number of arcs for each preference constrairal ¢y, the dual problem in
(8) involvesN - ¢ variables leading to a very large scale problem. Howeveatitbe noted
that the independence of constraints among the differefiémnce constraints allows for
the separation of the variables M disjoints sets of variables each.

The algorithm we propose for the optimization of the ovepatiblem consists in iteratively
selecting a preference constraint from the constraint§asptgraph) and then optimizing
with respect to the variables associated with it, that isfoneach arc of the p-graph. From
the convexity of the problem and the separation of the vieflsince on each iteration we
optimize on a different subset of variables, this guarantieat the optimal solution for the
Lagrangian will be found when no new selections can lead fwdavements.

The graph to optimize at each step is selected on the basishafistic selection strategy.
Let the preference constraifw;, g;) € V be selected at a given iteration, to enforce the
constraint ,c 4, & +Ai = C, A; = 0, two elements from the set of variablgs{|a €
A(g;)} U {\:} will be optimized in pairs while keeping the solution insithe feasible
regiona$ > 0. In particular, lety; andy. be the two selected variables, we restrict the



updates to the formy; <« x1—v andys < x2+v with optimal choices for. The variables
which most violate the constraints are iteratively selgctstil they reach optimality KKT
conditions. For this, we have devised a KKT-based procedtieh is able to select these
variables in time linear with the number of classes. For spaasons we omit the details
and we do not consider at all any implementation issue. Bedad optimized versions of
this basic algorithm can be found in [1].

Generalization of KPLM  As a first immediate result we can give an upper-bound on the
leave-one-out error by utilizing the sparsity of a KPLM g@a, namelyLOO < |V|/N,
whereV = {i € {1,..., N}|max,c (4, af > 0} is the set of support vectors. Another
interesting result about the generalization ability of aLKFis in the following theorem.

Theorem 1 Consider a KPLM hypothesi® = (W, M) with >°_, [|[W,||> = 1 and
|[M||* < R such thatmin, gey pa(v, g|©) > ~. Then, for any probability distri-
butionD on X’ x Y with support in a ball of radiug? » around the origin, with probability
1 — § overn random example§, the following bound for the true cost holds

< 20QA <64R2 eny 32

n 4
Ri[0] < o log SR2 log e + log 6)

Algr(y)| < A, re{l,.. "qy} andR = 2Ry Rx.

n

wherevy € ), ¢, < Q,

Proof. Similar to that of Theorem.11 in [7] when noting that the size of examplesih
are upper-bounded b = 2R, R .

4 Experiments

Experimental Setting We performed experiments on the ‘ModApte” split of Reuters-
21578 dataset. We selected thiemost popular categories thus obtaining a reduced set
of 6,490 training documents and a set of 2,545 test docum@&hts corpus was then pre-
processed by discarding numbers and punctuation and ¢ingykatters to lowercase. We
used a stop-list to remove very frequent words and stemnasdpben performed by means
of Porter’'s stemmer. Term weights are calculated accordinigetf/idf function. Term se-
lection was not considered thus obtaining a set of 28,0Gthdideatures.

We evaluated our framework on the binary category rankisl taduced by the original
multi-label classification task, thus requiring rankingwing target classes of the original
multi-label problem on top. Five different well-known cdahctions have been used. Let
x be an instance having ranking lahell Err is the cost function indicating a non-perfect
ranking and corresponds to the identity mapping in Figuta)1DErr is the cost defined
as the number of relevant classes uncorrectly ranked byldloeitam and corresponds to
the domination mapping in Figure 1-(lErr is the cost obtained counting the number of
uncorrect rankings and corresponds to the disagreememiingaip Figure 1-(c). Other two
well-known Information Retrieval (IR) based cost functdmave been used. Ti@neErr
cost function that i4 whenever the top ranked class is not a relevant class ande¢hage

.. . . . 1 \{r'ey;rank(x,r’)grank(x,r)}\
precision cost function, which ibvgP = 3> rankocr) :

Results The model evaluation has been performed by comparing thffsgest label
mappings for KPLM and the baseline MMP algorithm [4], a vatiaf the Perceptron
algorithm for ranking problems, with respect to the abowmtioned ranking losses. We
used the configuration which gave the best results in therempats reported in [4]. KPLM
has been implemented settiag= m and the standard basis vecters € R as codes
associated to the classes. A linear keit(sl, y) = ((x,y) + 1) was used. Model selection
for the KPLM has been performed by means of a 5-fold crosslatitin for different values



of the parametef’. The optimal parameters have been chosen as the ones ningrtiie
mean of the values of the loss (the one used for training) tneedifferent folders. In Table
1 we report the obtained results. It is clear that KPLM dedigibutperforms the MMP
method. This is probably due to the use of margins in KPLM. &beer, using identity and
domination mappings seems to lead to models that outpetfogrones obtained by using
the disagreement mapping. Interestingly, this also happdren comparing with respect
to its own corresponding cost. This can be due to a loosemappation (as a sum of
approximations) of the true cost function. The same trensleeafirmed by another set of
experiments on artificial datasets that we are not able wrtépere due to space limitations.

| Method | TErr % | DErr % [ dErr % | OneErr % | AvgP % |
MMP 5.07 4,92 0.89 4.28 97.49
KPLM (G;) 3.77 3.66 0.55 3.10 98.25
KPLM (Gp) 3.81 3.59 0.54 3.14 98.24
KPLM (Gq) 4.12 4.13 0.66 3.58 97.99

Table 1: Comparisons of ranking performance for differeethds using different loss
functions according to different evaluation metrics. Besults are shown in bold.

5 Conclusions and Future Work

We have presented a common framework for the analysis ofrglemeilticlass problems
and proposed a kernel-based method as an instance of ttiig sehich has shown very
good results on a binary category ranking task. Promisingctions of research, that we
are currently pursuing, include experimenting with codipgimization and considering to
extend the current setting to on-line learning, interdeleanlabels (e.g. hierarchical or any
other structured classification), ordinal regression f@mmis, and classification with costs.
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